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Highlights 

 UV photo luminescence detection of PAHs is possible within synthetic and natural gypsum, 

and synthetic halite. 

 

 The most transparent minerals are more conducive to UV photoluminescence detection of 

trapped organic matter. 

 

 Iron oxide hampers but does not completely quench the UV photoluminescence emission. 

 

 The maturity of organic carbonaceous material influences the luminescence response, 

resulting in a reduced signal for UV excitation wavelengths down from 375 nm to 225 nm. 
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Abstract 

Detection of organic matter is one of the core objectives of future Mars exploration. The ability to 

probe rocks, soils, and other geological substrates for organic targets is a high priority for in situ 

investigation, sample caching, and sample return. UV luminescence – the emission of visible light 

following UV irradiation – is a tool that is beginning to be harnessed for planetary exploration. We 

conducted  UV photoluminescence analyses of (i) Mars analogue sediments doped with 

polyaromatic hydrocarbons (PAHs; <15 ppm), (ii) carbonaceous CM chondrites and terrestrial 

kerogen (Type IV), and (iii) synthetic salt crystals doped with PAHs (2 ppm). We show that that 

detection of PAHs is possible within synthetic and natural gypsum, and synthetic halite. These 
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substrates show the most apparent spectral modifications, suggesting that the most transparent 

minerals are more conducive to UV photoluminescence detection of trapped organic matter. Iron 

oxide, ubiquitously present on Mars surface, hampers but does not completely quench the UV 

luminescence emission. Finally, the maturity of organic carbonaceous material  influences the 

luminescence response, resulting in a reduced signal for UV excitation wavelengths down to 225 

nm. This study demonstrates the utility of UV luminescence spectroscopy for the analysis of mixed 

organic-inorganic materials applicable to Mars exploration.  

 

Keywords: UV luminescence; Mars; Analogue; Spectroscopy; Organic 
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1. Introduction 

 

The detetction of organic compounds within near-surface crustal materials on Mars is a key aim for 

current (e.g. NASA Mars Science Laboratory) and future (e.g. NASA Mars2020 and ESA ExoMars 2020) 

missions. Delivery of exogenic organic matter is a daily process on Mars (up to 4x10-4 g. m-2yr-1 ; 

Flynn and McKay, 1990), delivered by comets, asteroids and IDPs (0.013.106, 0.05.106  and 0.07 − 

0.3.106  kg/yr respectively; Frantseva et al. 2018). Furthermore, endogeneous macromolecular 

reduced carbon has been identified in the Tissent SNC meteorite (Steele et al. 2012). One of the 

remaining obstacles in assessing Martian habitability is the relative difficulty in detecting organic 

carbon compounds at the Martian surface. This difficulty remained until the recent detection of 

thiophenic, aromatic, and aliphatic complex compounds at Gale Crater (Eigenbrode et al. 2018), 
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adding to previous detections of trace atmospheric methane (Webster et al. 2015; 2018), 

chlorobenzene (Freissinet et al. 2015; Millan et al. 2016), and chlorinated hydrocarbons (Glavin et al. 

2013). Such in situ detection however still faces two main challenges; (i) the oxidizing nature of the 

Martian soil coupled with on-board pyrolysis techniques employed for analysis (e.g. Sample Analysis 

at Mars; Mahaffy et al. 2012), and (ii) degradation of organic compounds by ionizing irradiation 

(Dartnell et al. 2007, Ten Kate  2010). This dual challenge is being mitigated, in part, through the 

development of new spectroscopic techniques (e.g. Storrie-Lombardi et al. 2009, Eshelman et al. 

2017; Uckert et al. 2018), coupled with physical access to the martian subsurface, such as the 2 m 

drill on board the ExoMars 2020 rover (Vago et al., 2017). 

 

Distinct UV-excited photoluminescence spectra are emitted by many organic molecules, ranging 

from polyaromatic hydrocarbons (PAHs), to some amino-acids, as well as more complex mixtures of  

dissolved organic matter (DOM) (Chen et al. 2003, Rivera-Figueroa et al. 2004, Carrier et al. 2016, 

Eshelman et al. 2014, 2015, 2017). In addition, inorganic substrates can also produce a 

photoluminescence response following UV excitation (Gaft et al. 2015). UV photoluminescence (UV 

PL) therefore has the potential to become a powerful tool in the search for organic molecules, and 

potentially biosignatures, at the Martian surface (Storrie-Lombardi et al. 2010; Dartnell et al. 2011, 

2012; Sephton and Carter 2015). UV PL results from the complete absorption of a photon generating 

an electron hole pair followed by recombination and radiative emission at a longer wavelength.The 

ultraviolet photoabsorbtion cross section is much higher than the Raman scattering cross section, 

where generally one scattered photon out of 107 has a Raman shift (Ball, 2002). Consequently, UV PL 

can provide information at detection thresholds as low as ppt concentrations for PAHs using laser 

induced luminescence (Richardson and Ando, 1977). As such, UV luminescence spectroscopy is 

becoming an increasingly popular technique for in-situ Mars exploration. The Optical Microscope on 

the NASA Phoenix lander (operational in 2008) used near-UV (NUV; λex = 360–390 nm) LED 
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illumination to investigate samples of the Martian regolith, but failed to find any mineral or organic 

luminescent material (Goetz et al. 2012). This unsuccessful detection was potentially due to the Fe-

rich nature of the Martian regolith (Fe2+ and Fe3+ can both suppress luminescence, Gaft et al. 2015). 

Alternatively, the relatively long excitation wavelengths used, and the likely absence of organic 

material immediately at the Martian surface could have hindered detection. Since then, UV PL 

imaging capability (λex = 365 nm) has been incorporated into the Mars Hand Lens Imager (MAHLI) on 

NASA’s MSL Curiosity rover (Edgett et al. 2012). MAHLI has been used to demonstrate the relevance 

of NUV excitation sources, and especially 365 nm excitation for the detection of fluorescent minerals 

in thin sections of Martian meteorites (Minitti and McCoy 2012) and at Gale Crater (Fisk et al. 2015). 

Regarding upcoming exploration, future instruments are in development, including the Scanning 

Habitable Environments with Raman & Luminescence for Organics & Chemicals (“SHERLOC”) 

instrument, which will be part of the payload for the NASA Mars 2020 Rover mission (Beegle et al., 

2015). This instrument is a deep UV (λex =248.6 nm) Raman and Luminescence imaging spectrometer 

(Beegle et al., 2015), and will be the first dedicated spectrometer with UV capability to be deployed 

at the martian surface. UV PL spectroscopy and imaging capabilities have also been previously 

considered for the European Space Agency ExoMars Panoramic Camera (Storrie-Lombardi et al., 

2009), and hyperspectral imaging instrument concepts (Barnes et al., 2014). The applicability and 

limitations of UV PL for the analysis of planetary analogue materials however are relatively unknown 

in comparison to other spectroscopic techniques, such as Raman and Visible to Near Infrared (VNIR) 

reflectance spectroscopy. UV-Raman can be used to detect potential biomarkers (e.g. pigments, 

amino acids) when mixed with Martian analogue minerals (for organic concentrations > 10 wt. %, 

Skulinova et al. 2014). UV-Raman has also been shown to detect aromatic hydrocarbons, embedded 

in Martian analogue soil at a concentration of 0.1 wt. % (Abbey et al, 2017). UV PL is complementary 

to such techniques, as the higher luminescence response enables lower detection limits, but typically 

with less information conveyed than the weaker Raman scattering signal. PAHs in particular have 

been the focus of recent studies, primarily due to their widespread presence in the interstellar 
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medium (Ehrenfreund et al., 2011) and carbonaceous chondrites (Becker et al, 1997), and possession 

of a strong luminescence response following UV excitation (Muller et al, 2011; Dartnell et al. 2012). 

 

Mars surface mineralogy is characterized by largely basaltic igneous lithologies and hydrated 

mineral phases, namely phyllosilicates and sulfates, which together characterise all recent and 

future landing sites  (Arvidson et al, 2006; Ehlmann et al. 2008; Ehlmann et al, 2012; 

Golombek and McSween 2014). In addition, a global iron-oxide rich regolith is ubiquitous 

(Bell et al, 2000), while hematite concretions have been identified in multiple localities 

(Meridiani Planum, Klingelhöfer et al. 2004). To this end, Mars surface processes over time 

have been broadly divided into three mineralogical ‘epochs’ that reflect global environmental 

change: the phyllosian, theiikian, and siderikian (Bibring et al., 2006), with clay-bearing 

lithologies identified as the most likely substrates for preservation of ancient organic material 

(Ehlmann et al., 2008). One of the most widespread sulfates found on Mars is calcium 

sulfate, in locations such as Olympia Planitia, Mawrth Vallis, Columbus crater and Gale crater 

(Langevin et al, 2005, Loizeau et al, 2007; Wray et al, 2011; Nachon et al, 2014; Rapin et al., 

2016). Likewise, magnesium sulfates such as epsomite (MgSO4·7H2O), and sodium chloride 

(NaCl) salts are present on Mars (Vaniman et al. 2004, Gandrin et al. 2005, Osterloo et al. 

2010). Little is known about the luminescence response of organic molecules hosted within 

such sedimentary and crystalline substrates. Furthermore, iron oxide has been shown to act 

as a UV luminescence quencher (Gaft et al. 2015), potentially affecting the overall ability of 

UV PL techniques to detect organics hosted within or among Fe3+ bearing minerals. We 

investigated the UV luminescence spectra of Mars-analogue materials both with, and 

without, the addition of PAHs anthracene, perylene, and pyrene, as well as carbonaceous 
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chondrites and terrestrial type IV kerogen, which are representative of exogenously-

delivered and geologically recalcitrant carbonaceous material, respectively. 

 

2. Methods 

2.1 Samples  

2.1.1 Sedimentary substrates 

Three Mars analogue sediments from Iceland were selected to broadly represent the three 

key mineralogical groups on Mars: phyllosilicates, sulfates, and iron oxides. The three 

analogues consist of (i) gypsum from a late-stage mineral vein at the Namafjall geothermal 

ridge (Harris et al., 2015), (ii) paleolacustrine clay-bearing mud-siltstone, and (iii) iron oxide 

soils from the Namafjall geothermal field (Harris et al., 2015). Samples were powdered (<500 

µm grainsize) and homogenized in an alumina pestle and mortar, and half of the resulting 

powders doped with one of two PAHs: five-ringed perylene and three-ringed anthracene, 

(Sigma Aldrich; PAH solutions in methanol, with a concentration of 2000 and 200 μg/ml for 

perylene and anthracene respectively) to a final concentration of 15 ppm. Samples were 

homogenized again following PAH doping. Doped and reference blank samples were pressed 

into copper samples holders with wells 0.4 cm diameter x 0.25 cm depth for low-

temperature UV PL analysis.   

 

2.1.2 Synthetic salt crystals 
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Epsomite and halite crystals were precipitated from saturated (1.3 g/ml for MgSO4·7H2O; 0.4 g/ml for 

NaCl) solutions at 40 °C. Once cooled to room temperature, the solutions were doped with either 

anthracene or pyrene (Sigma Aldrich; PAHs solutions in methanol, at 200 μg/mL and 100 μg/mL for 

anthracene and pyrene respectively), for a final PAH concentration of 2 ppm. To investigate the 

effect of Fe-oxyhydroxides on the UV PL response, duplicate PAH-doped salt samples were 

synthesized with the addition of the Fe-oxyhydroxide ‘Oxide’ sediment from the Namafjall 

geothermal field, described above. Saturated solutions were doped with between 0.15 – 0.2 g/ml Fe-

oxyhydroxide and the magnesium sulfate solutions with 0.2 g/ml. The resulting crystal sizes averaged 

2 x 1 mm for epsomite and 2 x 2 mm for halite.  

 

2.1.3 Carbonaceous chondrites 

Three CM2 carbonaceous chondrite chips were included in the study to investigate the UV 

PL properties of one of the exogenous sources of organic material delivered to the Martain 

surface. These were the Meteorite Hills MET01072 meteorite (0.49 g) and the Alan Hills 

meteorite ALH84044 (1.045 g), loaned from NASA JSC, USA, and Murchison (1 g)  loaned 

from the Natural History Museum, UK. CM chondrites are primitive chondrites, formed from 

low temperature (<100 °C, Guo and Eiler, 2007) and have experienced aqueous alteration 

after accretion on the parent-body. The least altered sample is Murchison, with the highest 

aqueous alteration index (2.5) compared to MET01072 and ALH84044 (respectively 2.3 and 

2). Using the degree of hydration (Water/OH) detailed in Alexander et al. (2013), Murchison 

has a ratio of 0.96, ALH84044 a ratio of 1.24 and MET01072 a ratio of 1.04. CM MET01072 

has also undergone impact deformation (Lindgren et al. 2015). The total organic carbon 

concentration of MET01072 and ALH84044 are comparable (1.7 %, Alexander et al. 2013), 
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and higher in the case of Murchison (2.1 %). The two finds, MET01072 and ALH84044 exhibit 

respectively a moderate (B) and limited (Ae) weathering, and Fayalite content is between 0-

1 mol. % for Murchison (Fuchs et al, 1973), 0-12 mol. % for MET01072 and 0-2 mol.  % for 

ALH84044 (NASA Astromaterials Research and Exploration Science database). Murchison is 

one of the most studied carbonaceous chondrites, with a mineralogy of 

porphyritic millimetre-size chondrules dominated by ferromagnesian silicates, and fine-

grained phyllosilicate rich matrix, where carbonates and iron-nickel grains are present 

(Lindgren et al. 2015). The organic content of Murchison is dominated by the insoluble 

fraction (IOM), consisting of small aromatic units (2 or 3 on average) linked by short aliphatic 

moieties (Derenne and Robert, 2010). The organic carbon is close to being purely graphitic (> 

99 %, Pizzarello and Shock, 2010). The soluble fraction is composed of amino acids or 

polyols, hydrocarbons and extends over thousands of different molecular compounds 

(Pizzarello and Shock, 2010). As a comparison for the insoluble organic matter (IOM) within 

the carbonaceous chondrite samples, a kerogen type IV sample was also included. Kerogen is 

not a structural analogue to IOM, but type IV, and primitive chondrites share common 

organic contents (Matthewman et al. 2013), and kerogen represents recalicitrant 

macromolecular carbon. The Type IV kerogen sample used in this study is from the 

Cretaceous-age Wealdon Beds at Durdle Door, Dorset, UK (Matthewman et al., 2013). 

Previous pyrolysis-gas chromatography-mass spectrometry analysis of this sample shows it 

comprises numerous aromatic and phenolic compounds (Montgomery et al., 2016).  

 

2.2 Sample charaterisation 
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Iceland sediments and synthetic crystals were characterised with VNIR reflectance spectroscopy, and 

either Raman spectroscopy or X-ray Diffraction (XRD) to determine their mineralogical composition. 

VNIR analysis was achieved using a Spectral Evolution RS-3500 spectrometer measuring from 350 to 

2500 nm with an illuminated contact probe. Reflectance measurments were normalized to a  

Spectralon© white reflectance standard. Raman spectroscopy was conducted using a Horiba 

LabRAM HR and 633 nm laser with acquisition time and laser power variable depending on individual 

sample response.  Identification of Raman peaks was performed using the RRUFF database (Downs 

2006). Quantiative XRD analysis was also conducted for the Mudstone sample to further constrain 

the mineralogy of this more heterogeneous sedimentary substrate. Samples were first crushed to <5 

μm using an agate ball mill in acetone, then dried at 38 °C overnight. This was then back-packed into 

standard Philips sample holders to produce maximum random orientation. Prepared samples were 

analysed with a Philips PW1050 / Hiltonbrooks DG2 instrument. Mineral identification was done 

using DiffracPlus, using ICDD PDF4, and semi-quantification achieved using the Reitveld method in 

SiroQuant ver3., with sample quantification error ~10 %.   

 

2.3 UV photoluminescence spectroscopy  

Low temperature UV PL measurements of the sedimentary Iceland substrates were performed using 

the  Hyperspectral Luminescence and Optical Spectroscopy (HeLIOS, Cross et al, 2013) instrument at 

Aberystwyth University, UK. Samples were cooled to (20 K) using a closed loop Helium cryostat, at a 

base pressure (at room temperature) of ~10-4 mbar. Thorlabs mounted LEDs fitted with collimating 

lenses were used for excitation, providing ~50 mW at 280 nm and 500 mW at 365 nm. UV emission 

spectra were measured using a Horiba Jobin Yvon iHR320 fitted with an automated filter wheel for 

order sorting and a 395 nm long pass (Schott GG 395) filter to exclude the excitation light. The 

wavelength scale of the spectrometer was calibrated using a mercury emission lamp. Room 
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temperature UV photoluminescence analysis was performed for the carbonaceous chondrite chips 

and synthetic crystal samples, using UV excitation and emission measurement as described above, 

with a 395 nm longpass filter. Finally, Kerogen and Murchison samples were further analysed using a 

tunable light excitation source (max 10 mW), attached to the same Horiba Jobin Yvon iHR320 

combined with a 395 nm long pass filter. UV PL emission spectra are presented as either relative 

emission intensity (native PL response) or as normalised maximum emission spectra to enable direct 

cross-comparison of spectral shape and features between samples.  

 

3. Results  

3.1 Sample characterisation 

Iceland sample ‘Gypsum’ has Raman peaks present  at 145, 180, 413, 493, 620, 670, 1008 and 1136 

cm-1 (Figure 1A), consistent with gypsum reference spectra. Paleolacustrine ‘Mudstone’ has a single 

broad Raman peak at ~1550 cm-1 (Figure 1A) consistent with the amorphous carbon G band. Sample 

‘Oxide’ has hematite Raman peaks at 225, 294, 410, 490, 485, and 488 cm-1 (Figure 1A). The Kerogen 

sample has weak and broad carbon D-band (1350 cm-1) and G-band (1580 cm-1) peaks.  

 

VNIR reflectance spectrum (Figure 1B) for sample Gypsum shows a clear H2O triplet at 1.9 µm and an 

S-O band at 2.4 µm, consistent with the Raman identification of gypsum. Sample Oxide shows Fe3+ 

charge transfer bands at 0.5 and 0.9 µm, consistent with the identification of haematite with Raman 

spectroscopy, and also OH, H2O, and Fe-OH bands at 1.4, 1.9 and 2.3 µm respectively. These 

collectively demonstrate the presence of an additional hydrated, and likely nanophase, FeOOH 

component not detected with Raman spectroscopy. Finally, the Mudstone has a broad Fe2+ band at 1 

µm and Al-OH band at 2.2 µm, and Q-XRD analysis shows the sample comprises plagioclase (19 %), 
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pyroxene (16 %), smectite clays (11 %), chlorite (6 %), and zeolite (5 %), in addition to a large 

amorphous component (43 %) comprising basaltic glass clasts and palagonite gel based on thin 

section petrographic analysis (data not shown). 

 

 

Figure 1. (A) Raman spectra (off-set for clarity) and (B) VNIR reflectance spectra (expressed as % 

reflectance) of Iceland sediment, synthetic epsomite, and Kerogen (Raman only). Absorption bands 

in (B) highlight spectral features discussed in the text.  

 

3.2 UV PL of PAHs  

Anthracene, perylene and pyrene show photoluminescence spectra that are markedly different to 

those of the Iceland sediment and kerogen samples (Figure 2). At 20 K, anthracene has 5 peaks, at 

404, 420, 449 (λex = 280 nm) or 459 (λex = 365 nm), 470 (λex = 280 nm) or 480 (λex = 365 nm), and 513 
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nm.  At 20 K perylene has 3 peaks at 532, 575 and 622 nm (λex = 365 nm). Overall, the main emission 

response observed for anthracene is located at 400 - 500 nm, and 525 – 600 nm for perylene (Figure 

2A). Pyrene also has an emission response between 400 – 500 nm, for both λex = 280 nm and λex = 

365 nm (Figure 2B), with clear peaks observed with λex = 365 nm at 440, 470, and 504 nm. 

 

3.3 UV PL of sediment samples 

The UV PL spectra of Mars analogue sediments are shown in Figure 2. Under 280 nm excitation 

(Figure 2C) a large, broad excitation response is observed between 400 – 600 nm for Mudstone, 

Kerogen, and Oxide samples, with the latter exhibiting an additional strong peak at 600 nm. The 

Gypsum sample exhibits a different response, with two well-defined peaks at 460 and ~570 nm. 

Under 365 nm excitation the resulting spectra reveal different responses in all samples, with Oxide, 

Mudstone and Kerogen samples showing three broad peaks between 450 and 650 nm, and a weaker 

peak observed at 715 nm. Kerogen has a further, well-defined emission peak at 408 nm that is 

absent in the sediment samples. Gypsum exhibits the same triplet of peaks between 450 and 650 nm 

as Oxide, Mudstone and Kerogen, with slight differences observed in their centre wavelengths. These 

peaks are more defined in the Gypsum sample, and sit on top of a larger, broad luminescence 

response centred at ~505 nm (Figure 2D).  
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Figure 2. UV PL spectra of PAHs (A-B) measured at room temperature (except where stated at 20 K) 

and Iceland sediments measured at 20 K (C-D), with λex = 280 and 365 nm. (A) Anthacene (AN.); (B) 

Perylene (PE.) and Pyrene (PY.); (C) Iceland sediment matrices and kerogen for λex = 280 nm; and 

(D) Iceland sediment matrices and kerogen for λex = 365 nm. All spectra normalised to maximum 

amplitude. 

 

The UV PL spectra of the Iceland sediment matrices doped with each of the PAHs are shown in Figure 

3. Differences in actual luminescence response are visible for Gypsum. Changes in the luminescence 
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spectra (λex = 280 nm) here are seen in the addition of perylene and anthracene, both of which result 

in an increased luminescence at ~500 nm (Figure 3A), and a broadening of the whole luminescence 

peak. Under 365 nm excitation the addition of anthracene to gypsum causes a shift in centre 

wavelength in the resulting luminescence spectra from 505 nm to 530 nm (Figure 3D). Conversely, 

perylene does not produce such a response when doped onto gypsum, with no resulting shift 

towards the yellow where this PAH emits (Figure 3D). When doped with either of the PAHs, the 

Mudstone photoluminescence response shows only minimal changes with 280 nm excitation only, 

with the anthracene-doped Mudstone exhibiting an increased luminescence response at 580 nm 

(Figure 3B). The Mudstone doped with perylene, which while inconsistent with the perylene 

spectrum, produces a very similar luminescence response to the perylene-doped gypsum sample for 

280 nm excitation. Finally, the presence of either PAH in the Oxide matrix has little to no effect on 

the resulting luminescence spectra, for either 280 nm or 365 nm excitation (Figure 3C and F). 
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Figure 3. UV PL spectra of the pure Iceland sediment matrices and those doped with anthracene 

(An.) and perylene (Pe.) at λex = 280 nm (A-C) and λex = 365 nm (D-F) for Gypsum (‘G’, A+D), 

Mudstone (‘M’, B+E) and Oxide (‘Ox’, C+F). Pure PAH photoluminescence spectra are also shown in 

grey for comparison (solid line = anthracene, dashed line = perylene). All spectra normalised to 

maximum amplitude. 

 

3.3 UV PL of synthetic salt crystals 

The room-temperature UV PL spectra of the synthetic salt crystals, plus pyrene and anthracene, are 

shown in Figure 4. For the majority of samples, the addition of either PAH increases the 

luminescence response at λex = 365 nm (Figure 4E-H). For halite under λex = 365 nm, the addition of 
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anthracene produces a clear overprinting of the three largest anthacene peaks (at 412, 445 and 470 

nm, Figure 4G) on the otherwise broad halite photoluminescence spectrum (Figure 4G), plus an 

additional, new peak at 580 nm. This effect is not seen under λex = 280 nm (Figure 4C). For all the 

samples, under λex = 365 nm the addition of iron oxide limits the photoluminescence response, with 

an additional red emission peak at 720 nm.  

  

 

Figure 4. UV PL spectra of synthetic epsomite and halite at λex = 280 nm (A -D) and λex = 365 nm (E-

H). Relative emission intensity data are shown for crystals doped with (i) anthracene (A, C, E, G) 

and pyrene (B, D, F, H), and (ii) anthracene or pyrene plus Fe oxyhydroxide (“Spiked-FeOx.”). 

 

3.4  UV luminescence of carbonaceous chondrites and Type IV Kerogen 

The UV PL spectra for the carbonaceous chondrites are shown in Figure 5. All meteorites and the 

Type IV kerogen exhibit a strong blue luminescence response between 450 – 490 nm and an 
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additional red emission luminescence peak centred at ~720 nm (Figure 5A). This peak is strongest 

and most well-defined in the ALH84044, MET01072 and Type IV kerogen material. A broader peak 

centred around 515 – 520 nm is also seen in all meteorites and Type IV kerogen, which is strongest in 

Murchison “Face 2”. The luminescence intensity differs between the different meteorites (Figure 5A), 

where Murchison produces the greatest luminescence response, followed by MET01072, ALH84044, 

and finally Kerogen, with the weakest luminescence response.  

 

The evolution of UV PL response for Murchison “Face 2” and Type IV kerogen with increasing 

excitation wavelength from λex = 225 to 375 is shown in Figure 5B. For both samples, the 

luminescence spectra become more resolved as excitation wavelength increases, whereby the 

overall emission narrows from a broad response between 400 – 600 nm at  λex = 225 nm to purely 

blue emission between 400 – 480 nm at λex = 375 nm. Likewise, the number of resolvable peaks 

increases from 2 – 3 at the two shortest excitation wavelengths, to 5 resolvable peaks at the two 

longest excitation wavelengths. Finally, despite the presence of a 720 nm peak in the λex = 365 nm 

luminescence spectra (Figure 5A), this peak is absent in the λex = 225, 275, 325 and 375 nm 

luminescence spectra (Figure 5B). 
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Figure 5. (A) Relative emission intensity UV PL spectra of carbonaceous chondrites and Type IV 

Kerogen, at λex = 365 nm and room temperature. Two faces of Murchison are shown, one with a 

large visible chondrule (“Face 1”) and one face without any visible chondrules (“Face 2”). The 

shaded band (430-480 nm) is the region of maximum photoluminescence; (B) UV PL spectra of 

Murchison (Face 2) and type IV Kerogen for λex = 225, 275, 325, 375 nm at room temperature, with 

spectra normalised to maximum amplitude. 

 

4. Discussion 

4.1 Organic vs inorganic UV PL response 
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Across the entire sample set, only anthracene within the synthetic halite produces a 

photoluminescence signature that is visible within the broader, inorganic photoluminescence 

response (Figure 4G). In epsomite and pyrene-spiked halite, the addition of PAHs increases the 

resulting photoluminescence response, but not in a linear fashion as seen with the halite. This effect 

is also observed for the Gypsum sediment matrix, which produces a significantly different 

photoluminescence response when doped with either anthracene or perylene (Figure 3A and D). As 

such, it is possible that the detection of PAHs is related to the optical properties of the matrices, 

whereby the minerals that are most transparent to UV-visible wavelengths allow PAH excitation and 

detection of the resulting photoluminescence. This has relevance for target selection for UV PL 

interrogation during active surface missions, particularly given the prevalence of calcium sulfate 

diagenetic veins observed by the NASA Curiosity rover (Nachon et al., 2014; Rapin et al., 2016).  

 

For the Mudstone and Oxide sediments, modification of the UV PL spectrum through the addition of 

PAHs is more subtle. The surface area measured beneath 8 wavelength regions covering the spectral 

response is shown in Figure 6. At λex = 280 nm (figure 6-A-C), the presence of anthracene and 

perylene produce an increase (between 40 and 80%) in the 400 - 440 nm wavelength interval. This is 

consistent with the presence of the maximum wavelength emission for 2-5 ring PAHs being 

previously reported to be at 425 nm (Elsheman et al. 2018). 
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Figure 6. Surface area photoluminescence difference (%) across eight 40 nm spectral bins between 

400 and 750 nm for sediment samples spiked with anthracene or perylene compared to their 

undoped matrices, at 280 nm (A-C) and 365 nm (D-F), for Mudstone (A and D), Gypsum (B and E) 

and Oxide (C and F). Grey region (+/- 20%) indicates differences due to inherent variation within 

the sample, defined by D and F.  

 

All the carbonaceous chondrites and kerogen produce three photoluminescence ranges (450-465 

nm, 500-520 nm, 700-720 nm), which are the combination of their organic and inorganic luminescent 

components, and as such unravelling their individual contributions is complex. Regarding inorganic 

contributions, the 450 nm peak could be ascribed to iron (Fe3+, Zotov et al. 2002), as both chondrite 

chondrules and matrices are typically Fe3+ rich (Beck et al. 2012).  In the case of Murchison “Face 1”, 

the peak at 450 nm  could be related to the presence of high iron content in the chondrule (where 

Fe/Mg ratios are typically below ∼2; Hezel et al. 2018). The 465 nm peak observed can also be related 

to structural changes, such as the presence of lattice defects in forsterite (Karakus 1994), intrinsic 

defects in silica (Skuja et al. 1984a), and oxygen vacancies in silica (Tolmon et al. 1989), all of which 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

23 

 

produce a strong photoluminescence response between 450 and 465 nm.  A final possibility for the 

450 nm luminescence peak would be a substitution of Al3+ for Si4+, as observed in obsidian (Gaft et al. 

2015), particularly as chondrite matrices are typically largely amorphous (Zolensky et al. 1993). In the 

green spectral region, the principal contribution at 510 nm and the absence of contribuation around 

600-630 nm could result from the transition between the lowest energy levels of Mn2+ (Zotov et al. 

2002), as Mn is detected even for concentration as low as 10 ppm (in the case of silicate glasses, 

Adrianasolo et al. 1989).  

 

4.2 Photoluminescence of complex carbonaceous matter 

The lowest photoluminescence response at λex = 365 nm is observed for kerogen and the 

carbonaceous chondrites with the most complex carbon structures (ALH84044 and MET01072). This 

difference between the two Antarctic chondrites (ALH84044 and MET72072) and Murchison could 

result first from the extent of thermal alteration on the parent-body, where the least altered 

meteorites Murchison  (2.5) and MET72072 (2.3) have a stronger luminescence response compared 

to ALH84044 (2). The gradual maturation induces an increase of the aromatic content and the 

decrease of volatiles such as H, O, N or  S (Tissot and Welte, 1984), leading to lower 

photoluminescence response. For structures with a high number of rings, the energy gap between 

the ground and excited state become so low that it can overlap with vibrational transitions 

(Eshelman et al. 2017). The increase in aromatic ring concentration in the kerogen and CM2 

meteorites investigated here results from a higher thermal maturity, and produces a reduced UV PL 

response (Hackley and Carrot 2016, and references therein). Apart from parent-body processes, the 

differences can also result from terrestrial weathering in Antarctica. Contrary to falls (e.g. 

Murchison), Antarctica finds may have suffered intense weathering, inducing the alteration of 

organics to an extent comparable to asteroidal conditions (Bland et al. 2006). As such, the thermal 
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maturity and alteration of organic carbon will have an influence on its in-situ detectability with UV 

photoluminescence on Mars, in addition to the effects imparted by the geological host substrate. 

Shkolyar et al. (2018) performed time-gated UV luminescence analyses to measure the influence of 

martian substrate lithologies on kerogen detection, finding that kerogens are characterised by 

broad features between 400 and 500 nm, with a maximum emission around 430 nm, independent 

of the substrate.  This is consistent with our results (Figure 5).  

 

Lastly, the surface environment of Mars is typified by high levels of radiation and a CO2 rich 

atmosphere. This combined effect of ionising irradiation and an oxidising atmosphere can potentially 

modify complex organic matter and the associated photoluminescence responses. Previous 

experimental irradiation (442 nm laser, at a flux of 7 kW/m2) of medium rank coals in an oxidising 

atmosphere have shown  an increase in the UV photoluminescence emission after 3 hours (Eberhardt 

et al. 1992), and for all the samples the wavelength of maximum photoluminescence depended on 

the PAH ring number and carbon structure. Even considering the lower irradiance on Mars surface 

(0.59 kW/m2, Visconti 2001), extended irradiation of complex organic on the surface of Mars may 

actually help their detection, by increasing their UV photoluminescence, counteracting the effect of 

thermal maturity. Regarding excitation, the kerogen sample in our study has a surface area of ~0.2 

cm2, which with an LED power of 500 mW results in a fluence of 2.5 W.cm-2. This value is 

considerably lower than that provided by a pulsed laser (2.3 105 W.cm-2, Shkolyar et al. 2018), 

suggesting pulsed laser excitation should be considered for future UV luminescence instruments. 

 

4.3 Fe as a luminescence quencher 

The addition of iron oxide has a significant effect on the UV PL signature. Under λex = 365 nm, the 

addition of iron oxide limits the PL response, with an additional red emission peak at 720 nm (figure 
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4). The red region, and the 720 nm position are known to be related to the presence of Fe3+ (Zotov et 

al. 2002; Gaft et al. 2015). Alternatively, despite the presence of long-pass filter, the 720 nm could 

also potentially result from the second-order peak from 365 nm illumination itself. The lack of a 720 

nm peak in the Kerogen and Murchison “Face 2” samples excited with the tunable light source 

(Figure 5B) is likely due to the relatively reduced power of the tunable source laser compared to the 

UV LEDs.  

 

Iron oxide is known to be a UV photoluminescence quencher (Gaft et al. 2015). The presence of iron 

can increase the non-radiative transitions, resulting in the precipitation of  the decay rate of the 

organic UV emitters, following a Stern-Volmer type quenching (Šima 2015 and references within). As 

a result, the radiation coming from the organic emitters would be absorbed by the iron oxide. 

Although this absorption is not complete, the presence of PAHs can be still be detected, particularly 

in salts (figure 4). Iron oxide affects Raman detection of organic material as well, where the addition 

of hematite on oxidised carbonaceous samples  can impair carbon detection (Brolly et al. 2016). The 

presence of hematite can generate a broad band in the region of the carbon D-band (typically at 

1350 cm-1),  possibly leading to misinterpretation regarding the presence of  organic carbon. In that 

case, the combined use of Raman and UV PL can overcome both detection restrictions due to iron 

oxide, which is abundant on the surface of Mars.  

 

Conclusions 

UV photoluminescence analyses of Mars analogue sediments and synthetic salts doped with PAHs 

have been performed, for organic concentrations as low as 15 ppm (sediments) and 2 ppm (salts). 

Our results show that the resulting spectra deviate from both the undoped matrices and the pure 

PAHs spectra. Gypsum and halite show the most apparent spectral modifications when doped with 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

26 

 

PAHs, and suggests that the most transparent minerals are more conducive to UV PL detection of 

trapped organic matter. Iron oxide, which is ubiquitously present on Mars, hampers but does not 

completely quench the UV PL signals produced by PAHs. Finally, the carbon maturity (resulting from 

secondary processes) influences the ability to detect carbonaceous matter, where thermal alteration 

and potential weathering may lower the UV PL response of meteoritic samples. Overall, UV 

photoluminescence is a promising but challenging technique, as the effects of substrate and iron 

oxides, and the nature of complex organic matter, are still largely unknown factors in determining 

detection limitations and capabilities within heterogeneous or natural materials. Our results are 

consistent with deep-UV (248.6 nm) observations, which reveal that native UV PL responses from 

inorganic mineral substrates do not occur below 360 nm, allowing effective discrimination between 

organic and inorganic targets (Beegle et al. 2015). We show that excitation at longer NUV 

wavelengths coupled with an analysis window that extends across the entire visible range can reveal 

combined spectral properties for both. This is observed particularly for complex organic matter 

within carbonaceous chondrites, with more spectral detail observed at longer excitation 

wavelengths. This forms a complementary approach should native UV PL prove a valuable technique 

for the in situ exploration of Mars, and therefore potentially elsewhere in the Solar System. 
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