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In this note we consider the concept of alphabet ordering in the context of string factoring. 
We propose a greedy algorithm that produces Lyndon factorizations with small numbers of 
factors which can be modified to produce large numbers of factors. For the technique we 
introduce the Exponent Parikh vector. Applications and research directions derived from 
circ-UMFFs are discussed.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Factoring strings is a powerful form of the divide and 
conquer problem-solving paradigm for strings or words. 
Notably, the Lyndon factorization [1] is both efficient to 
compute [5] and useful in practice [7]. We study the ef-
fect of an alphabet’s order on the number of factors in a 
Lyndon factorization and propose a greedy algorithm that 
assigns an ordering to the alphabet. In addition, we for-
malize the distinction between the sets of Lyndon and 
co-Lyndon words [3] as avenues for alternative string fac-
torizations. More generally, circ-UMFFs provide the oppor-
tunity for achieving further diversity with string factors 
[2,3].
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1.1. Notation

Given an integer n ≥ 1 and a nonempty set of symbols 
� (bounded or unbounded), a string of length n, equiva-
lently word, over � takes the form x = x1...xn with each 
xi ∈ �. For brevity, we write x = x[1..n] with x[i] = xi . The 
length n of a string x is denoted by |x|. The set � is called 
an alphabet whose members are letters or characters, and 
�+ denotes the set of all nonempty finite strings over �. 
The empty string of length zero is denoted ε; we write 
�∗ = �+ ∪ {ε} and let |�| = σ . We use exponents to de-
note repetition, for instance if α ∈ � then α3 means ααα. 
If x = uw v for strings u, w, v ∈ �∗ , then u is a prefix, 
w is a substring or factor, and v is a suffix of x; we say 
u �= x is a proper prefix and similarly for the other terms. 
If x = uv , then vu is said to be a rotation (cyclic shift
or conjugate) of x. A string x is said to be a repetition if 
and only if it has a factorization x = uk for some integer 
k > 1; otherwise, x is said to be primitive. For a string x, 
the reversed string x is defined as x = x[n]x[n −1] · · · x[1]. 
A string which is both a proper prefix and a proper suf-
fix of a string x �= ε is called a border of x; a string is 
border-free if the only border it has is the empty string ε.
s article under the CC BY license 
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If � is a totally ordered alphabet then lexicographic or-
dering (lexorder) u < v with u, v ∈ �+ means that either 
u is a proper prefix of v , or u = ras, v = rbt for some 
a, b ∈ � such that a < b and for some r, s, t ∈ �∗ . We 
call the ordering ≺ based on lexorder of reversed strings 
co-lexicographic ordering (co-lexorder). Using the Roman 
alphabet: ca < cat < dog while dog ≺ cat .

2. Unique Maximal Factorization Families (UMFFs)

A subset W ⊆ �+ is a factorization family (FF) if and 
only if for every nonempty string x on � there exists a 
factorization FW (x) of x over W . If every factor of FW (x)

is maximal (max) in length over W then the factorization 
is said to be max, and hence must be unique. So if W is 
an FF on an alphabet � then W is a unique maximal fac-
torization family (UMFF) if there exists a max factorization 
FW (x) for every string x ∈ �+ – for this theory see [2,3].

An UMFF W is a circ-UMFF if it contains exactly one 
rotation of every primitive string x ∈ �+ . The classic and 
foundational circ-UMFF is the set of Lyndon words, which 
we denote L, where the rotation chosen is the one that 
is strictly least in the lexorder derived from an ordering 
of the letters of the alphabet � ([1,5,2]). The co-Lyndon 
circ-UMFF, co-L, was introduced in [3], where a co-Lyndon 
word is strictly least amongst its rotations in co-lexorder.

Every circ-UMFF W yields a strict order relation, the 
W-order: if W contains strings u, v and uv then u <W v . 
For the Lyndon circ-UMFF, its specific W-order is lexorder:

Theorem 1. (Duval [5]) Suppose u, v ∈ L, then uv ∈ L if and 
only if u < v .

It was observed in [3] that the analogue of Theorem 1
does not hold for every circ-UMFF – we will establish this 
phenomenon for the co-Lyndon circ-UMFF.

Lemma 1. Suppose u, v ∈ co-L, then uv ∈ co-L if and only if 
v ≺ u.

Proof. Since u, v ∈ co-L then u, v ∈ L. If v ≺ u in co-
lexorder then v < u in lexorder. Applying Theorem 1 we 
have vu ∈L and hence uv ∈ co-L. Next if uv ∈ co-L then 
it must be primitive and border-free [2]. Thus u �= v which 
gives rise to two cases. Suppose first that u ≺ v . If u is a 
proper suffix of v then uv = uwu for some w �= ε contra-
dicting the border-free property. Otherwise, with |u| = n
there is some largest j, 1 ≤ j ≤ n, such that u[ j] �= v[ j]. 
If u[ j] < v[ j] then vu ≺ uv contradicting uv ∈ co-L. We 
conclude that u[ j] > v[ j], and so v ≺ u as required. �

The sets of Lyndon and co-Lyndon words are distinct 
and almost disjoint.

Lemma 2. For a given �, L �= co-L and L ∩ co-L = �.

Proof. Let v ∈ L and w ∈ co-L with |v|, |w| ≥ 2. Then v
starts with some letter α which is minimal in v . Since v
is border-free [2] then it ends with some β where α < β . 
Similarly, w starts γ and ends δ, where γ > δ. Therefore 
v �= w . Finally, every circ-UMFF contains the alphabet � as 
expressed in [2,3]. �

The following result generalizes the Lyndon factoriza-
tion theorem [1] and is a key to further applications of 
string decomposition.

Theorem 2. [2] Let W be a circ-UMFF and suppose x =
u1u2 ···um , with each u j ∈ W . Then FW (x) = u1u2 · · · um
iff u1 ≥W u2 ≥W ... ≥W um .

3. Alphabet ordering

Suppose the goal is to optimize a Lyndon factoriza-
tion by minimizing or maximizing the number of factors. 
For this we consider choosing the order of the letters in 
the – assumed unordered – alphabet so as to influence 
the number of factors. To illustrate, consider the string 
x = abcabcdabcaba. If � = {a < b < c < d}, then FL(x) =
abcabcd ≥ abc ≥ ab ≥ a. Whereas, if we choose the alpha-
bet ordering to be {b < c < a < d}, the Lyndon factorization 
of x becomes a ≥ bcabcdabcaba.

Towards this goal we now describe a greedy algorithm 
for producing small numbers of factors which has per-
formed well in practice on the biological {A, C, G, T } al-
phabet – the experimentation compared results with those 
for the 4! letter permutations. For a string v = v1 . . . vn , 
we suppose that the number of distinct characters in v is 
δ ≤ σ ; for practical purposes we can assume σ is at most 
O (n).

The proposed method requires an extension to a Parikh 
vector, p(v), of a finite word v , where p(v) enumerates 
the occurrences of each letter of the alphabet in v . Our 
modification is that for each distinct letter we will record 
its individual RLE (run length encoding) exponent pattern 
(left-to-right sequence of exponents for a letter) – so the 
sum of these exponents is the Parikh entry for that let-
ter. We call this the Exponent Parikh vector, or EP vector, 
implemented as an EP array. For example, over the alpha-
bet � = {b < c < d < f }, if v = bbbf f bbcf then p(v) =
[5, 1, 0, 3]; whereas, for the EP vector we record the se-
quences [(3, 2), (2, 1), (1)]. So usually the letters are pro-
cessed in the alphabet order with a Parikh vector while 
in the EP case we process them in order of first occur-
rence.

An overview of the method is that we use the fact that 
in a Lyndon factorization the first factor is the longest pre-
fix which is a Lyndon word. Then the heuristic is that the 
left-most letter, α say, in the given string whose expo-
nents, when read as a string, form a Lyndon word with 
the minimal number of factors is chosen as the least letter 
in the alphabet ordering. In order to construct a Lyndon 
word using the exponents of letters we require the order 
of the exponent integer alphabet to be inverted, that is, let 
�̄ = {. . . 3 < 2 < 1}. Next, the algorithm attempts to assign 
order to letters in the substrings between runs of α char-
acters, where these substrings are denoted Xi – if it gets 
stuck it tries backtracking. Finally, if there is a nonempty 
prefix prior to the first α then it is processed.

So note that with this algorithm the required prop-
erty for the exponents of α is that they form a Lyndon 
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word over �̄ and in conjunction a requirement for assign-
ing letters to the Xi substrings is that the ordering will be 
cycle-free. The algorithm can be modified to generate large 
numbers of factors which involves assigning distinct letters 
to be in decreasing order.

3.1. Greedy algorithm

The pseudocode in Algorithm 1 greedily assigns an al-
phabet order to letters.

Algorithm 1: Order the alphabet so as to reduce the 
number of factors in a Lyndon factorization.

With a linear scan record the Exponent Parikh (EP) vector of the 
string for δ distinct letters – O (n);
Compute FL(pr) of each exponent string pr over �̄ and record its 
number of factors – O (n);
bool ← true; // initiate alphabet ordering
while bool = true do

Select the next leftmost pr , pi say, with minimal number of 
factors, t say – O (n);
// assign alphabet order to the t factors of 

FL(pi) = f1 ≥ · · · ≥ ft

// where f j = α j1 X1α
j2 X2 · · ·α jq Xq, and α /∈ Xh, 

1 ≤ h ≤ q, with j1 j2 . . . jq ∈ L over �̄

α = λ1; // assign first letter to be minimal 
in �; if q = 1 assign each new letter in X1

successively in �

for h = 2 to q do
if jh = j1 then // same exponents so assign 
alphabet in order to letters in X1 and Xh

substrings
d ← 1;
while X1[d] = Xh[d] do

assign each new letter successively in �; d++;

if X1[d] = α & Xh[d] �= α then
assign Xh[d] to be next successive letter;

else if Xh[d] = α & X1[d] �= α then
bool ← false; // not Lyndon

else if assignment would not make inconsistency then
// X1[d] �= Xh[d]

assign Xh[d] > X1[d];
else

bool ← false; // inconsistent

if bool then
attempt assignment process for the t factors of FL(pi);

if bool then
if string prefix u (prior to f1) is non-empty then // α /∈ u

repeat process on u starting with next successive letters 
in �;
// lookup EP vector
complete assignment of any remaining letters;
if letters in prefix u do not occur in suffix then re-assign 
all letters starting from prefix;

else
arbitrarily choose next leftmost pr with minimal number of 
factors and attempt new assignment;

The following example, which uses the notation of Algo-
rithm 1, illustrates how backtracking can lead the algo-
rithm from an inconsistent ordering to a successful assign-
ment and associated factorization.
Example 1. Assume � = {a, b, c, d} and

x = a2bdca2cda2bdba1ba2bca2ca2ca1b.

Only the letter a has an exponent greater than 1, and 
FL(E P (a)) = 2221 ≥ 2221 has the minimal number of fac-
tors with f1 = f2 = 2221. After assigning a to be the 
first letter in �, processing f1 causes inconsistency (and 
similarly f2), since the substrings X1 and X2 give b < c
while X1 and X3 would require c < b. So the algorithm 
then backtracks through the EP array and chooses the let-
ter with the least number of factors (albeit singletons), 
namely d – the result is � = {d < c < a < b} with FL(x) =
aab ≥ dcaacdaabdbabaabcaacaacab. Note the order {a < b <
c < d} would have given 3 factors.

4. Experimentation: factorization of DNA strings

We chose as an example the 120 prokaryotic reference 
genomes from RefSeq,1 to investigate the results of the al-
gorithm in practice.2 Most of these genomes are provided 
as a single contiguous sequence but some of them have 
additional smaller pieces representing plasmids or other 
information. The longest contiguous sequence was chosen 
for each genome in these cases, and smaller pieces were 
discarded. The retained sequences ranged from 640,681 
letters to 10,236,715 in length, with a mean of 3,629,792.

In order to determine how often our greedy algorithm 
found a good or optimal alphabet reordering in practice, 
we calculated the Lyndon factorizations resulting from all 
possible (4! = 24) alphabet reorderings of the characters A, 
C, G and T across this collection of genomes. The improve-
ment that could potentially be made to the factorization 
by reordering is substantial, with at least a halving of the 
number of factors in most cases and an improvement re-
ducing 25 factors down to 3 in one case. For each genome 
we ranked the results of all possible reorderings by the 
number of factors produced and compared the reordering 
produced by the algorithm. The algorithm found the opti-
mal reordering for 21/120 genomes and the second-most 
optimal in 31/120 genomes.

The EP vector is used to determine the least letter in 
the reordering. If the first choice leads to inconsistency 
(and hence small factors), backtracking to inspect other 
possible choices can be helpful. However, in many cases, 
the initial choice is still better than the next possible 
consistent solution found via backtracking through the EP 
vector. Without backtracking, the algorithm found 23/120 
optimal orderings and a further second-most optimal or-
derings in 31/120 genomes. Histograms of the full results, 
with and without backtracking, can be seen in the Supple-
mental Information.

5. Applications

In many cases, such as natural language text process-
ing, the order of the alphabet is prescribed, and hence 

1 RefSeq: https://www.ncbi .nlm .nih .gov /refseq /about /prokaryotes.
2 Code available at https://github .com /amandaclare /lyndon -factors.

https://www.ncbi.nlm.nih.gov/refseq/about/prokaryotes
https://github.com/amandaclare/lyndon-factors
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the Lyndon factors of an input text cannot be manipu-
lated. On the other hand, bioinformatics alphabets have 
no inherent ordering suggested by biological systems and 
applications involving Lyndon words, such as the Burrows–
Wheeler transform (BWT), will allow for useful manipu-
lation of the Lyndon factors. The co-BWT is the regular 
BWT of the reversed string, or the BWT with co-lexorder, 
which has been applied in the highly successful Bowtie 
sequence alignment program [6]. Integral with the BWT 
transform is the computation of suffix arrays via induced 
suffix-sorting. We also propose that pattern matching can 
be implemented with the Lyndon factorization in big data 
applications, such as sequence alignment, and further en-
hanced by fortuitous arrangements of the alphabet.

In [7] a new method is presented for constructing the 
suffix array of a text by using its Lyndon factorization ad-
vantageously. Partitioning the text according to its Lyndon 
properties allows tackling the problem in local portions 
of the text, local suffixes, prior to extending the solution 
globally, to achieve the suffix array of the entire text. It is 
stated that the algorithm’s time complexity is not compet-
itive for the construction of the overall suffix array – we 
propose that manipulating the factors by alphabet order-
ing could improve the efficiency.

6. Research problems

• As a complementary structure to the Lyndon array we 
introduce and propose studies of the Lyndon factoriza-
tion array. The Lyndon array λ = λx[1..n] of a given 
x = x[1..n] gives at each i the length of the maximal 
Lyndon word starting at i – reverse engineering in [4]
includes a linear-time test for whether an integer array 
is a Lyndon array. We define the Lyndon factorization 
array F = F x[1..n] of x to give at each position i the 
number of factors in the Lyndon factorization starting 
at i.
• The greedy algorithm does not necessarily produce an 
optimal solution hence natural problems are to design 
algorithms for Lyndon factorizations with a guaranteed 
minimal/maximal number of Lyndon factors.

• Using Duval’s Lyndon factorization algorithm [5] as a 
benchmark, modify the alphabet order so as to in-
crease/decrease the number of factors.

• Theorem 2 supports the following optimization prob-
lem from [3]: Determine the circ-UMFF(s) which fac-
tors a string x into the minimal/maximal number of 
factors, possibly combined with alphabet ordering.

Appendix A. Supplementary material

Supplementary material related to this article can be 
found online at https://doi .org /10 .1016 /j .ipl .2018 .10 .011.
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