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Abstract—Network intrusion detection systems (IDSs) dynam-
ically monitor communication events on a network, and decide
whether any event is symptomatic of an attack or constitutes
a legitimate use of the system. They have become an indis-
pensable component of security infrastructure, e.g., to detect
threats before widespread damage takes place. A variety of
approaches have been proposed to design IDSs, including fuzzy
rule-based techniques that offer advantages such as tolerance
of noisy and imprecise data. In particular, fuzzy rules can be
highly interpretable and trackable if the underlying fuzzy sets
are predefined, directly reflecting domain expertise. This paper
proposes such an approach to generate a set of weighted fuzzy
rules for building effective IDSs, where the rule weights are
optimised by Particle Swarm Optimisation without affecting the
underlying predefined fuzzy sets. Experiments are performed on
benchmark IDS datasets with comparison to alternative systems
built with popular machine learning methods.

I. INTRODUCTION

With the rapid development and explosive use of the Inter-
net and computer systems, the amount of malicious intrusion
or attack on computer networks has excessively increased year
by year [1]. Indeed, techniques for ensuring cyber security is of
paramount importance for any governmental, organisational or
even personal use of the Internet [2]. As a complementary solu-
tion to firewall technology, network intrusion detection systems
(IDSs) aim to identify unauthorised, illicit, and anomalous
behaviour based on network traffic to support decision making
for devising preventive actions by network administrators [3].

IDSs dynamically monitor any communication events on
a computer network, and decide whether these events are
symptomatic of an attack or constitute a legitimate use of
the system. In general, there are two types of IDS, namely,
signature-based IDSs and anomaly-based IDSs [1]. Signature-
based detection systems aim to identify intrusions that match
with previously known attacks. They are very efficient, but
are limited to the information from which they were trained.
Anomaly-based detection systems are introduced to address
suspicious patterns whose behaviour deviates from established
normal patterns. Such systems are able to detect attacks that
have not previously experienced, but strongly depend on the
continuity of monitoring the expected normal activity [4].

Independent of which type of IDSs, their development
requires domain knowledge. Fuzzy rule induction forms a
major approach to learning robust interpretable knowledge
models. Indeed, many techniques (e.g., [5], [6], [7], [8], [9],
[10]) have been proposed for learning fuzzy if-then rules from

numerical data. Apart from being of fault tolerance and error
resilience in the face of noisy and imprecise data, which fits
the requirements of building effective IDSs, fuzzy models also
allow for enhanced transparency in both the learned models
themselves and the inferences performed with the resulting
models [11]. However, a major challenge in learning fuzzy
rules often exists where the membership functions defining
the antecedent fuzzy sets are prefixed, with each having a
predefined linguistic meaning by domain experts or users.
The incorporation of intuitive expert knowledge into linguistic
rules through the use of prespecified fuzzy sets is desirable to
effectively interpret a fuzzy model [12]. Yet, using just a fixed
quantity space consisting of such fuzzy sets inevitably limits
the accuracy of the learnt rules.

Fortunately, this problem can be tackled by modifying the
weights associated with the individual rules. Rule weights
intuitively reveal the relative importance amongst all the rules
in a given rule base. The greater the weight associated with
a fuzzy if-then rule, the more likely it will be chosen for
use (i.e., for firing to draw a conclusion). Modifying rule
weights helps avoid directly modifying the antecedent fuzzy
sets, which would otherwise not only adversely affect the
prescribed meaning of the associated fuzzy labels, but also
require learning a number of parameters for each membership
function. The adjustment of rule weights is far less complicated
since there is only one single parameter (namely, the weight
itself) per rule to learn [13]. In addition to the introduction
of methods for rule weight learning [12], [13], [14], [15], the
significance and effects of rule weights for fuzzy models have
also been discussed in the literature [9], [16].

Inspired by the above observation, this paper proposes a
method to learn weighted fuzzy rules with target applications
to the development of IDSs. The work takes a two-step
approach: A preliminary fuzzy rule base is first generated on
the basis of a given quantity space, with initial rule weights
heuristically specified, and then, a general-purpose Particle
Swarm Optimisation algorithm is devised to simultaneously
optimise the rule weights for the acquisition of a set of opti-
mally weighted fuzzy rules. The proposed work is evaluated
on benchmark IDS datasets, in comparison with the use of a
number of popular machine learning methods.

The reminder of this paper is organised as follows. Section
II introduces benchmark IDS data sets, as well as the basics of
a fuzzy rule-based system and its relevance to IDSs. Section
III describes the proposed methodology of generating a set of
optimal weighted fuzzy rules for an IDS. Section IV presents



and discusses comparative experimental results. Section V
concludes the paper and outlines ideas for further development.

II. BACKGROUND

A. Benchmark IDS Data

Perhaps, the KDD Cup 99 data set has been the most
widely used benchmark in the field of IDS. It is based on
the data from DARPA 98, which has been criticised in [17],
due to its synthetic characteristics. Nevertheless, KDD Cup 99,
which consists of almost 5 million instances, inherited certain
problems from its origin, including issues such as the existence
of a large number of redundant records [18]. As a result, a new
data set, NSL-KDD [18], has been proposed, which is a subset
of the records selected from the complete KDD Cup 99 data
and which has been studied in a number of recent publications
[3], [19].

NSL-KDD also provides an even simpler data set for
quicker assessment and validation on the performance of a
certain technique, named NSL-KDD-TRN-20, consisting of
20% of the complete NSL-KDD training set. This is adopted as
the training set in this work. In the relevant literature, instead of
obtaining the testing instances by partitioning a given dataset
with cross validation, which is often the case in classical
machine learning (especially when the data provided is lim-
ited), it is proposed to utilise an independent test set, named
NSL-KDD-TST, to objectively evaluate the performance of the
proposed approach. Both NSL-KDD-TRN-20 and NSL-KDD-
TST are readily available from [18], with NSL-KDD-TRN-20
consisting of 25192 instances, and NSL-KDD-TST consisting
of 22543 instances.

In terms of attack types, the following four categories
[18] are considered here, as opposed to simply discriminating
between normal and malicious activities:

• Denial of Service Attack (DoS): is an attack in which
the attacker makes certain computing and/or memory
resource too busy or too full to handle legitimate
requests, denying legitimate users from gaining access
to required resources.

• User to Root Attack (U2R): is a class of exploitation
in which the attacker starts out with access to a
normal user account on the system, exploiting certain
vulnerability of the network to gain root access to the
system.

• Remote to Local Attack (R2L): occurs when an
attacker who has the ability to send packets to a
machine over a network but who does not have an
account on that machine, thereby exploiting certain
vulnerability to gain local access as a user of that
machine.

• Probing Attack (Probe): is an attempt to gather infor-
mation about a network of computers for the apparent
purpose of circumventing its security controls.

Generally, the frequency of various attacks is not equally
distributed. In particular, the percentage of R2L and U2R is
very low compared to the other attacks, due to the fact that
they normally only involve one single connection or machine.

The distribution of the attacks on both the training and testing
data set is summarised in Table I.

TABLE I. DISTRIBUTION OF DIFFERENT ATTACK TYPES

Class NSL-KDD-TRN-20 NSL-KDD-TST
DoS 9234 7456
U2R 11 202
R2L 209 2754

Probe 2289 2421
Normal 13449 9710

Total 25192 22543

B. Fuzzy Systems and Related Work

The task of learning from or generalising a given problem
description, by the use of fuzzy logic and fuzzy sets, is to find
a finite set of fuzzy if-then rules capable of reproducing the
input-output behaviour of a given system (or process). Without
losing generality, the system to be learnt is herein assumed to
be a multiple-input-single-output, containing n inputs and one
output and involving m patterns for an M -class problem. A
fuzzy if-then rule Rj , j = 1, 2, ..., N , for such a system is
represented as follows:

If x1 is Aj1 and ... and xn is Ajn then class is Ch with wj
(1)

where x1, x2, ..., xn are the underlying linguistic variables,
jointly defining an n-dimensional pattern space (with N de-
noting the number of such fuzzy rules); Aji, i ∈ {1, 2, ..., n},
is the fuzzy value of the corresponding antecedent xi; Ch,
h ∈ {1, 2, ...,M}, is the consequent class for the M -class
problem; and wj is the rule weight of fuzzy rule Rj indicating
the strength that any input pattern Xp = [xp1, xp2, ..., xpn],
p ∈ {1, 2, ...,m} within the fuzzy subspace delimited by the
given antecedent values is deemed to belong to the consequent
class Ch.

A popular and easy to understand, and perhaps also the
simplest method for classifying a new pattern is based on the
strategy of “single winner rule” or “winner taking all” [20].
This is employed in this work and the class CXp

of a new
pattern Xp is determined by

CXp
= arg max
Ch,h=1,2,...M

αCh
(2)

where

αCh
= max{(

n∏
i=1

µAji
(xpi))wj |wj is associated with Rj ,

Rj is associated with Ch, j = 1, 2, ..., N}
(3)

The inferred class is the consequent of the fuzzy rule that
has the maximum value of the antecedent matching degree
multiplied by the corresponding rule weight. If two or more
classes take the maximum value in Eq. (2) or the matching
degree is zero at Xp, then the pattern cannot be uniquely
classified. To force a classification (if desired), such a pattern
may be assigned with a default class label that is associated
with most training instances.

In literature, a number of fuzzy rule-based approaches [3],
[4], [21], [22] have been proposed to tackle intrusion detection



problems. For example, a genetic fuzzy system [4] within
a pairwise learning framework is developed for signature-
based IDS. The method [22] designed for anomaly-based IDS
works by first generating different training subsets via fuzzy
clustering, which are then subsequently generalised by the use
of an artificial neural network. A dynamic IDS integrated with
the framework of Snort [21], being one of most popular open
source IDSs, is designed on the basis of a dynamic version of
fuzzy rule interpolation [23].

III. METHODOLOGY

A. Feature Selection and Fuzzification

Many different features can be monitored by an IDS for the
analysis of networking packets. However, the inclusion of all
features available does not necessarily help classify networking
attacks, as certain features may be either of no relevance
to intrusion detection or simply redundant. In the literature,
feature selection techniques have been utilised to obtain and
use just the more significant attributes without affecting their
semantics, but this is beyond the scope of this paper. For
simplicity, this work assumes the following four features are
returned by a certain feature selection process, which have also
been utilised in [3], [24]:

• src bytes: number of data bytes sent by source IP
host.

• dst bytes: number of data bytes sent by destination
IP host.

• count: number of connections to the same host as the
current connection in the past 2 seconds.

• dst host diff rate: percentage of connections whose
ports are different within the past 100 connections
with the same destination IP.

These selected features are statistically summarised in Ta-
ble II. Obviously, they take values from very different ranges.
As such, a feature (e.g., src bytes) with a much broader range
of potential values may be dominating the final detection result.
To offset this adverse effect, normalisation over these features
is required so that the range of all individual features becomes
the same, namely within [0, 1]. That is, for any feature x′ its
normalised version x is used in the subsequent analysis such
that

x =
x′ −min(x′)

max(x′)−min(x′)
(4)

TABLE II. STATISTICS ON SELECTED FEATURES

Feature Minimum Maximum Mean Standard Deviation

src bytes 0 381709090 24330.628 2410805.402

dst bytes 0 5151385 3491.847 88830.718

count 1 511 84.591 114.673

dst host diff rate 0 1 0.083 0.187

To generate a fuzzy if-then rule base, each dimension of
the pattern space is typically divided into K (K ≥ 2) subsets
{AK1 , AK2 , ..., AKK}. Practically speaking, partitioning the input
space and defining the corresponding fuzzy sets are usually
done by domain experts (even though such specification may
reflect a certain biased view of particular individuals). In many

Fig. 1. Membership functions

cases (e.g., [12], [25], [26]), simple fuzzy grid partition of
the input space is adopted in order to simplify the generation
process. Of course, the performance of a resulting learnt
classifier may vary in relation to the variation of the partition
of the input space, especially regarding the number of the
partitions made.

For illustration, each dimension is herein divided into
5 overlapping triangular fuzzy regions as shown in Fig. 1,
where the core of a preceding triangular membership function
overlaps with the left support bound of the next adjacent
triangular membership function (e.g., point ’a’ is core of
the second and left support bound of the third membership
function in Fig.1). In the absence of expert’s knowledge in this
work, a data-driven partitioning of individual feature space is
performed to reflect the distribution of the underlying data.
In particular, fuzzy c-means [27] is employed to implement
the fuzzification process by clustering each feature space into
3 clusters. Other than the two delimiting values, i.e., 0.0
and 1.0 after the normalisation process (which are defined as
rectangular triangular fuzzy sets), three critical points (i.e., a,
b and c) are assigned with the three returned cluster centres,
respectively. The resulting triangles are taken as predefined
fuzzy sets which may be artificially associated with linguistic
labels.

B. Generation of Initial Fuzzy Rule Base

Once predefined fuzzy sets for each individual feature are
obtained, a set of preliminary weighted fuzzy rules can be
generated by a heuristic approach. In order to generate rules
with a variable length for more flexibility without affecting
the general representational form, an additional fuzzy set of
”Don’t care” is added for each attribute, which always returns
a full membership value. Given that 4 significant features are
utilised in this work with each one partitioned into 5 triangular
fuzzy sets, the complete combination of fuzzy sets forming the
potential rule antecedent is (1 + 5)4 − 1. Thus, the identifica-
tion of each rule consequent class Ch, h ∈ {1, 2, ...,M} of
fuzzy rule Rj and the corresponding rule weight wj can be
performed mimicking the method of [16], [26] as follows.

1) Calculate the matching degree for each class Ch with
respect to the possible antecedents such that

βCh
=

∑
Xp∈Ch

n∏
i=1

µAji
(xpi) (5)



where Xp are the training patterns defined with the
corresponding n-dimensional fuzzy subspace Aj =
Aj1×Aj2×· · ·×Ajn, and µAji(·) is the membership
function of the antecedent fuzzy set Aji.

2) Find βCT
, T = 1, 2, ...,M, such that

βCT
= max{βC1 , βC2 , ...βCM

} (6)

where CT is the class of the maximum matching de-
gree in response to the antecedent fuzzy sets, forming
a candidate if-then rule relating the antecedents and
the class.

3) Set the rule weight wj to each such candidate rule
with the following value if its class CT is the unique
one that takes the maximum matching degree in Eq.
(6):

wj = (βCT
− β)/

M∑
h=1

βCh
(7)

β =
∑

Ch 6=CT

βCh
/(M − 1) (8)

where β is the sum of the matching degrees for
all training patterns belonging to the same fuzzy
subspace, except those covered by CT . Otherwise,
discard the corresponding candidate rule when two
or more classes take the maximum value in Eq. (6)
or all the βCT

are zero, since it cannot be uniquely
determined or there is no training pattern in support
of this rule.

4) Promote all remaining candidate rules as the members
of the learnt rule base, with their corresponding
rule weights assigned, if weights are better than the
random guess, i.e., wj > 1

M .

Note that the above method for rule generation and rule
weight specification is straightforward when a two-class prob-
lem is considered. For instance, assuming that βC1

> βC2
, the

consequent class is determined to be Class 1 and its weight
will be (βC1

− βC2
)/(βC1

+ βC2
). Interestingly, suppose that

there are almost no Class 2 patterns in the training data set,
the result will be βC1 >> βC2 ≈ 0 and wj ≈ 1. If however,
the total matching degrees of patterns for Class 1 and Class 2
are very similar to each other βC1 ≈ βC2 , then wj ≈ 0.

C. Optimisation of Weighted Fuzzy Rules with Particle Swarm
Optimisation

The closer the value of a rule weight is to 1, the more
reliable or more significant the rule is. The adjustment of the
weights of any two neighbouring rules involves linear compu-
tation while determining the corresponding new classification
boundary. However, the situation will become much more
complicated if the modification of all rule weights is performed
simultaneously [12], [26]. That is, whilst the performance of
a certain fuzzy rule may be improved by directly changing
its rule weight, the performance of its neighbouring fuzzy
rules may be deteriorated as a consequence. The overall
consequence is thus unpredictable when all the fuzzy rules
are changing successively. A method is therefore required to
deal with all existing rule weights in a synchronised manner
to achieve the overall optimal detection performance.

Broadly speaking, the process of finding an optimal com-
bination of a full set of rule weights appears similar to the
behaviour of a particle swarm going towards the best solution
with each particle’s movement influenced by both its local best
position and the currently best known position amongst all
rules. This is in principle the same as any typical application
of Particle Swarm Optimisation (PSO) [28]. Inspired by this
observation and that PSO can encode real numbers directly,
PSO is employed to evolve the weights of a fuzzy rule set
for the development of an effective IDS. In particular, each of
the existing weights is encoded as one particle dimension, and
one particle then represents the entire set of the rule weights
in the existing fuzzy if-then rules. Positions of the particles
in the first generation are initialised with the rule weights
obtained by the use of Eqs. (5), (7) and (8). Particles are then
iteratively modified towards the best solution with regard to a
given quality measure over the set of rule weights.

For each generation, the so-called particle velocity is
calculated by the following assignment:

vx = wvx + c1r1(xgBest − x) + c2r2(xpBest − x) (9)

where using the terminologies in the literature, w is the
inertia weight affecting the trade-off between convergence
and exploration-exploitation in the PSO process; c1 and c2
are the social and cognitive scaling parameters, both being
a positive constant; r1 and r2 are two random numbers
within the range [0, 1]; x is the position for one particle
dimension; xgBest is the global best position of all particles,
namely the rule weights currently capable of achieving the
highest classification accuracy overall; and xpBest is the best
individual position where the particular particle p achieves the
current best classification accuracy. The position is updated by
the assignment: x = x+εvx, where ε is a real-valued parameter
used to control the evolving speed.

In order to measure both the sensitivity of a sub-rule base
(its accuracy among instances of the same class, namely, recall
r) and the specificity of the subrule base (its accuracy among
instances of different classes, namely, precision p), consider
the highly imbalanced distribution of network traffic types.
The fitness function of each particle is herein gauged by a
weighted average of the precision and the recall as follows:

F1 Score =
(1 + β2) · p · r
(β2 · p+ r)

(10)

where β = 1 for F1 Score to evenly weight precision and
recall, and the meaning of p and r is described below.

Given that the task of this work is to distinguish the normal
traffic from four different types of attacks, the overall precision
used is therefore defined an the averaged precision p over M =
5 individual classes, such that

p =

∑M
i=1 pi
M

=

∑M
i=1

tpi
tpi+fpi

M
(11)

where pi is the precision, tpi and fpi are true positive and
false positive for type-i traffic, respectively. A true positive
indicates that the intrusion detection system correctly detects
a particular attack having occurred. A false positive indicates
that a particular attack has been suggested by the IDS, which



TABLE III. PARAMETER VALUES OF PSO

w c1 c2 ε Max Generation Particle Numbers

1.0 2.0 2.0 1.0 200 80

did not actually occur. Similarly, the overall recall r is defined
as:

r =

∑M
i=1 ri
M

=

∑M
i=1

tpi
tpi+fni

M
(12)

where ri is the recall for type-i traffic, and fni is the false
negative, indicating that the IDS is unable to detect the
intrusion after a particular attack has occurred.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In order to evaluate the performance of PSO-tunded
weighted fuzzy rules (PSO-WRF) for IDS, NSL-KDD-TRN-
20 is selected as the training set with NSL-KDD-TST utilised
as the independent test set (see Section II-A). Note that as
the main aim of this study is to examine the efficacy of PSO-
WFR for IDS instead of that of PSO itself, only the basic
version of PSO is used in the experiments. The parameter
specification for PSO is not carefully adjusted, as given in
Table III. Thus, simulation results could be further improved
if more sophisticated versions of PSO were used with carefully
modified parameters.

To validate the performance of the proposed approach,
four popular machine learning algorithms are chosen for
comparison. These are: SVM, a sequential optimisation algo-
rithm for building support vector machines with polynomial
kernels adopted as the kernel function; KNN, the classical k-
nearest neighbour approach, where an instance is classified
by a majority vote of its neighbours; Naive Bayes, a simple
probabilistic learning classifier, based on direct application of
the Bayesian theorem with strong independence assumptions;
Decision Tree, a classical top down version of C4.5 inductive
learning algorithm, by manupilating the concept of information
entropy. The implementation of these approaches can be found
in WEKA, with default settings [29].

B. Results and Discussion

As reflected by the training set, the distribution of various
classes is highly imbalanced and the numbers of instances for
U2R and R2L are particularly low. Therefore, overall accuracy
rate may not be sufficient to compare the performance of the
designed systems, given the likely biased outcomes. This is
also part of the reasons of using F1 Score as the evaluation
criterion to tune fuzzy rule weights instead of pure error rates.
Tables IV-VIII present the results in terms of precision, recall
and F1 Score for each individual traffic class, supported with
corresponding complete confusion matrices in Tables X-XIV.

For the type of DoS attack, which consists of approximately
36.65% of overall training instances, all three indicators of
the proposed approach are very close to those of SVM, KNN
and Decision Tree. Naive Bayes successfully classifies about
91.8% of all DoS attacks from NSL-KDD-TST, yet with
only 0.445 precision, making it the worst overall compared
to other learning classifiers. Similarly, for Normal traffic,

even with a slightly larger proportion of training instances,
PSO-WFR also achieves a significantly better F1 Score value
over Naive Bayes, and beats the other classifiers with small
margins. For the type of Probe attack, PSO-WFR obtains a
significantly better precision (0.967) over the rest, albeit the
overall F1 Score is not satisfactory given its low coverage on
Probe.

TABLE IV. PERFORMANCE COMPARISON ON DOS

Precision Recall F1 Score
PSO-WFR 0.816 0.686 0.745

SVM 0.841 0.692 0.760
KNN 0.837 0.684 0.753

Naive Bayes 0.445 0.918 0.600
Decision Tree 0.866 0.675 0.759

TABLE V. PERFORMANCE COMPARISON ON U2R

Precision Recall F1 Score
PSO-WFR ? 0.000 ?

SVM ? 0.000 ?
KNN 0.000 0.000 0.000

Naive Bayes 0.011 0.045 0.018
Decision Tree ? 0.000 ?

TABLE VI. PERFORMANCE COMPARISON ON R2L

Precision Recall F1 Score
PSO-WFR 1.000 0.034 0.066

SVM ? 0.000 ?
KNN 0.477 0.015 0.030

Naive Bayes 0.088 0.002 0.004
Decision Tree ? 0.000 ?

TABLE VII. PERFORMANCE COMPARISON ON PROBE

Precision Recall F1 Score
PSO-WFR 0.967 0.240 0.385

SVM 0.707 0.454 0.553
KNN 0.665 0.463 0.546

Naive Bayes 0.651 0.493 0.561
Decision Tree 0.724 0.435 0.543

TABLE VIII. PERFORMANCE COMPARISON ON NORMAL

Precision Recall F1 Score
PSO-WFR 0.600 0.963 0.739

SVM 0.577 0.882 0.697
KNN 0.608 0.920 0.732

Naive Bayes 0.884 0.407 0.557
Decision Tree 0.591 0.930 0.723

With regard to the type of U2R attack, which only has 11
training instances out of 25192 in total, unfortunately, neither
of PSO-WFR, SVM and Decision Tree classifies any of the
testing instances as U2R. As the precision is calculated as
the number of true positives over the sum of true positives
plus false positives, this leads to the result of having a ’?’



TABLE IX. OVERALL ACCURACY (%) ON NSL-KDD-TST

PSO-WFR SVM KNN Naive Bayes Decision Tree
67.17 65.77 67.40 53.24 67.08

in Table V for these classifiers, since the denominator of the
precision definition becomes 0. According to the confusion
matrix for KNN as shown in Table. XI, it incorrectly classifies
one observation as U2R. Naive Bayes correctly classifies 9
out of 202 testing instances, but its precision is very low. In
terms of R2L attacks, which also occupy a very low proportion
(0.830%) of the training instances, SVM and Decision again
fail to place any classification on this type of attack just
like U2R. However, PSO-WFR has achieved 100% precision,
correctly recognising all such R2L attacks. This is meanwhile
supported with the largest recall rate than the rest, making
PSO-WFR the overall best performer compared to alternative
methods.

In general, the overall accuracy of Naive Bayes is much
worse than the rest as shown in Table IX. Importantly, the
performance of PSO-WFR is in general, better than the power-
ful SVM and decision tree. Considering the overall F1 Score
as the optimisation criterion, PSO-WFR establishes itself as
the best performer for detecting R2L attacks, which only
constitutes a very small proportion of the training instances.
Nevertheless, the overall F1 Score does not work for the U2R
type of attack, but this data type only involves 11 out of 25192
training instances and is very difficult to generalise. As such,
it remains as a challenging further work to deal with this form
of extremely rare attacks.

TABLE X. CONFUSION MATRIX OF SVM

Class DoS U2R R2L Probe Normal Total
DoS 5163 0 0 140 2153 7456
U2R 0 0 0 7 195 202
R2L 1 0 0 110 2643 2754

Probe 27 0 0 1100 1294 2421
Normal 947 0 0 199 8564 9710

Total 6138 0 0 1556 14849 22543

TABLE XI. CONFUSION MATRIX OF IBK

Class DoS U2R R2L Probe Normal Total
DoS 5103 0 26 212 2115 7456
U2R 14 0 0 5 183 202
R2L 162 0 42 117 2433 2754

Probe 285 0 0 1120 1016 2421
Normal 531 1 20 229 8929 9710

Total 6095 1 88 1683 14676 22543

TABLE XII. CONFUSION MATRIX OF NAIVE BAYES

Class DoS U2R R2L Probe Normal Total
DoS 6845 2 0 225 384 7456
U2R 149 9 3 6 35 202
R2L 2497 18 6 166 67 2754

Probe 1194 0 0 1193 34 2421
Normal 4689 770 59 243 3949 9710

Total 15374 799 68 1833 4469 22543

TABLE XIII. CONFUSION MATRIX OF DECISION TREE

Class DoS U2R R2L Probe Normal Total
DoS 5033 0 0 164 2259 7456
U2R 0 0 0 4 198 202
R2L 154 0 0 43 2557 2754

Probe 142 0 0 1053 1226 2421
Normal 484 0 0 191 9035 9710

Total 5813 0 0 1455 15275 22543

TABLE XIV. CONFUSION MATRIX OF PSO-WFR

Class DoS U2R R2L Probe Normal Total
DoS 5118 0 0 8 2330 7456
U2R 16 0 0 1 185 202
R2L 306 0 93 8 2347 2754

Probe 477 0 0 580 1364 2421
Normal 356 0 0 3 9351 9710

Total 6273 0 93 600 15577 22543

V. CONCLUSION

This paper has proposed an approach to learn an optimal set
of weighted fuzzy rules for the purpose of developing effective
network intrusion detection systems. As an initial implementa-
tion, the proposed work utilises four significant features, whose
fuzzy partitions are generated using fuzzy c-means clustering.
In this work, a preliminary set of fuzzy rules is created by a
heuristic method with initial rule weights specified. This forms
the input to a Particle Swarm Optimisation algorithm, such that
all existing rule weights are simultaneously optimised. Com-
parative experimental investigations have been carried out to
examine the effectiveness using standard IDS benchmarks. As
an important further piece of research, it would be interesting
to look into those attacks that are much less frequently seen
as the ones that can be dealt with using the current approach.
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