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Abstract—The “curse of dimensionality” and “sparse rule
base” are two common and important problems in conventional
fuzzy systems. Using hierarchical fuzzy systems is an effective
way to deal with the “curse of dimensionality” problem, whilst
fuzzy rule interpolation offers a useful means for enhancing the
robustness of fuzzy models, making inference possible in sys-
tems containing only a sparse rule base. In particular, backward
fuzzy interpolation can be employed to allow interpolation to be
carried out when certain antecedents of observation variables
are absent, whereas conventional methods do not work. In order
to deal with both “curse of dimensionality” and “sparse rule
base” simultaneously, an initial idea of hierarchical bidirec-
tional fuzzy interpolation is presented in this paper, combining
hierarchical fuzzy systems and forward/backward fuzzy rule
interpolation. Hierarchical bidirectional fuzzy interpolation is
applicable to situations where a multiple multi-antecedent rules
system needs to be reconstructed to a multi-layer fuzzy system
and any sub-layer rule base is sparse. The implementation of
this approach is based on fuzzy rule interpolative reasoning
that utilities scale and move transformation. An illustrative
example and application scenario are provided to demonstrate
the efficacy of this proposed approach.

Index Terms—Curse of dimensionality, Hierarchical system,
Sparse rule base, Backward fuzzy rule interpolation

I . I N T R O D U C T I O N

An effective way to deal with the “curse of dimensionality”
is to use hierarchical fuzzy systems [1], [2]. Suppose that
there are K input variables and M membership functions
for each variable, then MK rules are required in order to
construct a system that fully covers the underlying problem
domain. This often leads to the rule-explosion challenge
facing systems modelling, usually referred to as the curse of
dimensionality. The rule-explosion problem can be addressed
in two ways. The first is to reduce the number of fuzzy
partitions M , which usually results in significant reduction
of model accuracy [3], [4], [5]. Besides, for many practical
applications, there may not be sufficient historical data to
support the creation of the needed rules that would cover the
entire problem space, but a sparse rule base. Fortunately, fuzzy
rule interpolation can be employed for dealing with this group
of problems. The other way is to reduce the dimensionality
K of the sub-rule bases using meta-levels or hierarchical
fuzzy rule bases. A potentially more powerful case is the

combination of both, which could improve the computational
complexity dramatically [6]. In such a combined hierarchical
interpolation system, however, situations may become even
more complicated where certain crucial antecedents may be
absent from given observations. This is because missing
antecedents may well be involved in the subsequent (sub-
system) inference process, causing the final conclusion not
deducible.

To address the underlying problem of performing interpo-
lation for certain antecedent variables, an original technique
for backward fuzzy rule interpolation (B-FRI) has been
proposed [7]. It is a branch of FRI and extends the existing FRI
techniques. B-FRI can be employed to allow interpolation
to be carried out when certain antecedents of observation
variables are absent, whereas conventional methods do not
work. The missing antecedents may be inferred or interpolated
using the known antecedents and given conclusion during the
interpolative reasoning process. B-FRI can also be employed
to calculate certain antecedents for testing purposes, no mater
whether the antecedents are known or unknown. It supports
both interpolation and extrapolation which involve multiple
intertwined fuzzy rules, with each having multiple antecedents.
This allows missing observations which are directly related
to the conclusion to be inferred or interpolated from the other
known antecedents and the given conclusion. In addressing
real-world problems, the rules adopted are typically irregular in
nature (i.e., they may not always address the same antecedents).
Indeed, rules may be arranged in an inter-connected mesh,
where observations and conclusions in different subsets of
rules may overlap, and yet may not be directly related
throughout the entire rule base. For such complex systems,
any missing values in a given set of observations may lead
to failure if only unidirectional interpolation is employed.

In this paper, the initial theoretical work of hierarchical
bidirectional fuzzy rule interpolation (HB-FRI) is proposed
to meet the aforementioned challenges. Based on previous
research work [7], [10], [11], hierarchical bidirectional fuzzy
rule interpolation based on T-FRI can be proposed as outlined
in the flowchart given in Figure 1. HB-FRI is herein
implemented using scale and move transformation-based
fuzzy interpolative reasoning (T-FRI) [8], [9], owing to their



Fig. 1. Structure of hierarchical bidirectional fuzzy rule interpolation

popularity and availability (although other FRI methods may
be adapted to serve as the alternative if preferred). In particular,
T-FRI offers a flexible means to handle both interpolation and
extrapolation involving multiple, multi-antecedent fuzzy rules.
It guarantees the uniqueness, normality, and convexity of the
resulting fuzzy sets. T-FRI is also able to handle various fuzzy
set representations, including polygonal and bell-shaped fuzzy
membership functions.

The rest of this paper is organised as follows. Section
II introduces the general concepts of HB-FRI, along with
detailed descriptions of a method for generating hierarchical
fuzzy rule bases. Section III presents the scale and move
transformation based fuzzy rule interpolation and backward
fuzzy interpolation. The algorithm of hierarchical fuzzy
interpolation approach is given in Section IV. An illustrative
example is presented in Section V to explain the effectiveness
of the approach. Section VI concludes the paper.

I I . H I E R A R C H I C A L R U L E B A S E G E N E R AT I O N

A. Representation of Intermediate Variables

Without losing generality, the output variable of each layer
within a certain HFS is represented by [12]:

yl,p =
∑

j1j2...jPl−1,p
i1i2...iQl,p

Ul,pVl,p ∗y
j1j2...jPl−1,p

i1i2...iQl,p

l,p

(1)
where

Ul,p =

Pl−1,p∏
k=1

µjk
l,p,k(yl−1,p,k) (2)

and

Vl,p =

Ql−1,p∏
k=1

υjkl,p,k(xl,p,k) (3)

with yl,p representing the output of the pth fuzzy subsystem in
the lth layer; y

j1j2...jPl−1,p
i1i2...iQl,p

l,p being the THEN part of
j1j2...jPl−1,p

i1i2...iQl,p

th fuzzy rule; Pl−1,p being the total
number of outputs from the (l − 1)th layer to Fl,p; Ql−1,p
being the total number of original input variables to Fl,p;



and µjk
l,p,k(yl−1,p,k) and υjkl,p,k(xl,p,k) are fuzzy membership

functions for yl−1,p,k and xl,p,k, respectively.

B. Learning Algorithm

For a standard fuzzy system the Least Square Method
(LSM) is usually used to gain an optimal modelling result.
However, it is not easy to apply LSM when developing
a hierarchical fuzzy system because in many cases the
intermediate variables have no physical meaning. A possible
solution is to use gradient-descent techniques [12], [14], such
as the error backpropagation algorithm, which is a popular
method to optimise the parameters in hierarchical fuzzy
systems. The parameter updating of the lower levels is based
on the errors propagated back from the upper fuzzy layer
(which are ultimately based on the exploitation of the error
back-propagated from the the final output). The gradient-
descent learning algorithm is given as follows.

First, let e(k) be the error between the actual output y(k)
and the hierarchical system output y

′
(k) at time k:

e(k) = y
′
(k)− y(k) (4)

and the errors propagated back are defined as:

ep(k) = eq(k)×
∂yq(k)

∂yp(k)
(5)

where ep(k) denotes the error of sub-fuzzy system p, p ≥ 1,
which is propagated from its immediate adjacent upper sub-
layer fuzzy system q, q = p− 1, and eq(k) is defined in the
same manner.

The parameters y
j1j2...jPq,p i1i2...iQq,p
p (k) in gradient de-

scent learning are computed by

y
j1j2...jPq,p i1i2...iQq,p
p (k + 1)

= y
j1j2...jPq,p i1i2...iQq,p
p (k)− η × Uq(k)Vq(k)× ep

(6)

where η is the learning rate, Uq(k) =
∏Pq

i=1 µ
ji
q,i(k), and

Vq(k) =
∏Qq

i=1 µ
ji
q,i(xp, i).

Based on the above, the algorithm for learning a hierarchical
rule base can be summarised below:

1) Choose the membership functions for each input vari-
able, including both the original, real input variables
of the system being modelled and the intermediate
variables. An even partition for each input variable is
assigned on their corresponding definition domain. The
definition domain for the original input variables can be
directly gained from the training data set. However, the
definition domain for the intermediate variables may
not have any actual meaning and hence, may not be
associated with any explicit definition domain. Thus,
the definition domain for the intermediate variables can
be assumed (and normalised) as [0, 1].

2) Choose initial parameters y
j1j2...jPl−1,p

i1i2...iQl,p

l,p for the
pth sub-fuzzy system of the lth level randomly. These
parameters will be adjusted in the following steps.

3) Update the parameters y
j1j2...jPl−1,p

i1i2...iQl,p

l,p with
respect to each learning iteration k, for each given

input-output pair (xr, yr), where r denotes the index
of the training data.

4) Go to Step 3 with r = r + 1 if r < T , where T is the
total number of training data in the training set.

5) Compute the accumulated error E = 1
2 ×

∑T
r=1(ŷ

r −
yr)2 and check if E is less than a prespecified small
value ε, or if k is larger than a prespecified maximal
iteration number K: if so, end the training process; else,
go to Step 3 with k = k + 1.

I I I . B I D I R E C T I O N A L F U Z Z Y R U L E
I N T E R P O L AT I O N

A. Transformation-based Forward Fuzzy Rule Interpolation
(T-FRI)

u

1/3

0 a a Rep(A) xa20 1 a3

A

Fig. 2. Representative value of trapezoidal fuzzy set

Trapezoidal fuzzy sets are adopted in the present work,
as with the common practice in the T-FRI literature. A key
concept used in T-FRI is the representative value Rep(A) of
a given fuzzy set A. When trapezoidal representation is used,
Rep(A) is defined as the centre of gravity of its four points
(a0, a1, a2, a3):

Rep(A) =
a0 +

a1+a2

2 + a3

3
(7)

where a0, a3 represent the left and right extremities (with
membership values 0), and a1, a2 denote the normal points
(with membership value 1) over the support of the fuzzy set,
as shown in Fig. 2. Based on this representation, T-FRI can
be summarised as follows:

1) Determination of the Closest Rules: Given a rule base U,
a fuzzy rule R ∈ U with M antecedents Ak, k = 1, 2, · · · ,M ,
and an observation O are expressed in the following format:

R: IF x1 is A1, · · · , and xk is Ak, · · · , and xM is AM ,
THEN y is B
O: A∗1, · · · , A∗k, · · · , A∗M

The distance d between a rule and an observation is
determined by computing the aggregated distance of all the
antecedent variables:

d =

√√√√ M∑
k=1

d(Ak, A∗k)
2 (8)



with

d(Ak, A
∗
k) =

d(Rep(Ak), Rep(A
∗
k))

rangek
(9)

where rangek = supk − infk is the domain range of the
variable xk. As such, d(Ak, A

∗
k) ∈ [0, 1] is the normalised

result of the otherwise absolute distance measure, so that
distances are compatible with each other over different variable
domains. The N (N ≥ 2) rules which have the least distance
measurements with regard to the observed values A∗k are then
chosen to be used in the later steps.

2) Construction of the Intermediate Rule: The intermediate
fuzzy terms A†k that are to be used to build the required
intermediate rule are constructed from the antecedents of
the N closest rules. These are then shifted to A

′

k such that
they have the same representative values as those of A∗k.
The shifted intermediate consequence B

′
can be computed,

with the parameters ωBi and δB being aggregated from the
corresponding values of Ak

′
.

3) Scale Transformation: For each antecedent variable
of the N chosen rules, the scale transformation works by
calculating two scale rates sAk

and sAk
. The support (a′0, a

′
3)

of the corresponding shifted fuzzy set A
′

is transformed into
a new support (a′′0 , a

′′
3), and the core (a′1, a

′
2) is transformed

into another (a′′1 , a
′′
2). This leads to a scaled fuzzy set A

′′

k =
(a′′0 , a

′′
1 , a
′′
2 , a
′′
3). The corresponding parameters sB and sB of

fuzzy set B∗ can be calculated as follows:

sB =
1

M

M∑
k=1

sAk
sB =

1

M

M∑
k=1

sAk
(10)

4) Move Transformation: In general, for multiple an-
tecedent rules, each variable dimension has its own move rate
mAk

, in order to move each of the scaled fuzzy sets A
′′

k to new
locations, that coincide with those of the originally observed
values. This allows the initially constructed intermediate fuzzy
terms to be completely transformed so that they become the
same as the given observation. That is, the final transformed
fuzzy sets then match the exact shapes of the observed
values A∗k. Without losing generality, for a given scaled
intermediate fuzzy term: A

′′

k = (a′′0 , a
′′
1 , a
′′
2 , a
′′
3), its current

support (a′′0 , a
′′
3), and core (a′′1 , a

′′
2) can be moved to (a0, a3)

and (a1, a2), using a move rate mAk
calculated as follows:{

mAk
=

3(a0−a′′0 )
a′′1−a′′0

, a0 ≥ a′′0
mAk

=
3(a0−a′′0 )
a′′3−a′′2

, otherwise
(11)

Similar to the scale transformation, the move rate mB for
the consequent dimension can be calculated by obtaining the
arithmetic average of those of the antecedent variables, such
that:

mB =
1

M

M∑
k=1

mAk
(12)

The final interpolated result B∗ that corresponds to the
observation A∗ can now be computed by applying the scale
and move transformation to B

′
, using the resulting parameters

sB , sB , and mB .

B. Transformation-based Backward Fuzzy Rule Interpolation
(BFRI)

The BFRI algorithm that works reversely to T-FRI but
follows a similar underlying approach, in order to infer a
missing antecedent value, can be summarised below.

1) Determination of the Closest Rules: In reference to
the earlier definition of the T-FRI process in Eqn. 8, when
B∗, (A∗1, · · · , A∗l−1, A∗l+1, · · · , A∗M ) are given, in order to
interpolate/extrapolate the unknown antecedent A∗l , the dis-
covery of the closest rules Ri, i = 1, · · · , N , is required.
Mirroring the use of the distance measure in T-FRI, the
following scheme has been proposed in order to reflect the
biased consideration towards the consequent variable:

d̂ =

√√√√dB
2 +

M∑
k=1, k 6=l

dAk

2 (13)

2) Construction of the Intermediate Fuzzy Terms: To
help explanation, suppose that a certain set of closest rules
Ri, i = 1, · · · , N,Ri ∈ U are identified, which are returned
by applying the previous distance metric. Following the
original T-FRI algorithm, in order to create the intermediate
(shifted) fuzzy terms for the known antecedent variables:
A′k, k = 1, · · · ,M, k 6= l, the following parameters wAi

k
,

i = 1, · · · , N , and δAk
need to be computed first. The

parameter values for the intermediate (shifted) consequent
fuzzy term B′: wBi , i = 1, · · · , N , and δB can be computed
using exactly the same formulae as those of Ak, since its value
B∗ is also directly observed. Both wBi and δB are algebraic
averages of the parameter values from individual antecedent
terms. The parameter values for the missing antecedent
such as ωAi

l
, are then calculated by subtracting those of

the known antecedents from that of the consequent. The
acquisition of these parameter values entails the construction
of the intermediate (shifted) fuzzy term A′l for the missing
antecedent dimension.

3) Scale and Move Transformation: Having obtained the
intermediate (shifted) fuzzy terms, the essential parameters
sAl

, sAl
, and mAl

involved in the transformation process can
be derived. Following the same intuition and computational
steps as those for wAi

k
, i = 1, · · · , N , and δAl

, by reversing
the forward transformation procedure introduced in Eqns. 10
and 12, the required values can be found as follows:

sAl
=MsB −

M∑
k=1, k 6=l

sAk

sAl
=MsB −

M∑
k=1, k 6=l

sAk

mAl
=MmB −

M∑
k=1, k 6=l

mAk

(14)

Finally with all parameters acquired, the transformation on
A
′

l can be performed, resulting in the (backward) interpolated
value A∗l .

T (A
′

l, A
∗
l ) = {sAl

, sAl
,mAl

} (15)



I V. A L G O R I T H M O F H B - F R I

Further to the outline as shown previously in Figure 1,
the HB-FRI algorithm can be summarised in principle, as
follows.

1) Determine the distances between the observed values
for each input variable and the antecedents of each rule
in the sub-rule base of the lowest layer, and choose the
closest rules to construct the transformation parameters
required for computing the interpolation through the
subsequent layers.

2) Calculate the sub-consequence for each sub-layer using
the multiple multi-antecedent rules interpolation method.
If this sub-consequence is not the output of the final
layer, then, the sub-consequence will form the fuzzy
term for the relevant input variable of the next layer.

3) Compute the output at the layer above from the terms
of the intermediate variables, and the values of the
original input variables of course, by iterating the first
and second steps.

Thus, the hierarchical interpolative approach can be detailed
below:

1) Determine Closest Rules with Respect to Input Variables
When certain variables are present to an HFIU as input,
the first task of the HFIU is to determine the closest rules
for them. In general, the variables here not only refer to
the original input variables involved in the observation,
but may also include the intermediate variables which
have been introduced by previous applications of HB-
FRI. Particularly, the distance d∗j , j = 1, ..., k between
the fuzzy set Ai

j and the set A∗k is calculated using
Eqn. 9. The n (n ≥ 2) rules which have the minimum
distance measures are chosen as the closest rules from
the observation.

2) Construct the Intermediate Rule The computation and
representation of the intermediate variable yi, (i =
1, 2, ...,K − 2) is the most important issue in any
interpolation, hierarchical or not; there is no exception
in HB-FRI. The process of generating the intermediate
variables of the HB-FRIis however, the same as outlined
in Sections III-A2 and III-B2, depending on whether
forward or backward T-FRI is required.

3) Carry out Scale Transformation For each trapezoidal
antecedent fuzzy value appearing in any of the N
chosen rules, this step calculates two scale rates s∗Aj

and s∗Aj
according to Eqn. 14, which rescale the

top and bottom supports of A
′

j with respect to the
observation (or previously interpolated outcome) A∗j ,
resulting in A

′′

j . The corresponding bottom scale rate
sBj

, and the intermediate top scale rate sBj

′ of the
intermediate conclusion B

′

j , are obtained by averaging
those computed for the antecedents. The final sBj

is
obtained from applying Eqn. 10.

4) Carry out Move Transformation Using the move rate
mAj as given in Eqn. 12, A

′′

j is moved so that the final
transformed fuzzy set matches the exact shape of the

observed (or interpolated) value A∗j . From this, mBj for
the conclusion can be calculated according to Eqn. 12.
The final interpolated result B∗j can now be calculated
by applying the scale and move transformation to B

′

j ,
using the parameters sBj

, sBj , and mBj .

V. F U N C T I O N A P P R O X I M AT I O N A N D
E X P E R I M E N TA L E VA L U AT I O N

A. Experimental Setup

In this section, an illustrative example is used to demon-
strate the proposed HB-FRI approach. In particular, a function
approximation problem with three input variables is consid-
ered:

y = f(x1, x2, x3) = (1 + x1
0.5 + x2

−1 + x3
−1.5)2

where six fuzzy sets are evenly defined for each input
variable. The hierarchical structure is shown in Fig. 3, where
HFIU1 and HFIU2 are the two sub-system units, i.e., the
first layer and second layer of this HB-FRI approximation
model, respectively. For simulation, 341 samples are uniformly
created on the 3-dimensional problem space, 216 of which
are used for training and the remaining 125 for testing.

x1 x2 x3

y1

y

HFIU

HFIU1

2

Fig. 3. Structure of illustrative hierarchical function approximation example

According to Section II-B, suppose that the learning rate
is set as 0.0004, each original sub-layer fuzzy system will
contain 32 rules, with the system having a total of 72 rules.
In each hierarchical fuzzy interpolation unit, to demonstrate
the effect of running only a sparse rule subset, it is assumed
that only four fuzzy rules are chosen to construct its original
sub-rule base. These four rules jointly describe the minimum
and maximum of the output and also those output values in
response to the four points bounding the corresponding input
space. Tables I and II display the sub-fuzzy sparse rules of
the lower layer and those of the upper layer, respectively.

The approximation accuracy is measured by the Average
Percentage Error (APE%) given as follows:

APE% = (100/N)

√√√√ N∑
i=1

(
y∗i − y

,
i

y,i
) (16)

where y∗i is the ith objective output of the underlying function
and y

′

i is the ith model output.



TABLE I
F U Z Z Y S U B - S PA R S E R U L E B A S E O F T H E L O W E R L AY E R

Rule Antecedents Consequence
Rule 1 x1 = A1

1 = (0.02, 0.51, 1.52, 2.01), x2 = A1
2 = (0.03, 0.53, 1.53, 2.03) y1 = B1

1 = (−0.24, 0.26, 1.26, 1.76)
Rule 2 x1 = A2

1 = (0.02, 0.51, 1.51, 2.01), x2 = A2
2 = (4.99, 5.49, 6.49, 6.99) y1 = B2

1 = (0.00, 0.50, 1.50, 2.00)
Rule 3 x1 = A3

1 = (4.99, 5.49, 6.49, 6.99), x2 = A3
2 = (0.03, 0.53, 1.53, 2.03) y1 = B3

1 = (−1.00,−0.50, 0.50, 1.00)
Rule 4 x1 = A4

1 = (4.99, 5.49, 6.49, 6.99), x2 = A4
2 = (4.99, 5.49, 6.49, 6.99) y1 = B4

1 = (−0.65,−0.15, 0.85, 1.34)

TABLE II
F U Z Z Y S U B - S PA R S E R U L E B A S E O F T H E U P P E R L AY E R

Rule Antecedents Consequence
Rule 1 y1 = B1

1 = (−1.00,−0.50, 0.50, 1.0), x3 = A1
3 = (0.01, 0.50, 1.503, 2.55) y = B1 = (20.76, 21.26, 22.26, 22.76)

Rule 2 y1 = B2
1 = (−1.00,−0.50, 0.50, 1.00), x3 = A2

3 = (4.98, 5.48, 6.48, 6.98) y = B2 = (14.90, 15.40, 16.40, 16.90)
Rule 3 y1 = B3

1 = (0.00, 0.50, 1.50, 2.00), x3 = A3
3 = (0.00, 0.50, 1.50, 2.00) y = B3 = (6.37, 6.87, 7.87, 8.37)

Rule 4 y1 = B4
1 = (0.00, 0.50, 1.50, 2.00), x3 = A4

3 = (4.98, 5.48, 6.48, 6.98) y = B4 = (3.20, 3.70, 4.70, 5.20)

TABLE III
R E S U LT C O M PA R I S O N B E T W E E N S TA N D A R D A N D

H I E R A R C H I C A L F U Z Z Y S Y S T E M

Method Partitions Rules APE% testing
Standard Fuzzy System (5,5,5) 216 6.50119
Standard Fuzzy System (4,4,4) 125 6.37989

Hierarchical Fuzzy System (5,5,5) 72 1.48293
Hierarchical Fuzzy System (4,4,4) 32 1.71127

Hierarchical Interpolation System (5,5,5) 8 4.84735
Hierarchical Interpolation System (4,4,4) 8 5.76442

B. Analysis of Results

Table III presents a comparative summary of running
different models through different sets of data, including: the
Standard Fuzzy Systems that use all the rules given in a flat set;
the Hierarchical Fuzzy Systems that use all a subset of rules
arranged hierarchically; and the Hierarchical Interpolation
System that only use a small portion of the rules employed
in the Hierarchical Fuzzy Systems.

Note that when six fuzzy sets are defined for each input
variable, the maximum number (Nmax) of involved fuzzy rules
is 63 = 216 for the Standard Fuzzy System, and 62+62 = 72
for Hierarchical Fuzzy System, whereas, the minimum number
(Nmin) of rules is 2 + 2 = 4 for the proposed HB-FRI. In
order to attain the accuracy of inference while using fewer
number of rules, in this experimentation, the cardinality of
each sub-layer rule base is taken to 4, so the total number of
rules of the HB-FRI is 8. To enhance the comparison, different
setups where fewer rules are involved due to looser partitions
of the three input variables are also tested, as reflected in
Table III.

Comparing the approximation results given in Table III, the
following observations can be made. Firstly, the hierarchical
fuzzy interpolative approximation performs relatively well
in the sense that it can achieve good approximation with
significantly fewer rules. The accuracy of HB-FRI is indeed
between that of the Standard Fuzzy System and that of
the Hierarchical Fuzzy System, but the other two utilise
substantially more fuzzy rules and hence, require much
more computational effort. Secondly, it can also be observed
from the results on the APE% of the proposed Hierarchical
Interpolation System that the more fuzzy terms are included to

represent the system variables, the more accurate the inference
results may be obtained without increasing the number of
rules used, showing the robustness of the approach. This is not
the case for the other two types of fuzzy model (though the
classical hierarchical technique also leads to more accurate
results if more detailed descriptions on variables are used,
but this requires a much large number of rules).

In addition, due to the underlying principle taken by the
proposed approach for hierarchical bidirectional fuzzy rule
interpolation, the sub-layer rule bases can be constructed with
less constraints over what intermediate variables to use such
that the overall hierarchical model represents the original
input-output problem space. This property enables HB-FRI to
allow for different settings for the original input variables
to flow into the sub-layers in any arbitrary order without
affecting the final outcome. This may have been implicitly
reflected in the results gathered in Table III, but an explicit
verification of this remains active research.

V I . C O N C L U S I O N

This paper has presented a novel technique, named hierar-
chical fuzzy rule interpolation, to address the problem of fuzzy
modelling in high-dimensional systems. HB-FRI enables
unknown antecedent values to be interpolated, given other
antecedents and the conclusion. This integrated approach, of
hierarchical reasoning and bidirectional interpolative inference,
provides a flexible and systematic way of dealing with
insufficient information or knowledge that may often appear in
real-world problems. The system implementing the proposed
technique is able to draw a final conclusion through the
exploitation of BFRI even when it is presented with partial
observations. This also helps identify hidden variables that
may be useful during any subsequent intelligent decision
support processes. The initial experimental results reported
have demonstrated that the proposed method can retain model
accuracy while significantly reducing the number of the rules
required in the system model. As indicated earlier, to reveal
the full potential of this work, an investigation into exactly how
flexible in designing the hierarchical structure by introducing
different intermediate variables requires further experimental
research.
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