
Aberystwyth University

Testing the accuracy of feldspar single grains to date late Holocene cyclone and
tsunami deposits
Brill, Dominik; Raimann, Tony; Wallinga, Jacob W.; May, Simon Matthias; Engel, Max; Riedesel, Svenja;
Brückner, Helmut

Published in:
Quaternary Geochronology

DOI:
10.1016/j.quageo.2018.09.001

Publication date:
2018

Citation for published version (APA):
Brill, D., Raimann, T., Wallinga, J. W., May, S. M., Engel, M., Riedesel, S., & Brückner, H. (2018). Testing the
accuracy of feldspar single grains to date late Holocene cyclone and tsunami deposits. Quaternary
Geochronology, 48, 91-103. https://doi.org/10.1016/j.quageo.2018.09.001

Document License
CC BY-NC-ND

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326674102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.quageo.2018.09.001
https://pure.aber.ac.uk/portal/en/persons/svenja-riedesel(321435e5-3ad4-484f-b458-8f31a41dbfed).html
https://pure.aber.ac.uk/portal/en/publications/testing-the-accuracy-of-feldspar-single-grains-to-date-late-holocene-cyclone-and-tsunami-deposits(fc3424d8-2d30-4d38-b02a-a4c6fa925adb).html
https://pure.aber.ac.uk/portal/en/publications/testing-the-accuracy-of-feldspar-single-grains-to-date-late-holocene-cyclone-and-tsunami-deposits(fc3424d8-2d30-4d38-b02a-a4c6fa925adb).html
https://doi.org/10.1016/j.quageo.2018.09.001


Testing the accuracy of feldspar single grains to date late Holocene cyclone and tsunami 1 

deposits 2 

 3 

Dominik Brill1, Tony Reimann2, Jakob Wallinga2, Simon Matthias May1, Max Engel3, Svenja Riedesel1,4, 4 

Helmut Brückner1 5 

 6 

1 Institute of Geography, Universität zu Köln, Köln, Germany 7 

2 Netherlands Centre for Luminescence Dating & Soil Geography and Landscape group, Wageningen University, 8 

Wageningen, The Netherlands 9 

3 Geological Survey of Belgium, Royal Belgian Institute of Natural Sciences, Brussels, Belgium 10 

4 Aberystwyth Luminescence Research Laboratory, Department of Geography and Earth Sciences, Aberystwyth 11 

University, United Kingdom 12 

* Corresponding author: brilld@uni-koeln.de 13 

 14 

Abstract: Quartz is the preferred dosimeter for luminescence dating of Holocene sediments as 15 

optically stimulated luminescence (OSL) signals reset rapidly upon light exposure, and are stable over 16 

time. However, feldspar is required where quartz luminescence properties are inappropriate for 17 

dating, as is often the case in geologically young mountain ranges and areas with young volcanism. 18 

Here we aim to evaluate the potential of single grain feldspar luminescence dating applied to late 19 

Holocene cyclone and tsunami deposits, for which complete signal resetting can a priori not be 20 

guaranteed. To address potential problems of feldspar dating of such deposits associated with 21 

heterogeneous bleaching, remnant doses and anomalous fading, we use a low-temperature post 22 

infrared infrared stimulated luminescence protocol (pIRIR150) on single grains. 23 

For most samples, good agreement between fading corrected IR50 and non-fading corrected pIRIR150 24 

ages is observed. Both feldspar ages generally also show good agreement with age control provided 25 

by historical data and quartz luminescence ages. pIRIR150 remnant ages in modern analogue samples 26 

are shown to be <50 years, indicating that dating accuracy might be negatively affected by insufficient 27 

signal zeroing only for sediments younger than ~500 years. As these minor remnant ages are 28 

interpreted as being caused by unbleachable luminescence residuals, slight age overestimation for 29 

young samples can be overcome by subtracting the remnant ages. 30 

The good agreement between pIRIR150, IR50 and quartz ages, indicates that a significant number of 31 

grains must have experienced relatively complete signal resetting during or immediately prior to 32 

transport, as the three signals are known to bleach at different rates. Since light exposure during the 33 



event is expected to be limited, we deduce that a significant portion of the grains in the cyclone and 34 

tsunami deposits was already bleached prior to the event of interest. These well-bleached grains were 35 

likely eroded the beach, while other grains with larger remnant ages probably originate from the 36 

shallow subtidal, coastal barriers or even further inland sources. Additional signal resetting during 37 

storm and tsunami transport is indicated by slightly younger quartz than feldspar ages for grains with 38 

incomplete pre-transport resetting that were eroded at the Holocene coastal barrier. 39 

 40 

Keywords: single grain dating; feldspar dating; post infrared infrared stimulated luminescence; 41 

tsunami deposit; cyclone deposit; transport processes 42 

 43 

1. Introduction 44 

Flooding by tsunamis and tropical cyclones (TCs) poses a major risk for low-lying and densely populated 45 

coastal areas worldwide. Since instrumental and historical records of tsunamis and TCs are often 46 

limited to a few decades or centuries (Sugawara et al., 2008; May et al., 2013) – time periods usually 47 

too short to predict long-term variations of TC activity (Donnelly and Woodruff, 2007) or the 48 

recurrence intervals of large tsunamis (Cisternas et al., 2005) – interpreting sedimentary onshore 49 

evidence is crucial for reconstructing long-term magnitude-frequency patterns of coastal flooding 50 

events. This requires chronological information on identified event deposits. While the use of 51 

radiocarbon and U/Th dating is often impeded by reworking or the absence of datable material (May 52 

et al., 2015), optically stimulated luminescence (OSL) dating is more widely applicable. 53 

If applied to sediments of mid- to late Holocene age, quartz is typically the preferred dosimeter for OSL 54 

dating. Given the presence of a dominant fast component (cf. Jain et al., 2003), which is usually stable 55 

at ambient temperature and easier to reset than feldspar signals (e.g. Wintle, 2008) this enables 56 

successful dating of sediments as young as a few years using quartz OSL (Ballarini et al., 2003; Madsen 57 

et al., 2005). Unfortunately, tsunamis are particularly frequent in areas with poor quartz properties (cf. 58 

Tsukamoto et al., 2003). The majority is triggered by submarine earthquakes along geologically young 59 

subduction zones associated with volcanism, such as in Japan, Chile or Indonesia. Likewise, volcanic 60 

island arcs such as the Philippines and Japan are among the most TC affected regions worldwide. In 61 

these regions, minerals typically originate from freshly eroded plutonic, metamorphic or volcanic 62 

bedrock and thus experienced a restricted number of transportation cycles. In consequence, quartz is 63 

often affected by dim luminescence signals (Lukas et al., 2007) and significant contributions of unstable 64 

signal components (Preusser et al., 2006; Steffen et al., 2009).  65 



As an alternative, optical dating of feldspar may give insights into the long-term frequency of tsunamis 66 

and TCs in such regions (e.g. Huntley and Clague, 1996; Riedesel et al., 2018). However, feldspar 67 

luminescence signals show slower resetting by sunlight compared to quartz OSL. Significant signals 68 

that were not bleached in nature (remnant doses) may remain even after prolonged light exposure (Yi 69 

et al., 2016). In environments prone to light exposure during sediment transport, feldspar signals 70 

measured with a conventional infrared stimulated single aliquot regenerative dose (SAR) protocol at 71 

50 °C (IR50) have been proven to bleach sufficiently well to be useful even for very young deposits (e.g. 72 

Gaar et al., 2013). However, incomplete signal resetting is assumed to be challenging for dating 73 

tsunami and TC deposits which are usually transported under turbulent flow conditions, over short 74 

distances, and sometimes even at night (e.g. Jaffe et al., 2012). In particular for young deposits with 75 

ages of only a few hundred years or less, the remnant doses of feldspar may be large compared to the 76 

relatively low natural doses accumulated since deposition (Reimann et al., 2011; Reimann and 77 

Tsukamoto, 2012). Moreover, signal loss due to anomalous fading may cause large age 78 

underestimation in feldspar dating (Huntley and Lamothe, 2001). Fading correction is possible, but 79 

may be related to large uncertainties and/or inaccuracies (Wallinga et al., 2007; Trauerstein et al., 80 

2012).  81 

Age underestimation due to fading in feldspar can be avoided or at least significantly reduced by using 82 

more stable post-infrared infrared (pIRIR) signals (Thomsen et al., 2008; Buylaert et al., 2012). 83 

Unfortunately, the most stable pIRIR signals measured at high temperatures >200 °C (i.e. pIRIR225 and 84 

pIRIR290) are usually much harder to bleach than the IR50 signal and may suffer from large residual doses 85 

of several Gy (Kars et al., 2014). This impedes accurate dating of Holocene deposits, particularly if they 86 

are incompletely bleached. Residual doses can be reduced by means of pIRIR signals measured at lower 87 

temperatures (below ~200 °C) that are easier to reset and often still not significantly affected by fading 88 

(Reimann et al., 2011; Fu and Li, 2013). Well-bleached and incompletely bleached feldspar grains may 89 

be separated using single grain measurements (Reimann et al., 2012).  90 

The combination of low-temperature pIRIR protocols with single grain measurements offers the 91 

potential to isolate low or non-fading feldspar signals that are sufficiently bleached to enable dating of 92 

young and incompletely bleached TC and tsunami deposits. By overcoming some of the main 93 

drawbacks related to quartz dating of coastal flooding deposits, which are often accumulated in 94 

stratigraphically complex near-shore archives affected by water table variations, these feldspar signals 95 

may even be advantageous to those of quartz with adequate luminescence properties. In case of storm 96 

sediments composed of mixtures of coral rubble, shell hash, and sand-sized quartz and feldspar, for 97 

example, external dose rates are hard to reconstruct (Brill et al., 2017). The higher internal dose rate 98 

of potassium feldspar can reduce the uncertainties of dosimetry assessment (Davids et al., 2010). 99 



This study aims to evaluate the potential of feldspar luminescence dating to reconstruct late Holocene 100 

coastal flooding events younger than 3000 years. For this, we apply single grain dating of sand-sized 101 

potassium feldspar using both conventional IR50 and low-temperature pIRIR signals to TC and tsunami 102 

deposits from Northwest Australia, Southwest Thailand, East Japan, and the Central Philippines. We 103 

compare the resulting feldspar ages with independent age control in the form of quartz OSL ages, 104 

radiocarbon data, and regional records of historical tsunami and TC impacts to test the completeness 105 

of signal resetting and the robustness of fading correction. Finally, the degree of resetting of feldspar 106 

signals is used to infer information on the sources and the transport conditions of sediments within 107 

tsunami and TC waves. 108 

 109 

2. Material and Methods 110 

2.1 Tsunami and cyclone deposits dated in this study 111 

The tsunami and TC deposits investigated in this study originate from four different regions (Fig. 1a): 112 

Eastern Japan (JSH, 3 samples), the Central Philippines (TOL, 2 samples), Southwest Thailand (KPT, 2 113 

samples), and Northwest Australia (PLY, 16 samples). Selection criteria were the existence of robust 114 

age control in form of quartz luminescence ages, radiocarbon ages, and/or historical records, as well 115 

as deposition less than 3000 years ago. 116 

Two samples were collected from sand sheets in marsh deposits of the Shirasuka lowlands, Japan (Fig. 117 

1b). The discontinuous sand layers are interpreted to reflect sedimentation during tsunami and/or 118 

typhoon inundation within the last 1000 years (Komatsubara et al., 2008). Samples for luminescence 119 

dating were taken from a sediment drill core described in detail by Garrett et al. (2018). Since quartz 120 

turned out to have inappropriate luminescence properties (Riedesel et al., 2018), optical dating of 121 

tsunami and typhoon recurrence had to be based on feldspar. Here we use sand layers at core depths 122 

of 120 cm (JSH 1-7) and 230 cm (JSH 1-18), for which radiocarbon dating yields ages younger than 1000 123 

cal years BP (Garrett et al., 2018). Correlation with the stratigraphy described by Komatsubara et al. 124 

(2008) points to deposition by the AD 1605 Keichō tsunami and the AD 1361 Shōhei tsunami, 125 

respectively. As a modern analogue for the best-bleached sediment source of the investigated tsunami 126 

deposits, a sample was collected at the modern beach (JSH mod). 127 

In the Philippines, two samples for feldspar dating were collected from sandy onshore deposits of the 128 

2013 Typhoon Haiyan that were accumulated in a back-barrier marsh near Tolosa, northern Leyte (Fig. 129 

1d). Samples for feldspar dating originate from a suspension-settled sand sheet (TOL 8), deposited 130 

during the inundation of the back-barrier marsh by the storm surge, and from a laminated washover 131 

unit (TOL 5, Fig. 1e) formed by swash-dominated flooding (Brill et al., 2016). Due to very dim 132 



luminescence signals not dominated by the OSL fast component (Fig. S1 in the supplement), 133 

comparison of feldspar data with quartz OSL ages is not possible. 134 

In Thailand, two samples were taken from tsunami-laid sand sheets deposited during the last 3000 135 

years and archived in the swales of a beach-ridge plain on Phra Thong Island (Jankaew et al., 2008; Brill 136 

et al., 2012a; Fig. 1f). One sample was dated from deposits of the 2004 Indian Ocean Tsunami (KPT 2). 137 

Another sample originates from a palaeotsunami deposit (KPT 20) that was dated to 550 years using 138 

radiocarbon dating (Jankaew et al., 2008) and quartz OSL (Brill et al., 2012a, b). This points to 139 

deposition by a tsunami triggered by a Sunda Arc rupture at about AD 1450 (Meltzner et al., 2010). 140 

Finally, a total of 15 samples were dated from TC deposits forming washover fans at the south-eastern 141 

margin of the Exmouth Gulf, Northwest Australia (Fig. 1h). The washover fans are composed of 142 

successions of sandy TC deposition separated by palaeosols (Fig. 1i), which are interpreted to reflect 143 

phases of varying TC activity within the last 3000 years (May et al., 2017). Samples for feldspar dating 144 

were collected from sandy TC deposits at trenches PLY 8 (3 samples), PLY 16 (3 samples), PLY 19 (4 145 

samples) and PLY 25 (5 samples).  Age control is available in form of single grain quartz OSL ages, which 146 

indicate relatively well-bleached sediments affected by micro-dosimetry and sediment mixing during 147 

transport, and, therefore, were calculated using the central age model (CAM; Galbraith et al., 1999) 148 

and the finite mixture model (FMM; Galbraith and Green, 1990), respectively (Brill et al., 2017). As a 149 

modern analogue, a modern beach sample (PLY 18) that is assumed to reflect the best-bleached 150 

sediment source of local TC deposits was collected. 151 

 152 

2.2 Sample preparation and instrumentation 153 

Samples for dating were collected from trenches using steel cylinders at PLY, KPT and TOL, or from 154 

opaque plastic drill cores split in the laboratory in case of JSH. Subsequently, samples for palaeodose 155 

determination were pre-processed under dimmed red light in the Cologne Luminescence Laboratory 156 

(CLL) using standard procedures to separate coarse grain potassium feldspar. This included sieving to 157 

fractions of 100-200 µm or 150-200 µm, chemical treatment with HCl (10%), H2O2 (10%) and sodium 158 

oxalate to remove carbonates, organics and clay, as well as density separation to extract potassium-159 

rich feldspar (<2.58 g/cm³). Samples for dose rate determination were dried to determine in-situ water 160 

contents. Uranium, thorium and potassium concentrations were assessed by means of high-resolution 161 

gamma spectrometry at the CLL and the VKTA – Strahlenschutz, Analytik & Entsorgung Rossendorf e. 162 

V. (Tab. S1 in the online supplement). To account for the reduced efficiency of alpha particles in 163 

generating IRSL signals, a-values of 0.15±0.05 are adopted from Balescu and Lamothe (1994). Beta 164 

counting conducted at the Aberystwyth luminescence laboratory was used to estimate the bulk 165 

internal potassium contents of feldspar extracts from all sites. The results suggest that adopting the 166 



value of 10±2% determined by Smedley et al. (2012) is appropriate for our samples. For more details 167 

concerning sample collection at the individual sites see also Brill et al. (2012a, b) for KPT, Brill et al. 168 

(2016) for TOL, Riedesel et al. (2018) for JSH, and Brill et al. (2017) for PLY. 169 

Potassium feldspar grains were measured on single grain discs with hole diameters of 300 µm at the 170 

Wageningen luminescence laboratory to perform equivalent dose (De) measurements, residual dose 171 

determination, dose recovery tests, and fading experiments for all samples. Single grain discs of all 172 

samples were randomly checked for the number of grains in each hole under the microscope. More 173 

than a single grain was observed very rarely. Only for protocol validation and additional fading 174 

experiments, 1 mm-diameter aliquots mounted on steel discs using silicon oil were used. All 175 

measurements were carried out on automated Risø TL/OSL readers equipped with 90Sr/90Y beta 176 

sources delivering 0.11-0.13 Gy/s at the hole position. Signals were stimulated by an IR laser centred 177 

at 830 nm in case of single grains, and an array of IR LEDs (870±40 nm) for the 1 mm aliquots. All 178 

feldspar signals were separated from stimulation light using an interference filter with peak 179 

transmission at 410 nm. 180 

The measurements followed a modified version of the pIRIR protocol proposed by Thomsen et al. 181 

(2008) (details are provided in section 3.1). The signals for De determination were derived by 182 

subtracting a background estimated from the last 20 s of the decay curve from the first 4 s of the decay 183 

curve in case of multi grain aliquots, and the last 0.33 s from the first 0.2 s of the decay curve for single 184 

grains. All measured grains and aliquots that passed the rejection criteria in terms of recycling ratio 185 

(0.85-1.15) and recuperation (0.2 Gy for IR50 and 0.4 Gy for pIRIR150 signals, i.e. 5% or 10% of the largest 186 

regenerative dose) were considered for palaeodose estimation. In terms of relative recuperation (in % 187 

of the natural dose), the thresholds of 0.2 and 0.4 Gy used in this study are larger than those adopted 188 

in most other studies (e.g. Smedley et al., 2016), but we demonstrate that this has no effect on the 189 

palaeodose (see section 3.2). To calculate palaeodoses we applied the bootstrapped minimum age 190 

model (MAMbs; Cunningham and Wallinga, 2012) (for details on age model selection see section 3.5). 191 

Sigmab values (σb) of 0.40±0.05 (PLY, JSH) and 0.35±0.05 (KPT) are based on the smallest over-192 

dispersion of each sample set as the best estimate for the over-dispersion of a well-bleached sample 193 

(see section 3.4). Age calculation was performed with the Adele software (Kulig, 2005). Finally, samples 194 

with g-values larger than 1 %/decade (i.e. mainly the IR50 ages) were fading corrected using the 195 

approach of Huntley and Lamothe (2001). G-values <1 %/decade (all pIRIR150 ages) are assumed to be 196 

laboratory artefacts and not corrected for, following Buylaert et al. (2012). 197 

 198 

3. Results and interpretation 199 



3.1 Selection of a pIRIR protocol 200 

On the basis of 1 mm aliquots from one of the Australian samples (PLY 25-3), a series of preheat 201 

experiments were performed to select the ideal combination of thermal treatments. We tested pIRIR 202 

measurement temperatures between 110 and 290 °C, where the preheat temperature was always 25 203 

°C above the corresponding pIRIR temperature. It can be observed that the natural doses form a 204 

constant dose plateau for pIRIR temperatures ≥150 °C (Fig. 2a), indicating insignificant fading (this 205 

assumption is supported by low g-values <1 %/decade, see section 3.2). At the same time, residual 206 

doses after 24 h of solar simulator bleaching remain below 0.1 Gy for pIRIR temperatures of 110-180 207 

°C, while they increase significantly for higher temperatures (Fig. 2b). Finally, laboratory doses applied 208 

after 24 h of solar simulator bleaching are successfully recovered within ±10 % for pIRIR temperatures 209 

of 110-290 °C, if corrected for their residual doses (Fig. 2c). However, given the large residuals for pIRIR 210 

temperatures >200 °C, the uncertainties increase significantly for this temperature range. A pIRIR 211 

temperature of 150 °C provides a reasonable compromise between low residual doses and signal 212 

stability (shaded area in Fig. 2). Hence, all further measurements follow a pIRIR protocol with 213 

stimulation at 150 °C, a preheat at 175 °C for 10 s, and an IR bleaching at 190 °C for 100 s at the end of 214 

each SAR cycle (pIRIR150 protocol in Tab. 1). Test doses are kept constant at ~5 Gy, and each sequence 215 

includes measuring 2-4 regenerative doses, the repeated first regenerative dose (recycling ratio), and 216 

a zero dose (recuperation). This protocol selection is backed by preheat experiments performed on the 217 

Japanese samples (Riedesel et al., 2018). For the samples from Thailand and the Philippines dose 218 

recovery ratios of 1.0±0.04 and 0.9±0.05 measured on samples KPT 2 and TOL 8, respectively, indicate 219 

the validity of the pIRIR150 protocol. 220 

Multi grain aliquots (1 mm) of sample PLY 25-3 are further used to evaluate the comparability of IR50 221 

signals as part of the selected pIRIR150 protocol, with those measured by means of a standard IR50 SAR 222 

protocol (see Tab. 1 for protocol details). Mean equivalent doses of 1.53±0.05 Gy (conventional IR50) 223 

and 1.54±0.05 Gy (IR50 measured in pIRIR150 protocol) are identical within 1-σ errors. This indicates that 224 

the IR50 signal measured within the applied pIRIR150 protocol can be used as a substitute for 225 

conventionally measured IR50 signals. Consequently, both signals measured within the pIRIR150 226 

protocol are considered when deriving ages for the tsunami and TC deposits. 227 

 228 

3.2 Feldspar luminescence properties 229 

Both IR50 and pIRIR150 are characterised by sufficiently bright signals for single feldspar grains from PLY, 230 

KPT, and JSH (at least several 100 counts for ~5 Gy test doses of accepted grains; Fig. 3a). Between 31% 231 

(JSH) and 53% (KPT) of the grains provide 90% of the cumulative IR50 and pIRIR150 signals (Fig. 3c). A 232 



total of 46-68% (IR50) and 31-56% (pIRIR150) of the grains pass the rejection criteria. The pIRIR150 signals 233 

show no significant fading at all three locations, regardless if measured on single grains or 1 mm 234 

aliquots (g-values of 0.2±0.3 to 0.7±0.4 %/decade; Fig. 3a). The IR50 signals yield larger g-values 235 

suggesting that fading correction is required. Multi grain aliquots (3 aliquots per sample) indicate g-236 

values of 1.5±0.3 %/decade at KPT, 3.0±0.3 %/decade at PLY and 2.8±0.4 %/decade JSH. Single grain 237 

data show extremely large scatter and suggest higher mean g-values of 5-8 %/decade at PLY and JSH, 238 

and lower ones around zero at KPT (Fig. 3a). 239 

Feldspar from the Philippines (TOL), on the other hand, is completely insensitive to IR stimulation. No 240 

significant IR50 and pIRIR150 signals were recorded after measuring ~200 grains (Fig. 3a). At the same 241 

time, beta counting points to very low potassium contents of only ~1.5% for bulk feldspar samples 242 

from this site, while the respective potassium concentrations of feldspar extracts from all other 243 

locations exceed 7%. Feldspar extracts from TOL, thus, seem to contain no significant amounts of 244 

potassium feldspar and are not further considered in this study. 245 

To test the sensitivity of dose determination towards variations of the selected rejection criteria, mean 246 

equivalent doses based on a successively increasing number of grains are plotted (Fig. 3d). The grains 247 

are ordered with regard to the difference between recycling ratio and unity (from good = recycling 248 

ratios of 1, to poor = recycling ratios of 0.85 or 1.15) and recuperation (from low to high recuperation 249 

doses) (cf. Thomsen et al., 2016; Fig. 3d). Within the defined acceptance limits, no dependency on 250 

recycling ratios is observed for all measured samples. Likewise, rejection of additional grains due to 251 

recuperation by successively tightening the initial acceptance criteria of 0.2 Gy (IR50) and 0.4 Gy 252 

(pIRIR150) does not lead to systematic changes of the final palaeodose. The rejection of further grains 253 

due to recuperation relative to their natural doses would lead to biasing towards older grains (by 254 

systematically excluding lower De values; Fig. S2a online supplement) and was not conducted. Instead 255 

the dose response curve was forced through the origin for all samples. 256 

 257 

3.3 Over-dispersion in dose recovery tests 258 

To collect information on the dose scatter of well-bleached samples from each site that were not object 259 

to significant dose rate heterogeneity during burial, the over-dispersion values of dose recovery 260 

experiments are determined using the CAM. For this, β-doses of ~5 Gy are applied to (i) samples 261 

artificially bleached in a solar simulator for 24 h (PLY 18, KPT 2, JSH 1-7); and (ii) samples of presumably 262 

modern age – and therefore assumed to have insignificant remnant doses compared to the 5 Gy 263 

laboratory dose – from the modern beach (PLY 18, JSH mod) and the 2004 Indian Ocean Tsunami (KPT 264 

2). While the pIRIR150 and IR50 over-dispersions are similar for individual locations, the over-dispersion 265 



values of modern samples are slightly larger than those of artificially bleached samples in case of both 266 

IR50 signals (13-15% compared to 8-13%) and pIRIR150 signals (12-16% compared to 9-13%) at all sites 267 

(Fig. 4a). This suggests that apparently not all grains in the natural reference samples have been 268 

completely bleached prior to their last deposition, especially the 2004 tsunami deposit from KPT. Thus, 269 

part of the over-dispersion is caused by heterogeneous luminescence signal resetting of the grains (see 270 

also section 3.4). The dose-recovery ratios support this assumption. Those of modern samples show 271 

only appropriate ratios between 0.9 and 1.1 if the natural remnant doses are subtracted (dose-272 

recovery ratios of 0.98-1.03 instead of 0.99-1.12). The dose-recovery ratios of artificially reset samples 273 

are acceptable without any correction (0.95-1.02). However, the differences between sites and signals 274 

are small compared to the dose scatter of natural De distributions (see section 3.5). Over-dispersion 275 

values of 8-16% for both signals are therefore a reasonable estimate for the internal scatter caused by 276 

experimental uncertainties for all dated samples. 277 

 278 

3.4 Natural remnant doses and laboratory residuals 279 

For the same samples that have been analysed for equivalent dose scatter in dose recovery tests 280 

(section 3.3), the IR50 and pIRIR150 signals after resetting in nature (remnant doses of modern 281 

sediments) and those of samples artificially bleached in a solar simulator (residual doses) are 282 

determined. Residual doses allow for the estimation of charge transfer to the natural luminescence 283 

signal during the measurement procedure and should, thus, be considered when interpreting the 284 

dating accuracy of samples with unknown age. The equivalent dose of modern analogues provide 285 

information on the degree of signal resetting in nature, and may be used to correct feldspar ages by 286 

subtracting these natural remnant doses (e.g. Ollerhead and Huntley, 2011; Kars et al., 2014). 287 

Residual doses that remain after signal resetting in the laboratory – as the result of thermal transfer 288 

and/or re-trapping of charge – were calculated using the CAM, because bleaching in the solar simulator 289 

zeroed all grains more or less homogeneously. Values vary between 0.01-0.04 Gy (PLY and KPT) and 290 

0.14 Gy (JSH) in case of IR50 signals, and between 0.05 Gy (PLY) and 0.3-0.4 Gy (KPT and JSH) in case of 291 

pIRIR150 signals (Fig. 4b). While these laboratory residuals are insignificant for the equivalent doses of 292 

most samples from PLY and KPT, they account for up to 20% of the equivalent doses in case of JSH.  293 

The De distributions of the 2004 tsunami deposit and the modern beach samples from Japan and 294 

Australia (i.e. the modern analogues) show indication of partial bleaching. All these samples are 295 

mixtures of well-bleached grains with low equivalent doses, and insufficiently bleached grains with 296 

larger equivalent doses (see Fig. S5 in the supplement). Since dating of samples with unknown age in 297 

this study is only based on the best-bleached grains of each sample, corresponding natural remnant 298 



doses should be estimated from the best-bleached grains of the modern analogues only. To extract 299 

the palaeodose of these best-bleached grains we use the MAMbs. Crucial for its application is the 300 

estimation of a robust σb value. In absence of non-modern, well-bleached sediments, σb is derived by 301 

using the smallest over-dispersion from each sample set as the best estimate for that of a well-302 

bleached sample. The obtained σb values are 0.40±0.05 (PLY, JSH) and 0.35±0.05 (KPT) for both the IR50 303 

and pIRIR150 data sets (Fig. 5). Similarly large σb values (up to 0.50) have been reported for IR50 and 304 

pIRIR single grain equivalent dose distributions of well-bleached feldspar samples from glacial settings 305 

(Smedley et al., 2016). Given the composition of the deposits used in this study (a few feldspar grains 306 

embedded in mixtures of quartz sand and carbonates), values in the range of 0.30-0.45 are assumed 307 

to be realistic. 308 

The calculated natural remnant doses of the best-bleached feldspar grains vary between 0.025±0.01 309 

Gy (PLY 18) and 0.07±0.02 Gy (KPT 2) for IR50 signals, and between 0.035±0.02 Gy (PLY 18) and 310 

0.19±0.03 Gy (JSH mod) for pIRIR150 signals (IR50 and pIRIR150 nat in Fig. 4b). The lack of significant 311 

differences between laboratory residuals and natural remnant doses suggests that at least for the best-312 

bleached grains both IR50 and pIRIR150 signals have been well reset in nature. We calculated remnant 313 

ages for all modern analogue samples by considering remnant doses, dose rates, multiple grain g-314 

values (only for IR50) and the corresponding age control (i.e. by subtracting the time difference 315 

between deposition and sample collection). The natural remnant ages of all three samples vary 316 

between 0 and 27 years for the IR50 signal (KPT = 0 years, JSH = 19 years, PLY –=27 years) and 2 and 48 317 

years for the pIRIR150 signal (KPT = 2 years, JSH = 48 years, PLY = 36 years; Tab. 2). These remnant ages 318 

are astonishingly small compared to previously published data, especially for the pIRIR150 signal (e.g. 319 

Reimann et al., 2012). Interestingly, two of the pIRIR150 remnant ages agree with their fading-corrected 320 

IR50 counterparts within 2-σ uncertainties. For the third one (JSH mod), the pIRIR150 remnant age is only 321 

slightly older than the IR50 age within 2-σ. Since both signals bleach at different rates, a significant 322 

percentage of grains in these samples may have experienced significant light exposure during or prior 323 

to transport (Reimann et al., 2015). The measured remnant doses rather seem to reflect unbleachable 324 

residuals (particularly since laboratory residuals have approximately the same size) and should be 325 

subtracted from the feldspar ages of palaeosamples to improve dating accuracy (e.g. Ollerhead and 326 

Huntley, 2011; Kars et al., 2014). The source of these residuals may be competition between signal 327 

resetting and retrapping at low dose levels during light exposure (Ollerhead and Huntley, 2011), or a 328 

dose-dependent charge carry-over effect from regenerative dose cycles to the adjacent test dose 329 

cycles (Colarossi et al., 2018; Riedesel et al., 2018). 330 

The observation of complete bleaching at the 2-σ level (a grain is classified as completely bleached 331 

when its dose overlaps with the expected dose of the sample within 2-σ errors) applies to nearly 100% 332 

of the grains in case of modern beach deposits from PLY 18 (Fig. S5). In case of the 2004 tsunami 333 



deposits from Thailand (KPT 2) only ~40% of the grains are well-bleached. The modern beach sand 334 

from JSH mod yields ~70% of well-bleached grains for the IR50 signal. But only ~15% of the grains yield 335 

well-bleached pIRIR150 signals. 336 

 337 

3.5 Palaeodose and age calculation for tsunami and cyclone deposits 338 

All data relevant for palaeodose and age calculation are summarised in Table 2. For De datasets of both 339 

signals, very similar over-dispersion values of 35-155% (IR50) and 34-143% (pIRIR150) are observed. The 340 

majority of the samples from all three sites show unimodal distributions with moderate to large over-341 

dispersion between 35 and 110% (Fig. 6a, b, d). Only some samples from the Australian site (PLY 8-1, 342 

2; 16-1-3; 19-1, 2) are characterised by bimodal De distributions with larger over-dispersion values of 343 

70-155% (Fig. 6c). 344 

Since at least some of the over-dispersion is interpreted to reflect incomplete bleaching, the MAMbs 345 

was applied to estimate burial doses for all samples. For appropriately selected σb values (particularly 346 

since applied with an uncertainty, in this study 0.35±0.05 and 0.40±0.05), the MAMbs should also be 347 

adequate for well-bleached deposits (Fig. 5b; Chamberlain et al., 2018). This should also be valid for 348 

samples with bimodal De distributions (as shown in Fig. 6c). These distributions most likely reflect 349 

mixing of different sediment sources during TC and tsunami transport and not post-depositional mixing 350 

(see also section 4.2.). Thus, the grain population with the lower equivalent doses, which is dated by 351 

the MAMbs, reflects the more recently bleached and therefore younger sediment source (i.e. the best-352 

bleached grains) for all corresponding samples.  353 

The pIRIR150 ages and the IR50 ages from KPT are not corrected for fading, because all measurements 354 

indicate supposedly insignificant g-values <1 %/decade (cf. Buylaert et al., 2012). The IR50 ages from 355 

PLY and JSH, on the other hand, are fading corrected. Since 1 mm aliquots and single grains indicate 356 

different g-values at all sites, fading corrected ages using both g-values are presented at this stage 357 

(Tab. 2). Eventually, all feldspar ages are corrected by subtracting the remnant ages determined for 358 

modern analogue samples. 359 

 360 

4. Discussion 361 

4.1 Comparison of single grain feldspar ages with age control 362 

To test the validity of the luminescence age estimates, we compare the dating results obtained using 363 

the different signals with each other and with independent age control. When results of different 364 

luminescence signals are compared, we need to take into account that these methods are not entirely 365 



independent, as they are partly based on the same measurements and assumptions; e.g. the external 366 

dose rate is the same, as well as beta-dose rate calibration. To avoid overinterpretation of our data, 367 

we eliminate all shared errors prior to comparing IR50, pIRIR150 and quartz ages (i.e. 3.5% machine 368 

reproducibility on single grain De determination, uncertainties on external gamma and beta radiation). 369 

In case of most samples investigated in this study, a good agreement between IR50 ages corrected for 370 

fading using multi grain g-values and pIRIR150 ages not corrected for fading (both after subtraction of 371 

remnant doses) is observed (Fig. 7a). Even for samples younger than 800 years, pIRIR150 and IR50 ages 372 

agree at the 1-σ level (Fig. 7b). Likewise, both IR50 and pIRIR150 feldspar ages generally match historical 373 

records and quartz ages for all samples within 2-σ errors (Fig. 7c, d, f, g). Even at the 1-σ confidence 374 

level, the majority of the samples agree with age control. Notable exceptions are the pIRIR150 and IR50 375 

ages older than 2000 years (PLY 25-1, 25-2, 19-4), which show a systematic trend of underestimating 376 

the age control (Fig. 7c, f).  377 

If the single grain g-values of 5.0±0.8% (JSH) and 6.7±0.8% (PLY) are used, fading corrected IR50 ages 378 

tend to overestimate both pIRIR150 ages and age control (Fig. S6). Similar trends towards over-379 

correction of young feldspar samples when applying g-values >5% were already reported by Reimann 380 

et al. (2011). The reason for the erroneously large single grain g-values of our samples is not yet clear, 381 

presumably related to a bias in the large scatter of the measured single grain g-values (Fig. S4). 382 

Therefore, we use multi-grain g-values to fading correct IR50 ages in the following. 383 

The general agreement with age control for very young samples of only a few centuries is in line with 384 

the low IR50 and pIRIR150 remnant doses measured on the best-bleached feldspar grains of modern 385 

analogues from Thailand (KPT) and Australia (PLY). These indicate more or less complete signal 386 

resetting at the time of deposition. At both sites, the feldspar remnant ages of 0-36 years agree within 387 

1-σ uncertainties with those of quartz reported for the same sites (15-25 years; Brill et al., 2012a, 388 

2017). They are also well in the range of quartz remnant ages reported for tsunami (e.g. Eipert, 2004; 389 

Murari et al., 2007), storm (e.g. Cunningham et al., 2011; May et al., 2015) and beach deposits (e.g. 390 

Armitage et al., 2006) elsewhere. Slightly larger remnant ages of ~50 years for the pIRIR150 signals were 391 

obtained using the best-bleached grains of modern beach deposits from JSH. However, after remnant 392 

dose subtraction (see section 3.4.) the Japanese samples (JSH 1-7 and JSH 1-18) agree with age control 393 

as well. 394 

While discussing potential reasons for slightly over- or underestimating the age control at the 1-σ 395 

confidence level, it should also be taken into account that the systematic discrepancies observed for 396 

samples older than 2000 years from PLY could also be an issue of inaccurate quartz ages. Differences 397 

might at least partly result from the different age models used for quartz and feldspar dating. While 398 

the use of the MAMbs is in line with the age model selection for published quartz ages at KPT (Brill et 399 



al., 2012a), different age models were used for the quartz ages at PLY (Brill et al., 2017). The quartz 400 

dose distributions at PLY show the same patterns as the respective feldspar dose distributions 401 

described in this paper (section 3.5). But the authors argued (i) that the FMM should be used to deal 402 

with the distinct populations of bimodal dose distributions (Fig. 6c), since they may reflect sediment 403 

sources with different pre-transport resetting; and (ii) that the CAM should be used for all samples 404 

with unimodal dose distributions, since their over-dispersion values are rather assumed to reflect dose 405 

rate heterogeneity than partial bleaching (Brill et al., 2017).  406 

The use of different age models despite the similarities of the quartz and feldspar dose distributions 407 

might explain the systematic discrepancies between both datasets observed for IR50 and pIRIR150 ages 408 

older than 2000 years at PLY. It can be observed that bimodality of dose distributions due to mixing of 409 

sediment sources during transport tends to affect only the samples younger than 2000 years, while 410 

older samples show relatively broad unimodal peaks. This might point to increasing significance of the 411 

burial dose compared to the remnant doses and thus to overprinting of the pre-depositional grain 412 

populations by micro-dosimetry and other sources of De scatter. In this case, the application of the 413 

CAM might lead to a systematic overestimation of the quartz ages. The previously published quartz 414 

ages for these samples (Brill et al., 2017), which are based on the CAM, should therefore be interpreted 415 

as maximum ages. Since we assume the MAMbs as the most appropriate age model in such settings, 416 

we also apply it to the quartz dose distributions of these samples to exclude any biasing of our 417 

conclusions by age model selection (Fig. 7e, h). As demonstrated in Figure 7e and 7h, any systematic 418 

offset between quartz and feldspar ages is successfully removed, when the MAMbs is applied to both 419 

quartz and feldspar samples from PLY. 420 

 421 

4.2 Implications for sediment sources and transportation processes in tsunami and cyclone waves 422 

The good agreement between MAMbs-based quartz, fading corrected IR50 and uncorrected pIRIR150 423 

ages – although all signals are known to bleach at different rates (Godfrey-Smith et al., 1988; Kars et 424 

al., 2014) – points to relatively complete signal resetting in the best-bleached grains of the investigated 425 

tsunami and TC deposits. Despite slight discrepancies of pIRIR150 and fading corrected IR50 ages 426 

compared to the age control within 1-σ uncertainties for some samples, a systematic trend of age over-427 

estimation due to less complete bleaching cannot be observed. These conclusions are, however, only 428 

true for the best-bleached grain population in each sample (i.e. the MAMbs palaeodose). This applies 429 

to nearly 100% of the modern beach grains at PLY regardless of signal type (quartz, IR50 and pIRIR150). 430 

But only ~40% (IR50 and pIRIR150) and ~70% (quartz) of the 2004 tsunami grains from KPT are well 431 

bleached. At JSH, only 70% (IR50) and 15% (pIRIR150) of the grains from the modern beach yield well-432 

bleached grains. 433 



This well-bleached grain fraction reflects a sediment source with well reset signals prior to tsunami or 434 

TC transport, a phenomenon described as pre-bleaching. The littoral zone is the most likely source of 435 

these pre-bleached grains, since beach deposits are usually characterized by both well-bleached quartz 436 

signals (Armitage et al., 2006) and feldspar signals (Madsen et al., 2011). With feldspar remnant ages 437 

of only 27-36 years, sediments from the littoral zone at PLY clearly satisfy this requirement. Likewise, 438 

the slightly larger remnant ages of 19-48 years in beach deposits at JSH are in line with the reasonable 439 

agreement of IR50 and pIRIR150 ages with age control if only the best-bleached grains are used for 440 

dating. 441 

In addition to the well-bleached feldspar grains originating from the beach, grains or entire grain 442 

populations with ages significantly overestimating the age control are present in all samples. Modern 443 

tsunami deposits from Thailand reveal right-skewed De distributions indicating incomplete resetting of 444 

the luminescence signal in some grains eroded at the beach prior to deposition (Fig. 8a). With 445 

increasing age of the TC and tsunami deposits, the remnant ages of these incompletely bleached grains 446 

become rapidly insignificant and seem to reflect the beach as a single well-bleached sediment source 447 

(Fig. 8b). On the other hand, the bimodal De distributions observed for some PLY samples suggest 448 

mixing of pre-bleached grains from the beach with older grains. Considering the dimensions of the 449 

respective remnant doses calculated with the FMM (i.e. 2000-5000 years), the Holocene beach barrier 450 

is the most likely source of the older grains (Fig. 8c). The comparison of both grain populations reveals 451 

similar proportions for all three signals (i.e. ~65% of the grains in population 1 and ~35% in population 452 

2). The peaks of the older grain population tend to shift towards younger ages for the more rapidly 453 

bleaching quartz signals compared to both feldspar signals (Fig. 8d). While the latter points towards 454 

the influence of signal resetting during sediment transport in tsunami and storm waves, the 455 

combination of a shifting peak position but unchanging proportion of the older grain population 456 

suggests that this resetting was rather limited due to transport under turbulent conditions. 457 

 458 

5. Conclusions 459 

Our investigations demonstrate that in general both IR50 and pIRIR150 signals of a significant number of 460 

potassium feldspar grains are sufficiently reset to accurately date Holocene tsunami and tropical 461 

cyclone deposits with ages between 3000 years and 500 years from a variety of coastal settings. These 462 

best-bleached grains can be reliably extracted using the bootstrap Minimum Age Model. After 463 

subtraction of remnant ages obtained from modern analogue samples (in the order of 2-48 years), no 464 

significant age discrepancies at the 1-σ level compared to age control are observed even for sediments 465 

younger than 500 years. For samples older than 500 years, where residuals and remnant doses are 466 

insignificant compared to the natural dose of the best-bleached grain population, reasonable 467 



agreement at the 1-σ level was observed for both fading-uncorrected pIRIR150 and fading-corrected 468 

IR50 ages, when using the bootstrapped minimum age model and without residual dose subtraction.  469 

We argue that the reason for the good agreement between pIRIR150 and IR50 feldspar ages and age 470 

control observed in this study is that a significant portion of the grains are derived from sediment 471 

sources sufficiently reset prior to transportation, most likely the beach. Additional, but rather limited 472 

resetting seems to take place during tsunami and cyclone transport. However, this is not the decisive 473 

factor for the low remnant ages of the best-bleached grains. These conclusions demonstrate the power 474 

of multiple luminescence signal datasets to inform not only on chronology, but also to provide valuable 475 

insights into earth-surface processes such as the sediment transport dynamics related to highly 476 

energetic cyclone and tsunami waves. 477 
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Figures and tables 651 

Fig. 1: Study sites selected for feldspar single grain dating. a) Location of the four study sites Point Lefroy (PLY) in 652 

NW Australia, Phra Thong Island (KPT) in SW Thailand, Shiraska (JSH) in Japan, and Tolosa (TOL) in the Philippines 653 

(based on ESRI base maps). b) Shiraska lowlands with position of sediment core JSH 1 and the modern beach 654 

sample JSH mod (based on Google Earth/Digital Globe 11/10/2016). c) Stratigraphy of sediment core JSH 1. d) 655 

The coastal plain at Tolosa with positions of luminescence samples (based on Google Earth/Digital Globe 656 

23/02/2012). e) The storm-typical planar lamination at TOL 5 sampled for luminescence dating. f) The beach-657 

ridge plain on Phra Thong Island with locations of luminescence samples (based on Google Earth/Digital Globe 658 

08/10/2015). g) Tsunami sand sheets sampled for luminescence dating in trench KPT 20. h) Supra-tidal back-659 

barrier mudflat at Point Lefroy with locations of luminescence samples from washover fans (PLY 8,16,19,25) and 660 

the present beach (PLY 18) (based on Google Earth/Digital Globe 22/11/2014). i) Stratigraphy of the washover 661 

fan at PLY 25 with existing quartz OSL chronology (Brill et al., 2017). 662 

 663 

Fig. 2: Protocol evaluation based on sample PLY 25-3. a) Preheat-plateau test with successively increasing pIRIR 664 

temperatures (110-290 °C) and preheat temperatures (always 25 °C higher than the pIRIR temperature). b) pIRIR 665 

residual doses after 24 hours of solar simulator bleaching for the same temperatures as used in (a). c) Residual 666 

corrected dose-recovery ratios for the same temperature range. 667 

 668 

Fig. 3: Feldspar luminescence properties of the samples dated in this study. a) Feldspar single grain signals (IR50 669 

and pIRIR150) in response to ~5 Gy test doses for samples from PLY, KPT and TOL. Insert: Fading rates of sample 670 

PLY 25-3 shown as a boxplot. Open circles indicate outliers; vertical lines show the mean. b) Dose-response curves 671 

of feldspar samples in this study. While De determination is unproblematic for both signals and most samples 672 

(represented by JSH IR50), some of the younger PLY samples (represented by PLY pIRIR150) suffer from large 673 

recuperation, particularly in case of the pIRIR150 signal. c) Representative light-sum curves for samples from PLY, 674 

KPT and JSH. d) Running average dose of accepted grains in order of the difference between recycling ratio and 675 

unity (from left unity, to right 15% difference) and recuperation (from left low, to right large). 676 

 677 

Fig. 4: Over-dispersion in dose recovery tests, laboratory residuals and natural remnant doses measured on 678 

modern analogue samples. a) Over-dispersion of dose recovery tests with 5 Gy laboratory doses administered to 679 

modern age samples (PLY 18, KPT 2, JSH mod: squares) and solar simulator bleached samples (PLY 18, KPT 2, JSH 680 

1-7: circles). b) Residual doses after 24 h of solar simulator bleaching and natural remnant doses of the same 681 

modern analogue samples without solar simulator resetting. 682 

 683 

Fig. 5: Over-dispersion distributions for samples from PLY, JSH and KPT. For both, IR50 (a) and pIRIR150 signals (b) 684 

the lowest values are in the range of 35% in case of KPT, and 40% in case of PLY and JSH.  685 



 686 

Fig. 6: Equivalent dose distributions of selected samples from each locality shown as Abanico plots. (a) Thailand. 687 

(b) Japan (b), and Australia (c, d). 688 

 689 

Fig. 7: Correlation of age control (historical data and quartz ages), fading corrected IR50 ages using multi-grain g-690 

values, and fading-uncorrected pIRIR150 ages (all corrected for natural remnant doses, i.e. the column “Age rc” in 691 

Table 2). a) IR50 ages plotted against pIRIR150 ages. b) Zoom into the last 800 years (grey box in a). c) IR50 ages 692 

plotted against age control. d) Zoom into the last 800 years (grey box in c). e) IR50 ages plotted against age control 693 

but with quartz ages from PLY calculated with the MAM. f) pIRIR150 ages plotted against age control. g) Zoom into 694 

the last 800 years (grey box in f). h) pIRIR150 ages plotted against age control but with quartz ages from PLY 695 

calculated with the MAM. 696 

 697 

Fig. 8: Indication for sediment sources and transport conditions of tsunami and cyclone deposits in single-grain 698 

data. While unimodal De distributions point to the beach as the only sediment source (a, b), bimodality of De 699 

distributions at PLY is explained by mixing of well-bleached beach sand with sediment from the mid- to late 700 

Holocene barrier (c). Incomplete bleaching of beach sediments can only be observed in very young event deposits 701 

(a). Besides that, the ages of the older grain population provided by different signals point to additional signal 702 

resetting during tsunami and cyclone transport (d). Compared to the more rapidly resetting quartz signals (older 703 

grain population indicated by peak at S2b), both IR50 and pIRIR150 signals provide systematically older ages for 704 

grains derived from the barrier (peak at S2a). 705 
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a) pIRIR150 protocol 

Step Treatment Observed 

1 Preheat (175 °C for 10s)  

2 IRSL (laser, 1.65s @ 50 °C) Lx (IR50) 

3 IRSL (laser, 1.65s @ 150 °C) Lx (pIRIR150) 

4 Test dose  

5 Preheat (175 °C for 10s)  

6 IRSL (laser, 1.65s @ 50 °C) Tx (IR50) 

7 IRSL (laser, 1.65s @ 150 °C) Tx (pIRIR150) 

8 IRSL (LEDs, 100s @ 190 °C)  

9 Dose (R1-R4, R0, RR)  

10 Return to step 1   

   

b) IR50 protocol 

Step Treatment Observed 

1 Preheat (190 °C for 10s)  

2 IRSL (LEDs, 200s @ 50 °C) Lx (IR50) 

4 Test dose  

5 Preheat (190 °C for 10s)  

6 IRSL (LEDs, 200s @ 50 °C) Tx (IR50) 

8 IRSL (LEDs, 100s @ 220 °C)  

9 Dose (R1-R4, R0, RR)  

10 Return to step 1   

   
Tab. 1: The pIRIR150 (a) and conventional IR50 (b) protocols applied in this study. Note, in case of dose recovery 717 

experiments and determination of laboratory residuals, solar simulator bleaching for 24 h and application of a 5 718 

Gy laboratory dose was performed prior to step 1. R1-R4 – regenerative doses, R0 – zero dose (for measurement 719 

of recuperation), RR – recycled dose (for measurement of recycling ratio). 720 
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Site Sample Signal Nac OD (%) σb Palaeodose 
(Gy) 

Age unc. 
(yrs) 

Age cor.  
SA (yrs) 

Age cor. 
SG (yrs) 

Age rc 
(yrs) 

Age contr.  
(yrs) 

Th
ai

la
n

d
 KPT 2 

IR50 213 111±10 0.35±0.05 0.07±0.02 8±2 8±2 8±2 - 
8* 

post-IR150 147 88±9 0.35±0.05 0.10±0.02 10±6 10±6 10±6 - 

KPT 20 
IR50 243 35±2 0.35±0.05 4.26±0.17 456±31 515±38 456±31 515±38 

564* 
post-IR150 242 34±2 0.35±0.05 5.25±0.18 546±35 546±35 546±35 544±35 

Ja
p

an
 

JSH 1-7 
IR50 103 40±3 0.40±0.05 1.35±0.09 336±31 413±41 494±65 394±41 

410* 
post-IR150 68 54±5 0.40±0.05 2.01±0.25 502±105 502±107 502±107 454±107 

JSH 1-18 
IR50 122 38±5 0.40±0.05 1.59±0.06 486±41 601±56 722±93 582±56 

650* 
post-IR150 79 43±4 0.40±0.05 2.55±0.31 780±104 780±104 780±104 732±104 

JSH mod 
IR50 230 - 0.40±0.05 0.06±0.02 16±5 19±6 24±8 - 

0* 
post-IR150 177 - 0.40±0.05 0.19±0.03 48±7 48±7 48±7 - 

A
u

st
ra

lia
 

PLY 8-1 
IR50 147 115±7 0.40±0.05 0.28±0.07 240±60 298±76 405±114 271±76 

380±30** 
post-IR150 83 109±9 0.40±0.05 0.50±0.05 426±56 426±56 426±56 390±56 

PLY 8-2 
IR50 133 76±8 0.40±0.05 0.67±0.07 582±83 733±109 1020±197 705±109 

922±51** 
post-IR150 93 67±5 0.40±0.05 0.84±0.06 720±87 720±87 720±87 684±87 

PLY 8-3 
IR50 143 44±3 0.40±0.05 1.39±0.16 910±140 1154±183 1627±332 1127±183 

1362±57** 
post-IR150 104 40±2 0.40±0.05 1.88±0.18 1238±171 1238±171 1238±171 1202±171 

PLY 16-1 
IR50 114 128±10 0.40±0.05 0.15±0.03 114±28 140±35 186±52 113±35 

130±10** 
post-IR150 103 117±10 0.40±0.05 0.17±0.02 128±19 128±19 128±19 92±19 

PLY 16-2 
IR50 171 105±6 0.40±0.05 0.23±0.03 178±26 220±33 296±54 193±33 

204±12** 
post-IR150 125 103±7 0.40±0.05 0.34±0.03 268±34 268±34 268±34 232±34 

PLY 16-3 
IR50 177 93±6 0.40±0.05 0.22±0.04 144±31 178±39 237±59 151±39 

206±14** 
post-IR150 89 86±8 0.40±0.05 0.35±0.10 268±34 232±67 232±67 196±67 

PLY 18 
IR50 108 - 0.40±0.05 0.02±0.01 22±4 27±5 39±9 - 

0* 
post-IR150 92 - 0.40±0.05 0.04±0.02 36±18 36±18 36±18 - 

PLY 19-1 
IR50 268 155±16 0.40±0.05 0.23±0.02 172±23 213±30 286±50 184±30 

342±33** 
post-IR150 157 143±19 0.40±0.05 0.27±0.07 200±57 200±57 200±57 164±57 

PLY 19-2 
IR50 205 126±13 0.40±0.05 0.58±0.03 498±54 626±71 867±140 599±71 

788±75** 
post-IR150 144 85±6 0.40±0.05 0.72±0.04 620±71 620±71 620±71 584±71 

PLY 19-3 
IR50 181 53±3 0.40±0.05 1.09±0.06 898±101 1140±134 1605±275 1113±134 

1284±66** 
post-IR150 127 62±4 0.40±0.05 1.25±0.07 1026±116 1026±116 1026±116 990±116 

PLY 19-4 
IR50 178 58±3 0.40±0.05 1.73±0.18 1390±201 1776±266 2536±517 1749±266 

2264±101** 
post-IR150 95 57±4 0.40±0.05 2.30±0.26 1844±277 1844±277 1844±277 1808±277 

PLY 25-1 
IR50 154 43±3 0.40±0.05 2.66±0.09 1750±156 2243±215 3227±529 2216±215 

2826±124** 
post-IR150 101 37±3 0.40±0.05 3.66±0.14 2412±222 2412±222 2412±222 2376±222 

PLY 25-2 
IR50 169 40±3 0.40±0.05 1.93±0.08 1222±127 1558±169 2216±374 1531±169 

1956±87** 
post-IR150 112 54±4 0.40±0.05 2.61±0.11 1654±173 1654±173 1654±173 1618±173 

PLY 25-3 
IR50 250 39±2 0.40±0.05 1.49±0.04 948±83 1204±113 1699±262 1177±113 

1230±83** 
post-IR150 183 40±3 0.40±0.05 1.65±0.05 1046±92 1046±92 1046±92 1010±92 

PLY 25-4 
IR50 176 41±3 0.40±0.05 0.79±0.04 622±64 785±85 1093±175 758±85 

904±52** 
post-IR150 95 44±4 0.40±0.05 0.88±0.06 690±80 690±80 690±80 654±80 

PLY 25-5 
IR50 163 52±3 0.40±0.05 0.73±0.07 568±78 715±101 995±189 688±101 

858±69** 
post-IR150 104 47±4 0.40±0.05 0.95±0.06 742±85 742±85 742±85 706±85 

 734 

Tab. 2: Feldspar single-grain luminescence data for all samples measured in this study. Nac - number of accepted 735 

grains, OD – over-dispersion, Age unc. – uncorrected ages, Age cor. SA – fading corrected ages using mean 1-mm 736 

diameter single aliquot g-values of 1.5±0.3% (KPT), 2.8±0.4% (JSH) and 3.0±0.3% (PLY) for the IR50 data, Age cor. 737 

SG – fading-corrected ages using mean single grain g-values of 5.0±0.8% (JSH) and 6.7±0.8% (PLY) for the IR50 738 

data, Age rc – fading-corrected ages using multi-grain g-values after subtraction of remnant ages determined on 739 



modern analogue samples (section 3.4. for details), Age contr. – age expected from age control (*historical record 740 

or modern, **quartz ages in Brill et al., 2017). All uncertainties provided reflect the 1-σ confidence level. Dose 741 

rate data are provided in the online supplement. 742 


