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Originality-Significance	statement:	26	

Tropospheric	concentrations	of	nitrate	have	increased	since	industrial	times,	and	this	trend	is	set	to	27	

continue	as	society’s	demand	on	technology,	agriculture	and	transport	intensify.	Once	deposited	within	28	

terrestrial	ecosystems,	nitrate	may	fertilize	and	consequentially	alter	the	structure,	composition	and	29	

biogeochemical	functioning	of	biotic	communities.	The	surface	of	the	Greenland	ice	sheet	is	colonized	by	30	

active	microbiota	that	darken	surface	ice	and	enhance	melt.	Alterations	to	the	biomass	or	to	the	31	

composition	of	these	communities	may	consequently	influence	their	impact	on	surface	ice	melt.	This	32	

study	is	the	first	to	report	in	situ	fertilization	experiments	on	the	Greenland	ice	sheet	to	consider	the	33	

affect	of	elevated	nitrate	concentrations	on	the	abundance	and	composition	of	dominant	surface	ice	34	

microbiota.	We	find	that	the	estimated	abundance	and	community	composition	of	dominant	prokaryotes	35	

residing	within	surface	ice	holes	was	minimally	affected	during	six	weeks	of	incubation,	and	we	therefore	36	

suggest	that	these	communities	would	be	unaffected	by	an	exclusive	rise	in	nitrate	depositions.		37	

	38	

Summary	(180	words):	39	

Tropospheric	nitrate	levels	are	predicted	to	increase	throughout	the	21st	century,	with	potential	effects	40	

on	terrestrial	ecosystems,	including	the	Greenland	ice	sheet	(GrIS).	This	study	considers	the	impacts	of	41	

elevated	nitrate	concentrations	on	the	abundance	and	composition	of	dominant	bulk	and	active	42	

prokaryotic	communities	sampled	from	in	situ	nitrate	fertilization	plots	on	the	GrIS	surface.	Nitrate	43	

concentrations	were	successfully	elevated	within	sediment-filled	meltwater	pools,	known	as	cryoconite	44	

holes;	however,	nitrate	additions	applied	to	surface	ice	did	not	persist.	Estimated	bulk	and	active	45	

cryoconite	community	cell	abundance	was	unaltered	by	nitrate	additions	when	compared	to	control	46	

holes	using	a	quantitative	PCR	approach,	and	nitrate	was	found	to	have	minimal	affects	on	the	dominant	47	

16S	rRNA	gene-based	community	composition.	Together,	these	results	indicate	that	sampled	cryoconite	48	

communities	were	not	nitrate	limited	at	the	time	of	sampling.	Instead,	temporal	changes	in	biomass	and	49	

community	composition	were	more	pronounced.	As	these	in	situ	incubations	were	short	(6	weeks),	and	50	



the	community	composition	across	GrIS	surface	ice	is	highly	variable,	we	suggest	that	further	efforts	51	

should	be	considered	to	investigate	the	potential	long-term	impacts	of	increased	nitrate	across	the	GrIS.	52	

	53	

	54	

Introduction:	55	

Atmospheric	deposition	of	anthropogenic	nitrate	has	increased	since	the	1850’s	as	a	result	of	heightened	56	

fossil	fuel	burning	and	fertilizer	usage	(Galloway	et	al.,	2008;	Felix	and	Elliott,	2013).	Nitrate	depositions	57	

that	occur	over	the	Greenland	ice	sheet	(GrIS),	whether	dissolved	within	precipitation	or	adsorbed	to	58	

dust	particles,	become	encapsulated	within	accumulating	snow,	and	can	be	used	as	a	historic	record	of	59	

the	changing	global	nitrogen	cycle	(Hastings	et	al.,	2009;	Felix	and	Elliott,	2013;	Geng	et	al.,	2014).	60	

Tropospheric	nitrate	levels	have	been	predicted	to	rise	181%	by	2100	(Liao	et	al.,	2006),	which	may	have	61	

consequential	effects	on	downwind	recipient	ecosystems	(Vitousek	et	al.,	1997;	DeForest	et	al.,	2004),	62	

including	the	surface	of	the	GrIS.	The	GrIS	surface	harbours	spatially	variable,	active	microbial	63	

communities	(Edwards	et	al.,	2014;	Chandler	et	al.,	2015;	Stibal	et	al.,	2015;	Cameron	et	al.,	2016),	which	64	

are	involved	in,	or	have	shown	the	potential	for	carbon	and	nutrient	cycling	(Cameron	et	al.,	2012a;	Stibal	65	

et	al.,	2012;	Telling	et	al.,	2012).	These	communities	contribute	towards	surface	ice	darkening	and	so	66	

enhance	melt	(Yallop	et	al.,	2012;	Musilova	et	al.,	2016).	Furthermore,	supraglacial	microbiota	can	collate	67	

into	‘cryoconite’	aggregates	within	shallow,	water	filled	holes,	where	increased	cryoconite	mass	within	68	

each	hole	leads	to	horizontal	expansion	of	the	ice	structure	through	localized	melt	(Cook	et	al.,	2010;	69	

Cook	et	al.,	2015).	70	

	71	

In	order	to	examine	the	effect	of	increased	nitrate	concentrations	on	the	dominant	prokaryotic	72	

abundance	and	community	structure	of	the	GrIS,	we	performed	short-term	(6	week)	in	situ	nitrate	73	

fertilization	experiments	within	cryoconite	holes	and	on	surface	ice	in	the	southwestern	margin	of	the	74	

GrIS.	We	simulated	increased	nitrate	concentrations	in	line	with	expected	concentrations	for	2100	(low	75	

nitrate	addition),	as	well	as	a	ten-fold	increase	on	current	day	levels	(high	nitrate	addition;	experimental	76	



procedures	can	be	found	within	the	Supporting	Information).	We	hypothesized	that	increasing	nitrate	77	

concentration	will	promote	biomass	production	and	influence	the	community	structure.	78	

	79	

Results	and	discussion:	80	

Nitrate	concentrations	within	cryoconite	holes	were	successfully	amended.	Prior	to	nitrate	additions,	the	81	

mean	concentration	of	nitrate	from	all	nine	cryoconite	holes	was	0.13	±	0.04	mg	L-1.		After	nitrate	was	82	

added,	control	holes	maintained	a	mean	nitrate	concentration	of	0.12	±	0.05	mg	L-1,	while	holes	with	low	83	

and	high	nitrate	additions	became	more	nitrate	concentrated	(mean	concentration;	8.94	±	12.10	mg	L-1,	84	

and	45.27	±	72.96	mg	L-1	respectively;	Fig.	1).	Due	to	high	variability,	the	nitrate	concentrations	were	not	85	

significantly	different	between	low	and	high	addition	holes	(two	tailed	paired	t-test;	t	=	2.18;	p	=	0.08);	86	

however,	nitrate	concentrations	were	significantly	different	between	control	holes	and	holes	that	had	87	

either	low	or	high	nitrate	additions	(two	tailed	t-test;	t	=	3.64;	p	=	0.01).		The	cryoconite	experimental	88	

conditions	are	therefore	considered	as	either	control	or	nitrate	treatments	herein.	Nitrate	treatments	89	

administered	to	the	surface	ice	were	not	retained	for	more	than	24	hours.	Prior	to	nitrate	additions,	the	90	

mean	concentration	of	nitrate	from	the	nine	surface	ice	plots	was	0.06	±	0.02	mg	L-1,	which	was	within	91	

the	same	range	as	ice	sampled	along	a	nearby	transect	(Telling	et	al.,	2012).	The	mean	nitrate	92	

concentration	of	all	surface	ice	samples	after	treatment	addition	was	0.11	±	0.07	mg	L-1,	and	there	was	no	93	

statistical	difference	in	the	nitrate	concentrations	measured	between	different	treatment	groups	(one-94	

way	paired	ANOVA;	R2	=	0.11,	p	<	0.01),	therefore	further	analysis	of	these	samples	was	not	considered.	95	

	96	

Short-term	elevated	concentrations	of	nitrate	had	no	significant	affects	on	the	estimated	abundance	of	97	

16S	rRNA	genes	from	cryoconite	biota.	Cryoconite	bulk	cell	abundance,	estimated	from	DNA	extracts,	did	98	

not	significantly	vary	between	control	and	nitrate	treatments	(two	tailed	paired	t-test;	t	=	0.91;	p	=	0.40;	99	

Fig.	2a).	Under	both	treatments	the	total	estimated	abundance	increased	over	the	course	of	the	sampling	100	

with	the	mean	estimated	abundance	for	all	communities	changing	from	1.77	x	1010	±	0.51	x	1010	cell	g-1	101	

on	day	of	year	(DOY)	180	to	5.27	x	1010	±	1.38	x	1010	cell	g-1	on	DOY	222.	The	number	of	active	cells,	102	



estimated	from	cDNA	extracts,	similarly	did	not	significantly	vary	between	experimental	conditions	(two	103	

tailed	paired	t-test;	t	=	0.84;	p	=	0.44;	Fig.	2b).	Estimated	bulk	cell	abundance	and	active	cell	abundance	104	

correlated	tightly	(Pearson’s	correlation;	r	=	0.86;	p	=	0.01),	with	both	peaking	on	DOY	208	(mean	105	

estimated	abundance;	5.75	x	1010	±	1.89	x	1010	cell	g-1	and	5.87	x	1010	±	1.85	x	1010	cell	g-1	respectively).	106	

We	find	that	estimated	cell	abundance	calculated	from	bulk	and	active	communities	was	in	line	with	107	

cryoconite	sampled	~12	km	north	(Stibal	et	al.,	2015),	and	that	bulk	communities	were	an	order	of	108	

magnitude	more	abundant	than	cryoconite	sampled	from	Svalbard	(Zarsky	et	al.,	2013),	and	were	several	109	

orders	of	magnitude	more	abundant	than	cryoconite	sampled	from	the	southwestern	margin	of	the	GrIS	110	

when	epifluorescence	microscopy	was	used	for	analysis	(Musilova	et	al.,	2015).	We	note,	however,	that	111	

no	steps	were	taken	to	reduce	or	quantify	the	amplification	of	extracellular	DNA	(e.g.	Nielsen	et	al.,	2007;	112	

Kim	et	al.,	2016);	therefore	our	values	may	overestimate	abundance.	The	lack	of	response	to	nitrate	113	

addition	indicates	that	the	majority	of	the	communities	were	either	not	nitrate	limited,	or	they	are	co-114	

limited	by	nitrate	and	another	nutrient.	The	uptake	and	storage	of	NH4+,	originating	from	atmospheric	115	

depositions,	from	melting	snowpack	or	from	organic	mineralization,	into	cryoconite,	should	be	116	

considered	as	an	addition	source	of	bioavailable	nitrogen	for	these	sampled	systems,	especially	given	117	

their	inland	location	within	a	region	where	nitrogen	fixation	activities	have	not	previously	been	detected	118	

(Wynn	et	al.,	2007;	Hodson	et	al.,	2010;	Telling	et	al.,	2011;	Telling	et	al.,	2012).	Supraglacial	phosphorus	119	

and	carbon	limitations	have	been	identified	using	cryoconite	from	Svalbard	(Mindl	et	al.,	2007;	Säwström	120	

et	al.,	2007;	Stibal	and	Tranter,	2007;	Stibal	et	al.,	2009).	We	therefore	suggest	that	future	elevations	of	121	

nitrate	aerosols	(Liao	et	al.,	2006),	in	the	absences	of	additional	phosphorus	and	carbon	sources,	may	122	

have	little	effect	on	the	biomass	of	similar	GrIS	cryoconite	systems.		123	

	124	

Nitrate	addition	was	found	to	have	minimal	effects	on	dominant	prokaryotic	community	composition	in	125	

cryoconite.	DNA	and	cDNA	16S	rRNA	gene	amplicon	libraries	of	cryoconite	samples	taken	after	three	126	

weeks	of	treatment	were	moderately	similar	between	control	and	nitrate	conditions	when	sample	date	127	

was	accounted	for	in	two-way	ANOSIM	analyses	(DNA:	Global	R	=	0.31;	p	<	0.01,	cDNA:	Global	R	=	0.41;	p	128	



<	0.01).	One-way	ANOSIM	analysis	of	amplicon	libraries	grouped	by	treatment	identified	high	similarity	129	

between	control	and	nitrate	conditions	(DNA;	R	=	0.13;	p	=	0.01,	cDNA;	R	=	0.17;	p	<	0.01),	whereas	one-130	

way	ANOSIM	analysis	of	amplicon	libraries	grouped	by	sample	date	identified	moderate	similarity	131	

between	control	and	nitrate	additions	(DNA;	R	=	0.30;	p	=	0.01,	cDNA;	R	=	0.26;	p	<	0.01).	As	this	132	

investigation	targeted	changes	in	dominant	community	members,	it	is	likely	that	the	impact	of	increased	133	

nitrate	on	denitrifiers	will	not	have	been	detected;	considering	that	copy	numbers	from	potential	134	

denitrifiers	represented	<1%,	judged	from	the	16S	rRNA	gene	copy	numbers	amplified	from	glacial	135	

forefield	soils	(Kandeler	et	al.,	2006).	Nevertheless,	the	potential	of	cryoconite	microbial	communities	to	136	

utilize	nitrate	has	been	reported	previously	as	a	result	of	nirS	and	nosZ	genes	analysis	(Cameron	et	al.,	137	

2012a),	as	well	as	through	biogeochemical	investigations	(Telling	et	al.,	2012),	and	in	this	current	study	138	

we	consider	whether	there	are	downstream	implications	to	the	community	as	a	whole.	Principal	139	

component	analysis	(PCA)	identified	that	80%	of	the	variance	in	the	DNA	amplicon	libraries	could	be	140	

explained	within	the	first	4	axes	when	samples	taken	prior	to	treatment	additions	were	excluded.	To	141	

identify	the	most	significant	factors	influencing	microbial	community	structure,	a	redundancy	analysis	142	

(RDA)	was	performed	using	sampling	date	(as	day	of	year	2014),	nitrate	treatment,	and	chloride,	nitrate	143	

and	sulphate	concentrations	(Supporting	Information	Table	1)	as	the	explanatory	variables.	Together	144	

these	variables	were	found	to	account	for	32.1%	of	variance	(pseudoF	=	4.1,	p	=	0.001).	Interactive	145	

forward	selection	identified	that	sampling	date	was	the	most	significant	factor	influencing	community	146	

variability,	explaining	18.1%	of	variance	(pseudoF	=	10.4,	p	=	0.001),	followed	by	the	nitrate	treatment,	147	

which	explained	9.8%	of	variance	(pseudoF	=	6.3,	p	=	0.001).	For	the	cDNA	amplicon	communities,	89%	of	148	

variance	in	community	structure	was	explained	within	the	first	4	axes	of	a	PCA.	RDA	identified	that	149	

38.6%	of	variance	between	communities	was	explained	by	the	used	explanatory	factors,	with	sampling	150	

date	contributing	towards	the	greatest	influence	(28.0%	of	variance	explained,	pseudoF	=	17.9,	p	=	0.001),	151	

followed	by	the	nitrate	treatment	(5.4%	of	variance	explained,	pseudoF	=	3.7,	p	=	0.02).	Temporal	changes	152	

in	the	estimated	absolute	abundance	of	predominant	bulk	and	active	community	members	are	shown	in	153	

Fig.	3a,	and	the	homogeny	between	the	estimated	absolute	abundance	of	predominant	community	154	



members	under	differing	nitrate	treatments	is	shown	in	Fig.	3b.	The	higher	percentage	of	variance	that	155	

was	explained	by	sampling	date	in	the	analysis	of	active	communities,	compared	to	the	analysis	of	bulk	156	

communities,	is	suggestive	that	active	communities	are	more	temporally	variable.	Diversity	analysis	and	157	

PCA	of	bulk	prokaryotic	cryoconite	communities	sampled	from	the	southwestern	margins	of	the	GrIS	by	158	

Musilova	et	al.,	(2015)	have	also	shown	these	systems	to	vary	temporally.	The	disparity	between	total	159	

variation	and	explained	constrained	variation	in	both	bulk	and	active	amplicon	libraries	is	suggestive	160	

that	additional	factors,	such	as	hole	age	and	dimension,	temporal	variability	and	surface	ice	hydrology,	161	

that	have	not	been	targeted	within	this	study,	may	be	important	for	structuring	these	cryoconite	162	

communities.		163	

	164	

16S	rRNA	gene	amplicons	from	dominant	bulk	and	active	prokaryotic	cryoconite	communities	were	165	

identified	as	being	highly	distinct	from	each	other	in	two-way	ANOSIM	analyses	that	accounted	for	either	166	

experimental	treatment	or	sampling	date	(Global	R	=	0.97;	p	<	0.01,	Global	R	=	0.98;	p	<	0.01,	respectively;	167	

Fig.	3).	Amplicon	libraries	from	DNA	extracts	were	calculated	to	be	more	diverse	than	those	from	cDNA	168	

extracts	using	CatchAll	analysis	(mean	diversity	of	amplicon	libraries	from	DNA	extracts;	97.01	±	18.86,	169	

mean	diversity	of	amplicon	libraries	from	cDNA	extracts;	71.44	±	20.82,	two	tailed	t-test;	t	=	7.09;	p	<	170	

0.01).	Libraries	generated	from	DNA	extracts	were	predominated	by	amplicons	related	to	171	

Pseudanabaenaceae	of	the	genus	Leptolyngbya	(39.92	±	6.13%;	1.52	x	1010	±	0.95	x	1010	cells	g-1;	likely	172	

Phormidesmis	priestleyi;	Chrismas	et	al.,	2015;	Gokul	et	al.,	2016;	Uetake	et	al.,	2016),	173	

Thermogemmatisporaceae	(27.27	±	6.31%;	1.09	x	1010	±	0.77	x	1010	cells	g-1),	Sphingomonadaceae	of	the	174	

genera	Novosphingobium	and	Sphingomonas	(10.97	±	4.72%;	2.43	x	109	±	1.42	x	109	cells	g-1)	and	175	

Nostocaceae	(9.34	±	7.28%;	2.32	x	109	±	3.03	x	109	cells	g-1),	while	libraries	generated	from	cDNA	176	

extracts	were	predominated	by	Leptolyngbya	(79.69	±	10.22%;	2.95	x	1010	±	1.87	x	1010	cells	g-1;	Fig.	3).	177	

Although	members	of	the	Nostocaceae	and	Leptolyngbya	boryana,	a	close	relative	of	P.	priestleyi,	are	178	

capable	of	nitrogen	fixation	(Stewart	and	Lex,	1970),	Telling	et	al.	(2012)	reported	that	nitrogenase	179	

activity	was	not	detected	beyond	~7	km	inland	from	the	margins	of	the	GrIS,	when	a	transect	that	180	



crossed	~7	km	north	of	the	current	sample	site	was	performed	in	early	August	2010.	Furthermore,	no	181	

evidence	for	nitrogen	fixation	genes	was	found	within	the	genome	of	P.	priestleyi	isolated	from	cryoconite	182	

sampled	in	close	proximity	to	the	current	study	(Chrismas	et	al.,	2016).	We	therefore	presume	that	183	

cyanobacterial	cells	within	bulk	and	active	communities	were	not	fixing	nitrogen,	and	that	the	measured	184	

nitrate	originated	from	ice,	snow	and	rain	(Telling	et	al.,	2011;	Telling	et	al.,	2012).	Cyanobacteria,	185	

Chloroflexi	and	Bacteroidetes	dominated	GrIS	cryoconite	communities	have	been	reported	previously	186	

(Stibal	et	al.,	2015;	Cameron	et	al.,	2016).	However,	neither	Cyanobacteria	nor	Chloroflexi	dominated	187	

GrIS	cryoconite	communities	were	sampled	from	Leverett	Glacier,	36	km	away	(Musilova	et	al.,	2015),	188	

and	other	GrIS	sampled	communities	have	been	solely	Cyanobacteria	dominated	(Cameron	et	al.,	2012b;	189	

Uetake	et	al.,	2016),	strengthening	previous	arguments	of	the	spatial	variability	of	cryoconite	190	

communities	across	the	GrIS	(Cameron	et	al.,	2016).	191	

	192	

In	this	study	we	adopted	an	in	situ	approach	to	minimize	experimental	artefacts	prior	to	sampling.	Glacial	193	

ice	surfaces	are	dynamic	and	topographically	and	hydrologically	changeable	environments	(Fountain	et	194	

al.,	2004;	Tranter	et	al.,	2004;	Bagshaw	et	al.,	2007;	Cook	et	al.,	2015).	Consequently,	cryoconite	holes	and	195	

ice	surfaces	underwent	ablation	and	were	flushed	with	melt	water	throughout	the	study	period.	While	196	

efforts	were	made	to	maintain	the	desired	levels	of	nitrate	by	fertilizing	study	sites	every	24	hours,	future	197	

designs	of	in	situ	experiments	should	consider	alternative	approaches	in	order	to	better	achieve	desired	198	

nutrient	levels.	In	this	study,	elevated	levels	of	nitrate	were	not	maintained	on	the	surface	ice,	however,	199	

considering	the	physical	differences	of	these	niches	in	comparison	to	cryoconite	holes,	such	as	the	200	

reduced	availability	of	liquid	water,	and	their	contrasting	community	compositions	(Yallop	et	al.,	2012;	201	

Cameron	et	al.,	2016),	surface	ice	communities	may	respond	differently	to	elevated	nitrate	202	

concentrations,	and	this	may	be	spatially	variable	(Cameron	et	al.,	2016).	In	particular,	algae	thrive	upon	203	

surface	ice	and	snow	(Yallop	et	al.,	2012;	Lutz	et	al.,	2014;	Lutz	et	al.,	2016),	and	these	communities,	like	204	

algal	communities	of	oceans,	river	and	lakes,	may	respond	significantly	to	increased	nitrate	availability,	205	

which	may	have	notable	effects	on	the	darkening	and	therefore	the	melting	of	ice	and	snow	surfaces	206	



(Yallop	et	al.,	2012;	Lutz	et	al.,	2014;	Lutz	et	al.,	2016).	While	the	effects	of	nitrate	addition	could	only	be	207	

monitored	within	a	relatively	short	time-scale	in	this	current	study,	it	is	interesting	to	note	that	previous	208	

reports	have	suggested	that	increased	depositions	of	anthropogenic	nitrate	on	glacier	surfaces	since	209	

preindustrial	times	may	have	reduced	the	necessity	of	surface	ice	microbial	communities	to	fix	nitrogen	210	

(Telling	et	al.,	2011).	Further	to	this,	snow	and	rain	are	the	main	nitrate	contributors	to	supraglacial	211	

environments	(Hodson	et	al.,	2005),	and	as	precipitation	within	the	Arctic	is	predicted	to	increase	212	

throughout	the	21st	century	(Kattsov	et	al.,	2007;	Schuenemann	and	Cassano,	2010),	this	too	may	amplify	213	

available	nitrate	sources	on	the	ice.	As	bare	ice	areas	around	the	margins	of	the	GrIS	continue	to	expand	214	

in	response	to	changes	in	climate	(Box	et	al.,	2012),	communities	close	to	the	margin	will	have	to	endure	215	

longer	periods	without	nitrate	enrichment	from	snowmelt	(Telling	et	al.,	2012;	Telling	et	al.,	2014),	216	

whereas	newly	exposed	inland	ice	surfaces	will	experience	enrichment	from	both	snowmelt	and	from	the	217	

melting	of	ice	that	post-dates	mid	19th	century	anthropogenic	nitrate	increases	(Galloway	et	al.,	2008;	218	

Felix	and	Elliott,	2013).	Elevated	surface	ice	temperatures	and	increased	meltwater	availability	are	219	

similarly	key	factors	that	may	influence	surface	ice	ecology	in	the	future	(Säwström	et	al.,	2007;	Hall	et	al.,	220	

2013).		221	

	222	

In	summary	we	find	that	short-term	incubations	of	cryoconite	in	elevated	concentrations	of	nitrate	had	223	

no	significant	affect	on	the	estimated	abundance,	and	little	effect	on	the	composition	of	dominant	bulk	224	

and	active	prokaryotes,	which	is	suggestive	that	these	systems	are	not	nitrate	limited,	or	that	they	are	co-225	

limited	by	another	nutrient.	226	

	227	
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Figures:	235	

Fig.	1:	Mean	nitrate	concentrations	of	sampled	cryoconite	holes.	White	denotes	control	treatments	(no	236	

nitrate	added),	grey	denotes	low	treatments	(0.8	M	nitrate	added	every	24	hours),	and	black	denotes	high	237	

treatments	(4.6	M	nitrate	added	every	24	hours).	Error	bars	show	standard	deviations.	The	limit	of	238	

detection	is	shown	by	the	dotted	line	(0.05	mg	L-1).		Nitrate	concentrations	are	shown	on	a	log10	scale.	239	

n=3,	except	for	the	final	two	control	measurements	where	n=2.	240	

	241	

Fig.	2:	Estimated	cell	abundance	of	(a)	bulk	communities	and	(b)	active	communities	throughout	the	242	

experimental	period.	Gene	copy	numbers	were	quantified	using	qPCR	analysis	of	16S	rRNA	genes	and	cell	243	

abundance	was	estimated	using	gene	copy	numbers	of	parallel	16S	rRNA	gene	diversity	profiles.	Circles	244	

denote	individual	values	and	bars	denote	mean	estimated	cell	abundance	per	time	point	per	treatment.	245	

White	circles	and	dashed	lines	denote	control	treatments	(no	nitrate	added),	grey	circle	and	bars	denote	246	

low	treatments	(0.8	M	nitrate	added	every	24	hours),	and	black	circles	and	solid	bars	denote	high	247	

treatments	(4.6	M	nitrate	added	every	24	hours).		248	

	249	

Fig.	3:	Absolute	estimated	cell	abundance	of	OTU	grouped	by	family-level	or	phylum-level	([p])	250	

taxonomy.	(a)	Estimated	bulk	community	abundance,	grouped	by	taxa	and	with	sets	of	bars	showing	251	

mean	estimated	abundance	by	day	of	sampling	ordered	left	to	right	by	day	of	year	(2014);	180,	187,	194,	252	

201,	208,	214,	222,	regardless	of	nitrate	treatment.	Inset	graph	shows	estimated	active	community	253	

abundance.	(b)	Estimated	bulk	community	abundance,	grouped	by	taxa	and	with	sets	of	bars	showing	254	

mean	estimated	abundance	after	three	weeks	of	nitrate	treatment,	ordered	left	to	right;	control	(no	255	

nitrate	added),	low	(0.8	M	nitrate	added	every	24	hours),	high	(4.6	M	nitrate	added	every	24	hours).	Inset	256	



graph	shows	estimated	active	community	abundance.	Numbers	in	brackets	relate	to	the	number	of	OTU	257	

included	in	each	taxa	group,	error	bars	show	standard	deviation.	258	

	259	
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Fig. 1: Mean nitrate concentrations of sampled cryoconite holes. White denotes control treatments (no 
nitrate added), grey denotes low treatments (0.8 M nitrate added every 24 hours), and black denotes high 
treatments (4.6 M nitrate added every 24 hours). Error bars show standard deviations. The limit of detection 

is shown by the dotted line (0.05 mg L-1).  Nitrate concentrations are shown on a log10 scale. n=3, except 
for the final two control measurements where n=2.  
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Fig. 2: Estimated cell abundance of (a) bulk communities and (b) active communities throughout the 
experimental period. Gene copy numbers were quantified using qPCR analysis of 16S rRNA genes and cell 
abundance was estimated using gene copy numbers of parallel 16S rRNA gene diversity profiles. Circles 

denote individual values and bars denote mean estimated cell abundance per time point per treatment. 
White circles and dashed lines denote control treatments (no nitrate added), grey circle and bars denote low 
treatments (0.8 M nitrate added every 24 hours), and black circles and solid bars denote high treatments 

(4.6 M nitrate added every 24 hours).  
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Fig. 3: Absolute estimated cell abundance of OTU grouped by family-level or phylum-level ([p]) taxonomy. 
(a) Estimated bulk community abundance, grouped by taxa and with sets of bars showing mean estimated 
abundance by day of sampling ordered left to right by day of year (2014); 180, 187, 194, 201, 208, 214, 

222, regardless of nitrate treatment. Inset graph shows estimated active community abundance. (b) 
Estimated bulk community abundance, grouped by taxa and with sets of bars showing mean estimated 

abundance after three weeks of nitrate treatment, ordered left to right; control (no nitrate added), low (0.8 
M nitrate added every 24 hours), high (4.6 M nitrate added every 24 hours). Inset graph shows estimated 

active community abundance. Numbers in brackets relate to the number of OTU included in each taxa 

group, error bars show standard deviation.  
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