
Aberystwyth University

Inter-variable correlation prediction with fuzzy connected-triples
Li, Zhenpeng; Shang, Changjing; Shen, Qiang

Published in:
Soft Computing

DOI:
10.1007/s00500-018-3427-z

Publication date:
2018

Citation for published version (APA):
Li, Z., Shang, C., & Shen, Q. (2018). Inter-variable correlation prediction with fuzzy connected-triples. Soft
Computing, 22(21), 7059-7072. https://doi.org/10.1007/s00500-018-3427-z

Document License
CC BY

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326673992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s00500-018-3427-z
https://pure.aber.ac.uk/portal/en/persons/changjing-shang(b892bfaa-ae7f-45c2-9082-7bfbf2b70a5e).html
https://pure.aber.ac.uk/portal/en/persons/qiang-shen(695ae0bf-c764-425b-9496-cca71f02cb57).html
https://pure.aber.ac.uk/portal/en/publications/intervariable-correlation-prediction-with-fuzzy-connectedtriples(1a5fd3f8-bbe0-454b-8702-beeb1987e95b).html
https://doi.org/10.1007/s00500-018-3427-z


Soft Computing
https://doi.org/10.1007/s00500-018-3427-z

FOCUS

Inter-variable correlation prediction with fuzzy connected-triples

Zhenpeng Li1 · Changjing Shang1 ·Qiang Shen1
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Abstract
Identificationof hidden relationships betweendomain attributes fromdifferent data sources is of great practical significance and
forms an emerging field in data mining. However, currently there seldom exist any systematic methods that can effectively
handle this problem, especially when dealing with imprecisely described associations. In this paper, a novel data-driven
approach for inter-variable correlation prediction is proposed by exploiting the concept of connected-triples. The work is
implemented with the use of fuzzy logic. Through the exploitation of link strength measurements and fuzzy inference, the job
of detecting similar or related variables can be accomplished via examining link relation patterns within and across different
data sources. Empirical evaluation results are discussed, revealing the potential of the proposed work in predicting interesting
attribute relations, while involving simple computation mechanisms.

Keywords Connected-triple · Fuzzy inference · Inter-variable correlation · Link prediction

1 Introduction

Over the past decade, data has been playing an increasingly
significant role in daily life. Fortunately, the rapid growth of
computing capability and computational techniques has to
a certain extent enabled the handling of such large amount
of data. A wide range of potentially effective approaches
exist, including the method of social network analysis (SNA)
that has been increasingly gaining popularity in solving real-
world problems.

Social networks are fundamentally social structures includ-
ing actors and relationships amongst them (Wasserman and
Faust 1994). These networks can be conveniently represented
by employing vertices and links. The links show types of
relationship amongst the vertices including kinship, friend-
ship, collaborations and any other interactions between the
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people, namely the vertices in such a network (Newman and
Park 2003). In particular, it is widely applied in recommen-
dation systems for information retrieval, helping search for
new friends (Aiello et al. 2012) and potential business col-
laborators (Akcora et al. 2011; Mori et al. 2012; Wu et al.
2013), finding domain experts or co-authors in academic
fields (Pavlov and Ichise 2007). Obviously, the concept of
SNAmodels can be generalised. They are not only restricted
to the use in networks concerning human beings, but also
can be utilised to depict and analyse the structures in a wide
variety of problem domains.

Recently, SNA has become an important and effec-
tive technique in the study of biology, economy and other
cross-disciplines (Wasserman and Galaskiewicz 1994). For
instance, in bioinformatics, SNA is adjusted to present gene
expression networks (Almansoori et al. 2012), describing
protein–protein interactions (Franceschini et al. 2012). In
politics research, SNA is adopted to conceptualise a policy-
making process as a network of political actors (Varone et al.
2017). In public health care, SNA is employed to assess
factors contributing to the service, the care process and the
patient outcome (Bae et al. 2015). In project management,
SNA is utilised to measure the correlations amongst stake-
holders, process-related values and outcome-related values
(Zheng et al. 2016) In E-commerce, SNA is equipped for
providing interesting items in online shopping (Akcora et al.
2011). Last but not the least, in the field of national defence
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and public security, SNA is assembled for terrorism and
insurgency detection (Boccaletti et al. 2006; Shen and Boon-
goen 2012a, b; Zech and Gabbay 2016), money laundering
prevention (Colladon and Remondi 2017) and abnormal
telecommunication surveillance (Huang and Lin 2009).

In SNA, link prediction is one of the most salient and
challenging tasks. It is particularly difficult to perform the
discovery of missing or developing links in a certain network
of interest (Liben-Nowell and Kleinberg 2007). However,
link prediction is very useful to help: infer the underly-
ing complete network (from partially observed structures)
(Marchette and Priebe 2008; Kim and Leskovec 2011),
understand the evolution of networks (Bringmann et al. 2010;
Barabâsi et al. 2002) and predict hyperlinks in heteroge-
neous social networks (Zhu et al. 2002). Traditionally, most
of the approaches for detecting unobserved links are based on
topological information, including neighbour-based metrics,
path-based metrics and random walk-based metrics (Wang
et al. 2015). Recent studies have extended such classical
metrics by adding weights to the existing links within a topo-
logical graph in response to the information obtained from
explicitly related sources (Lü and Zhou 2010). Also, prob-
abilistic methods have been proposed to handle different
forms of link prediction under uncertainty (Martínez et al.
2017). However, typical existing approaches (including all
discussed above) are set for a specific problem within a local
scope, dealing with the information coming from a single
data source.

Addressing the taskof linkprediction, the useof connected-
triples has an intuitive appeal. A connected-triple is a graph
representation formed by three vertices and two undirected
edges, with each edge connecting two distinct vertices out
of the three, respectively. A network constructed with such
connected-triples offers a potentially effective mechanism
for link prediction, particularly when any given information
content is obtained from different data sources where parts of
the information overlap. Inspired by this observation, unlike
previous research that focussed on identifying links between
objects or entities in a specific region, this paper presents
an innovative piece of work that is driven by the interests in
searching for links between variables extracted from differ-
ent data/information sources, through the introduction and
exploitation of fuzzy connected-triple.

The potential underlying links between variables or enti-
ties collected from different sources are usually hidden, not
obvious or even difficult to be discovered, making the task
of link prediction from such data sources a challenge. Tra-
ditionally, this type of work has generally been handled by
human experts. Thus, designing and implementing a pre-
dicting method which learns from human logical reasoning
will be helpful to automate such prediction processes, espe-
cially when facing large and diverse data sources. Practically,
when describing a link or a set of links, linguistic terms such

as “strong”, “medium” and “weak” are natural adjectives to
depict the link strength rather than crisp numerical values
(that are typically utilised in conventional connected-triple
models). In addition, common knowledge such as “if A has
a strong link to B, and B has a strong link to C , then A
may have a strong link to C” perfectly matches human log-
ical thinking. It is to reflect such intuitions, fuzzy logic is
adopted in the present work to serve as the basis upon which
to develop a multi-source link prediction model. Such link
prediction problems are obviously of general interest inmany
data mining applications.

Overall, this paper presents two major contributions to
knowledge: (1) It proposes a novel approach to determin-
ing the correlation between attribute variables from distinct
datasets with different entity references. (2) It proposes a
fuzzy link prediction model which radically departs from
conventional crisp representation of connected-triple-based
link detection, resulting inmodels that resemble human infer-
ence and facilitate interpretability. The rest of this paper
is arranged as follows. Section 2 introduces the proposed
architecture for the development of a fuzzy connected-triple
system for link prediction, describing details on model con-
struction, link measures and inference procedures. Section
3 exhibits the results of empirical evaluation, supported
by comparative studies with alternative predicting methods.
Section 4 concludes the paper with outlook for further devel-
opment.

2 Predicting system

This section presents the proposed general framework for
developing a system that predicts link strengths with data
from multiple sources. It describes the system’s components
and their associated time complexity analyses.

2.1 Conceptual framework

The structure of the predicting system is shown in Fig. 1.
As can be seen, it comprises three distinct component subsys-
tems, each of which implements the functionality of: triple
extraction, link analysis and fuzzy inference, respectively.
These activities are integrated to construct a required predict-
ing model, whose implementation steps are detailed below.

2.2 Connected-triple extraction

2.2.1 Concept of connected-triple

Connected-triplemodelling, first introduced to analyse global
clustering coefficient (Luce and Perry 1949), is also referred
to as a method for measuring network transitivity. For
instance, it may be applied to measure the extent to which a
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Fig. 1 Predicting framework

Fig. 2 Sample datasets

friend of someone’s friend is also the friend of that person.
Formally, a connected-triple, Triple = {VTriple,WTriple}, is a
subgraph of G(V ,W ), where V represents the set of vertices
in the graph and W represents the set of edges connecting
related pairs of vertices, containing three vertices VTriple =
{vi , v j , vk} ⊂ V and two edges WTriple = {wi j , w jk} ⊂ W ,
with wik /∈ W . The vertex v j connecting the other two ver-
tices is called the centre of the triple, and vi or vk is called an
end of the triple (there being two ends per triple, of course).

2.2.2 Extracting connected-triples from datasets

Extracting connected-triples from (the same or different)
original datasets plays a fundamental role in the presentwork.
An example of two distinct datasets is shown in Fig. 2, where
the variables vC and vD co-occur in both datasets (encircled
in dot line), while the variables vA and vB only appear in
Dataset 1, and vE only appear in Dataset 2. Importantly, an
obvious but crucial point is that although there exist variables
co-occurring in more than one dataset, these datasets cannot
be easily merged into one since the instances in the datasets
can be totally distinct and so can the numbers of instances
in the datasets. For example, the instances x1, x2,…, xr in
Dataset 1 and the instances y1, y2,…, xs in Dataset 2 are
completely different from each other, although they share the
two aforementioned common variables. Also, Dataset 1 has
r instances but Dataset 2 contains s instances, while r �= s.

Fig. 3 Connected-triples extracted from sample datasets

An example of extracting connected-triples from original
datasets is shown in Fig. 3, with each vertex representing a
variable in the sample datasets given in Fig. 2. For instance,
vA in Fig. 3 denotes the (same) variable vA in Dataset 1 of
Fig. 2. A link (represented in a solid line) between two dis-
tinct variables denotes that these variables are co-occurring
in at least one of the sample datasets, and therefore, that
they are to a certain extent related to each other. In Fig.
3, four triples, Triple_i, i = 1, 2, 3, 4, are formed from
Datasets 1 and 2 in Fig. 2, where VTriple_1 = {vA, vC , vE },
VTriple_2 = {vA, vD, vE }, VTriple_3 = {vB, vC , vE } and
VTriple_4 = {vB, vD, vE }. The centre of these four connected-
triples is vC and vD , respectively. The dash line between vA

and vE and that between vB and vE represent the potential
links between pairs of the variables vA and vE and those
of vB and vE , respectively, which do not exist in the given
datasets.

2.2.3 Transitivity property of connected-triple

An interesting but important characteristic of connected-
triple is its transitivity property. According to this prop-
erty, two independent connected-triples can form a third
connected-triple. For instance, as shown in Fig. 4, from
Triple1 = {{v1, v2, v3}, {w12, w23}}, a new linkw13 connect-
ing v1 and v3 may be generated. Likewise, from Triple2 =
{{v3, v4, v5}, {w34, w45}}, another new link w35 connecting
v3 and v5 may also be obtained. Based on the variables
v1, v3, v5, and the links w13, w35, an extended connected-
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Fig. 4 Transitivity of connected-triple

triple Triple3 = {{v1, v3, v5}, {w13, w35}} (depicted with
dash lines) can be artificially produced.

2.3 Link analysis

Having identified a new connected-triple from the source
datasets, the task of determining correlation between a pair
of variables that belong to two different datasets becomes
to predict whether there exists a (hidden) link between the
two end vertices. If so, a further question is what may be the
strength on such a link. To address these issues, prerequisites
including the properties of any known links between pairs of
vertices in the triple need to be obtained in advance.

In practice, the link property is generally described by its
weight, which may correspond to a wide variety of aspects
depending on the underlying application problem. For each
connection between a given pair of distinct variables, differ-
ent mechanisms may therefore be devised for estimating the
strength of that connection. For instance, in a route graph
or map, the weight of a link may indicate the route distance
between two venues. In a graph of co-authorship, the weight
of a linkmay denote the number of papers two authors collab-
orated to publish. In a graph of webpage linkages, the weight
on a link may represent the popularity of people stepping
from one to another. In the current study, a link between two
vertices signifies a certain relationship between those vari-
ables in the datasets. Thus, the weight of a link is utilised to
capture and reflect the closeness or correlation of the corre-
sponding variables.

2.3.1 Categorical data

For a pair of variables in a dataset filled with discrete or
nominal values, their relationship can be described by the
co-occurrence frequency of the variables taking on differ-
ent value-pairs. For such data, two indices to measure link
strengths can be adopted, namely normalised mutual infor-
mation (NMI) and Frequency of Most Popular Term-Pair
(FMTP). These strengths are detailed below,which can them-
selves be combined to form fused link properties.

(1) Normalised Mutual Information (NMI) Generally
speaking, mutual information is a symmetric measure
to quantify the statistical information shared between
two distributions (Cover and Thomas 2012). The use of
this measure in the present research provides a sound
indication of the shared information between a given
pair of variables. In particular, for two discrete random
variables vA and vB , the mutual information between
them can be denoted as MI(vA, vB) and computed by

MI(vA, vB) =
∑

vb∈DB

∑

va∈DA

p(va, vb) log

(
p(va, vb)

p(va)p(vb)

)

(1)

where p(va, vb) is the joint probability distribution
function of vA and vB and p(va) and p(vb) are the
marginal probability distribution functions of vA and
vB , with vA and vB defined over the domains DA and
DB , respectively. Note that there is no upper bound for
MI(vA, vB). Thus, for better facilitating interpretation
and comparison, a normalised version of MI(vA, vB)

that ranges from 0 to 1 is desirable while describing the
relationship strength between vA and vB .
Let H(vA) denote the entropy of vA (Liang and Shi
2004), which is defined by

H(vA) = −
∑

va∈DA

p(va) log p(va) (2)

From this, the normalised mutual information between
vA and vB (Strehl and Ghosh 2002), denoted by NMI
(VA, VB), can be computed such that

NMI(vA, vB) = MI (vA, vB)√
H(vA)H(vB)

(3)

The time complexity of computing NMI is O(mnd),
where d denotes the number of instances in the dataset,
and m and n represent the cardinalities of variable
domains of vA and vB , respectively. Typically, m and n
are fixed to a small or medium number in advance. From
psychological viewpoint, to ensure model interpretabil-
ity, the cardinalities are normally set to a maximum
value of 9. Therefore, this measurement has the linear
time complexity proportional to the size of the dataset,
namely O(d).

(2) Frequency ofMost Popular Term-Pair (FMPT)NMI
may be a simple measurement computationally. How-
ever, only taking it into consideration when modelling
the link strengths between distinct variables may not
be sufficiently effective. In particular, the frequency of
occurrence of different terms with regard to a certain
variable within a given dataset can be rather different.
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This is because datasets may be rather skewed; certain
terms may have a very high occurrence frequency but
one ormore of the othersmay have a very low frequency.
This is rather common a phenomenon in real-world
problems. For example, more than 90% of the primary
school pupils are guarded by their parents and they are
much less likely to be guarded by other relatives. The
statistics of blood type distribution in the UK also show
that 44% of the population have blood type O , and only
10% have blood type B (Reid et al. 2012).
When considering any link relationship between two
variables vA and vB of such skewed datasets, suppose
that V 1

A and V 1
B are the most popular terms taken by the

variables vA and vB , respectively. Then, even if most
of the instances have the term V 1

A for vA and V 1
B for

vB simultaneously, the NMI score of the link between
vA and vB may still be low. This is because the NMI
score is significantly affected by the number of other
term-pairs and their proportion. In this case, judging
the link strength between these two distinct variables
by only calculating the NMI score may seriously distort
the result, misinterpreting the closeness of the relation-
ship between the two. This calls for the development of
the so-called frequency of the most popular term-pair
measure (FMPT).
Without losing generality, assume that a given dataset
includes a total of d instances and that vA and vB are
two discrete variables describing the instances in the
dataset, each containing m and n terms, respectively.
Let V i

A (1 ≤ i ≤ m) and V j
B (1 ≤ j ≤ n) be the

terms possibly taken by vA and vB , and SV i
A
and S

V j
B

(1 ≤ j ≤ n) be the set of instances which has the term
V i
A for vA and V i

B for vB . The FMPT score or weight on
the link between the variable vA and vB is defined by

FMPT(vA, vB) =
max

1≤i≤m,1≤ j≤n
d(S

V i
A

⋂
S
V
j
B
)

d
(4)

where d(S
V i
A

⋂
S
V
j
B
) denotes the number of instances

which have the term V i
A for the variable vA and V j

B for
vB simultaneously.
Note that the FMPT score is also ranged from [0,1]. The
time complexity of computing FMPT is also O(mnd),
where m, n, d are of the same meanings as previously
defined.

(3) Fusion of Link Properties As indicated above, both
NMI and FMPT take values from the same range [0,1].
It is therefore convenient to aggregate the results if both
are applied. The fusion of these two measurements is
useful because they capture different underlying rela-
tionship properties of the datasets in general and the
variables’ terms in particular. For a certain link between

two distinct discrete variables vA and vB , given the
NMI and FMPT scores, the combined weight of the
link SYN(vA, vB) can be calculated in a straightforward
manner such that

SYN(vA, vB) = max(NMI(vA, vB),FMPT(vA, vB))

(5)

Obviously, the combined link weight has the same real
value range as either of the component weights, i.e.
between 0 and 1. The complexity of this fusion step is
extremely simple, being O(2). Thismay be linearly gen-
eralised if there aremore than 2 such base link strengths.
The benefit of adopting the maximum operator is that it
takes into consideration the most salient feature of the
data while being simple in computation.
Note that the strength fusion does not have to be imple-
mented as above, but can be done in various alternative
ways, e.g. by finding the arithmetic average of the
component strengths, if preferred. However, this does
not affect the approach taken, rather than adding a
small amount of extra computational expense and so
is regarded as being beyond the scope of the current
investigation.

2.3.2 Continuous numeric data

For a pair of variables with continuous data as their entities,
the aforementioned measurements may not work. Instead,
statistical means to measure the bivariate correlation may be
a fitted alternative. Specifically, Pearson correlation coeffi-
cient (PCC) (Stigler 1989), ameasure of the linear correlation
between two continuous variables, is adopted here. A simple
but important factor needs to be noted is that for traditional
use of PCC, it has a value range between [−1, 1]. Consid-
ering the main concern here is whether two variables have
strong correlation and if so, how strong such a relationship
may hold, whether the two variables have a negative or posi-
tive correlation is beyond the current scope. Hence, only the
absolute value of Pearson correlation coefficient, APCC, is
herein employed to measure the link strength between two
continuous variables. Formally, the APCC between two vari-
ables vA and vB can be written as follows:

APCC(vA, vB) =

∣∣∣∣∣
d∑

g=1
(V g

a − VA)(V g
b − VB)

∣∣∣∣∣
dσVAσVB

(6)

where V g
a and V g

b represent the value of vA and that of vB
for the g-th instance in the dataset, respectively; VA and VB

stand for the average value of all the instances with regard
to vA and that to vB ; and σVA and σVB denote the standard
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deviation of vA and that of vB within the discussed dataset.
The time complexity of computing APCC for any variable
pair is O(d), where d denotes the number of instances in the
dataset.

2.4 Fuzzy inferencemodel

Having determined the weights over given links within a
connected-triple model, the predicting system reaches its
final step: logic deduction. A fuzzy inference model is
employed to implement this task, providing a flexible means
to perform human-interpretable reasoning by the use of
linguistic terms rather than numeric values (although the
linguistic terms still have their underlying numerical inter-
pretations). For the problem of link prediction, linguistic
labels such as “strong”, “medium” and “weak” are natural
words that are commonly used to describe link strengths. The
present work follows this practical observation and attempts
to learn the (hidden) links between the network nodes that
may be represented in the conventional production rule for-
mat:

IF link1 IS (strong\medium\weak)
AND link2 IS (strong\medium\weak)
THEN link3 IS (strong\medium\weak) (7)

where link1 and link2 represent the two known links in a
certain triple, each of which connects the triple centre to one
of the two ends, and link3 represents the link to be established
with a (predicted) link strength score. Such a fuzzy system
involves two key procedures as detailed below.

2.4.1 Link weight fuzzification

To enable the capture and representation of imprecisely
described link weights, and to support the derivation of the
required fuzzy inference model through data-driven learn-
ing, fuzzification of the link strengths for each identified
connected-triple is necessary. Without losing generality, to
ensure interpretability of the resulting model, a set of mem-
bership functions used to depict link strengths is presumed to
have been prescribed by domain experts. However, for appli-
cations where there is a sufficient amount of historical data, a
clusteringmethodmay be employed to derive the required set
of (potentially more objective) linguistic terms. In this work,
especially for the experimental evaluation to be presented
in the next section, the linguistic terms used are predefined
by the domain experts (with prescribed asymmetrical mem-
bership functions used to partition the underlying problem
domains), without any optimisation and are shown in Fig. 5.

Fig. 5 Fuzzymembership values of linkweightwith respect to different
measures

2.4.2 Fuzzy inference

In the process of performing fuzzy inference for link pre-
diction, as with other applications of fuzzy systems, t-norm
and t-conorm operators are adopted to interpret logic con-
nectives over connected-triples, aggregating fuzzy values
(Deschrijver et al. 2004). In general, for each pair of end ver-
tices, theremay exist several distinct centres connecting them
to form different connected-triples. As such, each connection
will lead to an intermediate inference outcome regarding the
link strength, indicating the level that that triple may con-
tribute towards the final prediction result. Thus, a t-conorm
operator is needed to aggregate all the intermediate predicted
outcomes together.

Given a connected-triple CT, let f Llink1 and f Llink2 be
the fuzzy membership values of the link strengths, or link
weights on the links link1 and link2, where linguistic terms
L ∈ L, withL representing a collection of all fuzzy sets used
to express the linguistic labels (namely, the terms “strong”,
“medium” and “weak” as given in the previous example).
The predicted fuzzy value of a single connected-triple can
then be described as a membership function:

FPCT =
[
∇( f L1

link1
, f L1

link2
), ∇( f L2

link1
, f L2

link2
), . . . ,

∇( f LM
link1

, f LM
link2

)
] (8)

where ∇ denotes a certain predefined t-norm and M repre-
sents the number of the terms possibly used to describe the
linguistic link strength.

Suppose that there are N connected-triples formed by a
specific pair of end vertices with a common corresponding
centre, the predicted fuzzy value for the link strength of Plink
can be logically interpreted as follows:

FPlink = [Δ( f L1

P1
CT

, f L1

P2
CT

, · · · , f L1

PN
CT

),

Δ( f L2

P1
CT

, f L2

P2
CT

, · · · , f L2

PN
CT

),

...
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Δ( f LM

P1
CT

, f LM

P2
CT

, · · · , f LM

PN
CT

)] (9)

where Δ represents an extended version of a certain t-
conorm which can take a finite number of arguments. It
aggregates those fuzzy membership values obtained from
each connected-triple corresponding to a pair of variables
and generates a new fuzzy membership value for the pre-
dicted link between those two variables. As the final result,
what is returned is a fuzzy value regarding that to what extent
a detected link is of a certain strength with respect to each
individual predefined link weights (that are provided by the
domain experts). If, however, it is desirable to provide a
numerical number for the predicted link strength, an addi-
tional computational step is to defuzzify the resulting fuzzy
membership value.

2.5 Illustrative link strength prediction

Consider two simple datasets regarding student academic
performance, as shown in Fig. 6. The two datasets contain 14
and 10 distinct instances, respectively, with the attributes “1st
semester grade” and “2nd semester grade” shared by both.
This illustrative example is to demonstrate that the proposed
approach can predict the correlation between the variable
“Family support” in Dataset 1 and the variable “Family size”
in Dataset 2, with a measured link strength.

For shorthand, denote the variables “Family support”, “1st
semester grade”, “2nd semester grade” and “Family size” as
“fsup”, “1sg”, “2sg” and “fzise”, respectively. Then, from
the given datasets, the following two connected-triples can
be directly extracted from these datasets, one from each:

Triple_1 = {{vfsup, v1sg, vfsize}, {wfsup−1sg, w1sg−fsize}}
Triple_2 = {{vfsup, v2sg, vfsize}, {wfsup−2sg, w2sg−fsize}}

From these, according to formulae (1), (2) and (3) it can
be computed that:

NMI(Vfsup, V1sg) = 0.139,NMI(Vfsup, V2sg) = 0.172

NMI(Vfsize, V1sg) = 0.580,NMI(Vfsize, V2sg) = 0.474

Similarly, through formula (4) it can be computed that:

FMPT(Vfsup, V1sg) = 0.429,FMPT(Vfsup, V2sg) = 0.357

FMPT(Vfsize, V1sg) = 0.300,FMPT(Vfsize, V2sg) = 0.300

Thus, the weights on these links can be computed by formula
(5), such that

SYN(Vfsup, V1sg) = max(0.139, 0.429) = 0.429

SYN(Vfsup, V2sg) = max(0.172, 0.357) = 0.357

SYN(Vfsize, V1sg) = max(0.580, 0.300) = 0.580

SYN(Vfsize, V2sg) = max(0.474, 0.300) = 0.474

Having acquired the weights for the existing links (within
individual datasets), the next step is to conduct fuzzy infer-
ence. Suppose that the fuzzy membership functions of a
synthesised link strength are provided by the domain experts
in linguistic terms as specified inFig. 5. In this simple illustra-
tion, assume that the Max-Min aggregation method is taken
to compute the SYN weights. Then, for Triple_1, according
to formula (8), its weight FPCT can be calculated such that

[min( f W (0.429), f W (0.58)),min( f M (0.429), f M (0.58)),

min( f S(0.429), f S(0.58))] = [0, 0.067, 0.5725]

where f W , f Mand f S denote the fuzzification results of the
link weights with respect to the linguistic terms “weak”,
“medium” and “strong”, respectively. What this fuzzy result
stands for is that the detected link is not “weak” (as it is
of a zero membership value with regard to this strength
label), a tiny membership for the fuzzy concept “medium”
and a significant membership value for the given linguis-
tic term “strong”. Following the same calculating procedure,
for Triple_2, its FPCT score is [0, 0.42, 0.3925]. Hence, with
respect to formula (9), the predicted fuzzy value representing
the strength of the link between variables “Family support”
and “Family size” is:

[max(0, 0),max(0.067, 0.42),max(0.5725, 0.3925)]
= [0, 0.42, 0.3925]

Finally, if a numerical strength score between the two
variables is desirable (as opposite to a fuzzy value), then by
employing the centre of gravity (COG) method for defuzzi-
fication, the predicted link score of 0.5626 can be obtained
in a straightforward manner. Note that the above illustrative
example is carried out on categorical datasets. However, this
method can also be applied to numeric datasets, although
the strategy to measure link strengths needs to be adjusted
accordingly.

3 Empirical evaluation

3.1 Datasets

The experimental evaluation is conducted on both real-world
data from UCI benchmark datasets (Bache and Lichman
2013) and on a collection of synthetic datasets. Since there
is hardly any corpora of datasets designed particularly for
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Fig. 6 Two simple datasets used for illustration

the current study, the datasets from UCI benchmark are split
into several subsets with overlapped variables according to
human knowledge. To test the performance of the proposed
approach on larger sized groups of datasets involving more
variables, four different corpora of synthetic datasets are also
generated to conduct the experiment. Table 1 shows a sum-
mary of the characteristics of all datasets employed.

Note that as with any real-world application, the ground
truth of the link strengths between variables is not a natural
existence in these datasets. Thus, in the following experi-
ments, any “ground truth” is artificially computed by the
testing data using the corresponding method as outlined in
Sect. 2.3. That is,without losing fairness, the predicted results
are compared against those directly generated by the same
underlying link strength measurement from the testing data.
Thismay sound unintuitive, but it allows for fair comparisons
to be carried out.

3.2 Methods for comparison

Predicting link strengths among variables observed in dif-
ferent data sources is a brand new topic. As such, it is
impractical to directly compare this work with any exist-
ing work with respect to this novel problem. Instead, a set
of existing link prediction methods based on graph topology
are implemented for comparison. In each of the compared
methods, each variable is regarded as a node in the graph,
and the similarity score between two variables is interpreted
as the weight of the assumed link for the corresponding pair
of nodes.

3.2.1 Neighbour-based metrics

– Weighted Jaccard Coefficient (WJC) This metric
assesses and normalises the weights of the common

neighbours of a given pair of variables (Dimitriadou et al.
2004). It assigns higher values for pairs of variableswhich
share a higher sum of weights over common neighbours
relative to the total weights of all the neighbours they
have. For two distinct variables vA and vB , this measure
is defined by

WJC(vA, vB) =
∑

vC∈�(vA)
⋂

�(vB ) w(vA, vC ) + w(vB, vC )
∑

vD∈�(vA)
⋃

�(vB ) w(vA, vD) + w(vB, vD)

where �(vA) and �(vB) denote the adjacent neighbour-
hood of vA and that of vB , respectively.

– Weighted Resource Allocation (WRA) This metric is
motivated by the physical process of resource allocation
(Zhou et al. 2009). Different from WJC, WRA does not
only involve adjacent neighbours, but also exploit the
neighbours of the direct neighbours of a pair of variables.
Formally, WRA is defined as:

WRA(vA, vB) =
∑

vC∈�(vA)
⋂

�(vB )

w(vA, vC ) + w(vC , vB)

s(vC )

where s(vC ) denoted the sum of weights for the variable
vC associated with all of its existing links, such that

s(vC ) =
∑

vX∈�(vC )

w(vC , vX )

3.2.2 Path-basedmetrics

– LocalWeighted Path (LWP) This metric is an extended
version (Thi et al. 2014) of the local path (LP) method
(Lü et al. 2009); it is also a special case of the well-
known Katz algorithm (Katz 1953). Unlike the metrics
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Table 1 Summary of datasets Dataset collection Type NDC ANIED ANVED ANVCTD

Bank C 7 6459 4 2

Mushroom C 9 912 5 2

Salary C 6 5028 6 1

Student-Por C 4 163 8 3

Student-Mat C 4 101 8 2

Connect-4 C 6 11034 7 2

Wine N 4 1256 3 1

Twitter N 7 82038 13 4

Facebook N 5 104 5 2

Urban N 13 203 12 3

News N 12 3048 7 2

Music N 11 211 11 4

Synthetic-1 C 22 15491 18 4

Synthetic-2 C 30 24823 20 3

Synthetic-3 N 25 21990 20 2

Synthetic-4 N 35 19926 18 4

C categorical data,N numeric data,NDC number of datasets in collection,ANIED average number of instances
in each dataset, ANVED average number of variables in each dataset, ANVCTD average number of variables
coexisting in two datasets

that only use the information of the nearest neighbours
(be they adjacent or otherwise), LWPmakes use of further
information from local paths with a length value of 2
and 3. Let A denote the weighted adjacent matrix of all
variables under discussion, and A2 and A3 represent the
weighted adjacent matrices based on A with a length of
2 and 3, respectively, LWP is then defined as follows:

LWP= A2 + αA3

where α is a small number close to 0, which is being used
to penalise the weight of the paths with greater length. In
the experiment, α is set to 0.01 (as with the default value
typically used when running this metric).

– Relation Strength Similarity (RSS) This metric was
originally introduced as an asymmetric measure for
weighted social networks (Chen et al. 2012). It may also
be adopted as a symmetric measure for the problem con-
sidered herein. For the present study, suppose that there
are T simple paths shorter than a path length of e from
the variable vA to vB , and a path with length of u (u ≤ e)
from vA and vB is formed with Z variables v1, v2,…,
vZ−1, vZ , where v1 represents vA and vZ represents vB .
Then, the RSS metric from vA to vB is defined by

RSS(vA, vB) =
T∑

t=1

R∗
u(vA, vB)

with

R∗
u(vA, vB) =

⎧
⎪⎨

⎪⎩

Z−1∏
z=1

R(vz, vz+1) Z ≤ e + 1

0 otherwise

R(vz, vz+1) denotes the link strength of the two adjacent
variables vz and vz+1 within a particular path connecting vA

and vB . Note that for the present experiment, in order to
guarantee that each pair of variables have at least one path
connecting them, e is set to k − 1, where k is the number of
datasets in the corpus.

3.2.3 Randomwalk-based metric

– SimRank (SR)Thewell-knownSimRank algorithm (Jeh
and Widom 2002) was proposed on the basis of the intu-
ition that two nodes within a graph are similar if they are
connected to similar nodes in the graph. This can obvi-
ously be adapted for use in the present study. For a pair
of variables vA and vB , their SR score is computed by

SR(vA, vB) =
γ

∑
vC∈�(vA)

∑
vD∈�(vB )

SR(vC , vD)

|�(vA)||�(vB)|

where the constant γ ∈ [0, 1] is a decay factor, representing
the confidence level of accepting two non-identical variables
as similar. In this work, γ is set to 0.8, as being widely used
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in various applications. Additionally, the number of itera-
tions for running the SR algorithm is set to 20 in the present
experimental evaluation.

3.3 Experimental setup

In all experiments carried out, for each corpus of datasets,
an n-fold cross-validation (Bengio and Grandvalet 2005) is
performed, where n is the number of datasets in each corpus.
The following reported results are based on an average of
running 10 times n-fold cross-validation.

Note that not all the approaches implemented for com-
parison may necessarily generate predicted results ranging
between [0, 1], and normalising these results can only pro-
vide relative values for all the predicted links, thereby
possibly misleading the interpretation of the computed link
strength. A precision measure which calculates the percent-
age of correct predictions according to the portion of founded
links is therefore employed to articulate the predicting accu-
racy. In particular, for all unobserved links defined by the
training datasets, their predicted link strengths are computed
by each of the predicting algorithms and then ranked in
descending order. Simultaneously, their link strengths are
calculated through the testing datasets and ranked in descend-
ing order as well. The predicating accuracy is determined
by comparing the number of the correct predictions against
the scenario where a specific portion of unobserved links is
assumed.

When conducting the experiments, for simplicity and
clarity, t-norm and t-conorm are initially implemented
with minimum and maximum operators, respectively. To
reflect the flexibility of the proposed approach, and also
to strengthen comparative studies, another type of operator
combination, namely algebraic product and bounded sum,
are also applied to form the bounded sum algebraic prod-
uct (BSAP) interpretation. Additionally, the centre of gravity
(COG) method is employed to perform in the defuzzification
step.

3.4 Experimental results

The experimental results are measured by predicting accu-
racy, that is, the ratio of the number of correctly predicted
results that are disclosed by each compared method, over the
percentage of retrieved variable pairs. In experimental run-
ning, all potential variable pairs are examined and ranked in
descending order, and the top-K percent of the disclosed vari-
able pairs is selected to compare against the “ground truth”
(as indicated in Sect. 3.1) with the corresponding ratio. The
predicting results revealed in this paper are simply based
on the top-ranked variable pairs within 50% of them all.
This is because the predicting accuracy generally retains an
increasing trend in response to the increasing ratio of pre-

dicted links. When the number of predicted links reaches its
maximum, meaning that all potential variable pairs are taken
into account, the predicting accuracy will be 1. In reality, it
is the highly ranked variable pairs that are more attractive to
both human analysts and the general public.

3.4.1 Experimental results for real data

Figure 7 and Fig. 8 show the experimental results for
the corpora of real-world datasets. These results jointly
demonstrate that the proposed approach is generally very
competitive under different circumstances. In particular, the
proposed method consistently outperforms the neighbour-
based metrics (WJC, WRA) and the random walk-based
metric (SimRank) across most corpora of datasets. Note that
LWP and RSS metric can perform well for specific corpora
of datasets. This has much to do with the distribution of the
variables in each dataset within such a corpus. For instance,
in the corpus of salary datasets, most of the variables have
an explicit relation with the variable “salary”, which is nat-
ural and makes it easy for the LWP metric to handle. This is
also the case for the corpora of Student-Por, Student-Mat and
Music datasets. In the corpus of Twitter datasets, almost each
dataset is simply connected with only one another through a
few number of overlapped variables, which is suitable for
RSS, but may not fit for others such as neighbour-based
metrics. However, the proposed method is still competitive
according to the predicting accuracy, regardless of the vari-
able distribution for each dataset corpus. This shows the
robustness and adaptability of the present approach.

Another interesting finding is that for variable pairs with
the “strongest” link strength, say, top 5% or top 10%, the
proposed approach performs best among all compared meth-
ods to identify them. Although the predicting accuracy is
not sufficiently high to meet human expectation, it is worth
recognising that the task of identifying “strong” links ismuch
more difficult than just finding whether there is a general link
(Boongoen et al. 2010). Such a detection is also of practical
significance since in real-world applications, it is the identi-
fication of any variable pair that is associated with the most
“strong” link that is generally more attractive to the users.

Note that for the two distinct implementations of the
proposed approach, using either Max-Min or BSAP inter-
pretation, it is difficult to judge which one performs better.
This may reflect the robustness of the underlying approach,
but no theoretical proof for this hypothesis is done, which
remains as active further research.

3.4.2 Experimental results for synthetic data

Another set of experimentations has been conducted on dif-
ferent corpora of synthetic datasets. The experimental results
are shown in Fig. 9. It can be seen that the predicting accu-
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Fig. 7 Prediction accuracy for real-world categorical data
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Fig. 8 Prediction accuracy for real-world continuous numeric data

racy for several of the compared methods declines to an
extent with respect to the results shown earlier. Due to the
increasing number of datasets in the corpus, certain incorpo-
rated datasets may not necessarily have common variables
amongst them. This situation makes accurate prediction far
more difficult.

The neighbour-basedmetrics suffer significantly from this
condition. BothWJCandWRA lead to unsatisfactory results.

Thismay be expected by the fact that neither of them is able to
make integrated consideration of both nearest neighbour and
non-nearest neighbour variables across different datasets. SR
performs slightly better than neighbour-based metrics on
lager corpus of datasets, as it does not take just common
neighbour variables into account. The propagation of similar-
ity scores amongst variable pairs in the entire dataset corpus
could have a positive effect on predicting accuracy for lager
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Fig. 9 Prediction accuracy for artificial data

Table 2 Analysis of time
complexity

Method Time complexity

FCT O(k2 p2q2l f )

WJC O(k2 p2q2)

WRA O(k2 p2q2)

LWP O(k3 p3)

RSS O(k2 p2qe+1)

SR O(k2 p2q2r)

l Number of linguistic terms to
describe link strength, f time for
defuzzification, e path length for
RSS, r number of iterations for
SR

sized dataset corpus. Interestingly, the performance of RSS
has not been adversely much affected by the increased size
of dataset collections, since it guarantees to find routes con-
necting a variable pair. Conversely, the performance of LWP
drops dramatically, because it only takes paths of a length of 2
and 3 into consideration. Nevertheless, compared against all
these, the proposed approach still performs better in most of
the cases, illustrating once again the efficacy of utilising the
transitivity property over the structure of connected-triples.

3.5 Complexity analysis

In addition to evaluating these methods in terms of predict-
ing accuracy, it is important to investigate the computational
complexity that would determine their actual efficiency for
real-world applications. Suppose that a particular corpus
incorporates k datasets, that each dataset contains P vari-
ables on average, and that every two datasets share on average
q identical variables. Table 2 shows the time complexity to
find the correlation between all the potential variable pairs
for each of the compared algorithms.

WJC and WRA are the most efficient metrics among the
compared methods, SR is slightly more expensive than WJC
and WRA, with required r iterations of refinement. Gener-
ally, the time complexity of path-based metrics is higher than

that of neighbour-based methods. LWP has the cubical time
complexity since it involves matrix multiplication. The time
complexity for RSS is significantly affected by the length of
paths and can be extraordinarily high in extreme cases.

Although the proposed approach is not the most satisfac-
tory in terms of time complexity due to the time expenses
incurred by performing fuzzy inference, it is acceptable,
especially when compared with the path-based metrics deal-
ing with large corpus involving many datasets. Taking both
predicting accuracy and time complexity into joint consid-
eration, the proposed approach is considerably competitive
upon most occasions.

4 Conclusion and future work

This paper has presented a novel data-driven approach to
predict the connections between variables that are hidden
in different datasets. Techniques for measuring correlation
between domain variables of a certain corresponding type
have been proposed. Assisted with the concept of fuzzy
connected-triple, the relationships between distinct variables
and their transitivity can be naturally captured, represented
and reasoned through the link notation. The use of fuzzy
inference supports the link prediction process to be more
consistent with human reasoning, with the predicted results
being readily interpretable. Experimental results on different
corpora of datasets have shown that the proposed approach
generatesmore accurate predicted outcomes,while involving
relatively simple computation.

While promising, the proposed work is open for fur-
ther investigation. Within the current implementation, for
the step of fuzzy inference, each connected-triple has been
treated equally.A better approachmight be to aggregate these
connected-triples according to the importance of the indi-
vidual centres of the triples, boosting the reliability of the
detected links (Boongoen et al. 2011). Alternative aggregat-
ing methods (e.g. arithmetic average and ordered weighted
averaging as employed in (Su et al. 2017)) could be utilised
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for this. Also, the propagation and aggregation operations
developed in social trust networks (Verbiest et al. 2012; Vic-
tor et al. 2011a, b) may be adapted for such use to enhance
the reliability of the predicting system. Furthermore, the
current study conducts exhaustive search for all potential
variable pairs; an aided heuristic metric for disclosing vari-
able pairs with “strong” correlation may help to reduce the
time complexity. For link strength measurement, metrics
other than those presently employed may be considered to
further improve the modelling performance. Moreover, in
this work, only datasets involving pure categorical values
and those involving continuous numeric values are tested.
Developing other types of link analysis strategy to handle
mixed-type datasets is clearly desirable.
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