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Report to the Welsh Pony and Cob Society, Nov. 2015 

 

1.1 Executive summary 

In order to understand the within and between herd diversity in the Upland Hill ponies of 

Wales and their relationships to their pedigree relatives and other native pony breeds a 

preliminary examination of a small sample of animals from a group of upland herds was 

carried out between 2014 and 2015. 

Samples of DNA were obtained from 16 herds of Welsh Mountain Ponies from the Upland 

Improvement Societies.  Around 130 animals were tested for genetic variation at 17 highly 

variable sites, 172 single base pair polymorphisms and by sequencing across 540 base pairs 

of the mitochondrial Control Region. These results were compared to a body of data obtained 

from Welsh Section A-D, and the Carneddau population and mixed groups of pedigree and 

non-pedigree UK ponies.   

We have established that, while clearly related to the pedigree Section-A animals, it is 

possible to perform a genetic assignment of unknown Upland animals to their correct herd of 

origin in the majority of cases, and that the native Upland animals can be distinguished from 

several common ‘pony crosses’ of the sort that might be found ‘abandoned’ on Welsh 

common land. 

We would argue that despite the presence of Upland blood-lines in the pedigree animals there 

are unique patterns of mitochondrial diversity within some upland herds that argues for there 

being a long term local stability to these populations.   Our findings suggest that further work 

is required to ascertain to what extent the upland populations retain a unique genetic signature 

of Natural Selection in situ, and whether it is possible to exploit this, if present, to understand 

the particular adaptive complexes that make the Welsh Hill pony unique. 

 

1.2 Background 

The Welsh Pony and Cob Society (WPCS) is the official registry of UK native Welsh ponies 

and cobs. These animals are categorised into 4 sections according to height and conformation 

characteristics: Section A is a Welsh Mountain Pony, <121.9 cm; Section B is a Welsh 

Riding Pony of fine-built morphology, <137.2 cm; Section C is a Welsh Pony of Cob Type of 

stocky morphology <137.2 cm and Section D a Welsh Cob >137.2 cm. The stud book is 

closed, meaning that only animals bred from registered parents can be registered themselves. 
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The majority of these animals are kept, bred, produced and competed by dedicated breeders 

and owners with controlled management, often in lowland studs/farms. However, several 

geographically distinct, upland populations exist that, although managed, are semi-feral. Each 

of these populations is overseen by an equivalent WPCS-administered Welsh Mountain Hill 

Pony Improvement Society. For example, the pony population in the Brecon Beacons is 

overseen by the designated Brecon Beacons Hill Pony Improvement Society. There are 27 

Hill Pony Improvement Societies that include populations that reside in harsh upland 

environments, such as the Brecon Beacons, as well as salt marsh environments on the coast 

such as the Gower.  

The Hill Improvement Societies represent ponies that potentially provide a highly unique 

genetic resource, including hardy adaptations to specific environmental features which 

domestic horses and ponies may not express. Hill ponies may be adapted to harsh upland life, 

grazing and nutritional pressures or even extremes of salt exposure which may require 

specialised homeostasis. Obtaining an understanding of the gene complexes that contribute to 

these characteristics could provide a scientific basis for selection for improved survival of 

equine and possibly other upland grazing species and as a platform for a planned sustainable 

intensification of upland agriculture. Furthermore, the locales where these animals live are 

also directly dependant on the ponies because their interaction with the environment is 

integral for maintaining unique habitat ecology.  

The importance of these animals as a genetic resource is substantiated by the fact that 

breeders of registered Welsh Ponies draw upon the hill ponies to improve their stock, using 

them to breed in ‘hardiness’ otherwise assumed to have been bred out over time in lowland 

populations. 

A ‘premium’ scheme has run previously whereby stallions representing Hill Pony Societies 

are assessed annually at Glanusk Stallion Show. Stallions judged to be worthy of a premium 

are approved to run out on the hills with populations included in the scheme. It is often the 

case that stallions are moved from hill population to hill population so that more the one 

group of hill ponies benefits from his ‘approved’ genetic input. Each year in the autumn, Hill 

Improvement Societies collect (round up) the animals to remove the colts, before returning 

the remaining individuals to the hillside.  

The premium scheme is financially supported charitably by the Horseracing Betting Levy 

Board (HBLB) and qualifies because the ponies are recognised by the Rare Breeds Survival 
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Trust (RBST). However, the RBST have removed their recognition and without further 

evidence that the hill ponies are genetically distinct from registered Welsh Ponies and Cobs, 

this cannot be reinstated. As such the HBLB funding will no longer be available to maintain 

the premium scheme and encourage breeders/owners to continue The RBST based the 

decision to delist the Welsh Mountain Pony Section A (semi-feral) as a separate breed on the 

premise that the continued use of upland animals as breeding stock intended to input 

‘hardiness’ to the lowland stud pedigree animals, effectively means that semi-feral blood 

lines are well represented amongst pedigree Section A Welsh ponies.  

This study is intended as a preliminary investigation of the genetic diversity of current Hill 

Pony Improvement Society herds and their relationships to the Section A Welsh ponies, the 

semi-feral ponies of the Carneddau plateau and other Native British pony breeds. 

1.3 Methodology overview. 

Samples of hair roots were collected from each of 16 Hill pony improvement Society herds 

from across Wales.  The locations of the sampled were approximately as indicated on the 

map in Figure 1. Herds 1-10 were sampled by Emily Ham as part of her MSc study in 

2013/14 and the rest were collected by members of the WPCS in the 2014 roundups. Around 

20-40 individual hairs were pulled from the mane or tail of animals as they were handled 

during the annual roundups and inspections. These were placed into small bags and 

transported to the laboratories at Aberystwyth for storage.   

DNA was extracted from a subsample of these hair-pulls using standard techniques and 

quantified for further analysis and long term  storage. 
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Figure 1. Location of Improvement Society herds sampled in this study.  The numbers are 

representative of Hill Pony Improvement Societies from which samples were collected; 1. 

Begwyns, 2.Black Mountain, 3.Brecon Beacons, 4. Drum Hill, 5. Hergest Hill, 6. Llanafan & 

Llanwrthwl, 7. Llandefalle, 8. Llangoed, 9. Llynyfan(Gwynfe), 10. Presili. 11. Mynydd Trefil 

Ddu and Las, Cefn Edmwnt , Pontlottyn 12 Dowlais Hill, 13 Llanrhidian Marsh, Cenydd 

Gwyr  The ‘X’ donates university and laboratory facilities. (adapted from Ham 2014) 
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Four approaches to examining the genetic diversity in the populations were investigated. 

1. Pedigree data were collected and analysed for levels of predicted consanguinity in the 

animals present in the database. 

2. A sample of animals from several herds were genetically typed for the Stockmark 

panel of 17 Simple Sequence Repeats (SSRs, also known as Variable Number of 

Tandem Reat, VNTR, markers). 

3. A sample of animals were tested for a panel of Single Nucleotide Polymorphisms 

(SNPs) determined from previous studies to have a high decrimination ability 

between the Welsh pedigree Sections and other horse breeds. The panel is a custom 

made Illumina infinium array, the AberBeef Chip designed to detect and discriminate 

between multiple species/breeds concurrently. 

4. A 550 basepair fragment of the mitochondrial control region was amplified by PCR 

and unidirectionally sequenced on the Forward (Heavy) strand using standard Sanger 

Sequencing methodology on an ABI 3730 analyser. 

 

Detailed methodologies used and protocols for these tests are available on request. 
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Section 2 Results. 

 

2.1 Pedigree analysis. 

Data supplied by the WPCS was entered into an Excel workbook and uploaded to the 

pedigree handling software Pedigree ViewerVersion 6.5b freely available from 

http://metz.une.edu.au/~bkinghor/pedigree.htm. The general output of this program is shown 

in Figure 2.1. demonstrating the multigenerational and interconnected nature of the upland 

ponies. 

 

 

 

Several individuals have had a very widespread influence on the current animals – as just one 

example the diagram in Figure 2.2 demonstrates all the descendants within the overall 

pedigree that are related back to a single animal,  ‘Barley Sugar’, who was born in 1937. 

 

Figure 2.1 Overview of pedigrees for all Upland ponies. 

Red and blue lines represent lines of descent paternal and maternal respectively 

http://metz.une.edu.au/~bkinghor/pedigree.htm
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In order to summarise these data we examined the degree of inbreeding within the pedigree 

as a whole assuming that all original animals were fully outbred and that any animals 

‘crossed into’ the pedigree were fully outbred as well. 
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Figure 2.2 pedigree showing the descendants of Barley Sugar, an animal born in  1937. 

Figure 2.3 Showing individual estimates of level of inbreeding calculated from pedigree data for 

all upland horses include in the analysis. 
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Table 2.1 Estimated average inbreeding coefficient for animals born in each year from 1960-

2014, based on pedigree data. 

Average 

inbreeding 

Year of birth 

0.01786 1960 

0.04791 1970 

0.06068 1980 

0.06088 1990 

0.07574 1998 

0.11030 1999 

0.08856 2000 

0.10052 2001 

0.09171 2002 

0.09591 2003 

0.10534 2004 

0.08394 2005 

0.07391 2006 

0.07578 2007 

0.08960 2008 

0.09751 2009 

0.08672 2010 

0.11022 2011 

0.10291 2012 

0.10137 2013 

0.06129 2014 

 

Although all animals born since 2008 are inbred to some degree there has been very little 

increase in the average level of inbreeding across the birth years since the 1970s.  

Examining the average inbreeding of each of the studs represented in the analysis below 

indicates that although most herds have similar patterns of inbreeding there are some herd to 

herd differences, for example average predicted inbreeding amongst the 12 Llynyfan animals 

tested  is 0.054 and amongst 12 Preseli animals 0.148. 
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Figure 2.4 and 2.5 show relatively typical pedigrees involving inbred individuals from the 

Black Mountain (Blaenau) and Preseli Herd (Dyfed) respectively.  These pedigrees 

demonstrate two things in particular.  The first is the importance of the Revel stud in many of 

the individuals alive today, and the second is that as a consequence the individuals in 

different herds are predicted to share a degree of common genetic heritage, in this case 

between members of the Preseli and Black Mountain herds, mainly via the influence of 

stallions. 

 

 

Figure 2.4 Showing a fairly typical (5 generation) pedigree for an inbreeding coefficient of 10%. 

Note the loops, through Revel Chelsea Fan and Revel Chip for example. 

Figure 2.5 Showing a pedigree for an individual with inbreeding coefficient of 18.7%. 

Note again the number of loops involving individuals of the Revel blood line. 
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Section 2.2 Autosomal genetic variation – Variable Number of Tandem 

Repeats (VNTR) – the Stockmark markers 

 

2.2.1 Methods 

 Initially 100 assays of the Stockmark-17 VNTR panel were purchased and applied across a 

group of sample DNA purified 10 herds by Emily Ham as part of her MSc project.  These 

results were highly fragmentary and inconsistent and have been rejected as a source of 

reliable data for this study. Standard protocols were used according to the Standard Operating 

Procedures supplied with the kit. 

It appeared that the most likely reason for the repeated failure of this procedure lay with the 

quality of the DNA since larger products were failing in the multiplex.  It was felt unlikely 

that we would obtain higher quality DNA on a re-extraction of the remaining stored hair roots 

and it was decided to order individual primer pairs for each of the equine VNTR separately 

and to try amplification in smaller multiplex units.   

2.2.2 Results 

Despite repeated attempts the number of samples producing reliable results was somewhat 

disappointing. Results were obtained from 68 individuals spread across 13 herds, for between 

4 and 15 SSR loci each. The inconsistent distribution of marker coverage and the small 

number of animals that successfully typed from some populations mean that the results from 

this section are extremely preliminary in nature. In addition the amplification in smaller 

multiplexes is known to affect the nature of the ‘amplified products’ and therefore in order to 

compare the actual allele calls obtained so far with those from previous testing with the 

stockmark kit we will need to run a set of control DNA of known genotype and use these to 

calibrate the absolute results obtained.   However these results do allow comparison between 

the upland animals tested and they complement the results reported in section 2.3 below.   

In general the results do demonstrate that there is a degree of autosomal differentiation 

between the upland herds, but that animals in some herds are more closely related than in 

others.  This is illustrated in table 2.2 which shows that estimated probability of obtaining 
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two sample results as extreme as those found here by taking two random samples from the 

overall allele distributions in the data set. 

Table 2.2 

Probability results being drawn from a single hypothetical population, p-value for each 

population pair across all loci (Fisher's method). Highlighted values are significant at the 

p<0.05 level Data estimated from Genepop4.2 (Raymond & Rousset, 1995, Rousset, 2008). 
----------------------------------------------------- 

Population pair               Chi2      df   P-Value 

--------------------          --------  ---  -------- 

"Cui3"        & "CG5"         42.11353  28   0.042303 

"Cui3"        & "PO4"         31.373627 26   0.214648 

"CG5"         & "PO4"         38.901159 26   0.049825 

"Cui3"        & "HH1"         21.308143 18   0.264153 

"CG5"         & "HH1"         17.944492 18   0.459315 

"PO4"         & "HH1"         15.208546 18   0.647601 

"Cui3"        & " BEG28"      40.261218 22   0.010076 

"CG5"         & " BEG28"      41.838576 22   0.006538 

"PO4"         & " BEG28"      30.457481 20   0.062772 

"HH1"         & " BEG28"      9.536029  16   0.889710 

"Cui3"        & " BM5"        44.715937 28   0.023569 

"CG5"         & " BM5"        50.818318 28   0.005234 

"PO4"         & " BM5"        29.327598 26   0.296397 

"HH1"         & " BM5"        12.217884 18   0.835787 

" BEG28"      & " BM5"        27.261736 22   0.201454 

"Cui3"        & " BRC9"       25.203885 24   0.394750 

"CG5"         & " BRC9"       34.416939 24   0.077527 

"PO4"         & " BRC9"       33.609691 24   0.091849 

"HH1"         & " BRC9"       7.190076  16   0.969421 

" BEG28"      & " BRC9"       22.158583 16   0.138145 

" BM5"        & " BRC9"       25.596373 24   0.373958 

"Cui3"        & " DH5"        28.612701 28   0.432363 

"CG5"         & " DH5"        30.159240 28   0.355646 

"PO4"         & " DH5"        26.620527 26   0.429436 

"HH1"         & " DH5"        11.811101 16   0.756878 

" BEG28"      & " DH5"        35.274245 20   0.018691 

" BM5"        & " DH5"        25.329566 28   0.609845 

" BRC9"       & " DH5"        18.996344 22   0.645554 

"Cui3"        & " GWY9"       10.693952 6    0.098308 

"CG5"         & " GWY9"       5.400308  6    0.493587 

"PO4"         & " GWY9"       4.984682  6    0.545779 

"HH1"         & " GWY9"       2.510597  6    0.867280 

" BEG28"      & " GWY9"       17.705623 6    0.007012 

" BM5"        & " GWY9"       5.323492  6    0.503041 

" BRC9"       & " GWY9"       13.645551 6    0.033856 

" DH5"        & " GWY9"       3.324848  6    0.767108 

"Cui3"        & " LD9"        34.628645 16   0.004466 

"CG5"         & " LD9"        48.845750 16   0.000035 

"PO4"         & " LD9"        15.398035 16   0.495702 

"HH1"         & " LD9"        15.583636 16   0.482378 

" BEG28"      & " LD9"        19.864987 16   0.226363 

" BM5"        & " LD9"        34.324437 16   0.004912 

" BRC9"       & " LD9"        24.251909 16   0.084145 

" DH5"        & " LD9"        38.730608 16   0.001189 

" GWY9"       & " LD9"        1.953340  6    0.923939 

"Cui3"        & " LF9"        80.838579 28   0.000001 

"CG5"         & " LF9"        63.982617 28   0.000123 

"PO4"         & " LF9"         Infinity 26   Highly sign. 

"HH1"         & " LF9"        22.894674 18   0.194670 
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" BEG28"      & " LF9"        43.270535 22   0.004370 

" BM5"        & " LF9"         Infinity 28   Highly sign. 

" BRC9"       & " LF9"        37.954437 24   0.035047 

" DH5"        & " LF9"        48.548876 28   0.009346 

" GWY9"       & " LF9"        23.936514 6    0.000536 

" LD9"        & " LF9"        30.756764 16   0.014451 

"Cui3"        & " LL9"        49.906301 26   0.003226 

"CG5"         & " LL9"         Infinity 26   Highly sign. 

"PO4"         & " LL9"        30.520392 26   0.246615 

"HH1"         & " LL9"        20.783555 18   0.290473 

" BEG28"      & " LL9"        44.126324 18   0.000553 

" BM5"        & " LL9"        36.377367 26   0.084944 

" BRC9"       & " LL9"        34.055741 18   0.012397 

" DH5"        & " LL9"        25.301993 22   0.282852 

" GWY9"       & " LL9"        4.781323  6    0.572150 

" LD9"        & " LL9"        38.239596 16   0.001399 

" LF9"        & " LL9"         Infinity 26   Highly sign. 

"Cui3"        & " PRE6"       22.784313 26   0.645119 

"CG5"         & " PRE6"       24.347639 26   0.556094 

"PO4"         & " PRE6"       27.363789 26   0.390454 

"HH1"         & " PRE6"       6.876163  16   0.975575 

" BEG28"      & " PRE6"       25.059088 18   0.123297 

" BM5"        & " PRE6"       19.959294 24   0.699089 

" BRC9"       & " PRE6"       11.786414 22   0.961634 

" DH5"        & " PRE6"       12.663113 20   0.891366 

" GWY9"       & " PRE6"       4.418833  6    0.620190 

" LD9"        & " PRE6"       15.242529 16   0.506952 

" LF9"        & " PRE6"       39.681760 26   0.041907 

" LL9"        & " PRE6"       18.361029 22   0.684381 

 

In agreement with the evidence from the pedigree section above there was no evidence of 

significant levels of disruption from Hardy Weinberg (HW) expectations which would 

indicate severe inbreeding or extreme isolation of some herds (Genepop4.2 , HW probability 

test with 100 batches of 1000 sampling iterations over-all loci Chi square = 120, df = 212, 

probability of results being in HW p = 1, not significant). Comparing all loci and populations 

independently and specifically for evidence of heterozygote deficiency, (characteristic of 

inbreeding or a subdivided population) indicates that all populations appear to be in HW apart 

from the Black Mountain animals where the probability of HW equilibrium is highly 

significantly rejected (p = 0.0081) indicating a deficit in heterozygotes amongst the Black 

Mountain animals tested). 

The data were used to calculate the degree of ‘private’ alleles in each population and using 

this to estimate the average level of migration between herds as being about 0.85 migrants per 

generation between populations determined using the method of implemented in Genepop4.2.  

This suggests that there is a considerable amount of geneflow between the upland herds, but 

is an average based on several assumptions.   Using the distribution and size of alleles in each 
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population an estimate of the ‘genetic differentiation’ between herds can be obtained.  This 

value, RhoST, is analogous to Sewell Wright’s Fixation index (Fst), and takes account of the 

number of different alleles within and between herds and also differences in sizes of those 

alleles according to a model of the genetic mutation process.  Table 2.3 provides a summary 

of this value across all upland population pairs tested.  RhoST varies from 0 to 1, but in 

general, values that are negative or very close to zero are taken to be zero and indicate no 

evidence of genetic variation between populations.  Values of around 0.01-0.05 would be 

found between European populations of humans, 0.2 would indicate the same degree of 

genetic differentiation as that seen between Sub-Saharan African populations and East Asian 

populations and values > 0.35 would be typical of geographically isolated populations of 

naturally subdivided species. Values less than 0.1 are indicated in green highlight in 

Table2.3. The general pattern is for herds to be relatively similar to each other with a few 

showing more divergent results. 

Table 2.3 Estimates of RhoST for all loci (diploid): 

Indices for populations: 1 = "Cefn Edmwnt-Cui", 2 = "Cenydd Gwyr-CG", 3 = "Pontlottyn-PO", 4 = "Hergest 

Hill-HH", 5 = " Begwns-BEG", 6 = " Black Mountain-BM", 7 = " Brecon Beacons-BB", 8 = " Drum Hill-DH", 

9 = " llynyfan (Gwynfe)-GWY", 10 = "Llandefalle-LD", 11 =" Llanafan and Llanwrthwl-LF", 12 = " Llangoed-

LL", 13 = " Preseli-Pre" 

---------------------- 

pop      1           2           3           4           5          6           7          8            9           10           11      12       

2     -0.0288  

3      0.1112  0.2101  

4      0.0615 -0.0611  0.2235  

5      0.4844  0.4271  0.5057  0.1049  

6      0.0016 -0.0134  0.1059 -0.1218  0.3043  

7      0.2074  0.1393  0.3633 -0.0515  0.2473  0.0887  

8     -0.0792  0.0108  0.0276 -0.0680  0.2843  0.0094  0.1186  

9      0.2037  0.0042 -0.0008 -0.0735  0.2039  0.0446  0.0286  0.0446  

10     0.2833  0.0527  0.4749  0.1058  0.2230  0.0653  0.1597  0.1302 -0.0028  

11     0.4066  0.3904  0.3440  0.0230  0.1455  0.1786  0.0388  0.2041  0.0170   0.1870  

12     0.1262  0.0722  0.2011 -0.0726  0.2437 -0.0002  0.1650  0.1153 -0.0323  0.1067  0.1227  

13     0.0904  0.0904  0.2688 -0.0841  0.4461  0.0387  0.1171  0.0270 -0.0921  0.2968  0.1751  0.1096 
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These values should be taken with considerable caution as some populations, for example the 

BEGWNS herd, are represented by very few datapoints and none of these results should be 

considered significant. 

 

 

 

Section 2.3 Autosomal genetic variation - reduced genomic SNP panel, 

(Illumina AberBeef Chip) 

2.3.1: Method 

Previous genotyping of native pony breeds using the illumina Infinium equine50k Chip had 

established a large collection of Single Nucleotide Polymorphisms (SNPs) that showed 

specifically high deviations in allele frequency among horse breeds and the Welsh pony 

sections and Carneddau population of Welsh Mountain ponies.  As part of a project into 

tracing deliberate adulteration of meat in the beef industry a panel 180 markers were chosen 

from these 50K Chip results and added to a custom designed Chip (the AberBeef Chip) to test 

for the ability to perform concurrent multi-breed identification across multiple mixed species 

DNA on the same array. These markers were chosen as the best diagnostic markers for 

‘upland pony’ phenotype relative to larger ponies and horse breeds.  So we decided to add a 

sample of 75 individuals from 12 of the Upland pony herds to these test panels.  These results 

have the two fold advantage of allowing us to examine the genetic relationships between the 

Upland animals and other pony/horse breeds, (Table 2.5) but also permit the development of 

a probability based estimate of herd origin for any individual animal tested (Table2.6). This is 

because the 172 markers that type reliably are scattered across the genome of the horse and 

give approximately independent estimates of the genetic history of the individual.   

The software program GeneClass2 (Piry et al 2004) was used to determine the relative 

likelihood of each sample belonging to any of the tested populations.  This program operates 

by calculating the allele frequencies in each ‘reference population’.  These reference 

frequencies are then used to compare the genotypes obtained for each test individual. The 

probability of each genotype is then calculated across all reference populations and across all 

tested loci to obtain an aggregate likelihood of an individual coming from each reference 
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population. These composite likelihoods are then compared to determine the predicted origin 

of the test sample.  The nature of this process means that the accuracy of the assignment and 

the ‘correctness’ of the judgement is determined by several things, but particularly 1. The 

relative differences in allele frequencies between populations. 2. The accuracy of the 

estimated allele frequencies in the reference populations.  Due to the restricted time and 

resources available, the reference populations for the Upland herds in this study are of 

variable quality.  Previous results have shown that between 10 and 20 individuals provide 

reasonable estimates for discriminatory purposes, with populations of fewer than 5 reference 

individuals giving less robust results.  As Table 2.5 indicates, several of the upland 

populations consist of fewer than 5 results.  To maximise the effectiveness of the assay the 

tests were performed by creating a separate reference population for each individual that 

contained all other upland animals minus the sample being tested.  While this removal and 

replacement approach is the best option available it does mean that, for the smaller 

populations in particular, removing an individual can have significant effects on the allele 

frequencies in that individuals ‘reference’ population.  Hence the absolute allocation of 

individuals must be taken with caution for the smaller groups.   
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2.3.2: Results and Discussion 

In the first instance an estimate of genetic diversity within the pony populations under test 

was performed using the ANOVA model of Weir and Cockerham (1984) as implemented in 

Genepop4.2. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall, all populations were not disturbed from HW expectations for these 172 markers. 

However, a specific test for excess levels of diversity (Table 2.4) did indicate that several 

populations were significantly though slightly more heterozygous than predicted from allele 

frequencies present. Although Ho>He can indicate the influence of balancing selection, the 

most likely reason for such an observation is different allele frequencies in the male and 

female parents of the tested animals. This is almost certainly the reason in the Irish Draft and 

ThoroughBred animals where a significant number of those tested were chosen as deliberate 

Table 2.4: Estimates of ‘Observed (HO)’ and ‘Expected (HE)’ heterozygocity in each 

of the tested pony populations.   All populations demonstrated no significant 

evidence of inbreeding disturbance form HW but there was some indication of 

small but significant levels of Heterozygote excess in some highlighted populations 

(prob<0.05) 

Population 1-Qintra     1-Qinter         HW U test for H1 = HO>HE  
  HO              HE            P-val        S.E.      switches (ave.) 

1=Llanrhidian Marsh  -       

2=Dowlais Hill 0.284   0.219   0.0001  0.0000  33332.68 

3=Hergest Hill 0.316   0.275   0.0021  0.0001  25376.19 

4=Llangoed 0.231   0.256   0.9998  0.0000  38870.24 

5=Llandefalle  0.296   0.294   0.3169  0.0020  35310.97 

6=Llanafan and Llanwrth  0.263   0.245   0.0299  0.0006  33575.97 

7=Begwns  0.265   0.231   0.0007  0.0001  25478.31 

8=Brecon Beacons 0.282   0.274   0.2435  0.0019  33136.33 

9=Black Mountain 0.245   0.212   0.0000  0.0000  33897.45 

10= Preseli 0.306   0.264   0.0073  0.0002  28780.17 

11= Llynyfan 0.309   0.282   0.0154  0.0005  31697.77 

12=Drum Hill 0.288   0.276   0.1491  0.0014  27683.28 

13=Upland Dartmoor 0.357   0.313   0.0053  0.0002  30762.69 

14=Section A  0.209   0.205   0.2207  0.0019  27211.37 

15=Section D 0.239   0.255   0.9978  0.0001  38536.91 

16=Pedigree Dartmoors 0.304   0.320   0.9827  0.0005  32914.98 

17=Gypsy Cob 0.288   0.303   0.7989  0.0013  33288.81 

18=Irish Draft (Cross)   0.356   0.324   0.0010  0.0001  35194.08 

19=Connemara 0.258   0.261   0.8482  0.0015  37520.01 

20=polo pony  -       

21=Carneddau  0.179   0.183   0.6959  0.0020 31642.47 

22=Thoroughbred crosses 0.388   0.354   0.0028  0.0002 33644.48 

23=Warmblood 0.346   0.373   0.9530  0.0007 29706.73 
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crosses between those breeds and ‘pony breeds’ to simulate the genotype of animals that 

might be ‘discarded’ on the uplands.  Similarly in small populations like the Improvement 

Society herds, stochastic sampling of small parental populations can results in different male 

and female allele frequencies.  However, we believe it is more likely we are seeing here the 

signature of the management practise of running selected stallions with a group of mares, 

where the stallion does not necessarily come from the same cohort of animals as the mares 

with whom he is mating. In effect we are seeing the genetic effect of overlapping generations 

and/or the transfer of stallions from one hill to another, as indeed was seen in the pedigree 

results above, as an increase in individual diversity in these populations.  The level of genetic 

diversity reflects this management as it indicates similar levels of heterozygosity within each 

of the Improvement Society herds to that found in other native breeds.  The Carneddau 

population has been shown elsewhere to have some evidence of long term inbreeding and this 

is reflected in the slightly lower diversity detected here.   

It must be borne in mind that these markers are not a random selection, rather they had been 

selected as a maximally informative set for distinguishing between the Welsh sections and 

other Native pony breeds.  These may therefore include loci under active selection in one or 

more populations so should not be used to determine phylogenetic relationships between the 

animals. However, having said that, Table 2.5 demonstrated the aggregate genetic distance 

between each of the tested groups expressed in terms of Wrights FST, which can be equated to 

the proportion of total genetic variation in a comparison of two populations that lies between 

those populations.  The cells in this table are colour coded from bright green for no genetic 

difference between the two populations to bright red for all genetic markers being different.  

The pattern of genetic distance clearly indicates that the upland herds form a ‘natural group’.  

Although they are definitely also close to the section A Welsh ponies.  However, there is a 

significant signature of genetic difference between some individual upland herds.   

This pattern is reflected in the probabilities of correct assignment of individual to designated 

herd illustrated in Table 2.6.  If we consider only the Upland herds, the Carneddau and 

Section A ponies then 56/88 animals were correctly assigned to the population of origin with 

a probability of 99% or greater. Of the remaining 31, all were assigned to another Upland 

Herd, sometimes more than a single herd with intermediate probability, a pattern of 

assignment often seen in animals that result from the hybridization between populations. Two 

of the Upland animals were incorrectly diagnosed as being drawn from the Section A, while 

one of the pedigree Section A ponies came out as being related to the Brecon Beacons and 
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another was most likely to be Section A but had 40% chance of assignment to the Llangoed 

herd. None of the other ponies tested were assigned to the Upland or Section A animals 

(though one pedigree Dartmoor and 2 upland Dartmoors did have marginal assignments 

(none higher than 2%) to Upland Welsh herds, which may reflect the use of Welsh pony 

stallions in the post War recovery of the Dartmoor breed (Edwards, 1992).   None of the 

Upland hill animals were characterised with any of the other mixed pony groups. 
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Table 2.5: Estimates of FST for all loci (diploid) based of 172 SNPs per animal, for 23 groups: Populations represented are (number of animals); 1=Llanrhidian Marsh (1), 

2=Dowlais Hill (2), 3=Hergest Hill (3), 4=Llangoed (15), 5=Llandefalle (5), 6=Llanafan and Llanwrth (8), 7=Begwns (4), 8=Brecon Beacons (6), 9=Black Mountain (8), 10= 

Preseli (3), 11= Llynyfan (6), 12=Drum Hill (5), 13=Upland Dartmoor (6), 14=Section A (12), 15=Section D (12), 16=Pedigree Dartmoors (9), 17=Gypsy Cob (2), 18=Irish 

Draft (10), 19=Connemara (12), 20=polo pony (1), 21=Carneddau (12), 22=Thoroughbred crosses (7), 23=Warmblood (4). 

pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

2 0.212                                           

3 0.144 0.261                                         

4 0.152 0.163 0.041                                       

5 0.063 0.158 0.044 0.058                                     

6 0.275 0.289 0.079 0.154 0.139                                   

7 0.254 0.271 0.034 0.052 0.062 0.102                                 

8 0.194 0.223 0.009 0.057 0.056 0.077 0.046                               

9 0.227 0.263 0.138 0.114 0.086 0.221 0.124 0.14                             

10 0.181 0.222 0.062 -0.006 0.058 0.163 0.095 0.072 0.162                           

11 0.139 0.18 0.032 0.04 0.035 0.115 0.05 0.038 0.076 0.043                         

12 0.128 0.204 0.007 0.04 0.003 0.088 0.018 0.013 0.056 0.022 0.03                       

13 0.289 0.33 0.184 0.237 0.198 0.167 0.245 0.158 0.329 0.216 0.191 0.165                     

14 0.148 0.306 0.083 0.106 0.106 0.224 0.109 0.138 0.082 0.106 0.104 0.07 0.354                   

15 0.503 0.486 0.429 0.449 0.419 0.42 0.477 0.402 0.517 0.446 0.423 0.433 0.327 0.552                 

16 0.148 0.143 0.165 0.227 0.177 0.175 0.228 0.156 0.284 0.23 0.162 0.191 0.134 0.326 0.342               

17 0.256 0.318 0.183 0.235 0.158 0.19 0.259 0.14 0.341 0.28 0.162 0.191 0.126 0.382 0.31 0.098             

18 0.291 0.291 0.211 0.278 0.235 0.194 0.257 0.178 0.321 0.287 0.211 0.234 0.136 0.359 0.319 0.116 0.044           

19 0.446 0.426 0.38 0.418 0.377 0.348 0.406 0.345 0.459 0.45 0.353 0.391 0.29 0.492 0.461 0.254 0.211 0.18         

20 0.66 0.438 0.297 0.301 0.256 0.258 0.37 0.241 0.417 0.393 0.248 0.286 0.215 0.44 0.416 0.143 0.102 0.104 0.183       

21 0.5 0.426 0.244 0.262 0.269 0.212 0.291 0.158 0.358 0.319 0.252 0.231 0.312 0.352 0.529 0.218 0.321 0.26 0.427 0.423     

22 0.247 0.253 0.195 0.254 0.204 0.18 0.237 0.17 0.312 0.25 0.192 0.21 0.141 0.359 0.272 0.105 0.017 0.036 0.146 0.048 0.28   

23 0.204 0.248 0.198 0.278 0.212 0.194 0.251 0.162 0.348 0.269 0.213 0.215 0.084 0.389 0.262 0.084 -0.009 0.023 0.167 0.018 0.3 0.003 
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Table 2.6: Summary of the results of GeneClass 2 assignment of population to 

individual samples. The ‘most likely population’ is indicated. The ‘expected’ result of 

correct assignment to population of origin is shown by shaded boxes– see text for 

explanation. 

Predicted most probable population 
 

 

Origin of sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 1=Llanrhidian Marsh (1)     1           
 2=Dowlais Hill (2)  2              
 3=Hergest Hill (3)       1 1     1   
 4=Llangoed (15)    8   1 1 1 1 1  2   
 5=Llandefalle (5)     4    1   1    
 6=Llanafan and 

Llanwrth (8) 
     7  1        

 7=Begwns (4)    1  1 2         
 8=Brecon Beacons (6)    1    2   2 1    
 9=Black Mountain (8)         7    1   
 10= Preseli (3)    3            
 11= Llynyfan (6)    1     1  4     
 12=Drum Hill (5)        2   1 2    
 13=Section A (12)    1    1     10   
 14=Carneddau (12)    1    1      10  
 15=Section D (12)               12 
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Section 2.4 The maternal story: -Mitochondrial DNA. 

 

2.4.1: Method 

The mitochondria are intracellular organelles that are found in the cytoplasm of the cells 

where they produce energy and contain their own approximately 16kb circular DNA 

molecule.  During the formation of an embryo, the male parent’s mitochondrial DNA is 

excluded from the fertilised egg so that mitochondrial DNA is inherited from mother to child 

only.  Hence the mitochondrial pattern of inheritance is a marker for maternal history that is 

independent of the autosomal results. 

We amplified the so called D-loop region of the ponies mitochondrial DNA using previously 

described primers under standard PCR conditions. 

Primers used to sequence mt DNA  

Forward - 5′-ATT TCT TCC CCT AAA CGA CAA C-3′  

Reverse - 5′-CGT TCA ATT TAA GTC CAG CTT C-3′ 

 

The resulting PCR products were column purified and single direction sequences were 

obtained using the forward primer, to give a 540 base pair product. These sequences were 

aligned to previously obtained reference samples from various sources using kalign and 

checked in bioedit manually to ensure consistency of alignment. 

Alignments were imported into Mega4 and Phylogenetic trees constructed to visualise the 

relationships between individuals (Figure 2.7 below). 

A fresh alignment was then prepared using a 220 base pair section of these samples and 

previously published sequences from European and American populations of several pony 

breeds and archaeological and reference type sequences to characterise the phylogenetic 

relationships between the sequences (Figure 2.6). 

24.2: Results and Discussion 

In general there is no clear distinction between the maternal haplotypes present in the Section 

A-D Welsh animals and those in the upland herds, when the data from all the herds are 

combined as inTable 2.7 below.  However, there are distinctions between the haplotype 
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distributions between individual upland herds and between individual upland herds and the 

pedigree Section animals (see Figures 2.6 and 2.7).  We would take this to be consistent with 

the know history of the pedigree animals which are believed have been founded from the 

upland groups by selection from within a mixed blood stock based on Welsh Mountain 

ponies and by crossing mares from these mixed stocks to other breeds such as Trotters and 

Arabs to create Section B-D Welsh ponies.   
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Figure 2.6. Phylogenetics relationships of 759 taxa  
The full tree is shown in the first panel of the figure with major haplogroups collapsed into 

solid coloured triangles.  Subsequent panels/pages show the subtrees representing the unique 

haplogroup branches characterised by Achili et al 2012 using the control region sequences 

and a Network analysis.  Only Haplogroups containing Upland animals are expanded.  A 

phylogenetic tree is used here to represent the results simply to allow the visualisation of 

individual animals and their relationships to each haplogroup, hence some haplogroups are 

‘split’ across different tree branches as a consequence of the presence of recurrent mutations 

in the horse mitochondrial phylogeny. 

The evolutionary history was inferred using the Neighbor-Joining method [Saitou and Nei 

1987]. The optimal tree with the sum of branch length = 0.897 is shown. The tree is drawn to 

scale, with branch lengths in the same units as those of the evolutionary distances used to 

infer the phylogenetic tree. The evolutionary distances were computed using the Maximum 

Composite Likelihood method [Tamura, Nei and Kumaar 2004] and are in the units of the 

number of base substitutions per site. The rate variation among sites was modelled with a 

gamma distribution (shape parameter = 1). Codon positions included were 

1st+2nd+3rd+Noncoding. All positions containing alignment gaps and missing data were 

eliminated only in pairwise sequence comparisons (Pairwise deletion option). There were a 

total of 240 positions in the final dataset. Phylogenetic analyses were conducted in MEGA4 

[Tamura, Dudley, Nei and Kumar 2007]. Data for mitochondria not sequenced in this project 

include sequences downloaded from NCBI and from our previous work, Winton 2013, 

Winton et al 2013, 2015. 
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Figure2.7  Phylogenetic relationships of 634 taxa  

The evolutionary history was inferred using the Minimum 
Evolution method [Rzhetsky and Nei, 1992]. Tree #1 out of 
100 minimum evolution trees (sum of branch length = 0.554) 
is shown. The tree is drawn to scale, with branch lengths in 
the same units as those of the evolutionary distances used to 
infer the phylogenetic tree. The evolutionary distances were 
computed using the Maximum Composite Likelihood method 
[Tamura et al, 2004] and are in the units of the number of 
base substitutions per site. The rate variation among sites 
was modeled with a gamma distribution (shape parameter = 
1). The ME tree was searched using the Close-Neighbor-
Interchange (CNI) algorithm [Nei and Kumar, 2000] at a 
search level of 1. The Neighbor-joining algorithm [Saitou and 
Nei, 1987] was used to generate the initial tree. All positions 
containing alignment gaps and missing data were eliminated 
only in pairwise sequence comparisons (Pairwise deletion 
option). There were a total of 534 positions in the final 
dataset. Phylogenetic analyses were conducted in MEGA4 
[Tamura et al 2007].  
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Using the complete alignment it is possible to see further structure amongst the upland 

mitochondrial.  It must be borne in mind when examining these results that the extended 

product included several ‘hypervariable sites’ where individual genotypes are known to be 

difficult to determine from unidirectional sequencing.  Since this was an initial pilot 

investigation we did not perform bidirectional sequencing due to the additional costs 

involved.  Hence some of the sequence variants within clusters may represent artifacts of the 

unidirectional sequencing and hence these results should not be used to date the clusters at 

this point. 

 

What is apparent is that there are certainly groups of haplotypes that are population specific.  

Taking one example within the M haplogroup shown in Figure 2.8, here there is a small 
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Figure 2.8 Partial pedigree of the M haplogroup for the 540 bp product 

showing the derived HapM present in 7 LF animals and 2 LL animals. For 

discussion see text. 
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cluster of haplotypes associated almost exclusively with animals from the Llanafan and 

Llanwrthwl herd (LF). 

These animals share a common haplotype that distinguishes them from other M haplotype 

maternal lines. Examination of pedigree records indicate that these individuals do share a 

common maternal lineage centred on the mare Trawsnant Primrose born in 1950. We can 

assume that the two LL animals and similar clusters in other mitochondrial haplogroups also 

lead back to common individuals in the recent past, though most have ‘unknown’ mare at the 

head of their pedigrees.  Since these genetic clusters link animals in different herds, we can 

assume the ‘common ancestor’ predates the isolation of those upland groups in some cases. 

 

 

 

 

The pedigree shown in Figure 2.9 illustrates that in addition to common inheritance of several 

individuals in the Llanafan herd through the maternal line this particular mare has had 

significant influence on the maternal lines within the Hardre blood line and has also 

influenced the autosomal makeup of the Begwns herd through the stallion Hardre Testun. 

Hence again we have evidence of both the localised specialisation of each of the upland herds 

and their genetic interconnectedness. 

Exploring the relationships between the herds we can approach this by initially looking at the 

genetic distance between the herds based on the number and distribution of sequence variants 

Figure 2.9 showing pedigree for descendants of the mare Trawsnant Primrose. individuals (LF) 

from the M-haplogroup illustrated above are indicated with green arrows. Blue lines indicate 

materal lines of inheritance for mitochondria, red paternal lines of inheritance. Only 

descendants of the focus mare are shown. 
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present in each herd. These results are presented in Table 2.7 where it assumed that all of the 

Welsh ponies may have originated from a common source and therefore the ‘genetic 

distance’, in this case estimated by the average number of base substitutions per site, is 

related to the change in mitochondrial haplogroup distribution between groups resulting from 

genetic drift, and the creation of novel genetic variants by mutation. The general pattern is 

very similar, although the Uplands taken as a composite group show slightly more genetic 

distance, although the same patterns of relative distance, as expressed between the other 

populations.  We would interpret this to suggest that the maternal ancestors of the Upland 

herds do not show a particularly closer relationship to the pedigree Section-A animals than 

they do to the other ‘Welsh’ populations.  This suggests that, at least as far as the maternal 

component is concerned, the Upland haplotypes are as isolated from the Pedigree section-As 

as they are from the Carneddau and Section C animals. 

[1] #uplands 

[2] #section_A 
[3] #sectionB 
[4] #sectionC 
[5] #section_D 
[6] #Carneddau 
 
[         1            2            3           4            5    ] 
[1] 
[2]  0.0226 
[3]  0.0210 0.0170 
[4]  0.0237 0.0187 0.0178 
[5]  0.0232 0.0186 0.0177 0.0192 
[6]  0.0253 0.0197 0.0212 0.0198 0.0205 
 
 

 

 

 

Taking this a step further we can examine the distribution of haplogroups across the different 

Upland herds.  These results are shown relative to the Native pony and WorldWide data in 

Table 2.8 and Figure 2.10.  These data clearly show that individual Upland groups appear to 

have distinct distributions of maternal contribution.  In general there is no clear relationship 

between the genetic distance between herds estimated from the autosomal data in previous 

sections and the ‘maternal distance’ represented by these mitochondrial results.  This 

suggests strongly that the continuity of the herds is being maintained via transfer of stallions, 

and not mares between populations.  

Table 2.7 Estimates of Divergence over 

Sequence Pairs between Groups.  

 

The number of base substitutions per site from 
averaging over all sequence pairs between groups is 
shown . All results are based on the pairwise analysis 
of 279 sequences. Analyses were conducted using the 
Maximum Composite Likelihood method in MEGA4 
[Tamura et al, 2004]. The rate variation among sites 
was modeled with a gamma distribution (shape 
parameter = 1). All positions containing alignment gaps 
and missing data were eliminated only in pairwise 
sequence comparisons (Pairwise deletion option). 
There were a total of 534 positions in the final dataset.  
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Table 2.8 Haplogroup frequency (%) according to global region of horse breeds, and numbers sequenced in the upland herds 
Equine 

mitochondrial 

haplogroups 

 

 

A B C D E F G H I J-K L M N O'P Q R 

 

Sample 

nos 

European  4.49 9.38 0.32 4.57 0.48 - 8.73 1.04 8.01 0.56 38.06 7.29 8.49 1.36 3.85 2.24 1249 

Middle Eastern  7.81 10.94 3.13 2.08 0.52 - 9.09 3.03 15.15 - 24.24 3.03 3.03 9.09 9.09 - 192 

Asian  11.93 1.70 3.58 2.90 2.21 3.07 16.35 1.36 6.13 6.47 13.46 4.09 2.90 6.64 13.80 1.87 587 

Ancient European  11.43 - - 1.43 - - 10.00 2.86 8.57 2.86 21.43 17.14 10.00 2.86 4.29 7.14 70 

Ancient Asian  8.82 - - 10.29 - 1.47 22.06 5.88 2.94 2.94 10.29 2.94 4.41 10.29 10.29 7.35 68 

Uplands total  

numbers per herd 

 4.41 - - 4.41 - - - - 17.65 - 45.59 19.12 5.88 - 2.94 - 68 

Llangoed LL  2          6 4     12 

Hergest Hill HH  1        1  1      3 

Llandefalle LD              3    3 

Llanafan and 

Llanwrthwl LF 

            8     8 

Begwns BWG          2  2      4 

Brecon Beacons 

BRC 

           1 1   1  3 

Black Mountain 

BM 

         1  6      7 

Preseli PRE     1     1        2 

Drum Hill DH            1  1    2 

LLynyfan GWY     2     5        7 

PO          2  2      4 

CG            7    1  8 

CUi            5      5 

 

Haplogroup frequency (%) according to geographical region. The first row identifiers “A” to “R” represent the major worldwide mtDNA 

haplogroups in horses.  

Haplogroup classification is based upon control region motifs, as described by Achilli et al. (2012) and as shown in the tree diagrams above.  

Geographic regions are designated according to sequence data collated by Achilli et al. (2012) and in total comprises of 2166 reference 

sequences, including ancient (fossil) DNA data.  
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Percentage of haplogroups in the upland animals are shown averaged across herds (%) and absolute numbers by herds below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combined Upland herds 

Figure 2.10. Showing the distribution of 

different haplogroups by breed for 11 

Native breeds from Winton (2013) and 

the distribution of Archeological samples 

from Ancient Europe (Achilli et al.  2012), 

compared to the combined distribution 

for the 68 Upland animals sequenced in 

this project 
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Section 3.0: General Discussion and Conclusion 

 

Taken as a whole the results above suggest that the ‘genetic history’ of the Welsh pony may 

be summarised by assuming an ancestral group of animals scattered across the Uplands and 

Lowlands of Wales. These populations may have been subject to local selection pressures by 

human or environmental influence for many years prior to the establishment of the stud 

books.   As a consequence maternal genetic diversity has been differentially packaged into 

the resultant population, with subsequent mutation and drift further distancing these groups.  

There is no evidence from these data that the maternal blood-lines of the Upland animals are 

any closer to the pedigree Section-A animals than predicted in this simple picture of 

independent origin of the Welsh Sections, The Upland populations and the Carneddau 

population.  In other words there is no evidence of regular pedigree section-A maternal 

introgression into the Upland herds after the initial split.  

On the other hand molecular distance between autosomal data at the individual and 

population levels shows as much diversity within the individual herds as between them and 

the pedigree Section-A animals.  With the Section-As being closer to the the Uplands than 

either are to the Section-Ds.   Indeed the degree of genetic separation between the Upland 

herds and the pedigree animals is in the order of FST = 10%  or roughly half that between the 

Ds and As.  However, this level of 10% is comparable to that observed between other horse 

breeds for example in France  (Leroy et al, 2009) and Poland  (Stachurska et al, 2014). 

These results could be taken to confirm the belief set out in the RBST letter to the Society of 

29
th

 January 2013 that ‘the semi-feral bloodlines are well represented within the rest of the 

Section A stud book’.  However, to take that to an absurd extreme, the same argument could 

be said to justify the non-preservation of wild Wolf populations on the basis that the genes of 

the Wolf are well represented in modern day dog breeds.  The clear differentiation between 

the genetics of the individual upland herds suggest historical or Natural Selection based 

differences between these individual populations.  While on the one hand history may not be 

of particular interest, an understanding of the genetic factors underpinning survival and 

thriftiness in marginal environments may be of profound importance to animal welfare and 

production efficiency in the Uplands.   In this respect it should be noted that the Upland herds 

appear closer genetically to the small upland Dartmoor and pedigree Dartmoor samples than 

to the Section-D Welsh on basis of the 170 selected SNP markers illustrated in Table 2.5.  

These SNPs had been chosen to be diagnostic for the differences between Section-A, 
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Carneddau and Section-D ponies, and we cannot rule out that this group of selected SNPs 

may include markers for loci affected by Natural or human selection.   Management practises 

of the Upland farmers have restricted the degree of predicted inbreeding to reasonable levels 

within herds but have retained a degree of inter-herd variation.  Until this has been 

investigated further, we cannot exclude the possibility that this interherd variation has been 

assisted by local selection pressures and that loss of all the individuals from a particular herds 

will result in our losing the specific mixture of genetics that have contributed to the survival 

of those animals under semi-feral maintenance regimes.  The genes involved may well exist 

in their lowland pedigree relatives, but we run the risk of being unable to identify which 

particular QTLs are involved in those survival characteristics and that might be usefully 

exploited to understand and manipulate upland biology. 
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