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Highlights: 24 

 Crops can potentially be grown in extreme and remote locations, including polar bases 25 

and possibly even space stations. 26 

 Indoor soil-less crop production systems developed must adopt near zero waste 27 

principles.   28 

 This efficiency culture can help deliver crop production systems that can  respond to 29 

future food security threats. 30 

 Time to ‘cross pollinate’ high technology soil-less approaches with emergent pop up 31 

agriculture in developing countries.  32 

 33 
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Abstract 45 

Threats to global food security have generated the need for novel food production 46 

techniques to feed an ever-expanding population with ever-declining land resources. 47 

Hydroponic cultivation has been long recognised as a reliable, resilient and resource-use-48 

efficient alternative to soil-based agricultural practices. The aspiration for highly efficient 49 

systems and even city-based vertical farms is starting to become realised using 50 

innovations such as aeroponics and LED lighting technology. However, the ultimate 51 

challenge for any crop production system is to be able to operate and help sustain human 52 

life in remote and extreme locations, including the polar regions on Earth, and in space. 53 

Here we explore past research and crop growth in such remote areas, and the scope to 54 

improve on the systems used in these areas to date. We introduce biointensive agricultural 55 

systems and 3D growing environments, intercropping in hydroponics and the production of 56 

multiple crops from single growth systems. To reflect the flexibility and adaptability of these 57 

approaches to different environments we have called this type of enclosed system ‘pop-up 58 

agriculture’. The vision here is built on sustainability, maximising yield from the smallest 59 

growing footprint, adopting the principles of a circular economy, using local resources and 60 

eliminating waste. We explore plant companions in intercropping systems to supply a 61 

diversity of plant foods. We argue that it is time to consume all edible components of plants 62 

grown, highlighting that nutritious plant parts are often wasted that could provide vitamins 63 

and antioxidants. Supporting human life via crop production in remote and isolated 64 

communities necessitates new levels of efficiency, eliminating waste, minimising 65 

environmental impacts and trying to wean away from our dependence on fossil fuels. This 66 

aligns well with tandem research emerging from economically developing countries where 67 

lower technology hydroponic approaches are being trialled reinforcing the need for ‘cross-68 

pollination’ of ideas and research development on pop-up agriculture that will see benefits 69 

across a range of environments.  70 



4 
 

  71 



5 
 

1. Introduction 72 

An expanding global population is the root cause of fundamental environmental 73 

challenges faced today. Global population estimates predict a 35% increase from 7.3 74 

billion to 11.2 billion by 2100 (UNDESA, 2014). With increases in population come 75 

amplified anthropogenic pressures on the environment (Harte, 2007), increased pollution 76 

(Cole and Neumayer, 2004) and reduced per capita land and resource availability (Sheikh, 77 

2006; Vörösmarty et al., 2000). The cumulative impact of these issues is likely to 78 

negatively affect the sustainability of global resources and in turn the longevity of the 79 

human population. 80 

By 2050 it is estimated that 66% of the global population will live in urban regions 81 

(UNDESA, 2014). In the UK, the Office for National Statistics documented an 8.1% 82 

increase in urban populations between 2001 and 2011 (Gower et al., 2013). Urbanisation 83 

in western societies further decreases available land as a result of developmental pressure 84 

from cities into surrounding agricultural areas (Despommier, 2010). 85 

Anthropogenic climate change compounds the above issues as many tropical and 86 

sub-tropical countries, more vulnerable to the impacts of global warming, may see 87 

reductions in viable arable land due to the consequences of desertification and sea level 88 

rise (Le Houérou, 1996; Rosenzweig et al., 1994; Zhang and Cai, 2011). It is therefore 89 

pertinent that innovative and efficient food production techniques are implemented at a 90 

significant scale in order to mitigate the disparity between population growth and food 91 

production. 92 

2. Closed Environment Agriculture 93 

Whilst efforts are being made globally to mitigate climate change, thus reducing the rate of 94 

arable land loss, additional research has been undertaken to actively increase the amount 95 

of available space for crop production. This novel thinking has led to the creation of Closed 96 

Environment Agriculture (CEA), a term which encompasses a broad range of methods for 97 
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the production of food within an enclosed environment (Jensen, 2001). The use of closed 98 

environments allows for control of many factors in the aerial environment, the root zone, 99 

and in irradiation (Rorabaugh et al., 2002). This can optimise plant growth and resource 100 

use efficiency whilst also enabling food production in previously unsuitable or 101 

unpredictable locations. Comprehensive control of the growing environment also allows for 102 

off-season production, eradicating seasonal time restrictions and generating multiple crops 103 

per year (Sabir and Singh, 2013). This technology may also provide an alternative 104 

agricultural output for areas affected by climate change, industrialisation and urbanisation, 105 

and may also reduce reliance on seasonal agricultural labour. 106 

Soil-less culture is enveloped within the umbrella term of CEA, and consists of 107 

aeroponic, aquaponic and hydroponic technologies. The latter pertains to a system of 108 

horticulture by which water is used as the primary growth medium, supplied with controlled 109 

concentrations of nutrient solution (Jensen and Collins, 1985). Hydroponics is not a novel 110 

technology, however, consistent and ongoing research is increasingly revealing the full 111 

potential of its applications. More specifically, hydroponics has been identified as a 112 

technology for the future as a tool for long-duration space travel (MacElroy et al., 1987; 113 

Smith et al., 2005) and disaster relief, as well as aiding climate change mitigation efforts 114 

(Despommier, 2013). 115 

Hydroponic techniques vary in design, though the general principles remain similar. 116 

As an alternative to soil, plants are cultivated in a water-based solution containing the 117 

nutrients essential for plant growth. Aggregate systems replace the traditional medium of 118 

soil, with an inert substrate used for structural support and its water retentive properties 119 

(e.g. coconut coir, Rockwool, vermiculite, sand, gravel) (Jensen, 1997). Alternatively, liquid 120 

(non-aggregate) systems have no supportive growing medium and roots are directly 121 

exposed to the nutrient solution (Marr, 1994). 122 
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The most commonly employed hydroponic techniques include Deep Flow Techniques 123 

(DFT) and Nutrient Film Technique (NFT). Within DFT systems, crops are grown within 124 

raft-like structures on the surface of aerated nutrient solution, allowing for complete 125 

submersion of the root zone (Rodríguez-Delfín, 2011). The benefit of this approach is the 126 

simplicity of the design and therefore relative ease of implementation. DFT is an ‘open 127 

system’ of hydroponics where nutrient solutions are actively replaced at regular intervals. 128 

In contrast, NFT is referred to as a ‘closed system’ due to the automatic filtration and 129 

recirculation of nutrient solutions (Rodríguez-Delfín, 2011). Here we extend the concept of 130 

CEA and soil-less culture systems to develop the concept of pop-up agriculture. Such 131 

agriculture is flexible in that crops can be grown in relatively small areas as determined by 132 

particular environmental limitations such as polar research stations, space capsules, 133 

remote offshore platforms or even school canteens, but the approach is not limited to small 134 

area agriculture. Pop-up agriculture embodies the aspiration to maximise the potential 135 

advantages of a more controlled environment to produce a more efficient circular system in 136 

which waste is limited and/or re-used where possible and crops are grown and utilised to 137 

achieve maximal nutrient output for minimal resource input. 138 

3. History of hydroponics 139 

Originally, hydroponic techniques were developed for use within botanical research, 140 

though not initially known by this name. William F. Gericke coined the term "hydroponics" 141 

in the 20th Century after successful cultivation of tomatoes within a simple system 142 

comprised of buckets filled with nutrient solution (Gericke, 1937). This innovation inspired 143 

the idea that food production via hydroponics was viable on a larger scale. The 144 

development of computerised systems during the 1980s allowed for the ultimate control of 145 

the enclosed environment, thus leading to the realisation of hydroponics as a commercially 146 

viable food production technique (Sardare and Admane, 2013; Sengupta and Banerjee, 147 

2012). 148 
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Today, the most common theme in hydroponic research is the development of the 149 

technology for efficient control of the microclimate in order to increase productivity and 150 

reduce costs (Jensen, 1997; Scoccianti et al., 2009). Nested within this general trend lies 151 

research regarding the specific elements of climatic control, including lighting systems 152 

(Ebisawa et al., 2008; Genovese et al., 2008; Martineau et al., 2012; McAvoy and Janes, 153 

1983), nutrient solution composition and pH (Sardare and Admane, 2013; Tyson et al., 154 

2008; Velázquez et al., 2013), aerial and root zone temperature (Bugbee and White, 1984; 155 

Papadopoulos and Tiessen, 1983; Sakamoto and Suzuki, 2015; Wu and Kubota, 2008) 156 

and electrical conductivity (Cornish, 1992; Velázquez et al., 2013; Wu and Kubota, 2008). 157 

This research couples technological advances with knowledge of plant physiology to 158 

produce the most efficient and productive systems. 159 

Use of an enclosed environment is both a strength and a weakness; the privilege of 160 

being able to control environmental variables exhaustively necessitates the use of 161 

advanced computer systems and sensory technology as well as provision of lighting, 162 

heating and/or cooling, potentially equating to high energy costs (Jensen, 1997). Careful 163 

and accurate regulation of environmental variables can produce yields of up to 20 times 164 

that of traditional Open Field Agriculture (OFA) (Jensen, 1997). However, in order to 165 

achieve the full benefits of ultimate environmental control, hydroponic systems require 166 

significant capital investment to deliver such high yields (Ferguson et al., 2014; Sengupta 167 

and Banerjee, 2012). There are, therefore, concerns that hydroponic systems may not 168 

currently be economically viable on a larger scale and cannot compete with OFA methods 169 

(Jensen, 1997; Martineau et al., 2012). However, OFA is not an option in certain areas of 170 

the world or in certain seasons. Hydroponic systems allow the growing of higher value 171 

horticultural produce in areas of otherwise poor quality land, or indoors. Also OFA and 172 

Hydroponics need to be compared in relation to their carbon footprint and environmental 173 

sustainability particularly as we try to wean away from our dependence on fossil fuels. 174 
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4. Keeping Control of the Growing Environment 175 

Research and technological advancements ultimately aim to offset the costs of such 176 

intensive systems via increases in efficiency, productivity and quality of produce (Jensen, 177 

1997; Scoccianti et al., 2009). Much research has been undertaken into how to control 178 

individual variables most efficiently in order to generate the highest crop value (Buck et al., 179 

2004; Martineau et al., 2012; Park and Kurata, 2009). Artificial lighting systems are 180 

perhaps the most energy-demanding element of hydroponic cultivation (Martineau et al., 181 

2012), and have generated a considerable body of research. In the past, High Pressure 182 

Sodium (HPS) light treatments were used to extend photoperiod and increase yields; 183 

however, a large amount of waste heat was generated (McAvoy and Janes, 1983). More 184 

recently, LED lighting systems have been highlighted as a means of reducing energy costs 185 

(Brown et al., 1995; Martineau et al., 2012) and may also benefit crop growth (Chin and 186 

Chong, 2012; Sabzalian et al., 2014). Martineau et al. (2012) reported energy savings of 187 

up to 33.8% being achieved through use of LEDs. The ability to control light intensity and 188 

photoperiod eliminates seasonality, allowing for year-round crop production (Rodríguez-189 

Delfín, 2011). In addition, aerial environmental factors, such as temperature and humidity, 190 

must be regulated consistently to complement lighting regimes. The effective interaction of 191 

these elements can enhance crop quality, growth and yields (Buck et al., 2004). 192 

Containment has the additional benefit of considerably decreasing the chances of 193 

exposure to pests and diseases (Sardare and Admane, 2013). A lack of soil equates to a 194 

reduction in the risk of soil-borne plant pathogens (Biebel, 1960). In turn, pesticide and 195 

herbicide requirements are reduced, thus minimising environmental pollution and waste 196 

production (Sardare and Admane, 2013). However, counter to this, where containment and 197 

biosecurity procedures are breached, disease and pest outbreaks can spread rapidly 198 

within the facility, as well as leading in turn to risks of their release or escape into the 199 

neighbouring natural environment. In some parts of the world, such as in Antarctica, such 200 
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introductions of alien species and pathogens into ecosystems that currently host no, or 201 

few, alien species, are recognised as one of the greatest threats to native biodiversity and 202 

ecosystem function, as well as to the regulatory framework governing the continent (Frenot 203 

et al., 2005; Greenslade et al., 2006; Hughes and Convey, 2012). 204 

The consistency and efficiency of regulation of the microclimate will be subject to the 205 

robustness of containment of the system. Such systems also often require ventilation and 206 

gas exchange to the outside and this must be considered when implementing such 207 

technologies in areas where the climate is considered to be unsuitable for food production. 208 

The design of the system will vary dependant on location as no one system is cost 209 

effective for every climate (Jensen, 2001). Its structural integrity must be sufficient to 210 

provide protection from the elements, factors that are specific to each location. If 211 

inadequate consideration is given to maintaining structural integrity and optimum 212 

environmental conditions, then the system will not be economically viable (Jensen, 2001). 213 

5. The Future of Hydroponics 214 

Maximising efficiency and productivity is key for the successful future of hydroponic 215 

technology. Although primarily a technique for high value food production, applications are 216 

still expanding, providing solutions to issues far removed from the general principles of the 217 

technique. For instance, it has been suggested that hydroponic cultivation could be the key 218 

to large-scale implementation of urban vertical farms (Despommier, 2013; Martellozzo et 219 

al., 2014). Vertical farming in itself is a novel concept whereby crops are grown within 220 

stacked hydroponic units, hence utilising the large amounts of vertical space within urban 221 

areas where ground space is limited (Martellozzo et al., 2014). This concept aims to 222 

provide an alternative source of food into the future and reduce, possibly drastically, the 223 

need for reliance on traditional agriculture (Despommier, 2013). Despommier (2010) also 224 

suggested that this approach may clear surplus agricultural land leading to increased 225 

biodiversity levels and attenuating global warming through higher carbon sequestration.  226 
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A number of studies have also suggested that governmental inputs would benefit 227 

the advancement of hydroponic technology (Jensen, 1997; Sardare and Admane, 2013; 228 

Sengupta and Banerjee, 2012). Jensen (1997) explains the role of the US government in 229 

assisting co-generation projects where excess heat from power generation plants was 230 

used to heat greenhouses. A number of facilities were considered but development was 231 

constrained by the complexity of such integration.  232 

6. Growing food in remote communities 233 

Each natural environment presents its own specific challenges. Therefore, it is the 234 

overarching aim of CEA technology to be a sufficient and consistent method of food 235 

production within a range of environments. Current research ultimately aims to reduce 236 

resource requirements by means of educated system design and integration of the 237 

technology with the surrounding environmental conditions. Capitalising on the beneficial 238 

aspects of a given climate (e.g. greater light intensity) and using these gains to offset and 239 

minimise antagonistic aspects (e.g. low water availability) will allow development of 240 

economically viable systems which may minimise resource use and, in turn, the associated 241 

environmental impacts. 242 

6.1 Pop-up food production in polar regions 243 

Conventional agriculture is not possible within the polar regions due to unfavourable soil 244 

conditions, temperature limitations and highly variable seasonal light conditions. 245 

Indigenous populations have survived within the Arctic on a hunter-gatherer diet since 246 

soon after the retreat of the northern ice sheets after the last ice age, living a more 247 

nomadic lifestyle to ensure the sustainability of food sources (Kuhnlein and Receveur, 248 

1996). Nowadays, a shift in food availability and supply logistics has led to a divergence 249 

from a traditional diet to one which is mostly imported from lower latitudes, and traditional 250 

food sources now account for only 10-36% of the average adult diet (Kuhnlein et al., 2004). 251 

In the Canadian Arctic, this has been accredited to colonialism and the introduction of 252 
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Hudson’s Bay stores in the late 19th Century (Kuhnlein et al., 2004). In turn, there has 253 

been a lifestyle shift to a more sedentary way of living, also generating diet-related health 254 

concerns (Young, 1996). 255 

Unlike the Arctic, the Antarctic has no history of indigenous human population. Human 256 

exploration of the continent and surrounding isolated islands commenced in the last 1-3 257 

centuries, with human occupation associated with research stations starting after the 258 

Second World War. Contemporary human presence on the continent relies entirely on 259 

imported food, including fresh fruit and vegetables. Due to extreme environmental 260 

conditions during the austral winter, resupply ships are only able to bring food and other 261 

resources to the continent within a maximum 5 month window during the summer (Bamsey 262 

et al., 2015). After the final resupply of the summer season, overwintering staff must 263 

survive on mostly frozen, canned and dried foods once fresh food stores have been 264 

depleted (Potter, 2010). In some stations, this diet is supplemented by greenhouse or 265 

hydroponically grown produce (Potter, 2010). Hydroponics systems in these stations not 266 

only provide benefits to physical health via the availability of fresh food, but also aid mental 267 

wellbeing during the dark isolated winter months (Bates et al., 2009). 268 

Hydroponics has been in use within Antarctica since the 1960s (Scoccianti et al., 269 

2009). Hill (1967) provides a description of an attempt to grow salad crops on the Brunt Ice 270 

shelf using hydroponics and motivated by what was possible. From the 1960s onwards 271 

more than 46 different crop growth facilities have been or are currently in operation in the 272 

Antarctic, with a total of nine research stations still operating hydroponics systems 273 

(Bamsey et al., 2015). In the past, crops were also grown within traditional greenhouses 274 

and wooden structures, often affixed to the outside of existing buildings (Bamsey et al., 275 

2015), although both these and more formal hydroponics systems have proved repeatedly 276 

to be a source of biosecurity concerns, both in terms of alien species being introduced to 277 

and existing synanthropically within the facilities, and instances of their escape into the 278 
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surrounding environment, in some cases further becoming established (Frenot et al., 279 

2005). A good example of a non-native micro-arthropod species being introduced via a 280 

hydroponic system and subsequently contained is that of Xenylla sp., a collembolan 281 

discovered in 2014 at Davis Station, East Antarctica (Bergstrom et al., 2017). The incursion 282 

was identified and eradicated, but the event also highlighted the need for several levels of 283 

control. The Antarctic Treaty System is the agreed legislative framework for the region. 284 

Alongside the Treaty itself, which says little about Antarctic conservation, the Protocol on 285 

Environmental Protection to the Antarctic Treaty (entered into force 1998) is the instrument 286 

concerned with general Antarctic protection and conservation (Blay, 1992). Mindful of the 287 

region’s pristine nature, the low level of species introductions at present, and its 288 

importance for scientific research, those negotiating the Protocol set some of the highest 289 

legislative standards found globally concerning non-native species (Hughes and Pertierra, 290 

2016). Annex II ‘Conservation of Antarctic Fauna and Flora’ states that non-native plants 291 

and animals shall not be introduced to Antarctica without a permit (with the exception of 292 

imported foods) and that any species found shall be removed or disposed of unless it is 293 

shown that they pose no risk to native biota (ATS, 2009). However, it is not clear whether 294 

or how the Protocol applies to species introduced accidentally rather than deliberately, or 295 

where liability for consequential costs might lie (see Hughes and Convey, 2014, for 296 

discussion of these issues). To help with implementation of Annex II, the Treaty Parties 297 

developed the ‘Non-native Species Manual’ in 2011, which was substantially revised in 298 

2017 (ATS, 2017). The manual provided Parties with advice on biosecurity issues 299 

generally, and included specific but basic guidelines on how to minimise and contain any 300 

biosecurity risks associated with hydroponic systems in Antarctica (Australia and France, 301 

2012; Grewal et al., 2011). 302 

6.2. Food in Space 303 
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During the 20th Century, it was suggested that hydroponics may be used within space 304 

travel and habitation (MacElroy et al., 1987). Food for crew members aboard the 305 

International Space Station (ISS) is pre-prepared, packaged and then sent in unmanned 306 

resupply vessels along with scientific equipment and other necessary supplies. It is vitally 307 

important that the nutritional requirements of crew members are met via a varied diet, 308 

especially for future long-duration space missions (Smith et al., 2005). Long-duration space 309 

missions will not have the luxury of regular resupply, and systems such as hydroponics will 310 

necessarily form part of life-support systems, providing dietary support as well as water 311 

recycling, atmospheric regeneration and waste processing (Mitchell, 1994). Biosecurity, 312 

health and food standards are clearly implicit in the design and development of such 313 

systems to mitigating any possible risks. For plant production, hydroponic crop generation 314 

is integrated with supplementary life support systems, improving system sustainability and 315 

reliability (Wheeler et al., 1996). Such systems are known as Bioregenerative Life Support 316 

Systems (BLSS) and were initially studied by the U.S. Air Force during the 1950s and 317 

1960s (Wheeler and Sager, 2006). The National Aeronautics and Space Administration 318 

(NASA) began conducting research within this field independently during the 1960s and by 319 

1985 had initiated their Controlled Ecological Life Support System (CELSS) project 320 

(Wheeler and Sager, 2006). The CELSS project involved the use of atmospherically sealed 321 

containers, formerly hypobaric test chambers, for simulated bio-regenerative crop 322 

production (Prince and Knott III, 1989) known as Biomass Production Chambers (BPCs). 323 

During the 1990s, NASA, in collaboration with the National Science Foundation 324 

Office of Polar Programmes, developed a testbed for the CELSS programme. The CELSS 325 

Antarctic Analog Project (CAAP) was undertaken at the Amundsen-Scott South Pole 326 

Station and was designed to determine feasibility and further develop the technologies for 327 

life support systems (Straight et al., 1994). This analogue was chosen due to similarities in 328 

developmental and design limitations between polar stations and spacecraft, including 329 
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energy and resource constraints, biosecurity concerns, and isolation and space limitations 330 

(Bubenheim et al., 2003). BPCs contained 20 m2 of growing area and 113 m3 of 331 

atmospheric volume, which was designed to support only one individual (Wheeler and 332 

Sager, 2006). Though innovative at the time, this research highlighted issues surrounding 333 

space availability and area-use efficiency. The CAAP was primarily developed to 334 

investigate methods by which energy efficiency, productivity and area utilisation could be 335 

maximised (Bubenheim et al., 2003). During the 2000s International Space Station crew 336 

members have grown edible plants such as peas in a space garden, including in the Lada 337 

space greenhouse system in the Russian segment (Sychev et al., 2007). A range of crops 338 

for cultivation in space have been suggested including lettuce, tomato, cabbage, radish, 339 

carrot, chard, green onion, pepper, strawberry, mizuna and several herbs (Wheeler, 2009). 340 

Recently, NASA crew have used a plant growth system called Veggie (Massa et al., 2016) 341 

developed by Orbital Technologies Corporation (ORBITEC) to grow such edible plants. 342 

The Veggie system is designed to have low power consumption, low launch mass and 343 

minimal operator intervention. In addition, therapeutic plant care is likely to be a benefit for 344 

crew member health and wellbeing through the restorative effect of contact with nature, as 345 

has been reported in studies on Earth (Schebella et al., 2017). 346 

7. What to Grow in Antarctica, and in Space? 347 

Few stations currently operate hydroponics units within Antarctica; however, between them 348 

a wide range of crops are cultivated. The Australian Antarctic Division (AAD) currently 349 

operate three of the nine existing hydroponics systems at their Casey, Mawson and Davis 350 

research stations. These facilities grow a range of crops including lettuce, celery, 351 

cucumbers, tomatoes, chilies, onions, silver beet and a variety of herbs (Bamsey et al., 352 

2015). During the austral summer of 2012–2013, the Davis facility produced a total edible 353 

yield of 237 kg. However, 420 kg of green waste was also incinerated (Sheehy, 2013; as 354 

cited in Bamsey et al., 2015). 355 
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At an Italian Station at Terra Nova Bay in Victoria Land, lettuce, zucchini and 356 

cucumber were grown during the original experiments and were cultivated only during the 357 

austral summer, as the station is not a wintering station (Bamsey et al., 2015). Lettuce 358 

plants performed well and, during the second trial season, approximately 2.5 kg/m2 was 359 

harvested (Campiotti et al., 2000). Zucchini and cucumber plants grew well but, due to the 360 

short period of cultivation (40 days), were unable to fruit (Campiotti et al., 2000). During the 361 

2001–2002 summer season, fruit crops, such as tomatoes and strawberries, were 362 

successfully introduced to the system (Scoccianti et al., 2009). 363 

The vast majority of crops cultivated within Antarctica are tall fruiting crops, lettuce 364 

varieties, leafy greens and herbs, due to their ease of cultivation. Although these provide 365 

vital minerals and vitamins to staff, a lack of crops high in carbohydrates and fat means 366 

that current produce serves primarily as a supplement to a mostly canned and dry food 367 

diet. Though this does not pose much of an issue for staff on Antarctic research stations, in 368 

order for these systems be viable for space missions, further advances must be made in 369 

order to reduce the high inputs required for more nutritionally valuable crops. 370 

It is pertinent to cultivate 'staple' crops which are considered more nutritious and will 371 

contribute to a higher proportion of overall dietary requirements (Wheeler et al., 1996). 372 

However, higher output requires greater input and so a balance must be achieved between 373 

harvest index, nutritional requirements, processing and horticultural needs (Wheeler, 374 

2017). During the course of the CELSS programme, researchers at the Kennedy Space 375 

Centre cultivated a mixture of leafy greens, starchy vegetables, grains and fruits. Most 376 

commonly used were wheat, rice, potato, sweet potato, soybean, peanut and lettuce (Hoff 377 

et al., 1982). Additional benefits of growing crop plants within the Biomass Production 378 

Chambers included removal of CO2, generation of O2 and waste water purification (Stutte, 379 

2006). 380 
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During the CAAP program, crops were chosen based on nutritional content, 381 

versatility and processing requirements (Bubenheim et al., 2003). Crop lists for these 382 

experiments varied slightly from previous BLS experiments, consisting primarily of leafy 383 

vegetables, herbs and salad vegetables with minimal carbohydrate contribution. Two 384 

hydroponic studies were undertaken within the CAAP testbed crop production chamber 385 

which both aimed to demonstrate production capacity of the system; the first was a 386 

batched lettuce crop trial and the second a continuous mixed crop trial (Bubenheim et al., 387 

2003). Results of these two studies suggested that although the lettuce crop had a greater 388 

production efficiency, the high diversity of the mixed crop trial offered an increased calorific 389 

contribution, offsetting the lower yields (Bubenheim et al., 2003). This suggests that the 390 

nutritional benefits offered by a higher variety crop list would offset the reduced yields. 391 

8. Learning to produce more with less: a blueprint for the future 392 

8.1 Space availability 393 

Space is a major limitation for hydroponic systems in urban areas, and even more so in 394 

polar stations and spacecraft. In Antarctica, hydroponics units have ranged from a 0.8 m2 395 

benchtop system at Scott Base to the 50 m2 South Pole Food Growth Chamber (SPFGC) 396 

at Amundsen-Scott South Pole Station (Bamsey et al., 2015). Space available within the 397 

SPFGC was deemed sufficient to provide 100% of the vegetable requirements for 35 over-398 

wintering station staff (Straight et al., 1994). The average size of current systems is 399 

approximately 24 m2 and, although this is not of sufficient size or efficiency to substantially 400 

influence a station's logistics, these systems are still considered beneficial (Bamsey et al., 401 

2015). 402 

In addition to the CAAP in Antarctica, research for agriculture in space has been 403 

undertaken by numerous countries, all aiming to provide sufficient life support systems 404 

within limited space (Wheeler, 2017). During the 1990s, Japanese scientists developed the 405 

Controlled Environment Experiment Facility which contained 150 m2 of growing space, 406 
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providing sufficient food, air and water supplies for two people and two goats (Tako et al., 407 

2010). Most recently, Chinese researchers at Beihang University were able to provide 408 

100% of oxygen needs and 55% of food requirements for three people using only 69 m2 of 409 

growing space (Fu et al., 2016). These advances in space utilisation were achieved via 410 

research into novel technologies such as LEDs, vertical farming, innovative water delivery 411 

systems and novel waste recycling processes (Wheeler, 2017). Research into hydroponics 412 

in space as well as in terrestrial systems is mutually beneficial for progress with regards to 413 

space utilisation practices for both applications (Wheeler, 2017). 414 

8.2 Aeroponics 415 

A variation of hydroponics called aeroponics, in which the water and nutrient solution is 416 

delivered to the plant root system as an aerosol, was reviewed for crop growth by Gopinath 417 

et al. (2017). The advantage of such a system being that the root zone remains highly 418 

aerated and no separate aeration system is required. Aeroponics has received attention in 419 

areas such as the development of seed potatoes where aeroponics allows the advantages 420 

of hydroponics in developing tubers in a clean nutritious environment with fewer potential 421 

soil borne contaminants while not requiring tubers to be immersed in water (Buckseth et 422 

al., 2016; Margaret Chiipanthenga, 2012). Aeroponics shares the improvement in water 423 

use efficiency attributed to hydroponic systems (Barbosa et al., 2015), and of particular 424 

note for efficient production of crops in pop-up systems, aeroponics allows spatial flexibility 425 

in the design of growth areas with the possibility to improve crop density. In particular in 426 

combination with flexible point sources of illumination, such as that possible using LEDs, 427 

the delivery of water by aerosol allows plants to be grown across different shaped 428 

surfaces, for instance an early example of aeroponics illustrated growing plants on two 429 

sides of a triangle (Abou-Hadid et al., 1994). Such flexibility will allow different spatial 430 

orientations of plants and lights to be optimised, in particular such designs have the 431 
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potential to provide highly novel solutions for crops grown under microgravity in space 432 

capsules. 433 

 8.3 Bio-intensive Agriculture (BIA) 434 

BIA is one method which uses space-saving agricultural techniques and mixed planting to 435 

maximise space use efficiency (Jeavons, 2001). A similar approach is taken in SPIN (small 436 

plot intensive) farming for use in backyards and small (less than one acre) urban spaces 437 

(Christensen, 2007), and may be traced back to prehistoric intensive midden cultivation 438 

(Guttmann, 2005). Although BIA is a soil-based technique, several of the broader 439 

principles are transferable to hydroponics, including companion planting, intensive planting 440 

arrangements and 3D structuring (Jeavons, 2001). This design has shown great potential, 441 

and was described by Glenn et al., (1990) during the Biosphere II trials. These principles 442 

are not novel and originated from Alan Chadwick's 'Biodynamic French Intensive Method' 443 

during the 1960's (Chadwick, 2008).  444 

8.4 Intercropping Systems 445 

An additional method for maximising productivity is the space utilisation method of 446 

intercropping. This technique describes the cultivation of two or more crop species together 447 

in the same space (Li et al., 2014). Shorter crops, such as lettuce varieties, can be planted 448 

interspersed between taller crops, such as tomatoes, utilising the space between larger 449 

plants which would usually remain unoccupied. The interspecific interactions between 450 

intercropped plants have been suggested to positively influence below-ground resource 451 

use efficiency (Hauggaard-Nielsen and Jensen, 2005) and pest management (Fagan et al., 452 

2014; Parker et al., 2013) in addition to space utilisation. However, the vast majority of 453 

investigations in this area has involved traditional soil-based systems, with little reference 454 

to hydroponics. 455 

 Certain crops have been shown to either positively or negatively affect the growth 456 

and survival of neighbouring plants. Commercial horticultural texts provide basic 457 
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information on which combinations of crops work best when planted together but do not 458 

provide the underlying scientific principles behind such companionships. Information is 459 

largely based on circumstantial evidence with little academic evidence. However, there has 460 

been an increase in research since the turn of the century to more comprehensively 461 

determine the credibility of these suggestions (Bomford, 2009; Li et al., 2014; Parolin et al., 462 

2015). With regards to hydroponics, these effects may be encountered when utilising 463 

recirculating or dual-culture hydroponic systems. These systems reduce environmental and 464 

economic costs via recycling and recirculation of the nutrient solution (Bugbee, 2004). In 465 

some cases, the production of bioactive root exudates may offer the benefit of increased 466 

growth (Stutte, 2006). 467 

Organic compounds exuded by plant roots may increase the uptake of 468 

micronutrients by other plants (Mackowiak et al., 2001); however, the mode of action of this 469 

process remains little understood (Stutte, 2006). For example, a bioactive compound 470 

produced in hydroponically grown potatoes, known as TIF (Tuber Inducing Factor), was 471 

found to enhance the harvest index of several crop species, showing potential within dual 472 

culture systems (Edney et al., 2001). Similarly, research conducted by Schuerger and 473 

Laible (1994) on the biocompatibility of wheat and tomatoes within a dual-culture system 474 

showed that there were no significantly adverse effects on either species. Their results 475 

indicated that intercropping of multiple species is a viable space utilisation method. It was 476 

also suggested that root zone competition may have led to a slight increase in wheat yield. 477 

Mixed cropping has also been assessed for space exploration and no negative effects 478 

detected when growing radish, lettuce and bunching onion together hydroponically (Edney 479 

et al., 2006). 480 

Alternatively, bioactive root exudates may have allelopathic effects, negatively 481 

affecting growth and productivity (Lee et al., 2006; Li et al., 2010; Mortley et al., 1998). 482 

Mortley et al. (1998) showed that allelopathic compounds released into the nutrient 483 
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solution by sweet potato inhibited the growth and yield of peanut plants. Therefore, it is 484 

necessary to understand which species are viable companion species when considering 485 

multi-culture systems. This information is widely available for traditional agriculture 486 

(Cunningham, 2000), but it is yet to be determined whether it is transferrable to hydroponic 487 

systems, and so as multispecies plant systems increase in popularity, biocompatibility must 488 

be carefully considered (Schuerger and Laible, 1994). 489 

8.5 Root-to-Shoot Diets 490 

In Antarctic hydroponic units a large proportion of green waste is produced, generating 491 

losses in productivity and additional practical challenges and costs in disposal (Bamsey et 492 

al., 2015). All waste (with the exception of sewage and grey water) must be either 493 

incinerated (which uses fuel) or stored and then removed from the Antarctic Treaty area. In 494 

order to maximise the output it is beneficial to minimise biological waste via the cultivation 495 

of crops which are high in edible biomass. Cultivation of high edible value crops such as 496 

lettuce varieties, cabbages, leafy greens and herbs would maximise the productivity of 497 

hydroponic systems. However, as mentioned previously, these crops have a lower overall 498 

nutritional contribution to diets than fruiting crops and root vegetables (Bubenheim et al., 499 

2003). Alternatively, green waste could be reduced via consumption of edible by-products 500 

which would traditionally be disposed of. This "Root to Shoot" ideology addresses the need 501 

to reduce commercial and domestic food waste, and aims to find novel uses for what are 502 

typically regarded as 'waste products' (Youngman, 2016). 503 

Many food crops have secondary edible parts in addition to the commonly edible 504 

portion, which are not generally consumed due to comparatively unfavourable flavour or 505 

texture (Stephens, 2005). This includes stems, leaves, flowers and roots. Culinary 506 

professionals invent novel ways in which to incorporate these by-products into the common 507 

diet to increase their palatability (Youngman, 2016). However, some plant parts may be 508 

inedible and possibly even poisonous. For example, vegetables of the 'Nightshade' 509 
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(Solanaceae) family, including tomato, potato, eggplants and peppers, contain toxic 510 

glycoalkaloids (Carman Jr et al., 1986). Also referred to as solanine, concentrations of this 511 

chemical are lowest in the fruits/tubers and so are non-toxic; however, high concentrations 512 

are present in the foliage which should therefore not be consumed (Slanina, 1990). In 513 

contrast, the phenolic compounds found in the roots, stalks and leaves of some plants are 514 

high in antioxidants (Otles and Yalcin, 2012). For example, nettle roots (Urtica dioica) have 515 

high phenolic and antioxidant activity (Otles and Yalcin, 2012). The same is true for the 516 

Indian pennywort (Centella asciatica), native to Asian wetlands and used to treat a range 517 

of ailments including kidney problems, cancer and bronchitis (Jaganath and Ng, 2000; 518 

Kan, 1986; Zainol et al., 2003). 519 

The "Root to Shoot" principle needs further investigation and is particularly attractive 520 

in hydroponics as all plant components are clean and accessible. During space 521 

exploration, uneaten plant parts could have considerable potential for conversion to bio-522 

based materials or use as a feedstock for bioreactors. There is significant scope to harvest 523 

and utilise biomass and plant components that would otherwise be discarded, and even 524 

scope for bioprospecting novel compounds. However, detailed analyses of nutrition, 525 

potential toxicity and contamination are required in order to minimise any potential risks to 526 

human health. 527 

8.6 Circular economics 528 

Recent innovations in energy, nutrient solutions and lighting sensors can now be exploited 529 

to assemble automated crop growing systems based on the principles of the circular 530 

economy. Circular economics was first introduced by David Pearce and R. Kerry Turner in 531 

1990 (Pearce and Turner, 1990) and attempts to integrate the energy and resource cycling 532 

principles of natural systems into industrial and economic systems (Geng and Doberstein, 533 

2008) . A link is created between waste and primary resources in a similar way to that of 534 

natural systems; for example, nutrient recycling of waste plant biomass back into the soil. 535 
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These techniques have been developed in an effort to promote resource minimisation and 536 

generate more environmentally sustainable development (Andersen, 2007). This principle 537 

revolves around the notion that a closed system is one in which resources can be more 538 

sustainably maintained than that of traditional linear industrial systems. 539 

Antarctic research stations operating during the austral winter represent the ideal 540 

model for closed systems. They have limited access to the outside world and the importing 541 

of goods and exporting of waste are both largely impossible. Circular economic principles 542 

implemented at the stations can optimise resource use during the winter, and this also 543 

applies within hydroponic facilities. For temperature control, intelligent building design 544 

could be used to exploit heat sources and sinks (Agoudjil et al., 2011). Waste water could 545 

be filtered recirculated using the Nutrient Film Technique (NFT) which is a closed system 546 

of hydroponics (Rodríguez-Delfín, 2011). In addition, local precipitation could be harvested 547 

and recycled (Helmreich and Horn, 2009; Kurunthachalam, 2014) and even integrated 548 

energy could be captured locally (e.g. solar, wind). This can be combined with efficient 549 

LED technology which has high energy efficiency a long life-cycle and low maintenance 550 

costs (Singh et al., 2015) and provides a safe working environment with no glass 551 

coverings, low touch temperatures and no mercury to dispose (Massa et al., 2016). 552 

9. How we share and exploit this knowledge to design crop production systems 553 

that respond to food security threats in economically developing countries? 554 

Growing crops using the minimum of resources to sustain human life clearly has the 555 

greatest value and potential impact in economically developing countries. Research is 556 

already emerging within such countries using what Orsini et al. (2013) describe as ‘simple 557 

hydroponics’. In stark contrast to polar and space research, access to advanced growing 558 

resources and strategies represents the most significant challenge here (McCartney and 559 

Lefsrud, 2018). However, charitable aid could and should be directed specifically towards 560 
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plant growing facilities (e.g. seeds, containers, LEDs, solar power, indoor systems etc.) or 561 

even outdoor systems that use solar radiation. 562 

 Hydroponics is space and water efficient but energy inefficient compared to soil-563 

based horticulture (Barbosa et al., 2015). The balance of cost benefit in adopting popup 564 

systems will likely depend on which resources are limiting and/or costly in the local 565 

environment and which can be provided, perhaps by sustainable technologies. Therefore 566 

equatorial regions with low water availability, degraded soils and high sunlight may favour 567 

a form of hydroponics/aeroponics if solar panels can be used for energy. McCartney and 568 

Lefsrud (2018) also recently reviewed protected agriculture systems in extreme 569 

environments and highlight the need for cooling and ventilation systems in tropical regions 570 

but heating in polar regions (McCartney and Lefsrud, 2018).  571 

Social capital is high in economically developing countries so some technological 572 

aspects of plant husbandry might be by-passed via human collaboration. However, there is 573 

a need for knowledge to be communicated about the value of hydroponic systems. Also 574 

the control of such systems often relies on information and communications technology 575 

(ICT). There is evidence that mobile phones are being used widely as the core ICT in 576 

economically developing countries. For example, in a study of 202 South African 577 

universities, 36% of students tested used a mobile phone for health information (Cilliers et 578 

al., 2017). Also a study in Uganda showed that in women there was a link between mobile 579 

phone ownership and dietary diversity and empowerment (Sekabira and Qaim, 2017). 580 

Research is also emerging from developing countries on the use of mobile phones to 581 

operate sensors for hydroponics (Ibayashi et al., 2016; Peuchpanngarm et al., 2016; 582 

Ruengittinun et al., 2017; Sihombing et al., 2018). Hence, mobile phone technology may 583 

be a central vehicle that facilitates information about new crop production systems also 584 

useful for sensor and system control in economically developing countries. 585 
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 A further challenge to growing crops in economically developing countries is access 586 

to inorganic sources of fertilizer. This is not an issue for polar and space crop production 587 

but finding alternative sources of nutrients is a necessity if crop production systems are 588 

ever to become sustainable. Fertilizers from organic origin (animal and even human 589 

sources) represent a resource to grow plants and aligns well with the principle of circular 590 

economics promoted in this review. Research in economically developing countries already 591 

highlights the potential of exploiting animal manures in hydroponics for plant growth (Abd-592 

Elmoniem et al., 2001; Capulín-Grande et al., 2000). Further, human urine may be 593 

exploitable as a plant fertilizer (Andersen, 2007; Andersson, 2015; Chrispim et al., 2017; 594 

Mnkeni et al., 2008).   595 

For both polar/space and economically developing countries there is a need to 596 

focus more on staple crops. Previously the CELLS space programme tested some starchy 597 

vegetables including potato. Crops high in carbohydrate would also be particularly valuable 598 

in economically developing countries and some research has already developed looking at 599 

potato and yam propagation in aeroponic systems (Margaret Chiipanthenga, 2012; Maroya 600 

et al., 2014). Further, research is also needed on the use of hydroponics to deliver high 601 

protein crops (e.g. pulses and legumes) and there may even be benefits if plants can fix 602 

their own nitrogen. For economically developing countries, crops high in proteins could 603 

potentially supplement the use of livestock maybe using manure as a plant resource. 604 

Conclusions 605 

Polar/space research on crop science versus ‘simple hydroponics’ in economically 606 

developing countries may be complete opposites in terms of access to resources and 607 

research investment. Clearly space and polar research activities have been historically well 608 

resourced but highlight the potential to grow crops in environments limited in resources. 609 

The challenge now is to build on this research, to develop technologies, systems and 610 
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methods that are sustainable, inexpensive and more widely applicable. Hydroponic and 611 

LED efficacy and the application of circular economic principles, exploiting local renewable 612 

resources and valuing waste can bring new efficiency and opportunity into crop production. 613 

BIA principles and intensive planting of 3D arrangements combined with intercropping in 614 

hydroponics provides diversity of food and may increase community efficiency in terms of 615 

light, water and nutrient utilisation. Plant assemblages of course enhance the possibility of 616 

risks from pests and pathogens so this need to considered in relation to system design and 617 

operation.  618 

Tandem research emerging from economically developing countries highlights how 619 

some elements of technology could be by-passed or even replaced to grow soil-less crops 620 

in such regions. These including using human effort in place of automation, mobile phones 621 

for ICT and organic sources of nutrients. The time is now ripe to look for ‘cross-pollination’ 622 

of ideas on soilless crops, novel ‘pop up’ growing systems, finding value in all edible crop 623 

components, using simple and accessible technologies and turning our waste into 624 

resource. Our future depends on our capacity to innovate, to challenge what we see as 625 

agriculture, and learn to get more from less by living and what we have. 626 
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