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Abstract. Observations show the increase of high-frequency
wave power near magnetic network cores and active regions
in the solar lower atmosphere. This phenomenon can be
explained by the interaction of acoustic waves with a mag-
netic field. We consider small-scale, bipolar, magnetic field
canopy structure near the network cores and active regions
overlying field-free cylindrical cavities of the photosphere.
Solving the plasma equations we get the analytical disper-
sion relation of acoustic oscillations in the field-free cavity
area. We found that them=1 mode, wherem is azimuthal
wave number, cannot be trapped under the canopy due to en-
ergy leakage upwards. However, higher (m≥2) harmonics
can be easily trapped leading to the observed acoustic power
halos under the canopy.

Keywords. Ionosphere (Wave propagation) – Solar physics,
astrophysics,and astronomy (Photosphere and chromo-
sphere)

1 Introduction

Waves play an important role in the dynamics of the solar at-
mosphere. Observations show an increase of high-frequency
power (ν>5 mHz) in the surroundings of active regions in ve-
locity power maps sometimes called as photospheric power
halos (Braun et al., 1992; Brown et al., 1992; Hindman and
Brown, 1998; Jain and Haber, 2002). The halos were not
found in Doppler power maps at lower frequencies (3 mHz).
Observations also show a lack of power halos in continuum
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intensity power maps (Hindman and Brown, 1998; Jain and
Haber, 2002; Muglach et al., 2005).

On the other hand, recent observations reveal the de-
crease of the acoustic high frequency power in the chromo-
sphere and its increase in the photosphere near active regions
(Muglach, 2003; Muglach et al., 2005). It has also been
shown that the quiet-Sun chromospheric magnetic network
elements are surrounded by “magnetic shadows”, which lack
the oscillatory power at higher frequency range (McIntosh
and Judge, 2001; Krijger et al., 2001; Vecchio et al., 2007).
Therefore, both the photospheric power halos and the chro-
mospheric magnetic shadows probably reflect the same phys-
ical process of acoustic wave interaction with overlying mag-
netic field (while in subsurface regions the rotational and the
meridional non-uniform flows are supposed to have an im-
pact on the formation of the acoustic wave power spectra.
Shergelashvili and Poedts, 2005).

The properties of propagating acoustic waves are closely
related to the magnetic field structure. The numerical cal-
culations show that the propagation of acoustic disturbances
in the solar atmosphere is strongly determined by the over-
lying magnetic canopy (Rosenthal et al., 2002; Bogdan et
al., 2003). The canopy has been usually modeled with
purely horizontal magnetic field (Evans and Roberts, 1990),
but recent high-resolution observations reveal more com-
plex small-scale structure of the field (De Wijn et al., 2005;
Centeno et al., 2007). It has been suggested that the mag-
netic field has small-scale closed loop structure in the vicin-
ity of network cores (McIntosh and Judge, 2001; Schrijver
and Title, 2003). The inclined magnetic field may chan-
nel low-frequency photospheric oscillations in the chromo-
sphere/corona (De Pontieu et al., 2004).

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Fig. 1. Schematic picture of the magnetic canopy overlying a field-
free cavity.

Here we use a model of small-scale bipolar magnetic
canopy near a chromospheric network core and/or an active
region. We suggest that granular cells may form field-free
cylindrical cavities under the magnetic canopy due to the
transport of magnetic flux towards boundaries. These cav-
ities may trap high-frequency acoustic oscillations, while the
lower-frequency harmonics may propagate upwards in form
of magneto-acoustic waves.

Section 2 gives the analytical approach, obtained disper-
sion relation and resulting oscillation spectrum. Section 3
includes discussion and comparison of theoretical findings
to observations. Section 4 briefly summarizes the results.

2 The model

We use the ideal magnetohydrodynamic (MHD) equations
which can be written in the following form

∂B

∂t
= ∇×(v×B), (1)

ρ
∂v

∂t
+ ρ(v·∇)v = −∇p +

1

4π
(∇×B)×B, (2)

∂ρ

∂t
+ ∇·(ρv) = 0, (3)

∂p

∂t
+ (v·∇)p + γp∇·v = 0, (4)

wherev denotes the fluid velocity,B the magnetic field,p
the pressure,ρ the mass density, andγ the ratio of specific

heats. Gravity effect is omitted from the consideration for the
sake of simplicity. With this simple model we intend to esti-
mate the potential of the proposed mechanism. Gravity will
be taken into account in future developments of the present
model.

We assume that the magnetic field is vertical in the core
of the chromospheric network, but it gets the shape of small-
scale closed loop systems in the surrounding. (McIntosh and
Judge, 2001; Schrijver and Title, 2003). Granular motions
then may form field-free cavities under the canopy as they
carry the magnetic flux towards the cell boundaries. These
field-free cavities have granular dimensions and may become
resonators for acoustic oscillations. Consequently, we have
two different regions (Fig. 1):{

region I− field-free cavity, r < r0,

region II− magnetic canopy,r > r0.

We use a cylindrical coordinate system(r, φ, z) and consider
an unperturbed cylindrical magnetic fieldB0 in the canopy
area. The magnetic field has only aφ−component which
depends on the distancer, i.e. B0=(0, Bφ(r),0). The equi-
librium in the canopy is then satisfied if

d

dr

(
p0+

B2
φ

8π

)
+
B2
φ

4πr
=0,

wherep0 denotes the unperturbed pressure. To avoid further
mathematical complications, we consider the unperturbed
hydrodynamic pressure to be homogeneous. The equilibrium
magnetic field is then current-free expressed as follows (Dı́az
et al., 2006)

Bφ = Bφ0
r0

r
. (5)

Equations (1–4) are linearized, which yields

∂b

∂t
= ∇×(u×B0), (6)

ρ0
∂u

∂t
= −∇

(
p1 +

1

4π
B0·b

)
+

1

4π
(B0∇)b+

+
1

4π
(b∇)B0, (7)

∂ρ1

∂t
+ ρ0∇·u = 0, (8)

p1 = c2
0ρ1, (9)

whereb, u, p1 andρ1 are the perturbations of magnetic field,
velocity, pressure and mass density, respectively, whileρ0
is a uniform unperturbed mass density andc0=(γp0/ρ0)

1/2

corresponds to the homogeneous sound speed. Note, that a
background flow is absent in our consideration.

For simplicity, we consider the 2-D case and restrict the
analysis to the(r, φ)−plane. In principle, thez−direction
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can also be considered, but this further complicates the pre-
sentation (namely, resonant absorption may take place) and it
is left for future considerations. Thenr- andφ-components
of Eqs. (6–9) are given by

∂br

∂t
=
Bφ

r

∂ur

∂φ
, (10)

∂bφ

∂t
= −Bφ

∂ur

∂r
+ Bφ

ur

r
, (11)

ρ0
∂ur

∂t
= −c2

0
∂ρ1

∂r
−
Bφ

4π

∂bφ

∂r
+
Bφ

4πr

∂br

∂φ
−
Bφ

4πr
bφ, (12)

ρ0
∂uφ

∂t
= −

c2
0

r

∂ρ1

∂φ
, (13)

∂ρ1

∂t
+ ρ0

∂ur

∂r
+ ρ0

ur

r
+
ρ0

r

∂uφ

∂φ
= 0. (14)

To get the oscillation spectrum in the cavity area, we have
to solve the equations in the cavity and canopy regions sepa-
rately and then merge the obtained solutions at the interface
(r=r0).

Medium is field-free in the cavity (r<r0) and therefore
can be described by pure hydrodynamics. Then Eqs. (12–
14) lead to the Bessel equation after Fourier analysis with
respect to both thet (time) andφ coordinates (the magnetic
field is set to zero):

∂2ρ1

∂r2
+

1

r

∂ρ1

∂r
+

[
ω2

c2
0

−
m2

r2

]
ρ1 = 0, (15)

whereω is the wave frequency, andm is the azimuthal wave
number.

In the magnetized canopy region (r>r0), Eqs. (10–14) lead
to the Hain-Lust equation

∂

∂r

(
ω2c2

0

ω2 −m2c2
0/r

2
+ v2

A

)
∂ûr

∂r
+

+
∂

∂r

(
ω2c2

0

ω2 −m2c2
0/r

2
+ v2

A

)
ûr

r
+

+

[
ω2

+
4v2
A

r2
−
m2v2

A

r2

]
ûr = 0, (16)

wherevA=Bφ/
√

4πρ0 denotes the Alfv́en speed.
Analytical solution of Eq. (16) is complicated. Therefore,

for simplicity, we suppose that the magnetic energy is much
higher than the hydrodynamic one within the canopy area.
Consequently, we use the zeroβ approximation hereinafter.
The unperturbed configuration must be in equilibrium, there-
fore the unperturbed hydrodynamic pressure of the cavity
and the magnetic pressure of the canopy must be balanced
at the interface (r=r0)

c2
01ρ01

γ
=
B2
ϕ(r0)

8π
, (17)

where

c01 =

√
γp0

ρ01
, (18)

and c01 andρ01 are the sound speed and the plasma mass
density in the cavity. Equation (17) then gives the relation
between the sound and Alfvén speeds at the interface

c01 =

√
γ

2

ρ02

ρ01
vA2, (19)

where

vA2 =
Bϕ(r0)
√

4πρ02
(20)

is the Alfvén speed at the interface andρ02 is the plasma
mass density in the canopy.

2.1 Analytical solutions

In the field-free cavity area under the canopy (region I), there
are only acoustic waves. Ther-dependence of the mass
density perturbations in the acoustic waves is governed by
Eq. (15) which has the general solution

ρ1 = c1Jm(k1r)+ c2Ym(k1r), (21)

whereJm(k1r) (Ym(k1r)) is the bessel function of the first
(second) kind,

k1 =
ω

c01
(22)

andc1, c2 are arbitrary constants. The perturbation must be
finite atr=0. Therefore,c2=0 and only the first term on the
right hand side of expression (21) is non-vanishing.

The radial velocity component of the acoustic wave in the
region I can be obtained using Eqs. (12) and (21) as (setting
the magnetic field to be zero)

ûr1 =
ic2

01

ρ01ω
c1J

′
m(k1r), (23)

where the prime denotes the derivation with respect tor.
In the magnetic canopy (region II), where the cold plasma

approximation is used, Eq. (16) gives

∂2ûr

∂r2
−

1

r

∂ûr

∂r
+

[
ω2

v2
A(r)

+
1

r2
−
m2

r2

]
ûr = 0. (24)

This equation can be rewritten as

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

[
ω2

v2
A(r)

−
m2

r2

]
ψ = 0, (25)

where

ûr=rψ, v
2
A(r)=

B2
φ0

4πρ02

r2
0

r2
.
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Fig. 2. Temporal dynamics of velocity perturbations in the field-free
cavity areas form=1,2,3 harmonics.

The solutions of this equation are the Bessel functions of
half integer order (Abramowitz and Stegun, 1967; Dı́az et
al., 2006). In region II, only the outgoing wave is physically
appropriate. Therefore, we choose the Hankel function

ûr2 = ic3rHm/2(k2r), (26)

wherec3 is an arbitrary constant and

k2 =
ω

2vA2
. (27)

The total pressure perturbations in the regions I and II are,
respectively,

p1 = c2
01ρ1, (28)

and

Bφbφ

4π
=
iρ02v

2
A2

ω

[
dûr2

dr
−
ûr2

r

]
. (29)

Thus, the expressions (23), (26), (28), and (29) give the trans-
verse velocity and the total pressure perturbations in the con-
sidered two regions.

2.2 Dispersion relation

The continuity of the velocity and the total pressure pertur-
bations at the interface (r=r0) leads to

c2
01ρ1 =

iρ02v
2
A2

ω

[
dûr2

dr
−
ûr2

r

]
, (30)

ûr1 = ûr2. (31)

The substitution of the expressionsρ1, ûr1, ûr2 into Eqs. (30)
and (31) then gives

c2
01c1Jm(k1r0) = −

ρ02v
2
A2

ω
c3rok2H

′

m/2(k2r0), (32)

c2
01

ωρ01
c1k1J

′
m(k1r0) = c3roHm/2(k2r0). (33)

The condition for a non-trivial solution of Eqs. (32–33), then
yields the general dispersion relation, viz.

ω2

v2
A2

ρ01

ρ02

Jm(k1r0)

k1J ′
m(k1r0)

= −
k2H

′

m/2(k2r0)

Hm/2(k2r0)
. (34)

The dispersion relation (34) is a transcendental equation
for the complexω. The imaginary part of wave frequencyω
indicates a wave leakage from the field-free cavity into the
ambient magnetic canopy. The question then arises how im-
portant this wave leakage is and which are the most sensitive
parameters for trapping (or leakage) of the waves under the
canopy. The analytical solution of Eq. (34) is complicated.
Therefore, we apply numerical techniques to solve it.

The properties of the dispersion relation (34) depend on
the azimuthal wave numberm and the ratio between sound
(c01) and Alfvén (vA2) speeds (or the ratio betweenρ01 and
ρ02, see Eq. 19). The dimension of the field-free cavity,r0,
also stands as a free parameter, but it influences only the
wave periods.

Numerical solution of Eq. (34) shows that the ratio of
imaginaryωi and realωr parts significantly depends on the
azimuthal wave numberm. The ratio is higher form=1
and quickly decreases with increasingm. Figure 2 shows
the temporal dynamics of radial velocity perturbations in the
field-free cavity region for modes corresponding to differ-
entm-values. The amplitude of the first (m=1) harmonic
quickly decreases, which indicates the rapid radiation of this
mode into the overlying canopy. On the other hand, them=2
mode undergoes a very small leakage and them=3 mode has
almost no leakage. Thus, the first harmonic of the acoustic
oscillations cannot be trapped in the cavity area due to the
rapid leakage into the canopy, while the higher harmonics,
i.e. those withm≥2, can be easily trapped, which may lead
to the observed increased acoustic power.

Figure 3 shows the ratio of the imaginaryωi and realωr
parts vs the ratio of the Alfv́en and sound speeds for different
harmonics. We see that the decrease of the ratio between the
Alfv én and sound speeds leads to an enhanced leakage.

Figure 4 shows the dependence of real (top panel) and
imaginary (bottom panel) parts of the frequency on the size
r0 of the field-free cavity region under the canopy. It is ev-
ident that the real part of the frequency decreases with in-
creasingr0, as can be expected from physical considerations.

3 Discussion

We have studied the spectrum of acoustic oscillations in a
cylindrical field-free cavity under a small-scale bipolar mag-
netic canopy in the solar atmosphere. It is shown that the
m=1 (wherem is the azimuthal wave number) harmonic

Ann. Geophys., 26, 2983–2989, 2008 www.ann-geophys.net/26/2983/2008/



D. Kuridze et al.: Acoustic oscillations in a field-free cavity under solar small-scale bipolar magnetic canopy 2987

5 10 15 20 25 30
0

1

2
x 10

−3

v
A
/c

0

ω
i/ω

r
m=3

5 10 15 20 25 30
0

0.005

0.01

v
A
/c

0

ω
i/ω

r

m=2

5 10 15 20 25 30
0

0.05

0.1

v
A
/c

0

ω
i/ω

r

m=1

Fig. 3. The ratio of imaginaryωi and realωr parts of wave fre-
quency vs the ratio of Alfv́en and sound speeds form=1,2,3 har-
monics.

of the acoustic oscillations cannot be trapped in the cav-
ity as a result of the energy leakage in the upward direc-
tion. The energy radiation occurs through the propagation of
fast magneto-acoustic waves in overlying magnetic canopy.
However, higherm≥2 harmonics can be trapped in the cav-
ity, leading to the observed increased high-frequency power
in the photosphere.

There are three different explanations of power halos pro-
posed in the literature: (i) the enhancement of acoustic emis-
sion by some unknown source (Braun et al., 1992; Brown et
al., 1992; Jain and Haber, 2002), (ii) incompressible oscil-
lations, such as Alfv́en waves or transverse kink waves, in
magnetic tubes (Hindman and Brown, 1998), and (iii) the
interaction of acoustic waves with the overlying magnetic
canopy (Muglach et al., 2005).

We suggest that the surroundings of magnetic network
cores and active regions consist of many small-scale closed
magnetic canopy structures (McIntosh and Judge, 2001;
Schrijver and Title, 2003). Granular motions transport the
magnetic field at boundaries and consequently create field-
free cylindrical cavity areas under the canopy (see Fig. 1).
These field-free cavities may be filled by trapped acous-
tic oscillations stochastically excited by granular motions
(Lighthill , 1952; Selwa et al., 2004). For a typical photo-
spheric sound speed of∼7 km/s and a typical granular radius
of ∼400 km, the period of them=2 harmonic is∼3 min and
the period of them=3 harmonic is∼2 min. The range of
observed enhanced power frequency is about 5–7 mHz (with
periods of 2–3 min), which is in agreement with our find-
ings. Them=1 harmonic is leaky and, therefore, can not be
trapped under the canopy.

If power halos are related to the acoustic waves then obser-
vations should show an enhancement in continuum intensity
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Fig. 4. Realωr (upper panel) and imaginaryωi (lower panel) parts
of wave frequency vs the radius of field-free cavityr0 form=1,2,3
harmonics
.

power maps as well, but in opposite observations show a lack
of power halos in the maps (Hindman and Brown, 1998; Jain
and Haber, 2002; Muglach et al., 2005), what needs an ade-
quate explanation. Here, we suggest a natural explanation for
this phenomenon. Indeed, the antinodes of mass density and
velocity components in standing acoustic oscillations are lo-
cated at different places: the location of the maximal velocity
oscillations corresponds to the location of the zero amplitude
intensity oscillations and vice versa. Therefore, the enhanced
Doppler velocity power at fixed height of the atmosphere
automatically suggest the absence of intensity power at the
same height. This suggestion can be checked by searching
intensity power halos at different heights from the surface.
We believe that new observations with high resolution from
the “Hinode” spacecraft will shed light on this problem.

However, the formation of power halos due to incompress-
ible oscillations can not be completely ruled out. Recent the-
oretical and two-dimensional numerical simulations outlined
the importance of theβ∼1 region in the solar atmosphere,
where wave conversion or reflection occurs (Rosenthal et
al., 2002; Bogdan et al., 2003; Zaqarashvili and Roberts,
2006; Kuridze and Zaqarashvili, 2007). Indeed, our con-
sideration implies that the hydrodynamic and magnetic pres-
sures have approximately the same value at the interface (see
Eq. 17). Therefore, the acoustic waves may transfer en-
ergy into the incompressible waves through non-linear in-
teractions (Zaqarashvili and Roberts, 2006; Kuridze and Za-
qarashvili, 2007), which may lead to the observed power ha-
los. However, the observed oscillations hardly show non-
linear behavior, which complicates the explanation of power
halos by incompressible oscillations considerably.

www.ann-geophys.net/26/2983/2008/ Ann. Geophys., 26, 2983–2989, 2008
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Another important alternative for the proposed mecha-
nism can be resonant absorption of waves in inhomogeneous
plasma (Tirry et al., 1998; Pint́er and Goossens, 1999; Pint́er
et al., 2007). This process can also be particularly important
for 3-D consideration of proposed model, when one consid-
ers the wave propagation in the z-direction as well. This is
out of the scope of present paper, but would be interesting to
study in the future.

It must be mentioned that the equilibrium used in this
paper is simplified as gravitational stratification, which is
important in the solar atmosphere, is ignored. The stratifi-
cation leads to a Klein-Gordon equation for the propagating
waves with a cut-off for wave frequencies (Roberts, 2004;
Erdélyi et al., 2007). However, wave propagation in inclined
magnetic field may lead to decrease of cut-off frequencies
and simplifies the penetration of lower-frequency oscillations
in higher regions (De Pontieu et al., 2004). Non of the har-
monics has purely vertical propagation in our model because
of the non-zero azimuthal wave numberm; all harmonics
propagate with an angle to the vertical (note, that all har-
monics have standing wave behavior along azimuthal direc-
tion). Therefore their frequencies are above the cut-off value
and consequently the harmonics are not evanescent. How-
ever, inclusion of gravitational stratification is necessary for
a more profound understanding of the wave trapping in cav-
ities. This will be the next step of our study.

4 Conclusion

We have studied the spectrum of acoustic oscillations in
the cylindrical field-free cavity regions under the small-scale
magnetic canopy near the magnetic network cores and active
regions. We found that the first harmonic of acoustic oscil-
lations cannot be trapped in the cavity due to the energy ra-
diation by fast magneto-acoustic waves in the canopy. How-
ever, the higher (m≥2) harmonics can be trapped there, lead-
ing to the observed enhancement of high-frequency acoustic
power in the photosphere. Future detailed study of the pro-
posed mechanism including gravitational stratification and 3-
D models is necessary.
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