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Abstract

Kelp species are ecologically-important habitat-formers in coastal marine ecosystems,

where they alter environmental conditions and promote local biodiversity by providing com-

plex biogenic habitat for an array of associated organisms. While it is widely accepted that

kelps harbour significant biodiversity, our current understanding of spatiotemporal variability

in kelp-associated assemblages and the key environmental drivers of variability patterns

remains limited. Here we examined the influence of ocean temperature and wave exposure

on the structure of faunal assemblages associated with the holdfasts of Laminaria hyper-

borea, the dominant habitat-forming kelp in the northeast Atlantic. We sampled holdfasts

from 12 kelp-dominated open-coast sites nested within four regions across the UK, span-

ning ~9˚ in latitude and ~2.7˚ C in mean sea surface temperature. Overall, holdfast assem-

blages were highly diverse, with 261 taxa representing 11 phyla recorded across the study.

We examined patterns of spatial variability for sessile and mobile taxa separately, and docu-

mented high variability between regions, between sites within regions, and between repli-

cate holdfasts for both assemblage types. Mobile assemblage structure was more strongly

linked to temperature variability than sessile assemblage structure, which was principally

structured by site-level variability in factors such as wave exposure. Patterns in the structure

of both biogenic habitat and associated assemblages did not vary predictably along a latitu-

dinal gradient in temperature, indicating that other processes acting across multiple spatial

and temporal scales are important drivers of assemblage structure. Overall, kelp holdfasts

in the UK supported high levels of diversity, that were similar to other kelp-dominated sys-

tems globally and comparable to those recorded for other vegetated marine habitats (i.e.

seagrass beds), which are perhaps more widely recognised for their high biodiversity value.
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Introduction

In the marine environment, the distribution of species and the structure of communities are

regulated by a range of biotic and abiotic factors that operate over multiple spatial and tempo-

ral scales [1–6]. Understanding the relative influence of key processes in structuring popula-

tions and communities is a central goal of ecology, and is of elevated importance given that

abiotic and biotic factors are being altered by human activities [7–12]. By examining patterns

of variability in ecological structure over multiple spatial and temporal scales, insights can be

gained into the relative importance of processes that vary across similar scales. For example,

repeated regional-scale observations conducted across latitudinal gradients in ocean tempera-

ture can elucidate the influence of temperature on the ecophysiological performance of popu-

lations and species [13, 14], the biogeographical distributions of species [15–17] and, in turn,

the structure of communities [14, 18–20]. Similarly, examining biodiversity patterns across

smaller spatial scales that encapsulate natural gradients in other factors (e.g. wave exposure,

grazing pressure, turbidity) can provide insights into their relative importance in structuring

communities [21–27]. Establishing baselines of biodiversity patterns at multiple scales within

key ecosystems is vital, given the rate at which species’ distributions and abundances are

changing in the current period of anthropogenic environmental change [28, 29].

Foundation species exert strong influence over other organisms by altering environmental

conditions and, in many cases, creating or modifying habitat for other species [30, 31]. Kelps,

large brown seaweeds of the order Laminariales, are the dominant foundation species along

temperate and subpolar rocky coastlines in both hemispheres [9]. Kelps are amongst the fastest

growing autotrophs on Earth [32–34] and, as such, represent a major source of primary pro-

duction and an important food source in coastal environments [35, 36]. Kelps also promote

secondary productivity through the provision of three-dimensional habitat structure, which

supports a myriad of associated organisms including species of commercial and ecological

importance [8, 9, 37]. They support increased levels of biodiversity by offering greater habitat

space, heterogeneity and complexity, as well as through direct and indirect (via epibionts) pro-

vision of food [38]. A recent review of the role of kelps as biogenic habitat formers found that

individual plants often support highly abundant invertebrate assemblages, often numbering in

the high tens of thousands per kelp plant (see [38] and references therein). As habitat formers,

mature kelp thalli provide three distinct micro-habitats; the blade (lamina), the stipe, and the

holdfast, all of which differ considerably in form and structure, and consequently support

assemblages of differing composition, diversity and abundance [38]. Of these micro-habitats,

the holdfast generally supports the most diverse and temporally persistent assemblage, and has

received greatest attention in the literature (see [38] and references therein).

The interstitial space between the underlying hard substratum and the haptera (the root-

like structures which form the holdfast) of kelp holdfasts represents favourable habitat for col-

onising fauna, primarily because (i) the surface area and volume of habitat available for coloni-

sation is increased; (ii) the structure offers protection from adverse environmental conditions

and predators, and (iii) food availability is enhanced through accumulation of organic matter

[39–42]. In general, the living space within kelp holdfasts offers a range of niches that may dif-

fer from adjacent habitats. Assemblages associated with kelp holdfasts are often diverse and

abundant, with up to 90 macrofaunal species [2, 43, 44] and 10,000 individuals inhabiting a

single holdfast [2, 45]. Variability in the structure of holdfast-associated assemblages is driven

by a range of biotic and abiotic factors, including the size and complexity of the holdfast itself

[2, 46–48], hydrodynamic forces [49, 50], sedimentation rates and sediment content [45, 51],

food and larval supply [25, 52], pollution [53–55], turbidity [25, 56] and depth [51, 57]. In

addition, kelps are cool-water species and the structure of kelp populations is known to vary
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along large-scale gradients in ocean temperature [13, 58]. Marginal equatorward populations,

in particular, are stressed by increases in temperature [59, 60] and, as such, observed and pre-

dicted ocean warming trends will likely impact upon kelp populations and affect their func-

tioning as habitat-forming foundation species. It seems likely, therefore, that ocean climate

will be a key driver of holdfast assemblage structure, because (i) biogenic habitat structure is

likely to vary with temperature as kelp populations respond to climatic conditions, (ii) the bio-

geographic distributions of marine species are strongly constrained by temperature [17] and

(iii) the structure of populations of kelp-associated fauna (i.e. abundances) is likely to vary

with ocean climate [61]. However, as very few studies have examined variability in holdfast

assemblages across spatial scales large enough to encompass natural temperature gradients,

the influence of ocean climate on biodiversity patterns remains unclear.

In the northeast Atlantic, wave-exposed subtidal rocky reefs are generally dominated by the

kelp Laminaria hyperborea (Gunnerus) Foslie 1884; a large, stipitate kelp which attaches to

rocky substratum by a well formed, typically ‘laminarian’ holdfast [38], from the extreme low

intertidal to depths of up to 40 m in clear oceanic waters [62]. L. hyperborea is a boreal species,

distributed from northern Portugal to its poleward range edge in northern Norway, Iceland

and the Russian Murmansk coast. L. hyperborea is the foremost canopy former on shallow,

wave exposed rocky reefs throughout this region [63, 64], and represents an important habitat

for coastal biodiversity and other ecosystem services [8]. In the UK, L. hyperborea is spatially

extensive, forms dense canopies and offers a high quantity and quality of biogenic habitat (Fig

1). In general, however, kelp ecosystems in the UK have been relatively understudied since the

pioneering work of the 1960s and 70s (e.g. [34, 44, 65]), particularly when compared to the vol-

ume of work conducted in other research-intensive nations (e.g. Australia and the USA; [8]).

Perhaps surprisingly, fundamental information on biodiversity patterns associated with L.

hyperborea, and the potential multi-scale drivers of variability in holdfast assemblage structure,

are still lacking.

Here, we examined the structure of holdfast assemblages at 12 sites within 4 regions of the

UK to better understand spatial variability in kelp-associated biodiversity. The specific aims of

the study were to (1) benchmark the diversity, abundance, biomass, and structure of holdfast

assemblages across the latitudinal distribution of L. hyperborea in the UK; (2) examine multi-

scale spatial variability patterns in holdfast assemblage structure; and (3) explicitly link vari-

ability in ecological pattern with potential environmental drivers. Recent work on the kelp

canopies themselves has documented high between-site variability in population and habitat

structure, as well as regional differences between northerly and southerly locations [19, 58].

Given that holdfast assemblages are likely to be strongly influenced by the population structure

of host kelp species [38, 46, 66], we predicted that they would also exhibit high levels of small-

scale variability (i.e. between plants and sites), as well as some structuring across larger spatial

scales (i.e. between regions).

Methods

Study area

Laminaria hyperborea holdfasts were sampled by scuba divers from 12 sites nested within four

regions in the UK (Fig 2); north Scotland (region ‘A’), west Scotland (B), southwest Wales (C)

and southwest England (D). All sites were located on the exposed west coast of the UK, where

kelp forest habitat is abundant, and span 9˚ of latitude (~50˚ to ~59˚ N), and encompass a tem-

perature gradient of ~2.7˚C (Table 1). All study sites within these regions were ‘open coast’,

moderately to fully exposed to wave action and were characterised by extensive subtidal rocky

reef at depths of 0 to>5 m (below chart datum). All sites were also deemed to be representative

The structure and diversity of assemblages associated with kelp holdfasts
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of the wider region, in terms of coastal geomorphology, and were not influenced by local

anthropogenic activities.

Environmental variables

Environmental sensors were deployed on a small sub-surface buoy, suspended in the water

column immediately above the reef surface by a 0.65 m rope, which was attached to a clump

weight and allowed free movement of the sensor in response to water motion. Sensors were

deployed within a 4-week period in July and August 2014 and retrieved ~6 weeks later. Each

sensor array was deployed for>45 days at each site, and any surrounding kelp plants (~2 m

radius) were removed to negate any shading and/or impediment of water movement around

Fig 1. (a) Laminaria hyperborea is a dominant kelp species in the northeast Atlantic, where it forms dense, extensive

macroalgal canopies. (b) It forms a large, complex holdfast structure, which anchors the plant to rocky substrata and

provides biogenic habitat for associated organisms. (c) Holdfasts sampled were typically encrusted by a high coverage

of sessile invertebrates. (d) The interstitial space between the reef surface and the holdfast was utilised by a high

diversity of mobile invertebrates. (e) Dense stands of L. hyperborea may serve as ecologically-significant repositories of

biodiversity.

https://doi.org/10.1371/journal.pone.0200411.g001
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the buoy. These arrays recorded temperature, light levels, and relative water motion at fine

temporal resolutions. In order to quantify water motion driven by wave exposure and/or tidal

regimes, an accelerometer (HOBO Pendant G Logger, Onset, attached to the buoy) recorded

its position in three axes every 5 minutes (see [67]). A temperature and light level sensor was

also attached to the buoy and captured data every 15 minutes (see [58] for further details). Rel-

ative water motion was calculated from the accelerometer data by extracting movement data

in the planes of the x- and y-axes, after first subtracting the modal average of the entire dataset

from each value to account for any latent static ‘acceleration’ resulting from the accelerometer

not sitting exactly perpendicular to the seabed (caused by imprecise attachment of the logger

to the buoy or the buoy to the tether).

Accelerometer data were converted to water motion following Evans and Abdo [68], and

then used to generate two separate metrics, one for water movement induced by tidal flow,

and one by wave action. For tidal flow, all values above the 90th percentile (i.e. those most likely

related to turbulent, wave driven water movement) were removed. The range of water motion

values recorded within each 12 h period (representing ~1 complete tidal cycle) was then calcu-

lated and averaged over the 45 d deployment. Following subtraction of average water motion

induced by tidal flow, wave-induced water movement was calculated by taking an average of

the 3 highest magnitude values recorded for each site. Recorded temperature data was con-

verted to daily mean temperatures; a 24 h period during peak summer temperatures, where all

sensor array deployments overlapped was then used to generate maximum daily means and

average daily temperature for each study site. To establish average summer daytime (08:00–

20:00 h) light levels for each site, data for the first 14 d of deployment were used, in order to

limit the potential of fouling by biofilms and epiphytes to affect light measurements.

Fig 2. Map indicating the locations of the four study regions in the UK, northeast Atlantic: (A) northern Scotland, (B)

western Scotland, (C) southwest Wales and (D) southwest England. Smaller panels show the positions of the 3 study sites

within each region.

https://doi.org/10.1371/journal.pone.0200411.g002
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In addition, nutrient levels at each site were assessed by collecting 2 independent seawater

samples from immediately above the kelp canopy with duplicate 50 ml syringes. Samples were

passed through a 0.2 μm syringe filter and kept on ice without light, before being frozen and

analysed (within 2 months) for nutrients (nitrate+nitrite; NO3
-+NO2

-, and phosphate; PO4
3-)

using standard analytical techniques (see [69] and references therein). Nutrient concentrations

were quantified twice at each site (in summer 2014 and spring 2015) and mean values are pre-

sented here. In addition to these fine-scale variables, average sea temperatures (2005–2014)

were calculated from satellite-derived SSTs (9 km resolution AVHRR data), wave fetch was cal-

culated for each site following Burrows et al. [70] and Burrows [71], and estimates of chloro-

phyll a (chl a) concentrations were generated from optical properties of seawater derived from

satellite images (collected by the MODIS Aqua satellite at 9 km resolution, averaged for the

period 2002 to 2012).

Sample collection and processing

Six holdfast samples were collected in late summer (i.e. August/September 2014) from each

site (72 samples in total). Mature, canopy forming L. hyperborea plants (see Fig 1) were hap-

hazardly selected from within dense kelp stands at depths of 2–4 m (below chart datum).

Divers cut the stipe of each plant just above the holdfast, which was immediately covered with

a fine-mesh cotton bag to prevent the loss of mobile fauna, and then gently prised the holdfast

from the reef before sealing the bag with a cable tie. Kelp plants were situated >2 m apart and

samples were all individual, rather than fused, holdfasts. Samples were immediately treated

Table 1. Predictor variables recorded at 12 study sites within 4 distinct regions in the UK. ‘Mean SST’ is the annual mean temperature calculated from satellite-derived

sea surface temperature (SST) data (2005–2014). ‘Log wave fetch’ is a broad-scale metric of wave exposure, derived by summing fetch values calculated for 32 angular sec-

tors surrounding each site (see [71]). ‘Log chl a mean’ is the average annual concentration of chlorophyll a (log10 mg m-3 from MODIS Aqua satellite data, 2002–2012).

‘Peak summer max (mean) temp’ is the maximum (average) daily temperature recorded between 26 July and 18 August 2014, when all sensor array deployments over-

lapped. ‘Summer daylight’ is the average daytime (08:00–20:00) light intensity during a 14 d deployment of light loggers. ‘Tidal water motion’ is a proxy for water move-

ment driven by tidal flow, derived from the range in water motion values recorded during a 24 h period, averaged over the 45 d accelerometer deployment. ‘Wave water

motion’ is a proxy for water movement driven by waves, derived from averaging the 3 highest-magnitude water motion values observed during the 45 d accelerometer

deployment (following correction for tidal-movement). ‘PO4
3-‘ and ‘NO3

- +NO2
-‘ indicate averaged spring and summer concentrations of phosphate and nitrite + nitrate

respectively (n = 4 water samples taken from ~1 m above the kelp canopy).

Region Site Locality Mean SST

(˚C)

Log wave

fetch (km)

Log chl a
mean

(mg m-3)

Peak

summer

temp (˚C)

Summer daylight

(lumens m-2)

Tidal water

motion (m s-1)

Wave water

motion (m s-1)

NO3
-+NO2

-

(μM)

PO4
3-

(μM)

Max Mean

N Scot

(A)

A1 Warbeth 9.7 3.8 0.21 13.99 13.69 7124 0.18 1.02 1.66 0.17

A2 N

Graemsay

9.8 3.5 0.26 13.68 13.49 4835 0.20 0.30 1.92 0.23

A3 S

Graemsay

9.7 3.4 0.26 13.87 13.65 5144 0.26 0.16 2.58 0.19

W Scot

(B)

B1 Dubh

Sgeir

10.8 3.3 0.59 13.96 13.69 4794 0.15 0.22 2.93 0.30

B2 W Kerrera 10.7 3.1 0.65 13.93 13.68 3094 0.05 0.08 2.52 0.26

B3 Pladda Is. 10.8 2.8 0.73 14.52 14.06 4874 0.19 0.11 1.96 0.27

Wales

(C)

C1 Stack Rock 11.7 3.7 0.43 17.06 16.54 1861 0.13 0.73 3.17 0.16

C2 Mill Haven 11.8 3.5 0.43 17.15 16.62 3657 0.08 0.34 2.68 0.22

C3 St. Brides 11.8 3.4 0.43 17.13 16.63 2960 0.08 0.23 3.09 0.14

SW Eng

(D)

D1 Hillsea Pt. 12.4 4.1 0.28 17.62 16.80 2746 0.15 0.42 3.41 0.17

D2 E Stoke Pt. 12.4 3.9 0.28 18.31 17.09 2840 0.11 0.22 2.41 0.11

D3 N

Mewstone

12.5 3.5 0.38 17.71 17.06 4432 0.06 0.20 3.05 0.35

https://doi.org/10.1371/journal.pone.0200411.t001
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with a 1% propylene phenoxytol solution for ~30 minutes, in order to relax soft invertebrate

specimens to aid in later identification, and stored in 70% industrial methylated spirit (IMS)

solution until processing. To process, holdfasts were rinsed with freshwater, and any mobile

fauna was collected in a 1 mm sieve and returned to 70% IMS solution for subsequent identifi-

cation. The total holdfast volume was then quantified by displacement; the entire holdfast

structure was wrapped in plastic kitchen wrap and submerged in freshwater. Haptera (the

root-like structures which make up the holdfast) were then removed to reveal the internal

holdfast structure and any sessile fauna within, which were identified immediately. The vol-

ume of the cleaned haptera were then measured (using displacement), subsequently being sub-

tracted from total holdfast volume to give the volume of the potential habitable space within

the holdfast, and wet weight was recorded. All fauna was identified to the lowest taxonomic

level possible, in most cases species (~67% of taxa). Sessile fauna was weighed (tissue-dried

fresh weight) to establish biomass, whereas mobile fauna were enumerated for abundance.

Finally, each kelp sampled was aged by sectioning the stipe immediately above the holdfast

and counting seasonal growth rings, as described by Kain [65]. All sampling was conducted

according to UK legislation and under the guidance of Natural England, Scottish Natural Heri-

tage and the Inshore Fisheries and Conservation Authorities. No specific permits were

required to collect samples as all study sites fall outside protected or legislated areas, and no

protected species were collected.

Statistical analysis

All analysis was conducted using univariate and multivariate permutational analyses using the

PERMANOVA add on [72] for Primer v7 software [73]. Metric multidimensional scaling

(mMDS) ordinations were constructed to visualise multivariate patterns. Variability in assem-

blage structure was examined with multivariate PERMANOVA using a 2-factor design, with

region (4 levels) as a fixed factor and site (3 levels) as a random nested factor. To examine cor-

relations with habitat size, habitable holdfast space was included as a co-variate in all analyses.

Permutations (4999 under a reduced model) were based on a Bray-Curtis similarity matrix

constructed from fourth root transformed biomass data (for sessile assemblages) and fourth

root transformed abundance data (for mobile assemblages). Fourth root transformation was

chosen to down weight the influence of large sponges and colonial ascidians and high abun-

dances of amphipods, respectively. Pair-wise tests between regions were conducted wherever

the main effect was significant (P<0.05). Differences in multivariate dispersion between

assemblages were examined using the PERMDISP routine. Where significant differences in

assemblage structure between regions were detected, SIMPER analysis was performed to

determine which taxa contributed most to the observed dissimilarity. Assemblages were first

standardised by habitable holdfast space to account for variability related to habitat size. Uni-

variate assemblage metrics (i.e. total biomass and species richness) were examined using the

same model, but with permutations based on resemblance matrices generated from Euclidean

distances between untransformed data. The biogenic structure of holdfasts (i.e. total volume,

living space, age) was examined using the same univariate model but without the co-variate.

PERMDISP was again used to examine differences in within-group (univariate) dispersion

between levels of the factor of interest.

Relationships between environmental variables and assemblage structure were examined

using the DISTLM (distance-based linear models) routine in PERMANOVA. Predictor vari-

ables included the environmental data shown in Table 1, as well as the habitat characteristics

of holdfast age and habitable space. Prior to analysis, draftsman’s plots were generated from

normalised data, and Pearson’s correlation coefficient was used to check for colinearity

The structure and diversity of assemblages associated with kelp holdfasts
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between variables. All temperature measures were highly correlated (r > 0.9), so only mean

summer temperature was retained in the analysis. Mean nitrate+nitrite (NO3
-+NO2

-) and chl

a concentration were also highly correlated with other variables and were excluded from the

analysis. The DISTLM routine was then used to obtain the most parsimonious model using a

stepwise selection procedure and AICc selection criterion [72, 74].

To examine the biogeographic affinities of individual species comprising holdfast assem-

blages, all fauna identified to species level (174 species) were classified based on the southern-

most limit (i.e. warm-water equatorward range edge) of their recorded distributions. Species

were categorised in bins of 10˚ latitude (which ranged from the ‘warmest’ bin of 20˚-30˚N to

the ‘coolest’ bin of 50˚-60˚N) based on data from the Ocean Biogeographic Information Sys-

tem (OBIS), the Global Biodiversity Information Facility (GBIF), and the World Register of

Marine Species (WoRMS). We hypothesised that our northernmost study regions would sup-

port a greater proportion of species with higher latitude equatorward range edges (i.e. Arctic

or Boreal species) whereas southernmost regions would support more species with lower lati-

tude equatorward range edges (i.e. Lusitanian species).

Finally, we explicitly compared spatial variability patterns between sessile and mobile

assemblages. We used the RELATE procedure in Primer v7 to measure correlations between

similarity matrices generated from sessile and mobile assemblages at different spatial scales

(i.e. the full datasets at the holdfast level, as well as datasets averaged to the site level and to

the region level). The technique uses Spearman Rank correlation to determine the related-

ness of two similarity matrices, with a ρ value of 1 indicating that dissimilarity patterns are

entirely correlated. We also examined correlations in taxon richness and total biomass/

abundance between sessile and mobile assemblages using scatterplots and Pearson’s correla-

tion tests.

Results

Environmental variables

Seawater temperature differed across study regions, with a clear distinction between northern

(A, B) and southern regions (C, D; Table 1). Mean sea temperatures in southern regions were

~2.7˚C higher than in northern regions. Wave fetch was generally comparable between sites

and regions, although the greatest values were recorded for sites in northern Scotland and

southwest England (Table 1). Water motion associated with tidal flow was most pronounced

in northern Scotland (sites A2 and A3). Light intensity was variable, both within and among

regions (Table 1), with maximum light intensity (site A1) ~3 times greater than minimum

light intensity (site C1). Nitrate and nitrite (NO3
-+NO2

-) and phosphate (PO4
3-) concentra-

tions were broadly comparable across sites and regions, although nitrate and nitrite values

were slightly higher in Wales and southwest England and phosphate values were higher in

west Scotland (Table 1).

Biogenic habitat structure

The average age of kelp plants varied to some degree (Fig 3A), with a maximum mean age of

8.83 ± 0.48 SE recorded in north Scotland (site A1) and a minimum mean age of 5 ± 0.37 SE in

west Scotland (site B3). Overall, the age of individual kelp plants ranged from 4 years (sites C2,

B2 and B3) to 12 years (site B2). Statistically, significant differences between sites were

detected, but there was no overall effect of region (Table 2). Regional-scale variability was

more pronounced for both total volume and habitable space (i.e. the living space contained

within the holdfast), which tended to be highest in north Scotland and lowest in southwest

Wales (Fig 3B and 3C). Significant variability was recorded both between regions and between
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sites (Table 2). Pairwise tests within the significant region factor showed that holdfast size (in

terms of both total holdfast volume and habitable space) differed significantly between all

regions, with the exception total holdfast volume at west Scotland and southwest England,

where no difference was observed. In general, holdfasts from north Scotland (sites A1 and A2)

were the largest observed, with those from southwest Wales being consistently the smallest

(Fig 3B and 3C). The ratio of total volume to habitable space provided an estimate of internal

complexity, with a higher ratio indicating relatively greater interstitial spacing. This metric was

more consistent across regions, but did exhibit marked between-site variability in north and

west Scotland (Fig 3D). Statistically, variability between sites was significant but no effect of

region was detected (Table 2).

Fig 3. Biogenic habitat structure provided by Laminaria hyperborea holdfasts: (a) kelp age, (b) total holdfast volume (THV), (c) habitable holdfast

space (HHS) and (d) relative holdfast space (THV/HHS). Values are means of 6 replicate holdfasts per site (± SE).

https://doi.org/10.1371/journal.pone.0200411.g003
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Overall biodiversity patterns

Across the study (72 holdfasts), 261 taxa representing 11 phyla were recorded, with just over

70% classed as mobile fauna (S1 Table). In total 146 taxa were recorded from north Scotland

(Region A), 134 taxa from western Scotland (B), 142 taxa from southwest Wales (C) and 136

from southwest England (D). Overall, taxa exhibited limited regional-scale specificity, with

33.7% of taxa being recorded in more than one region and 20.7% recorded in all four study

regions. Over 8,000 individual mobile organisms were identified and counted, and the sessile

fauna identified weighed ~500g.

Sessile assemblages

In total, 74 taxa were recorded from the 72 holdfasts (S1 Table). Typically, the haptera struc-

tures forming the holdfast were colonised by a high coverage of sessile organisms (Fig 1).

Taxon richness varied from nine species per holdfast (samples from sites B3 and A1) to 25 spe-

cies per holdfast (samples from site D3). The sessile assemblage was dominated by bryozoans

(35 taxa), with the remainder comprised of bivalve molluscs (11 taxa), hydroids (eight taxa),

barnacles (six taxa) and polychaetes (three taxa). Porifera (nine groups) were identified to

morphological groups, while ascidians (split into colonial and solitary) and anthozoa (anemo-

nes) were broadly grouped, due to difficulty in identifying these taxa to species level. The pro-

portion of major taxonomic groups found in the holdfasts was more or less consistent across

sites, with the exception of sites B3 and C3, which lacked the high biomass of bryozoans char-

acteristic of other sites, and of site C1, where holdfasts supported a high biomass of ascidians,

and very low biomass of polychaetes and bryozoans (Fig 4A).

Metric MDS plots indicated some degree of partitioning between regions and, in some

cases, between sites within regions (Fig 5A). Sites within regions A and D were distinctly

grouped, but regions B, and particularly C, exhibited considerable variability between sites

(Fig 5A). There was limited evidence of partitioning in structure between the cool northern

regions and the warmer southern regions, even when centroids were averaged by site (Fig 5B).

PERMANOVA detected significant variability between regions and between sites nested

within regions, as well as a significant effect of the co-variate (Table 3). Pairwise tests within

the region factor showed that assemblages in north Scotland were distinct from those in west

Scotland and southwest England, which were also dissimilar from one another. PERMDISP

showed significant differences between regions in within-factor multivariate dispersion (F3,86

Table 2. Results of univariate PERMANOVA to test for differences in habitat metrics (a. kelp age, b. total holdfast volume, c. habitable holdfast space and d. rela-

tive holdfast space). Permutations were based on a Euclidean distance similarity matrix generated from untransformed data. All tests used a maximum of 4999 permuta-

tions under a reduced model; significant effects (P<0.05) are shown in bold. An underlined P-value indicates that PERMDISP detected significant differences in within-

group dispersion between levels of that factor (P<0.05).

Source df MS F P df MS F P

a. Kelp age b. Total holdfast volume

Region 3 17.333 2.943 0.123 3 6.36E+05 5.404 0.007

Site(Region) 8 5.8889 2.928 0.007 8 1.18E+05 5.216 0.001

Residual 60 2.0111 60 22551

Total 71 71

c. Habitable holdfast space d. Relative holdfast space

Region 3 3.48E+05 5.105 0.002 3 0.6768 1.901 0.212

Site(Region) 8 68098 5.864 0.001 8 0.3544 4.412 0.001

Residual 60 11612 60 0.0803

Total 71 71

https://doi.org/10.1371/journal.pone.0200411.t002

The structure and diversity of assemblages associated with kelp holdfasts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200411 July 12, 2018 10 / 25

https://doi.org/10.1371/journal.pone.0200411.t002
https://doi.org/10.1371/journal.pone.0200411


= 29.22, P< 0.001), with variability between holdfast samples from Wales (region C) consider-

ably greater than elsewhere.

SIMPER analysis indicated that the observed differences between regions were driven pri-

marily by a higher biomass of sponges (Demosponge A and F), colonial ascidians (Didemni-

dae) and the barnacle Verruca stroemia in southwest England compared to west and north

Scotland (S2 and S3 Tables). Holdfasts in west Scotland typically supported a high biomass of

the barnacle Balanus crenatus but lacked the bryozoan Celleporina caliciformis, which was

common in both north Scotland and southwest England (S2 and S3 Tables).

Taxon richness varied between sites within regions but, in general, the values tended to be

highest in southwest England and lowest in Wales (Fig 4B). Total biomass exhibited high

Fig 4. Univariate assemblage-level metrics for sessile holdfast assemblages: (a) the proportion of major taxonomic groups, (b) sessile assemblage

taxon richness, (c) total biomass of sessile organisms, (d) taxa equatorward range edge. Values for (b) and (c) are means of 6 replicate holdfasts per

site (±SE).

https://doi.org/10.1371/journal.pone.0200411.g004
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variability between replicate holdfasts and between sites, but no clear regional patterns (Fig

4C). Indeed, univariate PERMANOVA detected significant differences between sites but no

effect of region for these metrics, and no significant effect of the co-variate (Table 3). The bio-

geographic affinities of species within the assemblages were fairly consistent across the regions,

with similar proportions of ‘warm’ and ‘cool’ water species (Fig 4C).

The DISTLM routine was used to determine links between environmental predictor vari-

ables and variability in sessile assemblage structure. Marginal tests showed that wave fetch,

wave-driven water motion and kelp holdfast age were, individually, the most important pre-

dictor variables. The stepwise selection procedure indicated that the most parsimonious model

included all environmental variables, which explained 54% of the total observed variability in

sessile assemblage structure (Table 4).

Mobile assemblages

Study-wide, a total of 187 mobile taxa were recorded from 72 holdfasts (S1 Table) and, typi-

cally, holdfasts supported an array of mobile taxa (Fig 1). Of all the groups recorded, poly-

chaete worms dominated by richness, making up over a third of the taxa identified (64 taxa).

Fig 5. mMDS plots depicting the structure of sessile faunal assemblages, with centroids representing (a) individual holdfast samples (b) and site averages. Similarly

mMDS plots depicting the structure of mobile faunal assemblages, with centroids representing (c) individual holdfasts and (d) site averages). Labels indicate sites and

symbols indicate regions.

https://doi.org/10.1371/journal.pone.0200411.g005
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Crustacean groups were also numerous and diverse: gammaridean amphipods (infraorder

Gammarida; 37 taxa), Decapoda (order; 13 taxa), Isopoda (order; 11 taxa), Mysida (order;

three taxa), Leptostraca (order; one taxon) and Tanaidecea (order; one taxon). Mollusca were

also well represented: Gastropoda (class; 34 taxa) and Polyplacophora (class; four taxa). The

remainder of the assemblage comprised echinoderms (class Ophiuroidea, class Asteroidea,

class Echinoidea, and class Holothuroidea; eight taxa), Pycnogonida (class; four taxa), and

three other groups (class Turbellaria, phylum Nemertea, and phylum Sipuncula; four taxa). A

sample from southwest England (D1) included a fish (family Gobiesocidae). Mobile fauna

were most abundant in northern Scotland (a maximum of>800 individuals per holdfast),

which were characterised by high abundances of a few amphipod taxa (namely Jassa spp.,

Table 3. Results of multivariate PERMANOVA to test for differences in holdfast sessile (a) and mobile (b) assemblage between regions (fixed) and sites (random,

nested within region). Habitable holdfast space (HHS) was included as a covariable in the analysis. Permutations were based on a Bray-Curtis similarity matrix generated

from fourth-root transformed biomass/abundance data. Results of univariate PERMANOVA to test for differences in assemblage-level univariate metrics (taxon richness

and total biomass) in holdfast assemblages are also shown (c–f). Permutations for univariate analysis were based on a Euclidean distance similarity matrix generated from

untransformed diversity data. All tests used a maximum of 4999 permutations under a reduced model; significant effects (P<0.05) are shown in bold. An underlined P-

value indicates that PERMDISP detected significant differences in within-group dispersion between levels of that factor (P<0.05).

Source a. Sessile Assemblage b. Mobile Assemblage

df MS F P df MS F P

HHS 1 9222.1 2.084 0.027 1 9555.6 1.822 0.017

Region 3 10942 1.935 0.031 3 14436 2.219 0.005

Site(Region) 8 5824.1 10.83 0.001 8 6682.7 5.329 0.001

Residual 59 537.67 59 1254.1

Total 71 71

c. Sessile Taxon Richness d. Mobile Taxon Richness

HHS 1 24.958 0.534 0.477 1 49925 5.705 0.032

Region 3 176.35 2.954 0.116 3 1733.9 0.178 0.867

Site(Region) 8 61.503 10.48 0.001 8 9942.1 650.1 0.001

Residual 59 5.8712 59 15.294

Total 71 71

e. Sessile Total Biomass f. Mobile Total Abundance

HHS 1 91.856 4.230 0.062 1 3.09E+05 10.74 0.005

Region 3 99.772 3.581 0.065 3 43348 1.389 0.310

Site(Region) 8 28.714 12.67 0.001 8 31763 4.681 0.001

Residual 59 2.2670 59 6785.5

Total 71 71

https://doi.org/10.1371/journal.pone.0200411.t003

Table 4. DISTLM marginal test results for each environmental predictor variable selected for the most parsimonious model for sessile assemblages. The best solu-

tion based on stepwise selection and AICc criteria is shown. SS = sum of squares (trace), Prop. = proportion of variation explained.

Variable SS Pseudo-F P Prop.

Wave fetch 16127 10.83 0.001 0.134

Wave driven water motion 14886 9.879 0.001 0.124

Kelp age 14268 9.414 0.001 0.119

Holdfast habitable space 10606 6.765 0.001 0.088

Summer temperature 9665 6.112 0.001 0.080

Tidal driven water motion 5489 3.345 0.002 0.046

Summer light intensity 6390 3.925 0.001 0.053

Phosphate concentration 4846 2.937 0.005 0.040

Best solution: All variables (R2: 0.54, AICc: 499.8)

https://doi.org/10.1371/journal.pone.0200411.t004
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Parajassa pelagica and Ampithoe spp.). Study-wide abundances of mobile fauna were, however,

highly variable with the lowest value (16 individuals per holdfast) recorded in southwest

England. Numerically, amphipods dominated all sites with the notable exception of sites in

SW England (D1-D3), which were characterised by high relative abundances of polychaetes

and decapod crustaceans (Fig 6A).

Metric MDS plots showed some partitioning between regions, but these patterns were not

as clear as those observed in the sessile assemblage data (Fig 5C). Similarly, while the mMDS

plots showed some partitioning between sites, within regions, this is less evident than those

observed for sessile assemblages; generally, there is considerably more variation in mobile

assemblages, both within regions, and within sites. Interestingly, there was some evidence of

Fig 6. Univariate assemblage-level metrics for mobile holdfast assemblages: (a) the proportion of major taxonomic groups, (b) mobile assemblage taxon

richness, (c) total biomass of mobile organisms, (d) taxa equatorward range edge. Values for (b) and (c) are means of 6 replicate holdfasts per site (±SE).

https://doi.org/10.1371/journal.pone.0200411.g006

The structure and diversity of assemblages associated with kelp holdfasts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200411 July 12, 2018 14 / 25

https://doi.org/10.1371/journal.pone.0200411.g006
https://doi.org/10.1371/journal.pone.0200411


partitioning between the two southern regions (C & D) and the two northern regions (A & B),

a pattern not observed for sessile assemblages (Fig 5D). PERMANOVA identified significant

differences between regions and sites, as well as a significant effect of the co-variate (Table 3).

Pairwise tests within the region factor showed that assemblages in southwest England were sta-

tistically distinct from those in other regions. PERMDISP did not detect any significant differ-

ences in multivariate dispersion between regions (F3,68 = 0.92, P = 0.486).

SIMPER analysis showed that the observed differences between regions were driven pri-

marily by a markedly lower abundance of the amphipod Jassa spp. within southwest England

compared to the other regions (S4 and S5 Tables). The abundance of other amphipods (e.g.

Lysianassa certatina, Ampithoe spp., Lembos websteri, Erichthonius sp., Caprella spp.) was nota-

bly lower in southwest England compared with the other regions, and was a major contributor

to the observed dissimilarity between regions. Samples from southwest England were charac-

terised by high abundances of the crab Pisidia longicornis and the sabellid polychaete Bran-
chiomma bombyx compared to all other regions (S4 and S5 Tables).

Taxon richness varied markedly between sites within regions, with values across regions

being comparable (Fig 6B). Total abundance varied by a factor of ~8 within a single region

(north Scotland), with the lowest values recorded at sites in southwest England (Fig 6C). For

both metrics, we recorded a significant effect of site and the co-variate, but no overall effect of

region (Table 3). As with the sessile assemblage, the biogeographic affinities of species within

the assemblages was fairly consistent across the regions, with similar proportions of ‘warm’

and ‘cool’ water species (Fig 6D).

The DISTLM routine showed that, based on marginal tests, summer temperature, wave

fetch and summer light intensity were the most important predictors of mobile assemblage

structure (Table 5). The stepwise selection procedure indicated that the most parsimonious

solution, which explained 47% of the total observed variability in assemblage structure,

included all the predictor variables (Table 5).

Relationships between sessile and mobile assemblages

Spatial variability patterns of sessile and mobile assemblages were not well correlated. Similar-

ity matrices generated at the holdfast level were very weakly correlated (ρ = 0.27, P = 0.01),

whereas matrices generated at the site (ρ = 0.21, P = 0.07) and region (ρ = 0.04, P = 0.50) level

were not correlated, indicating that sessile and mobile assemblages exhibited distinct variabil-

ity patterns at all spatial scales. Similarly, there was no correlation in taxon richness (r = -0.19,

P = 0.15, S1 Fig) or total biomass/abundance (r = -0.05, P = 0.68, S1 Fig) between sessile and

mobile assemblages.

Table 5. DISTLM marginal test results for each environmental predictor variable selected for the most parsimonious model for mobile assemblages. The best solu-

tion based on stepwise selection and AICc criteria is shown. SS = sum of squares (trace), Prop. = proportion of variation explained.

Variable SS Pseudo-F P Prop.

Summer temperature 21147 9.299 0.001 0.117

Wave fetch 15245 6.464 0.001 0.085

Summer light intensity 14745 6.234 0.001 0.082

Holdfast habitable space 12673 5.291 0.001 0.070

Kelp age 10553 4.351 0.001 0.059

Tidal driven water motion 9813 4.029 0.001 0.054

Wave driven water motion 8477 3.453 0.001 0.047

Phosphate concentration 6525 2.629 0.003 0.036

Best solution: All variables (R2: 0.47, AICc: 539.0)

https://doi.org/10.1371/journal.pone.0200411.t005
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Discussion

Kelp holdfasts are important repositories of biodiversity in coastal marine ecosystems. The

assemblages sampled in this study were highly diverse, in some cases highly abundant, and

fairly typical of Laminaria hyperborea holdfasts described in previous research [2, 45, 56, 75].

We recorded a study-wide richness value of 261 distinct taxa, while average richness per hold-

fast was ~40 taxa (i.e. combined averages for sessile and mobile richness). These values are

comparable, but notably higher, than most previous reports of holdfast richness, with the

exception of Ecklonia radiata holdfasts in Australasia and L. hyperborea holdfasts in Norway

(see [38] for a comprehensive review). These values are also comparable to study-wide richness

values for macroinvertebrate assemblages associated with seagrass beds in both the Mediterra-

nean and Western Australia [76, 77], which are widely regarded as habitats with high biodiver-

sity value [78]. With regards to faunal densities, average mobile invertebrate abundance

exceeded ~400 individuals per holdfast at one study site but was typically >150 individuals per

holdfast, while mean biomass of sessile assemblages was typically ~10 g per holdfast. Given

that densities of mature L. hyperborea plants are in the order of 10 plants m-2 at these study

sites [58], a simple approach to ‘scaling up’ would yield estimates of faunal abundance of 1500

inds.m-2 and faunal biomass of 100 g m-2 for holdfast assemblages alone. As L. hyperborea pop-

ulations in the UK are predicted to inhabit an area in the region of 8,100 [58] to 16,000 km2

[64], holdfast associated assemblages are likely to play a significant role in trophic processes

and wider coastal ecosystem functioning.

We recorded marked between-region and between-site variability in the structure of both

sessile and mobile macrofaunal assemblages. In general, mobile assemblages were more

diverse than their sessile equivalents, and tended to be more heterogeneous and spatially vari-

able. Although we observed considerable regional-scale variability, we did not record predict-

able shifts in assemblage diversity or structure with latitude. That is, differences between

regions did not generally correspond with sequential shifts in latitude or temperature. For ses-

sile taxa, holdfast assemblages in north Scotland, west Scotland and southwest England were

all distinct from one another, whereas assemblages from Wales were far more heterogeneous

and were not dissimilar to other regions. For mobile assemblages, there was some indication

of latitudinal shifts in structure (see below) and, despite high site-level variability, assemblages

in southwest England were statistically distinct from those in other regions. Evidence of

regional-scale variability contrasts with a comparable study on E. radiata holdfasts in New

Zealand [66], which found holdfast assemblages structure to be relatively consistent and pre-

dictable along a gradient of 2˚ in latitude and>300 km of coastline. As our study encompassed

a larger spatial gradient, it is likely that between-region variability in key drivers of ecological

pattern such as temperature, wave exposure and primary productivity in the overlying water

column was more influential.

For example, while wave fetch and local water motion were broadly comparable between

regions, overall wave exposure values were slightly greater in north Scotland and southwest

England compared to west Scotland and southwest Wales (except C1). L. hyperborea, like

many other kelp species, exhibits morphological adaptations to hydrodynamic forcing, includ-

ing the development of larger holdfasts under wave exposed conditions [79], which was per-

haps reflected in the generally larger holdfasts in north Scotland and (to a lesser extent)

southwest England. The size and shape of the holdfast habitat can be an important driver of

diversity and abundance of associated assemblages in some systems [41, 51, 56], although this

relationship has been shown to break down elsewhere [2, 80], and may be more important for

smaller, younger holdfasts [39, 66]. Here, differences in holdfast structure may also be driven,

at least in part, by regional-scale variability in biogenic habitat structure. Other possible drivers
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of variability operating across regional scales include patterns of dispersal and connectivity,

coastal geomorphology and differences in proximal habitat types and potential source

populations.

Similarly, regional scale variability in turbidity, sedimentation and the supply of organic

matter may be important in determining holdfast assemblage structure. In this case, holdfasts

from southwest England were largely distinct from those elsewhere, primarily because of

markedly lower abundances of amphipods, and higher relative abundances of crabs, poly-

chaetes, and sponges. The marine environments around Wales (i.e. the Irish Sea) and West

Scotland (i.e. the Firth of Lorne) are typically more turbid, with higher levels of suspended

material [41, 58], and holdfasts here were characterised by high silt deposition. A considerable

proportion of the mobile assemblages at these sites was composed of filter and deposit feeding

amphipods (e.g. Jassa spp., Monocorophium sextonae), which would conceivably benefit from

high levels of particulate organic matter. In contrast, the less turbid waters in southwest

England could favour different taxa, and could explain a lower dominance of amphipod

deposit feeders and a higher dominance of omnivorous crabs. As such, regional-scale differ-

ences in turbidity or the deposition of organic matter from riverine inputs or pelagic primary

production may influence the development of holdfast assemblages and trophic structuring

[25, 51]. Unfortunately, we did not directly measure the sediment content of each holdfast,

which would have been a useful predictor variable given that previous research has shown cor-

relations between the abundances of taxa and sediment loads [51]. Given that coastal develop-

ment and maritime activities (e.g. dredging) can alter sedimentation rates, further

investigation into the influence of sediment content on holdfast assemblages would be useful.

The structure of mobile assemblages did exhibit some latitudinal patterns, with some dis-

tinction in multivariate structure between northernmost (north and west Scotland) and south-

ernmost (southwest Wales and southwest England) sites, and sea temperature emerging as an

important explanatory variable. This was largely driven by a general increase in the relative

abundance of amphipods from south to north and, in contrast, an increase in the relative

abundance of decapods and polychaetes from north to south. Conversely, sessile species were

widely distributed across the regions and sessile assemblages were more influenced by wave

exposure and local water motion. Such differences in variability patterns between mobile and

sessile fauna may be linked to dispersal potential. The most abundant mobile fauna, in this

instance gammaridean amphipods, tend to brood their offspring and may have relatively lim-

ited dispersal potential compared to many commonly found sessile fauna, which have a plank-

tonic larval stage [81–84]. Moreover, recent work has shown that the structure of kelp forests

varies with latitude along the gradient encapsulated in this study [19] and, as different kelp spe-

cies may harbour distinct associated assemblages [47, 85–87], the composition of the wider

kelp forest may potentially play a role in the development of distinct, regional holdfast assem-

blages. This may be particularly important for mobile assemblages, as some common taxa (e.g.

amphipods and isopods) have been shown to move freely throughout kelp forests and even to

emigrate to adjacent systems [75, 88]. As such, the structure and configuration of surrounding

habitats, and their associated species pools, is likely to play an important role in the structuring

of holdfast assemblages and may vary somewhat predictably with latitude.

Pronounced site-level variability was an important component of the observed spatial varia-

tion in holdfast community structure and diversity, suggesting that environmental factors

varying across similar spatial scales, such as wave exposure, could be important in determining

ecological pattern. Previous research has highlighted the importance of hydrodynamic forces

(i.e. the action of waves and the tide) in structuring marine communities [23, 24, 89], including

kelp systems [22, 79, 90–92], and in relation to kelp-associated assemblages in particular [21,

93, 94]. The effect of wave exposure on the morphology of L. hyperborea is well documented
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(e.g. the development of larger holdfasts [79]), and as faunal diversity is often (but not always)

related to habitat size, a relationship exists between wave exposure and kelp associated faunal

diversities [2, 21, 66, 80, 93–97]. Intense wave action represents a physical disturbance to algal

associated fauna, and may result in considerable loss of fauna due to dislodgement and mortal-

ity [49, 50]. The reduced diversity and abundances of communities associated with holdfasts

from the most wave exposed sites (i.e. A1) in this study suggest this process may play a role

within kelp holdfasts. The largest holdfasts, by some margin, were found at site A1, the most

exposed site in north Scotland. While the mobile assemblage associated with these holdfasts

was diverse and abundant, as one would expect, the sessile assemblage was comparatively

depauperate in relation to the apparent habitable space available. Holdfasts from this site were

missing the high abundances and biomass of common bryozoan species in particular, and

were characterised by a high sediment load made of coarse sand, and had an almost ‘sand-

blasted’ look. It is likely that the strong wave motion characteristic of this site, coupled with the

large, open nature of the holdfasts, caused smothering of delicate filter-feeding organisms,

such as the bryozoans so characteristic of other sites.

Interestingly, the potential effects of wave exposure seemed to be more pronounced on ses-

sile, rather than on mobile assemblages. This impact is potentially due to the influence of sedi-

mentation, which can smother delicate filter-feeding sessile organisms [25] but may have exert

a positive influence over other taxa [51]. Site-level variability may also be promoted by differ-

ences in reef structure and substratum characteristics. Topographic complexity, the prevalence

of large boulders versus pavement-like platforms, and reef rugosity may influence kelp popula-

tion structure [98–100]. As such, variation in holdfast morphology (i.e. relative holdfast vol-

ume) driven by site-level differences in reef structure may have influenced the development

and richness of associated assemblages. Other factors that have been identified as important

drivers of site-level variability in holdfast assemblages include pollution [101], kelp harvesting

and farming [80, 102] and grazing pressure [103, 104]. However, given the negligible impact of

these activities and processes across the current study area [8], they were unlikely to be impor-

tant in this case.

In addition to the variability between regions and between sites, we recorded pronounced

small-scale variability between individual holdfasts separated by a few meters. Marine benthic

communities generally exhibit considerable small-scale variability [105, 106], which is driven

by a range of processes operating across multiple spatial, and temporal scales [61]. Combined

with the highly variable nature of supply-side ecology [107], the inter-holdfast variability

recorded here is perhaps not surprising. Small-scale variations in food availability, protection

from predation, water movement and sedimentation (e.g. due to proximity to topographical

reef features which may attenuate wave action), and differences in species’ tolerance to smoth-

ering or dislodgement may also influence assemblage structure [61, 108, 109]. Moreover, the

structure of the kelp forest itself can induce small-scale variability in associated assemblages;

kelp plant density, the wider habitat matrix, the level of patchiness and whether the kelp can-

opy is monospecific or mixed have been shown to influence local diversity patterns [110–112].

Indeed, much of the variability observed in holdfast community structure throughout this

study was unexplained by the environmental factors measured. It is likely that these factors

were measured at a spatial scale too large to account for within-site variation, highlighting the

need for more research into the small, local scale drivers of holdfast assemblage development

and maintenance.

In conclusion, faunal assemblages associated with L. hyperborea holdfasts are highly diverse

and exhibit considerable structural variability over multiple spatial scales. Crucially, the sessile

and mobile components of holdfast assemblages exhibited different patterns and may be influ-

enced by key environmental drivers, specifically variability in wave exposure and temperature,
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to differing degrees due to divergence in life histories or growth strategy. It is evident that L.

hyperborea serves as a critical foundation species in shallow rocky habitats in the northeast

Atlantic by providing biogenic habitat, altering environmental conditions and exerting a

strong influence over local biodiversity and community structure. Within UK waters, our

study suggests that local scale environmental variability is more important in structuring kelp-

associated assemblages than latitudinal-scale variation in sea temperature. However, given that

sea water temperatures around the UK have significantly increased in recent decades [113],

and are predicted to continue to rise through the next century [114], it is likely that tempera-

ture will begin to play a larger role in structuring the biogenic habitat provided by L. hyper-
borea, and thereby its associated assemblages, in the near future. The ecophysiology of L.

hyperborea is adversely impacted by temperatures above 20˚C [115], and as the southernmost

regions of the UK currently experience temperatures of this magnitude during anomalous

warming events [116] and are projected to experience such temperatures more frequently in

the coming decades [114], the continued provision of biogenic habitat is at risk from future cli-

mate change. Any climate-driven reduction in the biomass, density, spatial extent or longevity

of L. hyperborea will likely result in a reduction of habitat available for colonisation and conse-

quent changes to community structure and local biodiversity [87]. Indeed, further south on

the Iberian Peninsula, L. hyperborea has retracted its equatorward range edge as marginal pop-

ulations have responded to ocean warming [20, 60], and key ecological functions including

habitat provision and benthic primary productivity have been lost or altered. Changes in habi-

tat provision will likely influence holdfast assemblage structure, and in doing so, affect the use-

fulness of kelp holdfasts for biodiversity monitoring and detecting local environmental

impacts [117]. Clearly, a better understanding of the drivers of kelp community structure,

including an improved appreciation of species interactions in a rapidly changing environment,

is required to predict the structure and conserve the diversity of these ecosystems in the com-

ing decades.
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