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On the Benefits and Risks of Using Fitness Sharing for
Multimodal OptimisationI

Pietro S. Olivetoa, Dirk Sudholta, Christine Zargesb,∗

aDepartment of Computer Science, The University of Sheffield, Sheffield S1 4DP, UK
bDepartment of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, UK

Abstract
Fitness sharing is a well-known diversity mechanism inspired by the idea
that individuals in the population that are close to each other have to share
their fitnesses in a similar way to how species in nature occupying the same
ecological environment have to share resources. Thus, by derating the fitness
of close individuals one hopes to encourage the population to spread out
more.

Previous runtime analyses of fitness sharing studied a variant where se-
lection was based on populations instead of individuals. We study the con-
ventional fitness sharing mechanism based on individuals and use runtime
analysis to highlight its benefits and dangers on the well-known bimodal test
problem TwoMax, where diversity is crucial for finding both optima. In
contrast to population-based sharing, a (2+1) evolutionary algorithm (EA)
with conventional fitness sharing does not guarantee to find both optima in
polynomial time even when problem specific knowledge is used to estimate
the distance between individuals; however, a (µ+1) EA with µ ≥ 3 always
succeeds in expected polynomial time. We further show theoretically and
empirically that large offspring populations in (µ+λ) EAs can be detrimen-
tal as creating too many offspring in one particular area of the search space
can make all individuals in this area go extinct. We conclude the paper with
an empirical study indicating that similar conclusions may be drawn when

IAn extended abstract of this work with parts of the results and without most of the
proofs has been presented at Parallel Problem Solving from Nature (PPSN) in 2014 [1].
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using the genotypic distance that has to be relied upon when no problem
specific knowledge is available.
Keywords: Evolutionary computation, diversity mechanisms, fitness
sharing, multimodal optimisation, runtime analysis

1. Introduction

Many real-world optimisation problems are multimodal by nature, i. e.,
they have a number of different local optima and may have more than one
global optimum. Nature-inspired techniques have proven to be very popular
and powerful to tackle these types of problems [2] and different optimisation
goals have been discussed in the literature [3]. Taking a global perspective,
one is for example interested in locating a single (local or global) optimum.
However, in practice it is often more important to identify a multitude of dif-
ferent optima, either in a simultaneous or sequential fashion. Our analyses
therefore concentrates on the multi-local aspect of multimodal optimisation,
i. e., where the goal is that the set of local optima is contained in the popu-
lation by the end of the run.

In evolutionary computation, diversity mechanisms are commonly used to
tackle multimodal optimisation problems [4, 5, 6], particularly in the context
of a multi-local perspective. The main idea is to try and introduce niches
in the population to prevent the algorithm from converging to a single solu-
tion such that different niches explore different peaks of the fitness landscape.
Thus, in this context, niches are often understood as narrow, connected areas
of the search space. In contrast to the numerous and widespread applications,
the amount of theoretical research rigorously proving the effectiveness of di-
versity mechanisms is limited. Nevertheless, some previous theoretical work
on diversity mechanisms for multimodal optimisation using nature-inspired
techniques exists. Most notably, runtime analyses are available where the
performance of diversity mechanisms is evaluated in terms of their optimi-
sation time (i. e., the number of fitness function evaluations required to find
the global optimum or a set of optima).

Friedrich et al. [7] showed that diversity mechanisms may be necessary
by analysing population-based evolutionary algorithms (EAs) for a bimodal
function called TwoMax. TwoMax is a function of unitation, that is, the
fitness only depends on the number of 1-bits |x| in the considered search
point x. Hence, while the bit string x is the genotype, the number of ones
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|x| may be considered the corresponding phenotype, from which the fitness
max{|x|, n − |x|} is then derived (where n is the length of the bit string).
The function is easy from the perspective of localising the two local optima
in a sequential fashion, for example, by using local search coupled with a
restart strategy. On the other hand, the function is very challenging from a
multi-local perspective, since the two local optima are as far away as possible
from each other. Friedrich et al. [7] proved that a population-based EA
with realistic population size (i. e., at most sublinear in the problem size)
would fail at locating efficiently both optima of TwoMax if no diversity
mechanism is used. They then showed that some diversity mechanisms make
the algorithm efficient (i. e., fitness sharing, which we consider here in more
detail, and deterministic crowding, where offspring compete for survival only
with their parents) while others do not (i. e., avoiding genotype duplicates
and avoiding duplicates of equal fitness). Recently, it has been proven that
also the clearing mechanism, where resources are only assigned to the best
individual of a subpopulation, makes population-based EAs efficient for the
TwoMax function [8].

Diversity mechanisms have also been shown to enhance the capabilities
of the recombination operator by favouring the emergence of dissimilar indi-
viduals. Fischer and Wegener [9] were the first to rigorously study this effect
by analysing the performance of a genetic algorithm (GA) using fitness shar-
ing on colouring problems inspired by the Ising model. They showed that
the diversity mechanism helps the exploration of large plateaus and proved a
speedup of order n over the simple (1+1) EA on one-dimensional Ising mod-
els with n nodes. Sudholt [10] further proved an exponential speedup for a
GA for the Ising model on trees, using the fact that fitness sharing is power-
ful enough to allow the algorithm to tunnel through shallow fitness valleys.
Recently, Dang et al. [11] showed that several diversity mechanisms allow an
exponential speedup in the time required to escape from the local optima via
recombination for the standard Jumpk benchmark function. Diversity mech-
anisms can also enhance the capabilities of the recombination operator for
hillclimbing the OneMax function. A (2+1) GA with genotype diversity opti-
mises the function in half the expected time (i.e., (e/2+o(1))n log n) required
by EAs only using standard bit mutation with fixed mutation rate [12], while
GAs without diversity have been experimentally shown to be slower and the
best upper bound on the expected runtime known is (3/4+o(1))en log n [13].
It is also worth noting that an analysis for the Balance benchmark func-
tion has shown that diversity mechanisms allow the efficient optimisation of
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deceptive functions in the context of dynamic optimisation [14].
Fitness sharing [15, 16] is amongst the best known diversity mechanisms.

It is featured in many surveys [4, 5, 6] and used in many practical applications
(see, e. g. [17, 18, 19, 20, 21], to name just a few). In this scheme niche
formation is induced by using a sharing function that derates the fitness
of an individual by an amount related to its ‘distance’ to the rest of the
population. It is inspired by the idea that individuals in the same niche of
the search space, i. e., individuals that are close to each other, have to share
resources (their fitness)—similarly to how species in nature occupying the
same ecological environment have to share resources. As a result individuals
are encouraged to increase their distance from other individuals, thus spread
out in the search space.

The effectiveness of fitness sharing may vary considerably according to
which measure is used to define the distance between individuals. In par-
ticular, different fitness sharing functions are obtained according to how the
distance between individuals is defined [4]. Fitness sharing can use distances
defined on a genotypic or phenotypic level [4, 5, 6, 16, 22]. Genotypic shar-
ing [4] uses genotypic distances like the Hamming distance to measure how
close individuals of the population are to each other. Phenotypic sharing
refers to distances in the decoded parameter space [22], which in turn de-
pends on the encoding used. For example, if the genotype encodes a vector
of real values, the phenotypic distance is commonly defined as the Euclidean
distance between two such vectors [22]. In our case of functions of unitation,
the phenotypes correspond to the number of ones in a search point, hence
the number of ones may be used as distance measure to optimise the class
of functions of unitation [23]. Note that when using phenotypic sharing in
this way, we are in fact using problem-specific knowledge: we exploit the fact
that we are dealing with a function of unitation. Such knowledge may not
be available in a general black-box setting, and in this case only genotypic
sharing may be used.

For the theoretical work presented in this paper we will use the pheno-
typic distance for three main reasons. The first is that this allows to high-
light problems that may be encountered by using fitness sharing, even when
problem knowledge is incorporated in the diversity mechanism. The second
is that using phenotypic sharing allows for easier comparisons with previous
results available in the literature, since they used this distance measure [7, 8].
The third reason is that the analysis is considerably simplified compared to
genotypic sharing but similar conclusions on algorithmic behaviour may be
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observed. This is indicated by the empirical analysis for genotypic sharing
presented in Section 7.

Previous theoretical work on fitness sharing has concentrated on a some-
what unusual implementation of the sharing mechanism. Rather than se-
lecting individuals based on their shared fitness f(x, P ), selection was done
on a level of populations, creating a population that maximises the overall
shared fitness of the population [7, 9, 10, 11, 14]. While maximising the
shared fitness of the population is indeed what is sought in fitness sharing,
this approach has the drawback that the fitness of all the possible combi-
nations of individuals needs to be examined. For large populations this is
prohibitive as the number of populations that need to be examined is

(
µ+λ
λ

)
(see Section 2.1 for a detailed discussion).

In this paper we analyse the performance of the conventional fitness shar-
ing approach based on individuals to match the approach taught in surveys
and tutorials [4, 5, 6] and the way that fitness sharing is used in practice. As
pointed out by Goldberg and Richardson [15], shared fitness values can be
used with any selection mechanism. However, to allow for comparison with
previous work on the effectiveness of fitness sharing for multimodal optimisa-
tion we use the same analytical framework, i. e., a standard (µ+λ) EA using
the shared fitness values within the selection for replacement, and the same
example function, i. e., the simple bimodal function TwoMax consisting of
two different symmetric branches [7, 24, 25].

In the context of multimodal optimisation one crucial parameter of the
algorithm is the population size, since this determines the number of local
optima that can be found simultaneously. Lower bounds for the population
size have been investigated in different settings [16, 26] and this work further
adds to the understanding of the influence of this parameter.

A (µ+1) EA using the unconventional approach (i. e., maximising the
phenotypic shared fitness of the population) can efficiently optimise TwoMax
for any population size µ ≥ 2 [7]. The reason is that, in any population,
the individuals with the smallest and the largest number of ones are al-
ways accepted for the next generation. Our analysis shows that using the
conventional (phenotypic) sharing approach leads to considerably different
behaviours of evolutionary algorithms.

We first concentrate on the effects of the parent population in Section 4.
A population of size µ = 2 is not sufficient to guarantee that the (µ+1) EA
finds both optima in polynomial time. If the two individuals are initialised
on the same branch, then there is a high probability that they will both find
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the same local optimum. Furthermore, there is a chance that the algorithm
fails also when the two individuals are initialised on opposite branches. This
leads to a worse failure probability than that of a simple crowding algorithm
or that of a (1+1) EA that is restarted twice. On the other hand Section 5
shows that for µ ≥ 3, once the population is close enough to one optimum,
individuals descending the branch heading towards the other optimum are
accepted. This threshold, that allows successful runs with probability 1, lies
further away from the local optimum as the population size increases.

Concerning the effects of the offspring population, in Section 6 we show
that large values of λ can be detrimental. We rigorously prove that increasing
the offspring population of a (µ+1) EA to a (µ+λ) EA, with µ = 2 and λ ≥ 2
a constant, results in an overcrowding that can make a (sub-)population go
extinct. For the special case of λ = 2 we also prove an increased failure prob-
ability. We complement this result with an empirical analysis that suggests
that the (µ+1) EA is successful if λ < ⌊µ/2⌋ and that it almost always fails
for λ ≥ µ. We conclude the paper with an empirical analysis indicating that
similar algorithmic behaviour to that proven theoretically also occurs if no
problem specific knowledge is available and genotypic sharing is used.

2. Analytical Framework

In our analyses, we consider a simple bimodal function consisting of two
different symmetric branches (i. e., OneMax and ZeroMax) and we have
defined both 0n and 1n to be global optima (see Figure 1). Formally:

TwoMax(x) := max

{
n∑

i=1

xi, n−
n∑

i=1

xi

}
(1)

Moreover, we consider a standard (µ+λ) EA as shown in Algorithm 1
using standard bit mutation with mutation probability 1/n, uniform random
selection of parents and truncation selection for selection for replacement.
However, instead of the raw fitness, it uses the shared fitness value in the
truncation selection.

We consider fitness sharing as introduced by Goldberg and Richard-
son [15]. Throughout this work, |x| denotes the number of 1-bits in x. The
shared fitness of an individual x ∈ P is

f(x, P ) :=
f(x)∑

y∈P
sh(x, y)
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Figure 1: Sketch of the function TwoMax.

Algorithm 1 (µ+λ) EA with fitness sharing
1: Let t = 0 and initialise P0 as a population of µ individuals chosen uni-

formly at random from {0, 1}n.
2: repeat
3: for each 1 ≤ i ≤ λ do
4: Select a parent x ∈ P uniformly at random from the population.
5: Let xi := x. Flip each bit in xi independently with probability 1/n.
6: end for
7: Create a new population Pt+1 by selecting the µ best individuals ac-

cording to their shared fitness in Pt ∪
∪λ

i=1{xi}, breaking ties towards
favouring offspring over parents, breaking remaining ties uniformly at
random.

8: Let t := t+ 1.
9: until stopping criterion met

and the sharing function is

sh(x, y) := max

{
0, 1−

(
d(x, y)

σ

)α}
.

Here, d(x, y) is the distance between the two individuals x and y and σ is
the sharing distance beyond which individuals do not share fitness. More
precisely, if d(x, y) < σ then sh(x, y) > 0 and the shared fitness of x and y
is lower than their true fitness. We say that then x and y share fitness. If
d(x, y) ≥ σ then sh(x, y) = 0 and x and y do not share fitness. We consider
fitness sharing with phenotypic sharing as in [7], where the distance between
individuals is based on the number of ones: d(x, y) :=

∣∣|x| − |y|
∣∣. Note that

d is a distance metric in phenotype space, that is, d(x, y) = 0 implies that x
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and y have identical phenotypes, even though their genotypes might be very
different. We use σ = n/2 (as in [7]) as this is the smallest distance that
allows us to discriminate between the two branches. The parameter α is a
constant, typically set to 1, that regulates the shape of the sharing function.
We use the standard value α = 1 and obtain

f(x, P ) :=
f(x)∑

y∈P
max

{
0, 1−

∣∣|x|−|y|
∣∣

n/2

} .

For s := µ+ λ, let P := {x1, x2, . . . , xs} denote the extended population
of current search points and the new offspring, labelled such that

|x1| ≤ |x2| ≤ · · · ≤ |xs|.

Let
Dj :=

s∑
i=1

min
{∣∣|xj| − |xi|

∣∣, n
2

}
denote the sum of phenotypic distances of xj to all other members of the
extended population. Individual distances are capped at the sharing dis-
tance n/2 so that the shared fitness can be written as

f(xi, P ) =
f(xi)

s− Di

n/2

=
f(xi)

s− 2Di/n
.

Since we are particularly interested in the multi-local perspective and
aim at analysing the global exploration capabilities of the population-based
EA, we call a run successful if it manages to find both optima of TwoMax
(i. e., a population is reached that contains both 0n and 1n) efficiently. The
expected number of generations for this to happen is called expected running
time.

In the remainder we say that an event happens with overwhelming prob-
ability (w. o. p.) if it occurs with probability at least 1 − 2−Ω(nε) for some
constant ε > 0.

2.1. On the Time Complexity of Implementing Fitness Sharing
Before analysing the optimisation time, we discuss the overhead from

implementing fitness sharing in terms of the classical notion of computation
time. To this end, we assume that fitness values f(x) are already known and
accessible in time O(1).
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Computing sharing function values sh(x, y). In what follows we denote by
T (n) the time to compute a sharing function sh(x, y). A naive implementa-
tion would give T (n) = Θ(n) for both phenotypic and genotypic distances.
If the phenotype |x| is stored when computing f(x), the phenotypic sharing
function can be computed in additional time O(1). Another approach that
works for phenotypic and genotypic sharing is to update sh(x, y) according
to the respective value of x’s parent and checking any bits flipped during
mutation. Since in expectation only a constant number of bits have to be
reconsidered, this leads to a constant expected time (and O(n) preprocessing
time) for each value sh(x, y).

With both population-based and the conventional individual-based fitness
sharing we need to compute or maintain sh(x, y) for all individuals x, y from
the union of parents and offspring. These can be stored in a (µ+λ)× (µ+λ)
matrix that takes time Θ((µ + λ)2T (n)) to compute initially, but can be
updated in time Θ(λ(µ+λ)T (n)) in each generation as only distances between
the λ offspring and the other µ+ λ− 1 search points need to be computed.

Lemma 1. Let T (n) be the time to compute sh(x, y) for any two search points
x, y. Then for a population P of µ parents and λ offspring in a (µ+λ) EA
a (µ + λ) × (µ + λ) matrix of all values sh(x, y) can be created in time
Θ((µ+ λ)2T (n)) and updated in each generation in time O(λ(µ+ λ)T (n)).

Computing shared fitness values f(x, P ). In order to compute a shared fitness
f(x, P ) from f(x), we need to compute

∑
y∈P sh(x, y). This sum can be

computed from scratch in time Θ(|P |), assuming that the sharing values are
available from a table with O(1) access time. It can further be computed
more efficiently by using incremental steps. If we have stored

∑
y∈P ′ sh(x, y)

for a population P ′ with O(1) access time, we can compute∑
y∈P

sh(x, y) =
∑
y∈P ′

sh(x, y)−
∑

y∈P ′\P

sh(x, y) +
∑

y∈P\P ′

sh(x, y) (2)

in time O(1+ |P ′ \P |+ |P \P ′|). This is O(1) if P and P ′ only differ in one
element, and O(λ) if they differ in at most λ elements.

Time complexity of individual-based fitness sharing. The conventional indi-
vidual-based fitness sharing computes f(x, P ) = f(x)/

∑
y∈P sh(x, y) for the

same population P of µ parents and λ offspring. Using (2) and the arguments
from the previous paragraph, given a matrix of all sh(x, y) values, all µ+ λ
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values f(x, P ) values can be computed incrementally in time O(λ(µ + λ)).
The preprocessing time at the start of the run is O((µ + λ)2). Along with
Lemma 1, we obtain the following time bounds.

Theorem 2. Let T (n) be the time to compute sh(x, y) for any two search
points x, y. Then the overhead from individual-based fitness sharing in one
generation of the (µ+λ) EA is O(λ(µ+ λ)T (n)), with an additional prepro-
cessing time at the start of the run of Θ((µ+ λ)2T (n)).

Time complexity of population-based fitness sharing. Given a population P
of µ parents and λ offspring, population-based fitness sharing looks for a
subpopulation P ′ ⊆ P of size |P ′| = µ that maximises the shared fitness of the
population, f(P ′) =

∑
x∈P ′ f(x, P ′). Note that there are

(
µ+λ
µ

)
possibilities

to choose P ′ and we are not aware of an efficient algorithm that is faster than
computing all

(
µ+λ
µ

)
shared population fitnesses.

We describe the most efficient way we could find, based on computing
f(P ′) values incrementally. We iterate over all possible population of size µ
that can be formed from µ + λ parents and offspring. Chase’s Twiddle
algorithm [27] outputs a sequence P1, P2, . . . of all such size-µ populations
in time O

((
µ+λ
µ

))
, and this sequence has the property that two subsequent

populations only differ in one element.
Now consider two populations Pi, Pi+1, both of size µ, such that Pi+1

differs from Pi in just element: Pi+1 = (Pi \ {z}) ∪ {w}. Further assume∑
y∈Pi

sh(x, y) are stored for all x ∈ Pi with O(1) access time. Then for all
x ∈ Pi ∪ Pi+1, by (2)∑

y∈Pi+1

sh(x, y) =
∑
y∈Pi

sh(x, y)− sh(x, z) + sh(x,w)

can be computed in time O(1).
So if f(Pi) and all

∑
y∈Pi

sh(x, y) are known, f(Pi+1) can be computed
as

f(Pi+1) =
∑

x∈Pi∪Pi+1

f(x, Pi+1) + f(w,Pi+1)

=
∑

x∈Pi∪Pi+1

f(x)∑
y∈Pi+1

sh(x, y)
+ f(w,Pi+1)
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where the elements in the last sum can be computed in total time O(µ) and
f(w,Pi+1) can be computed in time O(µ) as well.

So we can compute shared population fitness values for all size-µ popula-
tions and find a best one in time O

(
λ(µ+ λ)T (n) +

(
µ+λ
µ

)
µ
)

per generation
and initial preprocessing time O((µ+ λ)2T (n)).

Theorem 3. Let T (n) be the time to compute sh(x, y) for any two search
points x, y. Population-based fitness sharing in a (µ+λ) EA can be im-
plemented in such a way that the overhead from fitness sharing is time
O((µ+ λ)2T (n)) for preprocessing and time O

(
λ(µ+ λ)T (n) +

(
µ+λ
µ

)
µ
)

per
generation.

3. General Results

Phenotypic fitness sharing, along with the shape of the TwoMax func-
tion, implies that an individual with a better fitness than that of any other
individual in the population will always survive, as it has a better fitness than
the individual with the closest number of ones, and it has a larger phenotypic
distance to other individuals. This means that in a (µ+1) EA the current
best fitness never decreases; this also holds if multiple individuals have the
same current best fitness, as only one individual is removed by selection.

Lemma 4. Let P = {x1, . . . , xs} with |x1| ≤ · · · ≤ |xs|. If f(x1) > f(x2)
then f(x1, P ) > f(x2, P ). Likewise, if f(xs−1) < f(xs) then f(xs−1, P ) <
f(xs, P ).

As a result, the (µ+1) EA never decreases its current best fitness and
finds at least one optimum in expected time O(µn log n).

Proof. We prove the first statement. The second statement will follow by
symmetry, swapping the meaning of zeros and ones. By definition of pheno-
typic fitness sharing,

f(x1, P ) =
f(x1)

µ+ 1− D1

n/2

and f(x2, P ) =
f(x2)

µ+ 1− D2

n/2

Since f(x1) > f(x2), it is sufficient to show that D1 > D2 to prove the
statement. This follows by definition of Dj since, according to how the
individuals are labelled, for all 3 ≤ i ≤ µ+1 if x1 shares fitness with xi then
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x2 also shares fitness with xi. It further holds that
∣∣|x1|−|xi|

∣∣ > ∣∣|x2|−|xi|
∣∣ as

|x1| < |x2| while
∣∣|x1|−|x1|

∣∣ = ∣∣|x2|−|x2|
∣∣ = 0 and

∣∣|x2|−|x1|
∣∣ = ∣∣|x1|−|x2|

∣∣.
The time bound follows from standard fitness level arguments: For an

individual x with f(x) = i, n/2 ≤ i ≤ n − 1, we have either |x| = i (if
|x| ≥ n/2) or |x| = n − i (if |x| ≤ n/2); see (1). We consider the case
|x| = i: To improve the fitness it suffices to flip one of the remaining i
1-bits and leave all other bits unchanged. The probability for this event is(
i
1

)
·1/n · (1−1/n)n−1 ≥ i/(en). Since the probability of selecting x as parent

is 1/µ, the probability for a fitness improvement during a generation is at
least i/(eµn). Since the waiting times are geometrically distributed, we get
an upper bound of

eµn
n−1∑
i=n/2

1

i
= O(µn log n)

for the expected number of fitness evaluations to increase the fitness from
n/2 to n. The case |x| = n− i is proven by considering the remaining i 0-bits
in the very same way.

The symmetry between f(x1, P ) vs. f(x2, P ) and f(xs−1, P ) vs. f(xs, P )
follows from swapping the meaning of zeros and ones. This also applies to
further statements, where for simplicity we omit symmetric statements.

The following Main Lemma gives sufficient and necessary conditions on
when the shared fitness of one individual is better than another.

Lemma 5 (Main Lemma). Let P = {x1, . . . , xs} with |x1| ≤ · · · ≤ |xs| and
fix 1 ≤ i ≤ s− 1. If f(xi)− f(xi+1) = |xi+1| − |xi| > 0 and |xs| − |x1| ≤ n/2,

f(xi+1, P ) ≥ f(xi, P ) ⇔ f(xi) · (2i− s) +Di ≥ s · n/2
⇔ f(xi+1) · (2i− s) +Di+1 ≥ s · n/2.

The same holds if all inequalities “≥” are replaced by strict inequalities “>”.
Moreover, for i = s− 1

f(xs, P ) > f(xs−1, P ) ⇔ |xs| >
s−1∑
i=1

|xi| −
n

2
· (s− 4).

Proof. Note that |xs| − |x1| ≤ n/2 implies that all pairs of individuals do
share fitness. We have

f(xi, P ) =
f(xi)

s− Di

n/2

.
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Comparing Di and Di+1, for the latter the distance to x1, . . . , xi−1 is
higher by |xi+1|−|xi|, and the distance to xi+2, . . . , xs is lower by |xi+1|−|xi|:

Di+1 = Di + (i− 1) · (|xi+1| − |xi|) + (s− i− 1) · (|xi| − |xi+1|)
= Di + (2i− s) · (|xi+1| − |xi|).

Using the shorthand h := |xi+1| − |xi|,

f(xi+1, P ) =
f(xi+1)

s− Di+1

n/2

=
f(xi)− h

s− Di+(2i−s)h
n/2

.

Now f(xi+1, P ) ≥ f(xi, P ) is equivalent to

f(xi)− h

s− Di+(2i−s)h
n/2

≥ f(xi)

s− Di

n/2

⇔ f(xi)− h

sn/2−Di − (2i− s)h
≥ f(xi)

sn/2−Di

⇔ (f(xi)− h) · (sn/2−Di) ≥ f(xi) · (sn/2−Di − (2i− s)h)

⇔ f(xi) · (2i− s)h+ h ·Di ≥ h · sn/2
⇔ f(xi) · (2i− s) +Di ≥ sn/2.

In the last step we used h > 0. The same calculations hold if “≥” is replaced
by “>” throughout. The second equivalence from the statement follows from

f(xi) · (2i− s) +Di = (f(xi+1) + h) · (2i− s) +Di+1 − h(2i− s)

= f(xi+1) · (2i− s) +Di+1.

13



The second statement follows by simply applying the first statement:

f(xs, P ) > f(xs−1, P )

⇔ f(xs)(2(s− 1)− s) +Ds > s · (n/2)

⇔ f(xs)(s− 2) + (s− 1)|xs| −
s−1∑
i=1

|xi| > s · n
2

⇔ (n− |xs|)(s− 2) + (s− 1)|xs| −
s−1∑
i=1

|xi| > s · n
2

⇔ n(s− 2) + |xs| −
s−1∑
i=1

|xi| > s · n
2

⇔ |xs| >
s−1∑
i=1

|xi| −
n

2
· (s− 4).

Lemma 5 implies the following structural insight: If the population is
located on one branch and the shared fitness values of two neighbouring (in
the number of 1-bits) search points compare favourably for the higher search
point, then the shared fitness strictly increases for all search points further
up the branch. More precisely, Lemma 5 gives a condition for the individual
of lowest raw fitness (i. e., xs) to be accepted by selection. Concerning the
(µ+1) EA, the condition clearly shows that for µ = 2 at least n/2 bits have
to flip (i. e., |x3| − |x2| ≥ n/2). On the other hand, for µ ≥ 3 offspring
with lower fitness values are accepted once the population is close enough to
the optimum 0n. This threshold is further away from the optimum as the
population size increases. If mutation was only allowed to flip one bit and
µ = 3, then it is necessary that both x1 and x2 reach the local optimum before
decreasing moves are accepted (i. e., |x1| + |x2| = 0). For µ = 4 the sum of
1-bits in the first 4 individuals can be up to |x1|+ |x2|+ |x3|+ |x4| ≤ n/2 for
any decreasing move to be accepted by the (µ+1) EA.

In general, the conditions from Lemma 5 are true for xs−1 and xs if

14



|xs−1| < n/2 and two individuals are in the optimum 0n as then

f(xs−1)(s− 2) +Ds−1 ≥ (n− |xs−1|)(s− 2) + (s− 2)|xs−1| −
s−2∑
i=1

|xi|

≥ n(s− 2)− (s− 4)|xs−1|
> n(s− 2)− (s− 4)n/2 = sn/2.

Lemma 6. If P = {x1, . . . xs}, |x1| ≤ · · · ≤ |xs|, with |xs−1| < n/2 and
|x1| = |x2| = 0 then f(xs−1, P )(s− 2) +Ds−1 > sn/2.

4. Population Size µ = 2 Is Not Enough

We first investigate the case of the (2+1) EA, showing that a population
size of µ = 2 is not sufficient to guarantee finding both optima. The following
lemma gives sufficient and necessary conditions for a single individual on a
branch to survive.

Lemma 7. Let µ = 2 and P = {x1, x2, x3} with |x1| < n/2 < |x2| ≤ |x3| and
|x3| − |x1| ≤ n/2. Let d1 := n/2− |x1| and d2 := |x2| − n/2, then

f(x1, P ) > f(x2, P ) ⇔

d2 <

(
3

2
+

7d1
n+ 6|x1|

)
· d1 +

(|x3| + |x2|)(f(x2)− f(x1))

n/2 + 3|x1|
.

For |x3| = |x2| the statement implies that x1 survives if the distance from
n/2 to x2 is less than around 3/2 times the distance from n/2 to x1. The
condition for survival sharpens when |x3| > |x2|; however, as x2 and x3 are
likely to result from a mutation of one another, |x3| − |x2| is bounded from
above by the number of bits flipped in that mutation.

Proof of Lemma 7. We use the shorthand xi for |xi|. The claim follows from
Lemma 4 if f(x1) > f(x2), hence we assume in the following that f(x1) ≤
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f(x2). Then

f(x2, P ) < f(x1, P )

⇔ x2

3− 2D2/n
<

n− x1

3− 2D1/n

⇔ x2(3n/2−D1) < (n− x1)(3n/2−D2)

⇔ x2(3n/2− (x2 − x1 + x3 − x1)) < (n− x1)(3n/2− (x2 − x1 + x3 − x2))

⇔ x2(3n/2 + 2x1 − x2 − x3) < (n− x1)(3n/2 + x1 − x3)

⇔ x2(3n/2 + 2x1 − x2) < (n− x1)(3n/2 + x1) − x3(n− x1 − x2)

⇔ x2(n/2 + 3x1) < (n− x1)(3n/2 + x1) − (x3 + x2)(n− x1 − x2)

⇔ x2(n/2 + 3x1) < (n− x1)(3n/2 + x1) + (x3 + x2)(f(x2)− f(x1))

and this is equivalent to

x2 <
(n− x1)(3n/2 + x1)

n/2 + 3x1

+
(x3 + x2)(f(x2)− f(x1))

n/2 + 3x1

.

The right-hand side terms can be simplified as follows.

(n− x1)(3n/2 + x1)

n/2 + 3x1

=
3n2 − x1n− 2x2

1

n+ 6x1

=
n

2
+

5n2/2− 4x1n− 2x2
1

n+ 6x1

=
n

2
+

6n(n/2− x1)− 2(n/2− x1)
2

n+ 6x1

=
n

2
+
(n
2
− x1

)
· 5n+ 2x1

n+ 6x1

=
n

2
+
(n
2
− x1

)
·
(
3

2
+

7(n/2− x1)

n+ 6x1

)
.

Together, f(x1, P ) > f(x2, P ) is equivalent to

x2 −
n

2
<

(
3

2
+

7(n/2− x1)

n+ 6x1

)
·
(n
2
− x1

)
+

(x3 + x2)(f(x2)− f(x1))

n/2 + 3x1

.

The following theorem states that with a probability greater than 1/2, the
(2+1) EA will end up with both individuals in the same optimum, leading to
an exponential running time from there. We remark that two independent
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runs of a (1+1) EA as well as a (2+1) EA with deterministic crowding are
more efficient as they both find both optima with probability exactly 1/2,
leading to expected runtimes of O(n log n) [7].

Theorem 8. The (2+1) EA with fitness sharing with probability 1/2+Ω(1)
will reach a population with both members in the same optimum, and then
the expected time for finding both optima from there is Ω(nn/2).

Proof. Using that 2−n
(
n
i

)
≤ 2−n

(
n

n/2

)
= Θ(1/

√
n) for any 0 ≤ i ≤ n, it is

easy to show that with probability 1−O(n1/3/
√
n) = 1−o(1) for both initial

search points x1, x2 we have |x1|, |x2| /∈ [n/2−n1/3, n/2+n1/3]. By symmetry,
with probability 1/2−o(1), x1 and x2 are on the same branch. Since at least
n1/3 bits would have to be flipped in one mutation, the probability of a
mutation jumping from one branch to the other is then at most 1/(n1/3!) =

2−Ω(n1/3 logn), and the probability of this happening in expected polynomial
time is still of the same order. This implies that w. o. p. no individuals on the
opposite branch will be created in polynomial time as long as no offspring of
decreasing fitness are ever accepted on the current branch. In the following
we prove by contradiction that such offspring are always rejected.

Assuming both search points and the offspring are all on the same branch,
w. l. o. g. the left branch, and labelling them by x1, x2, x3 with |x1| ≤ |x2| ≤
|x3|, by Lemma 5

f(x3, P ) ≥ f(x2, P ) ⇔ f(x2) +D2 ≥ 3 · n
2

(3)

where D2 = (|x2| − |x1|) + (|x3| − |x2|) = |x3| − |x1|. Then f(x2) + D2 =
n − |x2| + |x3| − |x1| ≤ n + |x3| − |x2|. This implies that (3) only holds if
|x3|−|x2| ≥ n/2, which is a contradiction since there are no points on the left
branch differing in more than n/2 one-bits. Hence, the claim that no offspring
on the left branch of worse fitness than x2 are ever accepted, is proved.
By Lemma 4, 0n will be reached in expected time O(n log n). In a further
expected 2 · (1 − 1/n)n = O(1) generations, the extended population will
contain a clone of 0n, and from then on any offspring x3 with 0 < |x3| ≤ n/2
will be rejected. Then the expected time to create an individual on the other
branch is Ω(nn/2) since at least n/2 bits need to flip.

The claimed probability 1/2+Ω(1) follows from considering the following
additional event, which is disjoint from the above. The algorithm also fails
if, using the notation from Lemma 7, 3

√
n/4 ≤ d2 ≤

√
n (probability at least
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0.02) and
√
n/3 ≥ d1 ≥ 0 (probability at least 0.21). If then in the first

generation a clone of x2 is generated (probability at least 1/2 · (1− 1/n)n >
1/8), we have(
3

2
+

7d1
n+ 6|x1|

)
·d1 +

(x3 + x2)(f(x2)− f(x1))

n/2 + 3x1

≤
√
n

3
·3
2
+O(1) <

3
√
n

4
≤ d2

if n is large enough. Now Lemma 7 implies f(x1, P ) < f(x2, P ) = f(x3, P ),
hence, x1 will be removed. Then we are in the same situation as when
initialising two individuals on the same branch.

However, there is still a constant probability that the (2+1) EA finds both
optima in polynomial expected time. This holds if the EA is initialised with
its two search points on different branches, and if these two search points
maintain similar fitness values throughout the run.

Theorem 9. The (2+1) EA with fitness sharing with probability Ω(1) will
find both optima in time O(n log n).

Since the proof of Theorem 9 is quite long, we first provide a sketch of
the proof. Let x1, x2 be the two initial search points and d1 := n/2−|x1| and
d2 := |x2| − n/2. With probability Ω(1), x1 and x2 are on opposite branches
and have similar fitness: (3/4)

√
n ≤ d1, d2 ≤

√
n.

Now, assume w. l. o. g. that when a new offspring is created and the
population contains x1, x2, x3 in order of their numbers of ones, that x2 and x3

are on the same branch. If f(x1) > f(x2), Lemma 4 implies that f(x1, P ) >
f(x2, P ) and f(x2, P ) < f(x3, P ) if |x3| > |x2|. Then x1 is guaranteed to
survive.

Now assume f(x1) ≤ f(x2). It is easy to derive from Lemma 7 and
further arguments using |x3| − |x1| > n/2 that f(x1, P ) > f(x2, P ) follows
if d1 ≥ (2/3) · d2. Intuitively, this means that if x1 and x2 have a similar
fitness—d1 and d2 being within a factor of 2/3—then x1 is guaranteed to
survive.

We then define a potential function that indicates a distance to a pop-
ulation where the lower-fitness individual is at risk of dying. For a current
population P = {x1, x2} define

g(P ) := min{d1, d2} − (2/3) ·max{d1, d2}.

This ensures that g(P ) ≥ 0 ⇒ f(x1, P ) > f(x2, P ). The potential of the
initial population P0 is comfortably large: g(P0) ≥

√
n/12. If d1 ≤ d2−k for
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some k ∈ N, the potential increases by k if d1 increases by k. However, the
potential only decreases by (2/3)k if d2 increases by k. Moreover, increasing
d1 is easier than increasing d2 as the former contains more “incorrect” bits
(cf. Lemma 13 in [28]). This shows that, whenever the potential changes, it
increases in expectation by 1/3.

A straightforward application of the simplified drift theorem [29, 30]
shows that with overwhelming probability the potential never decreases be-
low

√
n/24 in 2Ω(

√
n) steps. So, with overwhelming probability x1 survives

until both optima are reached.
These arguments are made rigorous in the following proof.

Proof of Theorem 9. Let x1, x2 be the two initial search points and define
d1 := n/2 − |x1| and d2 := |x2| − n/2. Assume for simplicity that

√
n is a

multiple of 4. We claim that with probability Ω(1) we have

3

4

√
n ≤ d1, d2 ≤

√
n, (4)

i. e., x1 and x2 are on opposite branches and have similar fitness. The prob-
ability of these inequalities holding for x1 is

2−n

√
n∑

d=3/4·
√
n

(
n

n/2− d

)
≥

√
n

4 · 2n
·
(

n

n/2−
√
n

)
= Ω(1)

where the last step follows from bounding the binomial coefficient from below
by Ω(2n/

√
n) [31, Lemma 8]. By symmetry, the same holds for d2 and hence

the probability of (4) is Ω(1) · Ω(1) = Ω(1).
Now, assume w. l. o. g. that when a new offspring is created and the pop-

ulation contains x1, x2, x3 in order of their numbers of ones, that x2 and x3

are on the same branch. The case where x1 and x2 are on the same branch
is symmetric.

If f(x1) > f(x2), Lemma 4 implies that f(x1, P ) > f(x2, P ) and f(x2, P ) <
f(x3, P ) if |x3| > |x2|. Then x1 is guaranteed to survive.

In the following we assume f(x1) ≤ f(x2). The probability of flipping at
least

√
n/6 bits in one mutation is at most 1/(

√
n/(6))! = 2−Ω(

√
n logn) and

the probability that this happens in expected polynomial time is still of the
same order. So in the following we work under the assumption that such a
mutation does not happen.
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For |x3| − |x1| ≤ n/2 we know from Lemma 7 that f(x1, P ) > f(x2, P )
follows if

d2 <

(
3

2
+

7d1
n+ 6|x1|

)
· d1 +

(|x3| + |x2|)(f(x2)− f(x1))

n/2 + 3|x1|

which is implied by
d2 ≤

3

2
· d1

or, equivalently,
d1 ≥

2

3
· d2. (5)

The same holds for |x3| − |x1| > n/2 as then d1 + d2 +
√
n/6 > n/2, along

with d1 ≥ 2
3
· d2, implies

d1 =
2

5
· d1 +

3

5
· d1 ≥

2

5
· d1 +

2

5
· d2 >

2

5
·
(
n

2
−

√
n

6

)
,

hence f(x1) = n/2+ d1 = 7/10 ·n−O(
√
n). The shared fitness of x1 is thus,

using D1 = n/2 + |x2| − |x1| ≥ n−
√
n/6,

f(x1, P ) =
f(x1)

3− n−
√
n/6

n/2

=
f(x1)

1 + 1
3
√
n

=
7

10
· n−O(

√
n).

The shared fitness of x2 is smaller, for n large enough, even in the best case
where x2 does not share with x1 and |x3| = n:

f(x2, P ) ≤ f(x2)

3− n/2+n−|x2|
n/2

=
f(x2)

2− n−|x2|
n/2

=
n

2
< f(x1, P ).

This establishes (5) as sufficient condition for the survival of x1, regardless
of whether |x3| − |x1| ≤ n/2.

For a current population P = {x1, x2} define a potential

g(P ) := min{d1, d2} −
2

3
·max{d1, d2}. (6)

Intuitively, the potential indicates a distance to a population where the lower-
fitness individual is at risk of dying. For d1 ≤ d2 we have

g(P ) ≥ 0 ⇔ d1 ≥
2

3
· d2 ⇒ f(x1, P ) > f(x2, P ).
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using Lemma 7. Now we show that the potential with high probability never
decreases to 0, which implies that x1 survives until both optima are reached
eventually.

For the initial population P0 we have g(P0) ≥ (3/4)
√
n − (2/3)

√
n ≥√

n/12.
Assume again w. l. o. g. that d1 ≤ d2. We claim that while g(P ) ≤

√
n/12,

there is a positive drift towards higher potential values. Note that g(P ) ≤√
n/12 implies

d2 − d1 ≥
d2
3

−
√
n

12
≥ 3

√
n

12
−

√
n

12
=

√
n

6
.

As we do not allow jumps of this length, if d1 < d2 then the same will hold
for the distances in the next generation. In other words, the roles of d1 and
d2 in the min and max terms of (6) do not change.

If Pt is the current population at generation t, and Pt+1 = {x′
1, x

′
2} then

E (g(Pt+1)− g(Pt) | Pt)

=
∞∑
d=1

d · Prob (|x′
1| = |x1| − d)−

∞∑
d=1

2d

3
· Prob (|x′

2| = |x2|+ d) .

Finding an improvement by d is easier for x1 than for x2 as the former
contains more ‘incorrect’ bits. Formally, Lemma 13 in [28] along with the
symmetry of TwoMax implies that

Prob (|x′
1| = |x1| − d) ≥ Prob (|x′

2| = |x2|+ d) .

So we get

E (g(Pt+1)− g(Pt) | Pt)

≥
∞∑
d=1

d · Prob (|x′
1| = |x1| − d)−

∞∑
d=1

2d

3
· Prob (|x′

1| = |x1| − d)

=
1

3
· Prob (|x′

1| < |x1|)

≥ (1/3) · |x1|
2en

as the probability of selecting x1 as parent and increasing its number of zeros
is at least |x1|/(2en). Now, if |x1| ≤ n/6 then d1 ≥ (2/3) · n/2 and (5) is
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always true. Hence, we can assume |x1| ≥ n/6 and get

E (g(Pt+1)− g(Pt) | Pt) ≥
1

36e
.

Using the simplified drift theorem [29, 30], we see that for a :=
√
n/24 and

b :=
√
n/12 the first condition is satisfied for ε := 1/6. The second condition

on jump lengths follows by standard arguments: for all d ∈ N

Prob (|x′
2| = |x2|+ d) ≤ Prob (|x′

1| = |x1| − d) ≤ 1

d!
≤ 2

2d
.

This shows that with probability 2−Ω(
√
n) the potential never decreases below√

n/24 in 2Ω(
√
n) steps.

If individuals on both branches survive, by standard arguments (cf. The-
orem 4 in [7]) both optima will be reached in expected time cn log n for some
constant c > 0. By Markov’s inequality, the probability of not having done
so after c′ · cn log n generations is at most 1/c′. Choosing c′ large enough and
taking into account all failure probabilities, the (2+1) EA finds both optima
in time O(n log n) with probability Ω(1).

5. Population Size µ ≥ 3 Always Finds Both Optima

A population of size µ = 2 may fail, but we show that a (µ+1) EA with fit-
ness sharing and µ ≥ 3 always finds both optima in expected time O(µn log n).

The following lemma is an extension of the Main Lemma (Lemma 5) to
the case where an individual xµ+1 is on the other branch compared to the
rest of the population. In particular, a stronger condition is given such that
xµ+1 will survive selection when f(xµ) > f(xµ+1). The proof is similar to the
one for the Main Lemma.

Lemma 10. Let |xµ| < n/2, |xµ+1| > n/2 and f(xµ) > f(xµ+1). Also let
dµ := n/2− |xµ| and dµ+1 := |xµ+1| − n/2. Then

f(xµ) · (µ− 1) · dµ
dµ − dµ+1

+Dµ ≥ (µ+ 1) · n
2
⇒ f(xµ+1, P ) ≥ f(xµ, P ).

Proof. By considering that, for all 1 ≤ i ≤ µ− 1, the summands of Dµ+1 are
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bounded as

min(
∣∣|xµ+1| − |xi|

∣∣, n/2) ≥ min(
∣∣n/2− |xi|

∣∣, n/2)
= n/2− |xi|
= dµ + |xµ| − |xi|
= dµ +min(

∣∣|xµ| − |xi|
∣∣, n/2)

we bound Dµ+1 as follows:

Dµ+1 ≥ Dµ + (µ− 1) · dµ

Hence, given that f(xµ+1) = f(xµ)− dµ + dµ+1, we get

f(xµ+1, P ) =
f(xµ+1)

µ+ 1− Dµ+1

n/2

≥ f(xµ)− dµ + dµ+1

(µ+ 1)− Dµ+(µ−1)(|xµ+1|−|xµ|)−(µ−1)dµ+1

n/2

Now f(xµ+1, P ) ≥ f(xµ, P ) is implied by

f(xµ)− dµ + dµ+1

(µ+ 1)− Dµ+(µ−1)(|xµ+1|−|xµ|)−(µ−1)dµ+1

n/2

≥ f(xµ)

µ+ 1− Dµ

n/2

.

This is equivalent to(
f(xµ)− dµ + dµ+1

)(
(n/2)(µ+ 1)−Dµ

)
≥ f(xµ)

(
(n/2)(µ+ 1)−Dµ − (µ− 1)(|xµ+1| − |xµ|) + (µ− 1)dµ+1

)
⇔ f(xµ)(µ− 1)((|xµ+1| − |xµ|)− dµ+1) ≥ (dµ − dµ+1)

(
(µ+ 1)(n/2)−Dµ

)
⇔ f(xµ)(µ− 1)dµ + (dµ − dµ+1)Dµ ≥ (dµ − dµ+1)(µ+ 1)(n/2).

In the last equivalence we used that |xµ+1| − |xµ| = dµ+1 + dµ.
Since dµ > dµ+1, the inequality is equivalent to

f(xµ)(µ− 1)
dµ

dµ − dµ+1

+Dµ ≥ (µ+ 1) · n
2

.

The following lemma states that if there is a bounded number r of indi-
viduals in one optimum then they will have better shared fitness than the
next sub-optimal individual. This implies that r such individuals survive in
the (µ+1) EA; the same holds if there are more than r such individuals in
the extended population as only one individual is being removed.
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Lemma 11. Let P = {x1, . . . , xs} with |x1| ≤ · · · ≤ |xs|. Assume |x1| =
· · · = |xr| = 0 < |xr+1| and |xs| < n. If r ≤ 2 or if both |xr+1| ≥ n/2 and r ≤
s/2, then for all 1 ≤ i ≤ r we have f(x1, P ) = · · · = f(xr, P ) > f(xr+1, P ).
In particular, if the current population of the (µ+1) EA contains at least two
individuals 0n, two such individuals always survive.

Proof. As f(x1, P ) = · · · = f(xr, P ), we only need to show the claim for
i = 1.

If |xr+1| < n/2, we assume pessimistically that xr+1 shares fitness with
the same individuals as x1, . . . , xr, namely x1, . . . , xℓ for some ℓ ≥ r + 1.
Then we have

D1 = |xr+1|+
ℓ∑

j=r+2

(|xj| − |x1|) + (s− ℓ) · n
2

(7)

hence

Dr+1 = r|xr+1|+
ℓ∑

j=r+2

(|xj| − |xr+1|) + (s− ℓ) · n
2

= D1 + |xr+1|(2r − ℓ).

Now the claim follows from

n(sn/2−Dr+1) > (n− |xr+1|)(sn/2−D1)

⇐ n(sn/2−D1 − |xr+1|(2r − ℓ)) > (n− |xr+1|)(sn/2−D1)

⇔ n|xr+1|(2r − ℓ) < |xr+1|(sn/2−D1)

⇔ n(2r − ℓ) +D1 < sn/2.

From (7) we see that D1 − nℓ is largest for ℓ = r + 1, in which case

n(2r − ℓ) +D1 = n(r − 1) + |xr+1|+ (s− r − 1) · n/2
< nr/2− n+ sn/2 ≤ sn/2

if r ≤ 2. If |xr+1| ≥ n/2 we have f(x1, P ) = n/r and

Dr+1 ≤ rn/2 + (s− r − 1) · (n− |xr+1|),

leading to

f(xr+1, P ) ≤ xr+1

s− r − (s− r − 1) · (n− |xr+1|) · 2/n
.
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The above term is strictly increasing with xr+1, hence along with xr+1 < n
we have

f(xr+1, P ) <
n

s− r
≤ n

r
= f(x1, P ).

With these lemmas we are ready to prove the main result of this section.

Theorem 12. Let µ ≥ 3. The (µ+1) EA with fitness sharing will find both
optima of TwoMax with probability 1 in expected time O(µn log n).

Proof. By Lemma 4, in expected time O(µn log n) one of the two optima is
found. W. l. o. g. we assume the 0n optimum is found. In expected time O(µ)
a clone of 0n is created (i. e., |x2| = 0) and by Lemma 11 x1 and x2 (or clones
thereof) will survive for the rest of the run.

We show that then the individual with the largest number of ones, xµ+1

(or a clone thereof), will always survive. If |xµ| = |xµ+1| then xµ+1 or a clone
survive. If n/2 ≤ |xµ| < |xµ+1| then f(xµ+1) > f(xµ) and the claim follows
from Lemma 4. If |xµ| < n/2 then Lemma 6 implies f(xs−1)(s− 2)+Ds−1 >
sn/2 (where s = µ+1). If |xµ+1| ≤ n/2, by the Main Lemma this condition is
equivalent to f(xµ+1, P ) > f(xµ, P ). Otherwise, the same conclusion follows
from Lemma 10 as dµ/(dµ − dµ+1) > 1. So, in all cases xµ+1 survives.

The expected time for xµ+1 reaching 1n is again O(µn log n) and can be
proven in the same way we proved the time bound in Lemma 4.

Our analysis has revealed two very different behaviours. It is possible
that the whole population climbs up one branch. But once a sufficiently large
overall fitness value has been obtained – at the latest when two individuals
have found an optimum – then the population expands towards lower fitness
values as then the individuals with the smallest and the largest numbers of
1-bits always survive.

6. Too Large Offspring Population Sizes

Fitness sharing works for the (µ+1) EA, but for larger offspring pop-
ulations it can have undesirable effects: if a cluster of individuals creates
too many offspring, sharing decreases the shared fitness of all individuals in
the cluster, and the cluster may go extinct. We consider this problem of
overpopulation for µ = 2 and λ ≥ µ with λ = O(1). In this setting we
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cannot guarantee convergence to populations with both optima any more,
i. e., depending on λ we can lose one or even both optima.

Assume that all individuals are in the same optimum. With probability
Ω(1), we create λ− 1 copies and one point with distance 1 to the optimum.
Then, f(x1, P ) = . . . = f(xλ+1, P ) = n/((λ + 2) − 2/n) and f(xλ+2, P ) =
(n − 1)/((λ + 2) − (λ + 1) · 2/n). We see that f(xi, P ) < f(xλ+2, P ) for all
i ∈ {1, . . . , λ + 1} and λ ≥ 2. Thus, selection picks xλ+2 and one of the
optimal points.

Following the same argumentation, we lose both optima if λ ≥ 6: If
mutation creates λ−2 copies and two points with distance 1 to the optimum
(also with probability Ω(1)), we have

f(x1, P ) = . . . = f(xλ, P ) =
n

λ+ 2− 2 · 2/n

<
n− 1

λ+ 2− λ · 2/n
= f(xλ+1, P ) = f(xλ+2, P )

for λ ≥ 6.
In exactly the same way we show that both optima are lost with probabil-

ity Ω(1) if λ ≥ 6 even if they are on different branches, i. e., we create ⌊λ/2⌋
offspring on the left branch and ⌈λ/2⌉ on the right branch where exactly one
offspring on each branch has distance 1 to the optimum and the remaining
offspring are copies.

Offspring populations can also decrease diversity in the following way.

Lemma 13. With probability 1− o(1), the (2 + λ) EA with fitness sharing,
λ ≥ 2 and λ = O(1) will, at some point of time before an optimum is reached,
obtain a population with both members on the same branch.

The following proof mainly uses that in a single iteration with probability
Ω(1) only copies of x1 and x2 are created. We then show that if f(x1) ̸= f(x2)
and if we have a surplus of offspring on the branch with smaller fitness (also
probability Ω(1)), this branch goes extinct. If f(x1) = f(x2) in iteration
t we have f(x1) ̸= f(x2) in iteration t + 1 with probability Ω(1) and if
f(x1) ̸= f(x2) in iteration t we still have f(x1) ̸= f(x2) in iteration t+1 with
probability Ω(1). Thus, with probability 1− 2−Ω(n) there are Ω(n) iterations
with f(x1) ̸= f(x2) before an optimum is reached and consequently, with
probability 1− 2−Ω(n), one branch will take over the whole population before
an optimum is reached.
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Proof. Let x1, x2 be the individuals of the current population. As in Theo-
rem 8 with probability 1 − o(1) we have |x1|, |x2| /∈ [n/2 − n1/3, n/2 + n1/3]
after initialisation and thus, the probability to create an offspring on the
other branch is 2−Ω(n1/3 logn) = o(1).

Furthermore, with probability 1− 2−Ω(n), f(x1), f(x2) ≤ (1/2 + ε)n, 0 <
ε < 1/2 constant, holds for the first Ω(n) many iterations: After initialisation
we have f(x1), f(x2) ≤ (1/2 + ε′)n, 0 < ε′ < ε a sufficiently small constant,
with probability 1− 2−Ω(n). In order to gain a progress of (ε− ε′) · n at least
(ε − ε′) · n many bits have to flip. Due to Chernoff bounds, the probability
to achieve this in o(n) many iterations is 2−Ω(n).

Assuming that we have two individuals on different branches after ini-
tialisation (otherwise there is nothing to prove), we now show that with
probability 1− 2−Ω(n) we will lose the individual on one of the two branches
before an optimum is reached.

We use that with probability Ω(1) only copies of x1 and x2 are created in
an iteration. Thus, all individuals on the same branch have the same fitness
value. Let xL, xR denote an individual on the left and right branch, and
δL, δR the number of offspring on the left and right branch, respectively. Let
di,j = min{n/2,

∣∣|xi|−|xj|
∣∣}. We observe that dL,R is the same for all pairs of

xL and xR and dL,L = dR,R = 0. Moreover, DL = δR ·dL,R and DR = δL ·dL,R.
We observe that δL = δR = λ/2 holds with probability Ω(1) if λ is even.

If λ is odd, we have δL = ⌊λ/2⌋ and δR = ⌈λ/2⌉ with probability Ω(1).
We first consider the case f(xL) ̸= f(xR), w. l. o. g. f(xL) > f(xR). If λ is

even, the above observation implies DL = DR and thus, f(xL, P ) > f(xR, P ).
For odd λ we conclude DL > DR and thus, f(xL, P ) > f(xR, P ). Hence, only
individuals on the left branch survive with probability Ω(1) since µ ≤ δL+1.

Now consider f(x1) = f(x2) = k. For odd λ we use exactly the same
argument as above: the branch with ⌈λ/2⌉ offspring has lower shared fitness
and thus, only individuals on the other (i. e., the left) branch survive. For
even λ we need to be more careful since from the above argumentation we
can only conclude f(xL, P ) = f(xR, P ) and we pessimistically assume that
we select individuals on two different branches in this case. However, we
see that a successful mutation occurs with probability at least

(
n−k
1

)
· (1/n) ·

(1− 1/n)n−1 ≥ (n− k)/(en). This is Ω(1) as long as k = Ω(n). Thus, with
probability Ω(1) we create λ − 1 copies and one improved offspring. Since
the offspring has larger shared fitness, we have f(xL) ̸= f(xR) in the next
iteration.

In summary: If f(x1) = f(x2) in iteration t we have f(x1) ̸= f(x2) in
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iteration t + 1 with probability Ω(1). If f(x1) ̸= f(x2) in iteration t we still
have f(x1) ̸= f(x2) in iteration t+1 with probability Ω(1) (since it suffices to
only create copies of x1 and x2). We conclude that with probability 1−2−Ω(n)

there are Ω(n) iterations with f(x1) ̸= f(x2) before an optimum is reached.
Since in this situation with probability Ω(1) one branch will take over the
whole population, this happens with probability 1−2−Ω(n) before an optimum
is reached.

In order to show that the (2 + λ) EA also reaches a population with
both members in the same optimum we additionally need to show that the
population will not be stuck somewhere on the branch and that individuals
cannot traverse back to the other branch. We consider this for the special
case of λ = 2.

Theorem 14. With probability 1− o(1), the (2 + 2) EA with fitness sharing
will, at some point of time, reach a population with both members in the same
optimum. The expected time for finding both optima from there is Ω

(
nn/2

)
.

Proof. Assume that both individuals are on the same branch. This happens
with probability 1− o(1) before an optimum is reached (see Lemma 13).

The extended population of the (2 + 2) EA has 4 individuals. We apply
Lemma 5 and see that f(x3, P ) ≥ f(x2, P ) ⇔ D2 ≥ 2n where D2 = d2,1 +
d2,3 + d2,4 since d2,2 = 0. Since all individuals are on the same branch di,j ≤
n/2. This implies that D2 ≤ 3n/2 and thus, f(x3, P ) < f(x2, P ).

We first show that a current best individual is never lost. If there
is a single best individual in the population, this will never be lost since
f(x1, P ) > f(x2, P ) > f(x3, P ) (Lemma 4 and 5 as discussed above). If
there are 3 or 4 best individuals, we are guaranteed to select at least one of
them for the next generation since µ = 2. In case there are 2 best individu-
als, we again use the above argumentation to prove that f(x3, P ) < f(x2, P ).
Thus, we are guaranteed to select at least one of the two best individuals for
the next generation.

Since due to the above argumentation we never lose a single best individ-
ual, a single improved offspring of a best individual will always be accepted.
Thus, we will reach a population with both members in the same optimum.

The claim about the expected time to find both optima follows as in
Theorem 8.
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µ\λ 1 2 3 4 5 6 7 8 9 10 11 12

2 23 0 0 0 0 0 0 0 0 0 0 0
3 100 27.7 0 0 0 0 0 0 0 0 0 0
4 100 60.2 32 0 0 0 0 0 0 0 0 0
5 100 79.3 64.4 2.5 0 0 0 0 0 0 0 0
6 100 100 82.4 68.7 26.1 0 0 0 0 0 0 0
7 100 100 93.6 86.1 76.8 15.6 0 0 0 0 0 0
8 100 100 100 92.6 87.4 81.6 6.4 0 0 0 0 0
9 100 100 100 99.6 95.7 89.4 82.8 3.9 0 0 0 0
10 100 100 100 100 97.2 95.7 91.8 84.3 3.2 0 0 0
11 100 100 100 100 100 98 94.5 92.9 80.5 2 0.1 0
12 100 100 100 100 100 99 97.8 97.2 94.5 73.8 2.9 0

Table 1: Success rates as percentages of the (µ+λ) EA with phenotypic fitness sharing
on TwoMax in 1000 runs, stopped after 100000 generations, and once both optima were
found.

7. Experiments for Phenotypic and Genotypic Fitness Sharing

We first present a set of experiments, shown in Table 1, where we ran
(µ+λ) EAs for n = 100 bits and varying values of 2 ≤ µ ≤ 12 and 1 ≤ λ ≤ 12.
We recorded the success rate as the number of runs where both optima were
found within 100000 generations. The table shows a clear distinction between
efficient and inefficient behaviour: for λ < ⌊µ/2⌋ runs were always successful,
whereas runs for λ ≥ µ always failed (except for one run with λ = µ = 11).

We further ran experiments to test the performance of genotypic fitness
sharing, that is, repeating the above experiments but using Hamming dis-
tance as distance measure in the (µ+λ) EAs. Table 2 shows the resulting
success rates with sharing radius σ = n/2 to match the setting from Ta-
ble 1. Apart from the (2+1) EA, (3+1) EA, and (4+1) EA, all algorithms
were unable to find both peaks. The reason could be that the sharing radius
needs to be chosen differently. With σ = n/2, since two uniform random
individuals will have Hamming distance n/2 in expectation, this means that
any two initial individuals will either not share fitness, or share so little that
the effect of fitness sharing is negligible.

Table 3 shows success rates when repeating the experiment with a sharing
radius of σ = n, where all individuals always share fitness. One can see that
the success rates show a similar pattern compared to Table 1 for phenotypic
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µ\λ 1 2 3 4 5 6 7 8 9 10 11 12

2 56 0 0 0 0 0 0 0 0 0 0 0
3 76 0 0 0 0 0 0 0 0 0 0 0
4 5 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Success rates as percentages of the (µ+λ) EA with genotypic fitness sharing
and σ = n/2 on TwoMax in 100 runs, stopped after 100000 generations, and once both
optima were found.

sharing, albeit numbers are generally smaller. For the (µ+1) EA success
rates seem to converge to 1 with increasing µ, but a few runs still fail. We
suspect that this is due to few runs that are initialised with all individuals
on one branch.

To test this, we also ran experiments for a modified, favourable initiali-
sation where we drew µ individuals independently and uniformly at random,
and then checked whether the population contains at least one individual
with n/2 +

√
n ones and at least one individual with at least n/2 +

√
n

zeros. If this was not the case, the population was discarded and µ new
individuals were drawn independently and uniformly at random. The term
n/2 +

√
n was chosen such that two individuals are firmly placed on their

respective branches, from which mutations to the other branch are unlikely.
We note without giving a formal proof that the probability of having at
least n/2 +

√
n ones is bounded from below by a positive constant c > 0

and hence the probability of initialising a population as described is at least
1− 2(1− c)λ = 1− 2−Ω(λ). This means that for λ not too small, only a small
fraction of initial populations is discarded. Table 4 shows that when unlucky
initialisations are excluded, success rates of 100% are achieved for small λ.
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µ\λ 1 2 3 4 5 6 7 8 9 10 11 12

2 48 0 0 0 0 0 0 0 0 0 0 0
3 71 38 0 0 0 0 0 0 0 0 0 0
4 81 50 28 0 0 0 0 0 0 0 0 0
5 90 65 48 21 0 0 0 0 0 0 0 0
6 95 67 64 47 18 0 0 0 0 0 0 0
7 94 78 63 53 34 21 0 0 0 0 0 0
8 97 83 69 63 60 40 20 0 0 0 0 0
9 95 86 80 79 63 44 41 20 1 0 0 0
10 100 92 77 69 52 54 49 40 19 5 0 0
11 98 93 88 83 73 68 60 49 31 12 3 0
12 99 98 97 87 85 64 62 64 45 38 18 5

Table 3: Success rates as percentages of the (µ+λ) EA with genotypic fitness sharing and
σ = n on TwoMax in 100 runs, stopped after 100000 generations, and once both optima
were found.

µ\λ 1 2 3 4 5 6 7 8 9 10 11 12

2 100 0 0 0 0 0 0 0 0 0 0 0
3 100 89 0 0 0 0 0 0 0 0 0 0
4 100 99 67 0 0 0 0 0 0 0 0 0
5 100 96 85 55 0 0 0 0 0 0 0 0
6 100 100 94 78 43 0 0 0 0 0 0 0
7 100 100 98 89 73 35 0 0 0 0 0 0
8 100 100 99 92 83 63 31 0 0 0 0 0
9 100 100 100 99 89 8 54 24 2 0 0 0
10 100 100 100 99 94 79 68 57 35 0 0 0
11 100 100 100 99 96 86 8 67 46 27 3 0
12 100 100 100 100 98 93 88 75 66 48 41 2

Table 4: Success rates as percentages of the (µ+λ) EA with genotypic fitness sharing
and σ = n on TwoMax in 100 runs, stopped after 100000 generations, and once both
optima were found. Here all runs were initialised using rejection sampling that the initial
population contains at least one individual with at least n/2 +

√
n ones and at least one

individual with at least n/2 +
√
n zeros.
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8. Conclusions

This work sheds light on advantages and disadvantages of fitness sharing
in multimodal optimisation, particularly in the context of a multi-local per-
spective where we are interested in locating different global or local optima.
To allow for easy comparison with previous work, we used a common ana-
lytical framework (i. e., (µ+λ) EA) and example problem (i. e., TwoMax).

Our main contribution is the rigorous theoretical analysis of the con-
ventional fitness sharing mechanism which selects individuals based on their
shared fitness (rather than performing selection on a level of populations as
done in previous theoretical work) when phenotypic sharing is used. We con-
centrated on the influence of the population sizes µ and λ as crucial parame-
ters. Regarding the parent population, our analyses show that a population
size µ of at least 3 is required to guarantee finding both optima of TwoMax
in polynomial time. We also prove that large offspring population sizes λ
can cause overpopulation which results in the extinction of whole clusters of
search points. The latter results are accompanied by experiments suggesting
that the (µ+1) EA is successful if λ < ⌊µ/2⌋ and that it almost always fails
for λ ≥ µ. These findings highlight the risks of using fitness sharing with
inappropriate parameters and highlight the need for a better understanding
of algorithm parameters. We concluded the paper with an empirical anal-
ysis of the genotypic sharing that has to be used when no problem specific
knowledge is available. The experiments indicate that similar conclusions on
algorithmic performance may be made when the Hamming distance is used.
We leave rigorous theoretical proofs of this as an open problem for future
work.

In the future it would also be interesting to extend the analyses of fit-
ness sharing and other diversity mechanisms to problems beyond TwoMax.
Promising candidates for such work are the set of theory-affine multimodal
benchmark functions introduced in [32] or dynamic problems.
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