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Ideal wet two-dimensional foams and emulsions
with finite contact angle†

S. J. Cox, *a A. M. Kraynik,bc D. Weairec and S. Hutzler c

We present simulations that show that the equilibrium structure of an ideal two-dimensional foam with

a finite contact angle develops an inhomogeneity for high liquid fraction f. In liquid–liquid emulsions

this inhomogeneity is known as flocculation. In the case of an ordered foam this requires a perturbation,

but in a disordered foam inhomogeneity grows steadily and spontaneously with f, as demonstrated in

our simulations performed with the Surface Evolver.

1. Introduction

In emulsions, the term flocculation refers to the (spontaneous)
clustering of droplets, leading to the formation of density
inhomogeneities. Here we describe the onset of flocculation
in computer simulations of two-dimensional (2D) liquid foams.
This only occurs in systems where the liquid–gas interfaces
meet at a finite contact angle y, as illustrated in Fig. 1(b).
Previous simulations of 2D foams with finite liquid fraction f
have taken this contact angle to be zero1 or, where that was not
feasible for numerical reasons, as small as possible.2 We treat
both liquid and gas as incompressible, since the pressure
differences between bubbles are much smaller than atmo-
spheric pressure, and so the results apply equally to emulsions.

Two-dimensional foams have properties that are broadly
similar to their three-dimensional counterparts, but are much
simpler to analyse. Their study has early antecedents,3 and
continues to be of interest today. The usual theoretical model is
entirely two-dimensional, while the third dimension may be
significant in relevant experimental systems, such as a foam
trapped between two plates.3,4

A simulated example of an ideal 2D foam with finite liquid
fraction f and finite contact angle y is shown in Fig. 1(a). It was
produced by the method described in Appendix A, which
minimizes the surface energy of the foam. The gas bubbles
are surrounded by a network of smoothly-curved thin films
connecting the liquid-filled Plateau borders, which each have
three or more sides. There are therefore two types of interface:

liquid–gas interfaces around each Plateau border, and gas–
liquid–gas interfaces forming the bubble–bubble contacts. On
each of the interfaces the Laplace–Young law relates the
product of interfacial tension and curvature to the pressure
difference across the interface,5,6 and consequently liquid films
are represented by arcs of circles that meet at the vertices of
Plateau borders. The films are considered to be infinitesimally
thin, so all of the liquid in the foam is considered to be
contained in the Plateau borders.

A finite contact angle implies that the interfacial tension
associated with the bubble–bubble interfaces is less than twice
that associated with the Plateau borders (see Fig. 1b). Note that
throughout this paper ‘‘interfacial tension’’ is used for what is
really a line tension (or energy per unit line length) in such an
idealised 2D model. The contact angle y is given by

y ¼ cos�1
gf
2g

� �
; (1)

Fig. 1 (a) Typical simulation of a two-dimensional foam with liquid
fraction f = 0.1 and contact angle y = 9.51. The image shows part of an
equilibrated foam of 1500 bubbles. (b) Close-up of a four-sided Plateau
border, showing the contact angle y. The vectors represent the forces, due
to interfacial tension, acting on the point of contact.
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where gf is the interfacial tension of a liquid film; this is equal to or
smaller than twice the (bulk) interfacial tension g associated with
the gas–liquid interfaces of a Plateau border.7 More precisely,
writing c for the film thickness, the film tension is given by

gf = 2g + V(c), (2)

where V(c) is an effective interface potential. V can estimated
from DLVO theory: it is negative and its derivative is equal to
minus the disjoining pressure.8 The surface energy of the foam
is the sum of the lengths of all interfaces, multiplied by their
appropriate interfacial tension.

For bubbles immersed in a liquid, the presence of finite
contact angles entails net attractive forces between them (see
Fig. 2) when they are only slightly compressed together. This is
similar to the attraction between droplets, when considering
emulsions.9

In the present paper we address some basic consequences
of introducing finite contact angles into the standard model
of 2D foams, by analysing simulations carried out with the
Surface Evolver software of Ken Brakke.10 We will see that finite
contact angles, even if apparently very small, can have large
effects.

Henry Princen introduced the concept of a contact angle
between a thin liquid film and its adjacent Plateau border11

and he established its physical significance in foams and
emulsions by analysing 2D ordered (hexagonal) monodisperse
structures,7 which admit analytical solutions. The Surface
Evolver and current computational resources enable the simulation
of disordered foams, which is the usual practical case of interest.
Princen’s work was stimulated by his own measurements of contact
angles for soap films in contact with bulk solution.12 He found that
finite contact angles up to 171 could be achieved in surfactant (SDS)
solutions at sufficiently high concentrations of added electrolytes.
More recently, contact angles up to 301 have been found in
emulsions.13

We shall begin in Section 2 by recapitulating Princen’s
2D model of an ordered foam, which gave a number of exact
results. This turns out to be instructive when discussing our
own results from simulations of disordered polydisperse
foams, which are described in Section 3. We summarize our
conclusions in Section 4.

2. Ordered hexagonal foams

Even the apparently trivial case of an ordered 2D foam proves to
present some challenges to detailed understanding, so we shall
examine it carefully.

Monodisperse 2D bubbles are arranged in equilibrium on
an hexagonal lattice (Fig. 3). Princen7 showed that the liquid
fraction fy

0 of such a packing at zero compression, which
corresponds to zero osmotic pressure7,14,15 and minimal surface
energy,7 is given by

fy
0 ¼ 1� p� 6yþ 3 sinð2yÞ

2
ffiffiffi
3
p

cos2 y
: (3)

In the case of a zero contact angle (y = 0), fy
0 reduces to the

familiar value

f0 :¼ fy¼0
0 ¼ 1� p

.
2
ffiffiffi
3
p� �

’ 0:093; (4)

which is the liquid fraction of a hexagonal close packing of
circular bubbles; it is known as the wet limit of an ordered
monodisperse foam with zero contact angle. However, the
bubbles are never circular when the contact angle is finite.
Fig. 3 shows two examples of an ordered foam with finite contact
angle, for different values of the liquid fraction.

Princen calculated the work per unit area, DW y, required to
compress (by removing liquid) a foam from the liquid fraction
fy

0 to any given f,7 at constant bubble area. The bubble area is
written in terms of the radius R of an undeformed circular
bubble of the same area, resulting in‡

DWy

g=R
¼ 2 1� fy

0

� �
cos y

� 1

1� fð Þ1=2 1� f0ð Þ1=2
� fy

0

1� f0

 !1=2
2
4

� f
1� f

� �1=2

� 1� fy
0

1� f0

 !1=2
3
5;

(5)

where the normalizing factor g/R is often called the Laplace
pressure.

Fig. 2 The (line) energy of two isolated circular bubbles is reduced when
they share a common interface, if the contact angle y is finite.

Fig. 3 Examples of monodisperse hexagonal foams for contact angle
y = 6.261 and different values of liquid fraction. (a) Liquid fraction fy

0 = 0.084,
where the energy is minimal (state of zero compression, eqn (3)). (b) Liquid
fraction fy

m = 0.128, the maximum value of liquid fraction at which the bubbles
still remain in contact (eqn (7)).

‡ Princen7 describes his calculation in terms of the deformation of columns of
hypothetical cylindrical emulsion drops. We have re-written his expression in
terms of liquid fraction f, rather than gas fraction (1 � f), and corrected one
misprint (missing superscript y in his eqn (35)).
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In the following we will consider the energy per bubble E as
a function of liquid fraction f and contact angle y. Using

eqn (5) and DWy ¼ 1� fy
0

R2p
Eðf; yÞ � E fy

0; y
� �� �

we obtain

Eðf; yÞ
2pRg cos y

¼
1�

ffiffiffiffiffiffiffiffiffi
fy
0f

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� fÞ 1� f0ð Þ

p : (6)

In the dry limit (f = 0, i.e., close-packed hexagons), this reduces
to E(0,y)/(2pRg cos y) = (1 � f0)�1/2.

The energy E(f,y) in eqn (6) may be characterised by two
different critical values of the liquid fraction, as shown in Fig. 4.
These are
� the liquid fraction fy

0 (eqn (3)) at which the energy has a
minimum;
� the maximum value of liquid fraction fy

m at which the
bubbles remain in contact, given by

fy
m ¼

ffiffiffi
3
p

8 sin2
j
2

2 sin
j
2

1ffiffiffi
3
p sin

j
2
þ cos

j
2

� �
� j

	 

; (7)

with j = p/3 � 2y. This is the hypothetical wet limit of an
ordered monodisperse foam with finite contact angle.

Fig. 5 displays the variation of both fy
0 and fy

m with contact
angle y. Note that y = 0 is a special case because the critical

values coincide, f0
0 ¼ f0

m ¼ f0 ¼ 1� p
�

2
ffiffiffi
3
p� �

’ 0:093. Fig. 3
shows an ordered foam at each of the critical liquid fractions
fy

m and fy
0, for contact angle y = 6.261.

When the contact angle is finite, the non-circular bubbles at
fy

m contact their neighbours at a point. However, this situation
differs from the conventional wet limit for zero contact angle,
as we explore below.

All points on the curves for energy as a function of liquid
fraction, shown in Fig. 4, correspond to (possibly metastable)
equilibrium structures. Since the liquid fraction fy

0 corresponds
to the minimum energy, any homogeneous structure for which

f 4 fy
0 must be metastable, at least for an infinite sample.

This is because an inhomogeneous structure can be defined,
with constant energy (in the limit of infinite sample size) close to
E(fy

0). This scenario is illustrated in Fig. 6, where we have
represented the energy of the inhomogeneous structure by a
horizontal line beyond fy

0.
The formation of inhomogeneities in the ordered monodisperse

structure can be simulated by considering a representative area of
foam that contains a large number of bubbles, and increasing the
liquid fraction by expanding the system while keeping the bubble
areas fixed. An example of such an inhomogeneous structure is
shown in Fig. 7. Finite contact angles were included by assigning
different values for the line tension in the bubble–bubble interfaces
(gf) and the Plateau border sides (g); the contact angle is given by
eqn (1). (For further details see Appendix A.)

Fig. 4 Variation of the energy per bubble E(f,y)/(2pRg cos y) (eqn (6)) of an
ordered hexagonal 2D foam with liquid fraction f, for a range of different
contact angles y. (g: bulk interfacial tension, R: radius of an undeformed
(circular) bubble.) Symbols correspond to the critical liquid fractions fy

0

(green squares), fy
m (red triangles), and f0 (grey disc), defined in the text.

Fig. 5 Variation of the critical liquid fractions fy
0 (eqn (3)), and fy

m (eqn (7))
as a function of contact angle y in an ordered hexagonal foam.

Fig. 6 Variation of the energy per bubble E(f,y) of an initially ordered
hexagonal foam (for contact angle y = 101). For values of liquid fraction
exceeding fy

0 (marked by a blue square), the hexagonal bubble arrange-
ment is metastable, since alternative inhomogeneous structures exist with
lower energy. (Fig. 7(a) shows such an example, obtained from simulation.)
The light blue triangle at critical liquid fraction fy

m corresponds to the point
where bubbles in an hexagonal arrangement no longer touch.
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The inhomogeneity does not arise spontaneously in these
simulations, but requires a perturbation at a liquid fraction just
above fy

0. This is achieved by randomly displacing all of the
Plateau border vertices by a small distance of about 0.13R; this
allows the system to escape from the metastable branch by
undergoing topological transitions that are triggered when film
lengths go to zero. These result in the formation of cracks, or
liquid pools, as illustrated in Fig. 7. The requirement of a
perturbation to trigger instability is a familiar feature of highly
symmetric structures that are locally stable, for which alter-
native structures of lower energy are available. Subsequently,
increasing or decreasing the liquid fraction keeps the foam at
roughly constant energy. Small fluctuations in the energy occur
because, as the liquid fraction changes in this finite sample of
foam, there are short periods during which the energy increases
elastically, followed by topological transitions that reduce the
energy. As the sample size increases, such fluctuations become
less marked.

This instability is reminiscent of the observations by Abd el
Kadar and Earnshaw16 in experiments with monodisperse 2D
bubble rafts in an hexagonal confinement. About 25 minutes
after foam formation, cracks appeared within the perfectly
ordered structure, rapidly leading to the formation of a hole in
the monolayer. No bubbles are lost in this process. The authors

attribute the development of this inhomogeneity to the move-
ment and build-up of local stresses, for example due to small
variations in bubble size. It is conceivable that the existence of a
finite contact angle plays a further role, although the concept
cannot be applied straightforwardly to bubble rafts, as opposed
to 2D foam trapped between plates.

3. Disordered foams with finite
contact angle

Having established the effect of a finite contact angle for
ordered foams we now turn to the results of Surface Evolver
simulations of disordered foams, as exemplified in Fig. 8. The
results presented below are based on five samples with N = 1500
bubbles and different values of the contact angle y between 2.61
and 15.91. The foams are polydisperse: the bubbles have average
area close to 1 but the variation in bubble areas differs between
samples. The polydispersity is captured by the parameter

p ¼ R21

R2h i1=2 � 1; (8)

where R21 ¼
hR2i
hRi is the Sauter mean radius in 2D and the

average, denoted with h i, is over all bubbles in the foam. Details
of the simulations are presented in Appendix A. A video of the
wetting of a foam with contact angle 15.91 is available in the
ESI.†

We simulate the wetting of a dry foam by increasing the area
of liquid and keeping the area of gas constant. We again find
that inhomogeneities develop as the liquid fraction f is
increased. However, these inhomogeneities do not necessarily
result from metastable structures of the kind discussed in the
previous section. The disordered samples spontaneously undergo
discrete topological transitions as the liquid fraction is increased;
these occur when the length of a film between two neighbouring
bubbles goes to zero, causing them to separate. In the simplest
case, two bubbles that share a shrinking edge separate, and two
three-sided Plateau borders merge to form a four-sided Plateau
border, as shown in the Appendix, Fig. 11. Similarly, non-adjacent
edges on a Plateau border with four or more sides may come into
contact, and a new edge is formed. Various combinations of these
topological transitions are responsible for the highly irregular
liquid regions shown in Fig. 8.

Fig. 9 illustrates the growth of inhomogeneity as the liquid
fraction is increased. The evolving inhomogeneity exhibits an
acceleration in the growth of a few, increasingly larger, Plateau
borders, while most remain small. The area of the largest
Plateau border, Amax

pb , within a sample (Fig. 9) increases roughly
exponentially with liquid fraction.

The average area of the Plateau borders hApbi is given by

Apb

� 
¼ 2N

Npb

� �
hAi
2

f
1� f

; (9)

where N is the constant number of bubbles, hAi is the constant
average bubble area, and Npb is the number of Plateau borders,

Fig. 7 (a) Example of a Surface Evolver simulation of a monodisperse
foam (f = 0.12, contact angle y = 6.261, 256 bubbles) which shows the
formation of inhomogeneities upon an increase in liquid fraction above
fy

0 = 0.084. The appearance of inhomogeneities was triggered by a
random perturbation of the ordered structure. (b) Upon a further increase
in liquid fraction the energy remains roughly constant.
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which decreases when they merge. If the Plateau borders do not
merge, i.e. if they all remain three-sided, the pre-factor 2N/Npb

is unity. The average Plateau border area, scaled by the value of
hApbi that would result if they didn’t merge (and remained
three-sided, as they were when the foam was created at low
liquid fraction), is shown in the inset to Fig. 9. Note that the

average Plateau border area rises more quickly at lower contact
angles; this occurs because the tendency to combine is more
pronounced when the contact angle is smaller, so the film
lengths are smaller, and consequently, topological transitions
are more frequent.

The energy per bubble, defined as the total energy divided by
the number of bubbles N, is plotted as a function of liquid
fraction in Fig. 10. It has been rescaled by (1 + p) to compensate
for the polydispersity of the samples, as explained in Appendix
B. As in the case of ordered foams, an increase in contact angle

Fig. 8 Surface Evolver simulation of the equilibrium structure of a disordered foam of 1500 bubbles with average area equal to one, polydispersity
p = 0.0086, and contact angle y = 2.61. An increase in liquid fraction leads to the appearance of cracks or incipient flocculation. The images shown
correspond to close-ups of the foam at values of liquid fraction f = 0.04, 0.08, 0.12, 0.16, 0.20 and 0.24 (from top left to bottom right).

Fig. 9 The development of inhomogeneities in disordered foams with
finite contact angle is illustrated by the observation that, while the average
area of a Plateau border hApbi grows sublinearly with liquid fraction f
(inset), the area of the largest Plateau border Amax

pb (at each value of f)
grows approximately exponentially (note the logarithmic vertical axis). The
data shown is for five simulations of disordered foams, with values of
contact angle as indicated. The areas are normalized by the average area
hApbi that would result if Plateau borders did not merge, eqn (9). Note that
the drops in area at low liquid fraction correspond to the splitting of a
Plateau border with more than three sides into three-sided Plateau
borders, as explained in Appendix A.

Fig. 10 Variation of the energy with liquid fraction f for five disordered foams
with finite contact angles. The gradual development of inhomogeneities, as
shown in Fig. 8, is accompanied by a decrease in energy as a function of f
followed by saturation to a roughly constant value. The energy has been
rescaled using the polydispersity parameter p defined in eqn (8).
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leads to an increase in energy for a given value of the liquid
fraction. For fixed contact angle, the energy decreases with
increasing liquid fraction, at first steeply, and then more
slowly. The initially monotonic decrease in energy with f is
consistent with the gradual development of inhomogeneities
that we observe in disordered foams.

What should we expect the eventual state of a foam to be,
were this wetting process to be continued to ever higher values
of liquid fraction, beyond the usual 2D wet foam limit? We
expect that the presence of a finite contact angle, which causes
an effective adhesion between the bubbles, will lead to one
large cluster of bubbles surrounded by liquid. This is again
reminiscent of the clustering seen in 2D bubble rafts.18

4. Summary and conclusions

Due to their increased stability, adhesive or ‘‘sticky’’ 3D emulsions,
featuring droplet flocculation,13,19,20 find many applications in the
food and cosmetics industries. Here we have discussed flocculation
in the case of the analogous system of liquid foams.

Unlike the familiar case of a foam with zero contact angle,
an ideal two-dimensional foam with a finite contact angle
develops an inhomogeneity for high liquid fraction f. In an
ordered foam this inhomogeneity appears at a critical value of
f, but in a disordered foam there is a gradual development of
inhomogeneity with increasing f. This implies that the notion
of the wet limit is ill-defined in foams with finite contact angle.

As in other aspects of foam physics, our results for 2D foam
should give a general indication of the corresponding properties
of 3D foams and emulsions. It is surprising that the subject of
finite contact angles has remained underdeveloped, and it is
hoped that the present results will stimulate further experiments
and simulations. Indeed, there does not appear to be any 2D
data that could be compared to our findings.

In light of the described inhomogeneous structures, it may
now be of interest to revisit earlier work on the ideal disordered
2D foam model, but including a finite contact angle. For example,
does a finite contact angle affect the statistics of bubble rearrange-
ments, perhaps by suppressing system-wide avalanches of topolo-
gical changes, following a small increase in f?21
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Appendix A. Simulations using the
Surface Evolver

We carried out simulations of both ordered (hexagonal) and dis-
ordered (polydisperse) foams with finite contact angles using Ken
Brakke’s Surface Evolver software10 to relax an initial foam structure
to a minimum of the surface energy (which is proportional to the
total perimeter), subject to fixed bubble areas.

In principle, all the properties of an ordered hexagonal foam
can be captured from a single cell, considered with periodic

boundary conditions. However, since we seek an instability of
this structure to an inhomogeneous state, we must instead
simulate many cells. We chose to reproduce the basic hexagonal
cell 256 times to form a 16 � 16 hexagonal lattice with periodic
boundary conditions.

The disordered foams are made as dry foams, also with
periodic boundary conditions, from a Voronoi construction in
the usual way;22 these have N = 1500 bubbles, with average area
hAi close to 1, and different polydispersity.

Both ordered and disordered foams are turned into wet
foams of liquid fraction f E 0.03 by adding a small triangular
Plateau border at each three-fold vertex; the liquid fraction is
set by the total area of all Plateau borders. They have no
individual area constraints, and therefore all have the same
pressure.

Each side of each Plateau border is associated with a fixed
bulk interfacial tension gZ 1

2; the interfacial tension in the thin
liquid films is set to gf = 1. The contact angle is then given by
eqn (1). The current version of the Surface Evolver software
does not allow for the simulation of 2D foams with zero contact
angle and we find that y = 2.61 is the minimum value that we
can choose to ensure convergence. Examination of the con-
sequences of this limitation provided some initial motivation
for this study.

In the Surface Evolver, each edge is represented as a circular
arc, and a local minimum of the interfacial energy is sought
using up to 2 � 104 iterations to achieve a relative accuracy
close to 10�6.

The liquid fraction is changed by increasing the area of
liquid and keeping the area of gas constant (so the size of the
periodic box increases). Small increments in f allow us to
explore a large range of liquid fractions: at each step, the liquid
fraction is increased by 0.001, up to about f = 0.25. We used
the gradient descent method for energy minimisation, with
occasional Hessian iterations, to move towards a minimum of
interfacial energy

P
j

gjLj . Here Lj denotes the lengths of the

interfaces, and gj is either g or gf, depending on whether the
interface is associated with a Plateau border or a film.

As the foam evolves, bubble rearrangements (topological
changes) occur. We chose a critical film length of 10�4 below
which these are triggered. The difficult step is in recognising
when a four-sided Plateau border should split into two three-
sided Plateau borders (or, in general, a many-sided Plateau
border should split into two parts). To achieve this we check
whether two sides of any Plateau border with more than three
sides overlap, as illustrated in Fig. 11. If they do, these two sides
are joined, to split the Plateau border. We briefly increase g and
perform a few iterations, and then the minimization continues.

Appendix B. Energy of a polydisperse
2D foam

The energy of a foam decreases with increasing polydispersity
in the bubble areas at fixed liquid fraction.17 We capture this
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dependence as follows. We define polydispersity in terms of
the 2D Sauter mean radius according to eqn (8) and then the
energy of an equilibrium, dry (i.e., f = 0), 2D foam can be
written as

E ¼ c

1þ p
2pg R2
� 

1=2N: (B.1)

The parameter c is estimated to be 1.056� 0.007, where the error
value indicates the weak dependence on bubble shape, as in
3D.17 In plotting Fig. 10 we have assumed that the same scaling
of (1 + p)�1 applies at finite values of the liquid fraction f.
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