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Abstract. A big challenge in epidemiology is to perform data pre-
processing, specifically feature selection, on large scale data sets with
a high dimensional feature set. In this paper, this challenge is tackled by
using a recently established distributed and scalable version of Rough Set
Theory (RST). It considers epidemiological data that has been collected
from three international institutions for the purpose of cancer incidence
prediction. The concrete data set used aggregates about 5 495 risk fac-
tors (features), spanning 32 years and 38 countries. Detailed experiments
demonstrate that RST is relevant to real world big data applications as
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it can offer insights into the selected risk factors, speed up the learn-
ing process, ensure the performance of the cancer incidence prediction
model without huge information loss, and simplify the learned model for
epidemiologists.

Keywords: Big Data · Rough Set Theory · Feature Selection · Epidemi-
ology · Cancer Incidence Prediction · Application

1 Introduction

Epidemiology is a sub-field of public health that looks to determine where and
how often disease occur and why. It is more formally defined as the study of
distributions (patterns) and determinants (causes) of health related states or
events within a specified human population, and the application of this study to
managing health problems [4]. The ultimate goal of epidemiology is to apply this
knowledge to the control of disease through prevention and treatment, resulting
in the preservation of public health.

In this context, epidemiologists study chronic diseases such as arthritis, car-
diovascular disease such as heart attacks and stroke, cancer such as breast and
colon cancer, diabetes, epilepsy and obesity problems. To conduct such studies,
one of the most important considerations is the source and content of data, as
this will often determine the quality of the results. As a general rule, the larger
the data, the more accurate the results, since a larger sample is less likely to,
by chance, generate an estimate different from the truth in the full population.
This leads epidemiologists to deal with large amounts of data, big data, which is
however not a feasible task for them [3]. Hence, to assist epidemiologists in deal-
ing with such large amounts of data, data analysis has become one of the major
research focuses in epidemiology and specifically for the epidemiology of can-
cer, colon cancer, which is our main focus. More precisely, data analysis assists
epidemiologists to investigate and describe the determinants and distribution of
disease, disability, and other health outcomes and develop the means for preven-
tion and control. From a technical perspective, data analysis generally comprises
a number of processes that may include data collection, data (pre)-processing
and feature reduction, data cleansing, and data transformation and modeling
with the goal of discovering useful information, suggesting conclusions, and sup-
porting decision making; all these tasks can be achieved via the use of adequate
machine learning techniques.

Meanwhile, in epidemiology, feature reduction is a main point of interest
across the various steps of data analysis and focusing on this phase is cru-
cial as it often presents a source of potential information loss. Many techniques
were proposed in the literature [2] to achieve the task of feature reduction and
they can be categorized into two main categories: techniques that transform
the original meaning of the features, called “transformation-based approaches”
or “feature extraction approaches”, and semantic-preserving techniques that at-
tempt to retain the meaning of the original feature set, known as “selection-
based approaches” [11]. Within the latter category a further partitioning can be
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defined where the techniques are classified into filter approaches and wrapper
approaches. The main difference between the two branches is that wrapper ap-
proaches include a learning algorithm in the feature subset evaluation, and hence
they are tied to a particular induction algorithm. In this work, we mainly focus
on the use of a feature selection technique, specifically a filter technique, instead
of a feature extraction technique. This is crucial to preserve the semantics of
the features in the context of cancer incidence prediction as results should be
interpretable and understandable by epidemiologists.

Yet, the adaptation of feature selection techniques for big data problems
may require the redesign of these algorithms and their inclusion in parallel and
distributed environments. Among the possible alternatives is the MapReduce
paradigm [13] introduced by Google which offers a robust and efficient frame-
work to address the analysis of big data. Several recent works have focused on
the parallelization of machine learning tools using the MapReduce approach
[12,15,14,16]. Recently, new and more flexible workflows have appeared to ex-
tend the standard MapReduce approach, mainly Apache Spark [18], which has
been successfully applied over various data mining and machine learning prob-
lems [18]. With the aim of choosing the most relevant and pertinent subset of
features, a variety of feature selection techniques were proposed to deal with big
data in a distributed way [20]. Nevertheless, most of these techniques suffer from
some shortcomings. For instance, they usually require expert knowledge for the
task of algorithm parameterization or noise levels to be specified beforehand and
some simply rank features leaving the user to choose their own subset. There
are some techniques that need the user to specify how many features are to be
chosen, or they must supply a threshold that determines when the algorithm
should terminate. All of these require the expert or the user to make a deci-
sion based on their own (possibly faulty) judgment. To overcome the limitations
of the state-of-the-art methods, it is interesting to look for a filter method that
does not require any external or supplementary information to function properly.
Rough Set Theory (RST) can be used as such a technique [6]. RST, as a powerful
feature selection technique, has made many achievements in many applications
such as in decision support, engineering, environment, banking, medicine and
others [19]. In this study, we focus on the use of RST as a data mining technique
within a case study in epidemiology and cancer incidence prediction.

The rest of this paper is structured as follows. Section 2 reviews the fun-
damentals of epidemiology. Section 3 introduces the basic concepts of rough set
theory for feature selection. Section 4 details the application in epidemiology and
cancer incidence prediction via the use of a distributed algorithm based on rough
sets for large-scale data pre-processing. The experimental setup is introduced in
Section 5. The results of the performance analysis are discussed in Section 6 and
conclusions are presented in Section 7.
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2 Epidemiology: Concepts and Context Design

2.1 Distribution and Determinants

Epidemiology is concerned with the study of the distribution of a disease based
on a set of “frequency” and “pattern” of health events in a population. The
frequency refers on one hand to the number of health events such as the number
of cases of diabetes or cancer in a population, and on the other hand to the link
of that number to the size of the human population. The resulting ratio per-
mits epidemiologists to compare disease occurrence across diverse populations.
Pattern denotes the occurrence of health-related events by person, place, and
time. Personal patterns comprise demographic factors that may be tied to risk
of sickness, injury, or disability such as age, sex, marital status, social class, racial
group, occupation, as well as behaviors and environmental exposures. Place pat-
terns include geographic disparity, urban/suburban/rural variances, and loca-
tion of work sites or schools. Time patterns can be annual, seasonal, weekly,
daily, hourly, or any other breakdown of time that may effect disease or injury
occurrence [10]. Moreover, epidemiology is concerned with the search for deter-
minants. These are the factors that precipitate disease. Formally, determinants
can be defined as any factor, whether event, characteristic, or other definable
entity, that brings about a change in a health condition or other defined charac-
teristic [9]. Epidemiologists assume that a disease does not arise haphazardly in
a population, but it occurs when a set of accumulation of risk factors or determi-
nants subsists in an individual. To look for these determinants, epidemiologists
use epidemiological studies to understand and answer the “Why” and “How”
of such events. For instance, they assess whether groups with dissimilar rates
of disease diverge in their demographic characteristics, genetic or immunologic
make-up, or any other so-called potential risk factors. Ideally, the findings pro-
vide sufficient evidence to direct prompt and effective public health control and
prevention measures [10].

2.2 Population and Samples

An epidemiological study involves the collection, analysis and interpretation of
data from a human population. The population about which epidemiologists
wish to draw conclusions is called the “target population”. In many cases, this
is defined according to geographical criteria or some political boundaries. The
specific population from which data are collected is called the “study popula-
tion”. It is a question of judgment whether results of the study population may
be used to draw accurate conclusions about the target population. Most of the
epidemiological studies use study populations that are based on geographical,
institutional or occupational definitions. Another way of classifying the study
of population is by the stage of the disease, i.e., a population that is diseased,
disease-free or a mixture [4]. On the other hand, a sample is any part of the fully
defined population. A syringe full of blood drawn from the vein of a patient is a
sample of all the blood in the patient’s circulation at the moment. Similarly, 100
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patients suffering from colon cancer is a sample of the population of all the pa-
tients suffering from colon cancer. To make accurate inferences, the sample has
to be properly chosen, representative, and the inclusion and exclusion criteria
should be well defined as well. A representative sample is one in which each and
every member of the population has an equal and mutually exclusive chance of
being selected [8].

2.3 Incidence and Prevalence

Epidemiology often focuses on measuring the occurrence of disease in popula-
tions. The basic measures of disease frequency in epidemiology are “incidence”
and “prevalence”. Incidence is the number of new cases of disease in a population
occurring over a defined period of time. Another important measure of disease
incidence is incidence rate, which gauges how fast disease occurs in the popu-
lation by measuring the number of new cases emerging as a function of time.
Prevalence, on the other hand, measures the number of existing cases, both new
cases and cases that have been diagnosed in the past, in a population at any
given point in time. By using these measures, epidemiologists can determine the
frequency of disease within populations, and compare differences in disease risk
among populations [4].

3 Rough Set Theory

Rough Set Theory (RST) [17,1] is considered to be a formal approximation of
the conventional set theory, which supports approximations in decision making.
It provides a filter-based technique by which knowledge may be extracted from
a domain in a concise way, retaining the information content whilst reducing the
amount of knowledge involved [6]. This section focuses mainly on highlighting
the fundamentals of rough set theory for feature selection.

3.1 Preliminaries of Rough Set Theory

In rough set theory, an information table is defined as a tuple T = (U,A) where
U and A are two finite, non-empty sets with U the universe of primitive objects
and A the set of attributes. Each attribute or feature a ∈ A is associated with a
set Va of its value, called the domain of a. We may partition the attribute set A
into two subsets C and D, called condition and decision attributes, respectively.

Let P ⊂ A be a subset of attributes. The indiscernibility relation, denoted by
IND(P ), is the central concept of RST and it is an equivalence relation, which
is defined as: IND(P ) = {(x, y) ∈ U ×U : ∀a ∈ P, a(x) = a(y)}, where a(x) de-
notes the value of feature a of object x. If (x, y) ∈ IND(P ), x and y are said to be
indiscernible with respect to P . The family of all equivalence classes of IND(P ),
referring to a partition of U determined by P , is denoted by U/IND(P ). Each
element in U/IND(P ) is a set of indiscernible objects with respect to P . The
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equivalence classes U/IND(C) and U/IND(D) are called condition and deci-
sion classes, respectively. For any concept X ⊆ U and attribute subset R ⊆ A, X
could be approximated by the R-lower approximation and R-upper approxima-
tion using the knowledge of R. The lower approximation of X is the set of objects
of U that are surely in X, defined as: R(X) =

⋃
{E ∈ U/IND(R) : E ⊆ X}.

The upper approximation of X is the set of objects of U that are possibly in X,
defined as: R(X) =

⋃
{E ∈ U/IND(R) : E ∩X 6= ∅}. The concept defining the

set of objects that can possibly, but not certainly, be classified in a specific way
is called the boundary region, which is defined as: BNDR(X) = R(X)− R(X).
If the boundary region is empty, that is R(X) = R(X), concept X is said to be
R-definable; otherwise X is a rough set with respect to R. The positive region
of decision classes U/IND(D) with respect to condition attributes C is denoted
by POSc(D) where POSc(D) =

⋃
R(X). The positive region POSc(D) is a set

of objects of U that can be classified with certainty to classes U/IND(D) em-
ploying attributes of C. In other words, the positive region POSc(D) indicates
the union of all the equivalence classes defined by IND(P ) that each for sure
can induce the decision class D. Based on the positive region, the dependency
of attributes measuring the degree k of the dependency of an attribute ci on a
set of attributes C is defined as: k = γ(C, ci) = |POSC(ci)|/|U |. Based on these
basics, RST defines two important concepts for feature selection, which are the
Core and the Reduct.

3.2 Reduction Process

RST aims at choosing the smallest subset of the conditional feature set so that
the resulting reduced data set remains consistent with respect to the decision
feature. To do so, RST defines the Reduct and the Core concepts. In rough set
theory, a subset R ⊆ C is said to be a D-reduct of C if γ(C,R) = γ(C) and
there is no R′ ⊂ R such that γ(C,R

′
) = γ(C,R). In other words, the Reduct

is the minimal set of selected attributes preserving the same dependency degree
as the whole set of attributes. Meanwhile, rough set theory may generate a
set of reducts, REDF

D(C), from the given information table. In this case, any
reduct from REDF

D(C) can be chosen to replace the initial information table.
The second concept, the Core, is the set of attributes that are contained by
all reducts, defined as CORED(C) =

⋂
REDD(C) where REDD(C) is the D-

reduct of C. Specifically, the Core is the set of attributes that cannot be removed
from the information system without causing collapse of the equivalence-class
structure. This means that all attributes present in the Core are indispensable.

4 Application

4.1 Data Sources

The OpenCancer9 organization gathers people working on cancer prediction is-
sues. Their aim is to provide tools aimed at helping health authorities to take

9 https://github.com/orgs/EpidemiumOpenCancer/

https://github.com/orgs/EpidemiumOpenCancer/
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public policy decisions in terms of cancer prevention. OpenCancer has linked
and merged data from the World Health Organization (WHO)10, World Bank
(WB)11, the International Labour Organization (ILO)12 and the Food and Agri-
culture Organization (FAO)13 of the United Nations to build a large data set
covering 38 countries and many regions within these countries between 1970 and
2002. For this application, OpenCancer provided a first version of the database
restricted to the WHO, WB and FAO sources. Each row is characterized by a
5-tuple (cancer type, country, gender, ethnicity, age group) and 5 495 features.
For this application the single cancer type, which has been considered, is the
colon cancer.

4.2 Data Pre-processing

Data Cleaning The first version of this sub-database suffers from a vast number
of missing cells due to the lack of information in the available repositories. To
fix this issue prior to running any learning model, OpenCancer had discarded
every feature exhibiting a missing data ratio higher than 50 % and imputed other
missing data with a standard mean strategy. The resulting database—merged
from both FAO and WB, including the incidence provided from WHO—includes
3 365 risk factors (features) and 45 888 records. Each record, seen as a population,
is identified via a 6-tuple defined as {Sex, Age group, Country, Region, Ethnicity,
Year}. To measure the occurrence of the colon cancer disease in the population,
the number of new cases of the disease within a population occurring over 1970
and 2002 is used, referring to the incidence measure.

Feature Selection Once the consistent database is ready for use, a feature se-
lection step is performed. To deal with the large amount of the epidemiological
data, a distributed version of rough set theory for feature selection [5], named
Sp-RST, is used. Sp-RST is based on a parallel programming design that allows
to tackle big data sets over a cluster of machines independently from the under-
lying hardware and/or software. To select the most important risk factors from
the input consistent database, and for the purpose of colon cancer incidence
prediction, Sp-RST proceeds as follows:

Problem formalization Technically, the epidemiological database is first stored
in an associated Distributed File System (DFS) that is accessible from any com-
puter of the used cluster. To operate on the given DFS in a parallel way, a
Resilient Distributed Data set (RDD) is created. We may formalize the latter as
a given information table defined as TRDD, where the universe U = {x1, . . . , xN}
is the set of data items reflecting the population and is identified as a 6-tuple
defined as {Sex, Age group, Country, Region, Ethnicity, Year}. The conditional

10 http://www.who.int/en/
11 http://www.worldbank.org/
12 http://www.ilo.org/global/lang–en/index.htm
13 http://www.fao.org/home/fr/
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attribute set C = {c1, . . . , cV } contains every single feature of the TRDD in-
formation table, and presents the risk factors. The decision attribute D of our
learning problem corresponds to the class (label) of each TRDD sample. It has
continuous values d and refers to the incidence of the colon cancer. The condition
attribute feature D is defined as follows: D = {Typology1, . . . ,TypologyI}. The
conditional attribute set C presents the pool from where the most convenient
risk factors will be selected.

Feature selection process For feature selection, the given TRDD information table
is partitioned first into m data blocks based on splits from the conditional at-
tribute set C. Hence, TRDD =

⋃m
i=1(Cr)TRDD(i)

, where r ∈ {1, . . . , V }. Each
TRDD(i)

is constructed based on r random features selected from C, where

∀TRDD(i)
: @{cr} =

⋂m
i=1 TRDD(i)

.
Within a distributed implementation, Sp-RST is applied to every single

TRDD(i)
so that at the end all the intermediate results will be gathered from

the different m partitions. Specifically, Sp-RST will first compute the indiscerni-
bility relation for the decision class defined as IND(D) : IND(di). More pre-
cisely, Sp-RST will calculate the indiscernibility relation for every decision class
di by gathering the same TRDD data items, which are defined in the universe
U = {x1, . . . , xN} and which belong to the same class di. This task is indepen-
dent from the m generated partitions and, as the result, depends on the data
items class and not on the features. Once achieved, the algorithm generates the
m random TRDD(i)

as previously explained. Then, and within a specific partition,
Sp-RST creates all the possible combinations of the Cr set of features, computes
the indiscernibility relation for every generated combination IND(AllComb(Cr))
and calculates the dependency degrees γ(Cr, AllComb(Cr)) of each feature com-
bination. Then, Sp-RST looks for the maximum dependency value among all
γ(Cr, AllComb(Cr)). The maximum dependency reflects on one hand the depen-
dency of the whole feature set (Cr) representing the TRDD(i)

and on the other
hand the dependency of all the possible feature combinations satisfying the con-
straint γ(Cr, AllComb(Cr)) = γ(Cr). The maximum dependency is the baseline
value for feature selection. Then, Sp-RST keeps the set of all combinations hav-
ing the same dependency degrees as the selected baseline. In fact, at this stage
Sp-RST removes in each computation level the unnecessary features that may
affect negatively the performance of any learning algorithm.

Finally, Sp-RST keeps the set of combinations having the minimum num-
ber of features by satisfying the full reduct constraints discussed in Section 3:
γ(Cr, AllComb(Cr)) = γ(Cr) while there is no AllComb

′

(Cr)
⊂ AllComb(Cr)

such that γ(Cr, AllComb
′

(Cr)
) = γ(Cr, AllComb(Cr)). Each combination satisfy-

ing this condition is considered as a viable minimum reduct set. The attributes
of the reduct set describe all concepts in the original training data set TRDD(i)

.
The output of each partition is either a single reduct REDi(D)

(Cr) or a

family of reducts REDF
i(D)

(Cr). Based on the RST preliminaries previously

mentioned in Section 3, any reduct of REDF
i(D)

(Cr) can be used to repre-

sent the TRDD(i)
information table. Consequently, if Sp-RST generates only



Scalable Rough Set Theory: Case Study in Epidemiology 9

one reduct, for a specific TRDD(i)
block, then the output of this feature se-

lection phase is the set of the REDi(D)
(Cr) features. These features reflect

the most informative ones among the Cr attributes resulting a new reduced
TRDD(i)

, TRDD(i)
(RED), which preserves nearly the same data quality as its

corresponding TRDD(i)
(Cr) that is based on the whole feature set Cr. On the

other hand, if Sp-RST generates a family of reducts then the algorithm ran-
domly selects one reduct among REDF

i(D)
(Cr) to represent the corresponding

TRDD(i)
. This random choice is justified by the same priority of all the reducts in

REDF
i(D)

(Cr). In other words, any reduct included in REDF
i(D)

(Cr) can be used

to replace the TRDD(i)
(Cr) features. At this stage, each i data block has its out-

put REDi(D)
(Cr) referring to the selected features. However, since each TRDD(i)

is based on distinct features and with respect to TRDD =
⋃m

i=1(Cr)TRDD(i)
a

union of the selected feature sets is required to represent the initial TRDD; de-
fined as Reductm =

⋃m
i=1REDi(D)

(Cr). In order to ensure the performance of
Sp-RST while avoiding considerable information loss, the algorithm runs over N
iterations on the TRDD m data blocks and thus generates N Reductm. Hence, at
the end an intersection of all the obtained Reductm is needed; defined as Reduct
=

⋂N
n=1Reductm.

By removing irrelevant and redundant features, Sp-RST can reduce the di-
mensionality of the data from TRDD(C) to TRDD(Reduct). More precisely, Sp-
RST was able to reduce the considered epidemiological database from 3 364 risk
factors to only around 840 features. The pseudo-code of Sp-RST as well as details
related to each of its distributed tasks can be found in [5].

4.3 Predictive Modeling

Accurately evaluating colon cancer risk in average and high-risk populations or
individuals and determining colon cancer prognosis in patients are essential for
controlling the suffering and death due to colon cancer. From a general perspec-
tive, cancer prediction models offer a significant approach to assessing risk and
prognosis by detecting populations and individuals at high-risk, easing the design
and planning of clinical cancer trials, fostering the development of benefit-risk
indices, and supporting estimates of the population burden and cost of cancer.
Models also may aid in the evaluation of treatments and interventions, and help
epidemiologists make decisions about treatment and long-term follow-up care
[7]. In this concern, for colon cancer incidence prediction, the distributed version
of the Random Forest Regression model14 is used.

5 Experimental Setup

5.1 Experimental plan, testbed and tools

Our experiments are performed on the High Performance Computing Wales
platform (HPC Wales), which provides a distributed computing facility. Under

14 org.apache.spark.ml.regression.{RandomForestRegressionModel, RandomForestRe-
gressor}
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this testbed, we used 12 dual-core Intel Westmere Xeon X5650 2.67 GHz CPUs
and 36GB of memory to test the performance of Sp-RST, which is implemented
in Scala 2.11 within Spark 2.1.1. The main aim of our experimentation is to
demonstrate that RST is relevant to real world big data applications as it can
offer insights into the selected risk factors, speed up the learning process, ensure
the performance of the colon cancer incidence prediction model without huge
information loss, and simplify the learned model for epidemiologists.

5.2 Parameters settings

As previously mentioned, we use the Random Forest Regression implementation
provided in the Spark framework with the following parameters: maxDepth=5,
numTrees=20, featureSubsetStrategy=‘all’ and impurity=‘variance’. The algo-
rithm automatically identifies categorical features and indexes them. The database
is split into training and test sets where 30% of the database is held out for test-
ing. Meanwhile, for the Sp-RST settings, we set the number of partitions to
841 partitions; generating 4 features per partition (based on preliminary exper-
iments). We run the settings on 8 nodes on HPC Wales. For the purpose of this
study we set the number of iterations of Sp-RST to 10.

6 Results and Discussion

6.1 Categories of Selected Risk Factors

Recall that Sp-RST runs over 10 iterations and that at its last algorithmic stage
an intersection of the generated reducts at each iteration is made. However, for
the considered data set, this intersection is empty. Hence, we have modified the
algorithm to return all 10 different reducts to be presented to the epidemiologists.
In the following, we present two different types of results: averages accumulated
over the 10 reduced datasets and separate numbers for each of the iterations
performed.

Both parts of the data set (FAO, World Bank) contain 9 different categories
of risk factors as shown in Table 1. Here, we list the number of different factors
in each category, the average number of factors selected over the 10 iterations
of Sp-RST and the corresponding percentages. From Table 1, and based on the
WB database, we notice that there is only a small variation in the distribution
of the selected risk factors. Exceptions are the gender and poverty risk factors,
which are not selected by the algorithm. The same comments can be made
for the FAO database where the food security risk factor does not appear in
any of the selected feature sets. Epidemiologists confirm that these results are
quite expected. This demonstrates that our method is able to select the most
interesting features to keep—the key risk factors.

We depict the ratios of each category within the set of selected risk factors
for each database (FAO & WB) in Figure 1, and for an overall view, the dis-
tribution of the categories of the combined data sets is presented in Figure 2.
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#Risk Factors #selected (average) % selected

WB: Education 31 7.4 23.87%

WB: Environment 78 19.7 25.26%

WB: Health 62 14.3 23.06%

WB: Infrastructure 19 4.9 25.79%

WB: Economy 141 34.1 24.18%

WB: Public Sector 41 8.5 20.73%

WB: Gender 0 0 -

WB: Social Protection & Labor 40 9.6 24.00%

WB: Poverty 0 0 -

WB: TOTAL 412 98.5 23.91%

FAO: Production 378 90.7 23.99%

FAO: Emissions 803 201.1 25.04%

FAO: Employment 6 1.4 23.33%

FAO: Environment 17 4.4 25.88%

FAO: Commodity 938 234.8 25.03%

FAO: Inputs 153 36 23.53%

FAO: Food Balance 70 20 28.57%

FAO: Food Supply 587 153.7 26.18%

FAO: Food Security 0 0 -

FAO: TOTAL 2952 742.1 25.14%

TOTAL 3364 840.6 24.99%
Table 1. Overview of the data set and the selected risk factors.

Based on these figures, epidemiologists confirmed again that the selected risk
factors are expected to appear in each of their corresponding databases (though
potentially with a different overall distribution). This again supports that Sp-
RST can determine the key risk factors among a large set of features. Meanwhile,
epidemiologists highlighted that a higher average or proportion does not neces-
sarily mean that a risk factor is more important than another. Indeed, no firm
conclusions on the influence of one factor on the colon incidence prediction can
be drawn based on this information, only. Thus, from an epidemiological per-
spective, the risk factors selected by Sp-RST should be further coupled with
other sources of data to complete the analysis and to be able to draw specific
conclusions.

We now investigate the selected risk factors per iteration (for all the 10 Sp-
RST iterations). Each iteration of SP-RST reflects a possible reduced set of
risk factors on which the prediction of the colon cancer incidence can be made.
The categories of the selected risk factors in the FAO data set, in the WB
database and for the combined database, separately for each of the 10 iterations
are presented in Figure 3, Figure 4 and Figure 5, respectively.

Based on Figure 3, Figure 4 and Figure 5, we can see that the risk factors
partially overlap within the 10 iterations. This might be interesting from an
epidemiological point of view as it can influence the consideration of other pos-
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Fig. 1. Distribution of the categories of risk factors selected by our proposed method;
split by data set: FAO (left) and World Bank (right).

sible risk factors, which appear with different distributions. Indeed, the overlap
between the selected risk factors from one iteration to another may call the at-
tention of the epidemiologist in cases where a firm decision is taken with respect
to a specific risk factor. These results are considered to be very important for
the epidemiologists as they help them in the decision making process.

6.2 Evaluation of Regression

We use four different metrics to compare the obtained random forest regression
models for the original data set and the reduced data sets produced by Sp-RST.
Let pi denote the predicted value of the i-th data item in the test data and vi its
actual value. We call the difference ei = vi − pi the sample error. We consider:

– Mean Absolute Error:
∑n

i=0 |ei|/n
– Mean Squared Error:

∑n
i=0(ei)

2|/n
– Root Mean Squared Error, the square root of the mean squared error
– Coefficient of Determination (R2): 1−

∑n
i=0(ei)

2/
∑n

i=0(vi − v̄i)2, where v̄i
denotes the average of the vi

For the first three metrics, smaller values indicate a better model. For the R2
metric values between 0 and 1 are obtained, where 1 indicates a perfect model
and 0 indicates a trivial model that always predicts the average of the training
samples.

Our results for all four metrics are summarized in Table 2. We see that the
results are very similar, but slightly better for the original data set. Wilcoxon
rank sum tests did not reveal any statistical significance at standard confidence
level 0.05 as indicated by the p-values in Table 2. We conclude that the quality
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Fig. 2. Distribution of the categories of the combined data set.

Fig. 3. Categories of the selected risk factors in the FAO data set for each of the 10
iterations.

of the obtained regression models is comparable. However, the reduced data set
improves the execution time to determine the regression model considerably (by
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Fig. 4. Categories of the selected risk factors in the World Bank data set for each of
the 10 iterations.

Fig. 5. Categories of the selected risk factors in the combined data set for each of the
10 iterations.

almost a factor of 5). Moreover, a data set with only around 840 risk factors
is much easier to interpret and handle by epidemiologists as discussed in the
previous section. We therefore argue that the reduction process is appropriate
in the considered context.
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mean (Sp-RST) std (Sp-RST) mean (original) sd (original) p-value

MAE 12.51929 0.167719 12.38475 0.174458 0.1488

MSE 501.4551 20.19929 481.8668 18.7318 0.08688

RMSE 22.38885 0.4488141 21.94872 0.4250894 0.08688

R2 0.2531238 0.02098402 0.2718285 0.01256834 0.1884

Time (s) 78.84557 10.81764 381.9735 5.647821 0.0003666
Table 2. Evaluation of the random forest regression model using Root Mean Squared
Error (RMSE), Mean Squared Error (MSE), R2 Metric (R2) and Mean Absolute Error
(MAE). We also denote the execution time in seconds. Averaged over 3 repetitions
where each run of Sp-RST has 10 iterations.

7 Conclusion

Making use of powerful data mining techniques, distributed infrastructures and
massive data sets, which are provided by international organizations, is of pri-
mary importance to assist epidemiologists in their analytical studies of public
interest. In this paper, we have presented a case study for using a Rough Set
theory approach as a data mining technique in the context of epidemiology. Our
study uses a previously introduced distributed method called Sp-RST and con-
siders a data set provided by the Open Cancer organization. After some data
preprocessing we perform feature (risk factor) selection with Sp-RST and ana-
lyze the results from two different angles: insights epidemiologist can gain from
the selected risk factors and the quality of the regression model. From our anal-
yses, we conclude that using feature selection in the considered context is highly
beneficial. The data set obtained is much easier to interpret and still yields
comparable regression results. The process of regression is much faster on the
reduced data set.

As discussed earlier, we are currently only considering a subset of the Open-
Cancer data set. We plan to expand our study to the complete set in future work.
Moreover, we will work more closely with epidemiologist to further improve our
method, both with respect to interpretation of the results and precision of the
regression model. One important aspect in this context will be the consideration
of missing values in the original data set.
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