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The Gisin-Percival stochastic Schrödinger equation
from standard quantum filtering theory
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We show that the quantum state diffusion equation of Gisin and Percival, driven
by complex Wiener noise, is equivalent up to a global stochastic phase to quantum
trajectory models. With an appropriate feedback scheme, we set up an analog contin-
uous measurement model which exactly simulates the Gisin-Percival quantum state
diffusion. Published by AIP Publishing. https://doi.org/10.1063/1.5007917

I. INTRODUCTION

Standard quantum mechanics tells us that closed systems evolve according to the Schrödinger
equation, which provides a deterministic and reversible rule for states. The idea that quantum systems
may evolve as stochastic processes has emerged in several ways: as an extension of standard formalism
to allow for continuous measurements, as a numerical technique for simulating open systems, and as
a new law of nature. These approaches have very similar requirements and this leads to a convergence
of structure that is pleasing from a mathematical point of view.1 However, this commonality implies
that distinguishing between different physical situations is difficult.

The Gisin-Percival model2 is exceptional in that it is postulated on the grounds of covariance
(up to a global phase) under transformations of the coupling operators that leave the GKS-Lindblad
generator, named after Gorini-Kossakowski-Sudarshan and Lindblad, invariant (a symmetry that is
typically broken in quantum filtering/trajectory models), and it achieves this by using specific complex
Wiener possesses as driving noise instead of the more typical real Brownian motions.

This leads to the question of whether it is possible to realize the Gisin-Percival equation as a
special instance of a quantum trajectory model or whether it is truly distinguished from this class.
The problem was first raised and addressed by Wiseman and Milburn:3 they consider a heterodyne
detection scheme with a local oscillator with a finite detuning Ω from the system and show that
the Gisin equation follows as the infinite detuning limit of the associated stochastic Schrödinger
equation; see also Ref. 4—the particular structure of the Gisin-Percival equation arising in effect
from the vanishing of the rapidly oscillating terms.5

We treat this problem directly in Sec. II without recourse to limits. In Proposition 3 we show that
an explicit homodyne quantum trajectory problem can reproduce the Gisin-Percival solution up to a
global stochastic phase that depends causally on the noise. Though, in Proposition 1, we show that
the stochastic process must have nontrivial quadratic variation. In Sec. IV, we show that it is actually
possible, with the additional use of feedback, to obtain a standard homodyne detection scheme that
exactly reproduces the Gisin-Percival evolution.

A. Stochastic Schrödinger equations

We fix a Hilbert space h as the system state space, and all operators will be assumed to act on
this space. Let L= [L1, L2, . . . , Ln]> be a collection of operators, and H be a self-adjoint operator.
The (L, H) Belavkin-Schrödinger equation takes the form1
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d |ψt
〉
= *

,
−iH −

1
2

∑
k

(
L∗kLk − λkLk +

1
4
λ2

k

)
+
-
|ψt

〉
dt +

∑
k

(
Lk −

1
2
λk

)
|ψt

〉
dIk (t) , (1)

where

λk (t)= 〈ψt |
(
Lk + L∗k

)
ψt〉 (2)

and {Ik } are a family of independent standard Wiener processes,

dIj (t) dIk (t)= δjkdt. (3)

By contrast, let R= [R1, R2, . . . , Rm]> be a collection of operators, then the (R, H) Gisin-Percival-
Schrödinger equation takes the form1

d |ψ̃t
〉
= *

,
−iH −

1
2

∑
k

(
R∗kRk − 2c∗kRk + |ck |

2
)+

-
|ψ̃t

〉
dt +

∑
k

(Rk − ck) |ψ̃t
〉

dξk (t)∗ , (4)

where now

ck (t)= 〈ψt |Lk ψt〉 (5)

and {ξk } are a family of independent complex Wiener processes,

dξj (t)∗ dξk (t)= δjkdt,

dξj (t) dξk (t)= 0. (6)

Equations (1) and (4) are both stochastic analogs of the Schrödinger equation, driven by classical
noise. Note that every complex Wiener process ξ can be written as a sum, 1√

2

(
B1(t) + iB2(t)

)
, of two

independent standard Wiener processes. Both equations are nonlinear—on account of λ(t)’s in (1)
and the c(t)’s in (4).

The equations however have very different origins. The Belavkin-Schrödinger equation comes
from conditioning the state of the system on the results of continuous indirect measurement6 and is best
understood in terms of a quantum filtering theory,7–9 based on quantum stochastic calculus.10–12 It has
also arisen independently as a quantum Monte Carlo technique.13,14 The Gisin-Percival-Schrödinger
equation however is postulated as a new law of physics: it is proposed as the equation describing
a quantum state diffusion leading to a collapse of the wavefunction even for closed systems.15,17

It should be mentioned, however, that (1) also occurs as a proposal for spontaneous collapse and
localization,16 again as a new law of physics.

The question we ask in this article is whether or not one can realize a particular Gisin-Percival-
Schrödinger equation as some Belavkin-Schrödinger equation. What we show is that for any fixed
(R, H), leading to a solution ψ̃t of the corresponding Gisin-Percival-Schrödinger equation with initial
state ψ0, there will exist an (L, H) such that (with appropriate identification of the noises)

|ψt
〉
= eiΘ(t) |ψ̃t

〉
, (7)

where ψt is to be the solution of some (L, H) Belavkin-Schrödinger equation with the same initial
state ψ0.

In particular, the wavefunctions are equivalent up to some c-number phase, Θ(t). However, this
phase will have to be time-dependent. In fact, Θ(t) will have to be random, with a causal dependence
on the noise up to time t, and in particular it must be a diffusion process with unbounded variation,
that is,

dΘ(t) dΘ(t), 0. (8)

In fact, we shall show in Proposition 1 that if Θ(t) is of bounded variation, then (7) cannot
hold.

In Sec. II A, we shall give explicit constructions to establish the representation (7). After a
discussion of the underlying network theory in Sec. III, we show in Sec. IV that the Gisin-Percival
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Schrödinger equation can in fact be modeled exactly as a Belavkin-Schrödinger equation if we allow
feedback.

B. Relation to other work

It is well known that the Belavkin-Schrödinger equation has the linear form

d | χt
〉
=−

(1
2

∑
k

L∗kLk + iH
)
| χt

〉
dt +

∑
k

Lk | χt
〉

dYk(t), (9)

where Y k(t) are the measured quadrature processes (usually from a).6–9 The Wiener processes Ik(t)
are then the innovation processes given by

dIk(t)= dYk(t) − λk(t) dt. (10)

Underlying this, of course, is a quantum stochastic description for a definite input-system-output
model. Effectively, one is homodyning the quantum output fields, with the kth channel interpreted
as a continuous measurement of the observable Lk + L∗k . The linearity is no great surprise and is the
well known classically as the Zakai equation in filtering theory.

The fact that the Y k are not Wiener processes (otherwise we would be conditioning on white
noise) is often missed in the physics literature. One can consider the mathematical equation (9)
with the Y k replaced by independent Wiener processes Zk , but this is physically meaningless: it
becomes physically correct only when one replaces the Zk with the processes having the same
statistical distribution as the Y k and mathematically this can be done using a re-weighting of
the path probabilities known as a Cameron-Martin-Girsanov transformation; see, for instance,
Ref. 18.

1. Wiseman Milburn limit

The derivation by Wiseman and Milburn3 is based on an unequivocally clear physical model.
We consider a system with a single input field with a coupling operator

L =
√
γe−iϕeiΩt a, (11)

where a is a fixed system operator (say the annihilator for a cavity mode), ϕ is a fixed phase, and Ω
is the detuning frequency from the local oscillator. Substituting into (9) we have

d | χt
〉
=−

(1
2
γa∗a + iH

)
| χt

〉
dt +
√
γe−iϕeiΩt a| χt

〉(
dI(t) +

√
γ〈e−iϕeiΩt a + eiϕe−iΩt a∗〉dt

)
.

They now take the limit Ω→∞ and drop the rapidly oscillating terms to obtain

d | χt
〉
≈−

(1
2
γa∗a + iH

)
| χt

〉
dt +
√
γa| χt

〉(
dξΩ(t)∗ +

√
γ〈a∗〉dt

)
, (12)

where they introduce the process ξΩ(t) defined by

dξΩ(t)∗ = e−iϕeiΩt dI(t). (13)

One may argue that dξΩ(t)∗dξΩ(t)=
(
dI(t)

)2
= dt while dξΩ(t)2 = e2iϕe�2iΩt dt ≈ 0 so that in (12)

we may replace ξΩ(t) with a limit complex Wiener process ξ(t). The resulting equation then leads
to the (R=

√
γa, H) Gisin-Percival equation for ��χt

〉/
‖ χt ‖. A precise derivation would presumably

involve a Fourier analysis of the input (pre-measurement) process Z(t) = e�iϕeiΩtB(t)eiϕe�iΩtB(t)∗

considered in Ref. 8 and the use of the Riemann-Lebesgue Lemma19 to justify the omission of rapidly
oscillating terms, but this lies outside the scope of this paper.21–25

2. Girsanov transformation

We mention that a recent result by Parthasarathy and Usha Devi20 shows how to derive the Gisin-
Percival equation from a quantum stochastic evolution using an appropriate Girsanov transformation.
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In fact, their scheme uses the same construction as that appearing in our simplest representation of
the Gisin-Percival equations in terms of the Belavkin equation, see Subsection II C.

C. Covariance

Equations (1) and (4) give rise to quantum dynamical semigroups: for instance, taking the average
over the ensemble of Wiener paths {Ik}, we obtain

E[〈ψt |X ψt〉]≡Φt(X),

where Φt is the completely positive semigroup on the operators of h with the GKS-Lindbladian
associated with (L, H) to be

L(L,H) (X)=
1
2

∑
k

( [
L∗k , ·

]
Lk + L∗k [·, Lk]

)
− i [·, H] . (14)

The corresponding expression involving ψ̃t averaged over the complex Wiener noise leads to the
quantum dynamical semigroup with GKS-Lindbladian (R, H).

Nevertheless, there are several differences. The GKS-Lindbladian (L, H) is invariant under the
transformations1

Lk→L′k =
∑

j

ukjLk , (15)

with U = [ujk] unitary, and the transformations

Lk→L′k =Lk + βk ,

H→H ′ =H +
∑

k

Im
{
β∗kLk

}
+ ε , (16)

with ε real.
The Gisin-Percival-Schrödinger equation transforms covariantly under these transformations.

For the unitary rotation transformations (15), we need only rotate the complex Wiener processes,
while under the translation transformations (16) we have

d |ψ̃ ′t
〉
= *

,
−iH −

1
2

∑
k

(
R∗kRk − 2c∗kRk + |ck |

2
)+

-
|ψ̃ ′t

〉
dt − iε(t)|ψ̃ ′t

〉
dt +

∑
k

(Rk − ck) |ψ̃ ′t
〉

dξk (t)∗ ,

(17)
where the additional term ε(t)=

∑
k Im

{
β∗kck

}
is a time-dependent phase.

The Belavkin-Schrödinger equation, however, does not typically possess such a covariance.

D. Notation

We will write the Belavkin-Schrödinger equation (1) in the form

d |ψt
〉
= dF(L,H)(t) |ψt

〉
, (18)

with

dF(L,H)(t)=
∑

k

(
Lk −

1
2
λk

)
dIk (t) + *

,
−iH −

1
2

∑
k

(
L∗kLk − λkLk +

1
4
λ2

k

)
+
-

dt. (19)

Similarly, we will write the Gisin-Percival-Schrödinger equation (4) in the form

d |ψ̃t
〉
= dM(L,H)(t) |ψ̃t

〉
, (20)

with

dM(R,H)(t)=
∑

k

(Rk − ck) dξk (t)∗ +
(
− iH −

1
2

∑
k

(
R∗kRk − 2c∗kRk + |ck |

2
) )

dt. (21)
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II. REPRESENTATION

For clarity we take the Gisin-Percival-Schrödinger equation with just a single collapse
operator R,

d |ψ̃t
〉
=

(
−iH −

1
2

(
R∗R − 2c∗R + |c|2

))
|ψ̃t

〉
dt + (R − c) |ψ̃t

〉
dξ (t)∗ . (22)

Our question is whether there exists a choice of (L, H ′) for which the associated Belavkin-
Schrödinger equation reproduces the (R, H) Gisin-Percival-Schrödinger equation.

Proposition 1. There is no direct Belavkin-Schrödinger equation which will reproduce the (R, H)
Gisin-Percival-Schrödinger equation, in the sense that

|ψ(t)
〉
≡ eiθ(t) |ψ̃(t)

〉
,

for some real valued differentiable process θ.

Proof. Let us suppose that there is a (L, H ′) Belavkin-Schrödinger equation (1) reproducing
(22), up to some ignorable phase term. That is,

dF(L,H′)(t)= dM(R,H)(t) + iθ̇(t) dt.

Looking at the skew-adjoint time-independent terms in the dt coefficients, we see that we need to
have the same Hamiltonian, H ′ = H and θ = 0. Moreover, we then have∑

k

Re

(
L∗kLk − λk (t) Lk +

1
4
λk (t)2

)
≡Re

(
R∗R − 2c (t)∗ R + |c (t) |2

)
,

and comparing the time-independent parts we see that∑
k

L∗kLk =R∗R. (23)

In addition, we have∑
k

(
Lk + L∗k

)
λk (t) −

1
2

∑
k

λk (t)2 = 2c (t)∗ R + 2c (t) R∗ − 2 |c (t)|2

and averaging gives
1
4

∑
k

λk (t) 2 = |c (t)|2 . (24)

Subtracting this last part off, we obtain∑
k

(
Lk + L∗k

)
λk (t)= 2c (t)∗ R + 2c (t) R∗. (25)

Now, equating the noise terms leads to∑
k

(
Lk −

1
2
λk (t)

)
dIk (t)≡ (R − c (t)) dξ (t)∗ , (26)

and from the requirement that the Ik are independent canonical Wiener processes and that (dξ∗)2 = 0
we get that

0=
∑

k

(
Lk −

1
2
λk (t)

)
2 =

∑
k

(L2
k − λk (t) Lk +

1
4
λk (t)2).

As this should be true for time-dependent λk (t), we require that∑
k

L2
k = 0 (27)

and therefore
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∑
k

λk (t) Lk =
1
4

∑
k

λk (t)2 .

We must then have
∑

k λk (t)
(
Lk + L∗k

)
= 1

2

∑
k λk (t)2. The average of this last equation for vector

state ψt yields
∑

k λk (t)2 = 1
2

∑
k λk (t)2 which is a contradiction. �

A. Representation up to a stochastic phase

We may however try and find a relation such as

|ψ(t)
〉
≡ eiΘ(t) |ψ̃(t)

〉
, (28)

where Θ(t)∗ = Θ(t) is a self-adjoint stochastic process of unbounded variation. This now leads to

dF(L,H′)(t)= dM(R,H)(t) + idΘ(t) + idΘ(t) dM(R,H)(t). (29)

We may now relax condition (26) and replace it by∑
k

(
Lk −

1
2
λk (t)

)
dIk (t)≡ (R − c (t)) dξ (t)∗ + idΘ (t) . (30)

This then implies∑
k

(
Lk + L∗k − λk (t)

)
dIk (t)≡ (R − c (t)) dξ (t)∗ +

(
R∗ − c (t)∗

)
dξ (t) . (31)

We will now show that for an elementary class, which we called the canonical class, it is possible to
find a stochastic phase Θ so that this is achieved.

For further discussion about the gauge invariance of stochastic master equations when the
wavefunction is multiplied by a stochastic phase, see the work of Wiseman and Milburn,4 p. 170.

B. The canonical class

Let us suppose that each collapse operator Lk is proportional to R,

Lk ≡ zkR, (32)

then (23) is satisfied if ∑
k

|zk |
2 = 1. (33)

We now assume the relaxed condition (30), and from (31) we get∑
k

(
zkR + z∗kR∗ − λk (t)

)
dIk (t)≡ (R − c (t)) dξ (t)∗ +

(
R∗ − c (t)∗

)
dξ (t) ,

where we now have λk (t)= zkc (t) + z∗kc (t)∗. The time-independent coefficients may be equated and

this leads to the identity
∑

k

(
zkR + z∗kR∗

)
dIk (t)≡R dξ (t)∗ + R∗ dξ (t) and assuming that R , R∗ one

sees that one should take

ξ (t)∗ ≡
∑

k

zk Ik (t) . (34)

One easily checks that the rest of (31) then follows: that is,
∑

k λk (t) dIk (t)≡ c (t) dξ (t)∗+c (t)∗ dξ (t).
We also see that (33) implies that dξ ·dξ∗ = dt, and for the identification (34) we see that the other
condition (dξ∗)2 = 0 requires ∑

k

z2
k = 0. (35)

The skew adjoint part of (30) is
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k

(
zkR − z∗kR∗

)
dIk (t)≡ (R − c (t)) dξ (t)∗ −

(
R∗ − c (t) ∗

)
dξ (t) + 2idΘ (t)

and, eliminating terms using (34), we find

dΘ (t)=
1
2i

(
c (t) dξ (t)∗ − c (t)∗ dξ (t)

)
≡

∑
k

Im{zkc(t)} dIk (t) .

We note that for the canonical class the phase Θ is proportional to the identity operator on h, so we
may think of it as a (stochastic) phase function.

This stochastic “phase” Θ has the nontrivial Ito table

dΘ dξ∗ = dξ∗ dΘ=−
1
2i

c (t) dt,

dΘ dξ = dξ dΘ=
1
2i

c (t)∗ dt,

dΘ dΘ=
1
2
|c (t)|2 dt.

Now let us check that this gives the correct answer, specifically, that we obtain the correct dt
terms. Starting from (19) for the canonical class, we note (from the conditions

∑
k |zk |

2 = 1,
∑

k z2
k = 0)

that ∑
k

L∗kLk =R∗R,∑
k

L∗kλk =
∑

k

(zkc + z∗kc∗)zkR= c∗R,∑
k

λ2
k =

∑
k

(zkc + z∗kc∗)2 = 2|c|2,

∑
k

(Lk −
1
2
λk)Ik =

∑
k

(zkR −
1
2

czk −
1
2

+ z∗kc∗)Ik = (R −
1
2

c)dξ∗ −
1
2

c∗sξ.

So for the canonical class we have

dF(L,H) =
(
− iH −

1
2

(R∗R−c∗R +
1
2
|c|2)

)
dt + (R −

1
2

c) dξ∗ −
1
2

c∗ dξ.

The underlined terms are half of what they should be in the dt part of dM(R ,H )—this was exactly the
problem we ran into in Proposition 1. However, let us look at the effect of the stochastic phase Θ.
The right-hand side of (29) is

dM(R,H)(t) + idΘ(t) + idΘ(t) dM(R,H)(t)=
(
− iH −

1
2

(R∗R−2c∗R + |c|2)
)
dt

+ (R− c)dξ∗ +
1
2
(
cdξ∗ − c∗dξ

)
+

1
2
(
cdξ∗ − c∗dξ

)
(R− c)dξ∗,

and the Ito correction idΘ(t)dM(R,H)(t)≡− 1
2 c∗(R − c) dt gives precisely the missing dt term

contribution. By inspection, we see that we have recovered (29).

Remark 2. For n = 2, the equations
∑

k |zk |
2 = 1 and

∑
k z2

k = 0 have solutions

z1 =
1
√

2
eiφ , z1 =±i

1
√

2
eiφ , (36)

for some phase φ. For each integer n ≥ 3, we have a larger set of solutions, but a subclass is given
by {z1, . . ., zn}, where zk =

1√
n
eiπ(k−1)/n, for k = 1, . . ., n.
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C. Simplest example

From the remark, we see that the simplest realization (up to a phase) of the canonical class is
given by taking n = 2 collapse operators

L1 =
1
√

2
R, L2 =

i
√

2
R. (37)

Here we will have

λ1 (t)=
1
√

2
〈ψt |

(
R + R∗

)
ψt〉,

λ2 (t)=
i
√

2
〈ψt |

(
R − R∗

)
ψt〉

so that

〈ψt |Rψt〉=
1
√

2
(λ1 (t) − iλ2 (t)) ,

and the complex Wiener process is

ξ (t)∗ =
1
√

2
I1 (t) +

i
√

2
I2 (t) . (38)

D. The filters

Let X be an arbitrary system operator, then its filtered expectation at time t from the Belavkin
theory is

πt (X)= 〈ψt |X ψt〉 (39)

and from (1) we get

dπt (X)= πt
(
L(L,H)X

)
dt +

∑
k

{πt

(
XLk + L∗kX

)
− λk (t) πt (X)}dIk (t) , (40)

and we recall that λk (t) now equals πt

(
Lk + L∗k

)
. Here the Lindbladian is the one determined by

collapse operators L= {Lk } and Hamiltonian H.
Although not interpreted as a filter, we may consider the equivalent in Gisin-Percival’s theory

π̃t (X)= 〈ψ̃t |X ψ̃t〉. (41)

This time, using (4), we find

d π̃t (X)= π̃t
(
L(R,H)X

)
dt +

∑
k

{π̃t (XRk) − ck (t) π̃t (X)} dξk (t)∗

+
∑

k

{
π̃t

(
R∗kX

)
− ck (t)∗ π̃t (X)

}
dξk (t) . (42)

As the Belavkin-Schrödinger wavefunction |ψt〉 in the canonical class is equal to the Gisin-
Percival-Schrödinger wavefunction up to a phase, the following result should not be surprising.

Proposition 3. The Belavkin filter πt (X) corresponding to the canonical class
(
L1 =

1√
2
R,

L2 =
i√
2
R, H

)
Belavkin-Schrödinger model is identical to the Gisin-Percival “filter” π̃t (X) for the

(R, H) Gisin-Percival-Schrödinger equation.

The proof is routine and simply amounts to substituting (37) into (40) and reassembling the
components using the definition (38) for the complex Wiener process. The result is just the single
collapse operator R version of (4). If both are initialized on the same state ψ0, then we must have
πt ≡ π̃t . The extension to the multi-dimensional situation is obvious.
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III. SYSTEM THEORY APPROACH

We recall the “SLH” formulation of open quantum Markov systems, so called because of the
operator coefficients in the central equation (43) below. Our system, with Hilbert space h, is coupled
to an environment which is a Bose reservoir with Fock spaceF. For an n input model, we takeF to be
the Bose Fock space with one particle space Cn ⊗ L2[0,∞). Let {e1, . . . , en} be an orthonormal basis
for Cn, then ek ⊗ f gives a one particle state corresponding to an input quantum in the kth channel
with wavefunction f = f (t), t ≥ 0. (We may think of the reservoir quanta traveling through the system,
and the parameter t labels the part of the input field passing through the system at time t.) We take
Bk (t) to be the annihilation operator for the one-particle vector ek ⊗ 1[0,t]—that is, annihilating a
reservoir quantum of type k sometime over the interval [0, t]. Along with the creators, we have the
canonical commutation relations

[
Bj (t) , Bk (s)∗

]
= δjk max {t, s} .

Formally, we may introduce densities bk (t) interpreted as annihilators of a reservoir quantum of
type k at time t, with

[
bj (t) , bk (s)∗

]
= δjkδ (t − s). Then Bj (t)≡ ∫

t
0 bj (s) ds, etc. We may furthermore

introduce the operators

Λjk (t)≡
∫ t

0
bj (s)∗ bk (s) ds

describing the instantaneous scattering from channel k to channel j of the reservoir quanta at some
time s ∈ [0, t].

It is well known that the most general form of a unitary adapted process on h⊗F from a quantum
stochastic differential equation with constant coefficients is U (t) given by

dU (t)= dG (t) U (t) , U (0)= I ,

where

dG (t)=− *
,
iH +

1
2

∑
k

L∗kLk
+
-
⊗ dt +

∑
k

Lk ⊗ dBk (t)∗−
∑

jk

L∗j Sjk ⊗ dBk (t) +
∑

jk

(
Sjk − δjk

)
⊗ dΛjk (t) ,

(43)
where the coefficients Sjk , Lj, and H are operators on h with S =

[
Sjk

]
unitary and H = H∗. We write

G∼ (S, L, H) for the coefficients and refer to them as the Hudson-Parthasarathy parameters.
We set jt (X)=U (t)∗ [X ⊗ I] U (t) for a system operator X, and we have

djt (X)= jt (LX) ⊗ dt +
∑

jk

jt
( [

L∗j , X
]

Sjk

)
⊗ dBk (t)

+
∑

jk

jt
(
S∗jk [X, Lk]

)
⊗ dBj (t)∗ +

∑
jk

*
,

∑
l

S∗ljXSlk − δjkX+
-
⊗ dΛjk (t) ,

where LX = 1
2

∑
k

[
L∗k , X

]
Lk + 1

2

∑
k L∗k [X , Lk] − i [X, H] is a GKS-Lindblad generator.

The output fields are

Bout,k (t)=U (t)∗ [I ⊗ Bk (t)] U (t)

and so dBout,j (t)=
∑

k jj
(
Sjk

)
⊗ dBk (t) + jt (Lk) ⊗ dt.

A. Filtering

Suppose we wish to monitor the output quadratures

Yk (t)=Bout,k (t) + Bout,k (t)∗ .

They form a commuting set of observables. We have that Yk (t)≡U (t)∗ [I ⊗ Zk (t)] U (t), where
Zk (t)=Bk (t) + Bk (t)∗: they are a commuting set of observables on the Fock space, having the
distribution of independent Wiener processes for the Fock vacuum state.
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The aim of filtering is to compute

πt (X)=E
[
jt (X) |Yt

]
which is the conditional expectation of jt (X) onto the (commutative) algebra Yt generated by the
measured observables {Yk (s) : k, 0 ≥ s ≤ s}.

We restrict our attention to the non-scattering case S = In, that is, G∼ (In, L, H) and

dG (t)=− *
,
iH +

1
2

∑
k

L∗kLk
+
-
⊗ dt −

∑
k

L∗k ⊗ dBk (t) +
∑

k

Lk ⊗ dBk (t)∗

so that

dYk (t)= I ⊗ dZk (t) + jt
(
Lk + L∗k

)
⊗ dt.

In this case, the filter is then given by

πt (X)= 〈ψt |X ψt〉,

where ψt is the solution to the Belavkin-Schrödinger equation (1). The processes Ik (t) are the
innovations

dIk (t)= dYk − πt

(
Lk + L∗k

)
dt = I ⊗ dZk (t) +

[
jt

(
Lk + L∗k

)
− πt

(
Lk + L∗k

)]
⊗ dt.

It is easy to see that the innovations form a multidimensional Wiener process.

B. The series product

We now consider the situation where the output of one system, G1 ∼ (S1, L1, H1), is fed in as
input to another, G2 ∼ (S2, L2, H2). In the limit of instantaneous feedforward, we find the combined
model G2 C G1, where the series product is defined by

(S2, L2, H2)C (S1, L1, H1)=
(
S2S1, L2 + S2L1, H1 + H2 + Im{L∗2S2L1}

)
.

The covariance of the Lindblad generator, discussed in Subsection I C, can be described in
the following terms. A triple (U, β, ε) is said to belong to the central extension of the Euclidean
group over the Hilbert space, denoted by Eu (h) if U is an n × n matrix with complex scalar
entries, β =

[
β1, . . . , βn

]> is column vector of complex scalars, and ε is real. We then have the
covariance

LECG =LG,

for all E ∈ Eu (h). Note that (15) and (16) correspond to (In, L, H) 7→ (U, 0, 0) C (In, L, H) and (In,
L, H) 7→ (In, β, ε) C (In, L, H), respectively.

C. Weyl displacement

Let β be a collection of square-integrable complex-valued functions βk = βk(t). We can con-
sider a “Weyl Box” to be a component which displaces the vacuum inputs by the amplitudes β(t).
That is,

Weylβ(t)∼ (In, β(t), 0). (44)

The output annihilator process of the Weyl Box will then be Bk(t) + ∫
t

0 βk(s)ds.
Placing a Weyl Box after a system G ∼ (In, L, H) as a post-filter results in the combined

model

Weylβ(t)CG∼
(
In, L + β(t), H + Im

∑
k

β∗k(t)Lk

)
.

Note that the Hudson-Parthasarathy coefficients are now time-dependent.
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IV. SIMULATING THE GISIN-PERCIVAL EQUATION

We now show that it is possible to use our system theory approach to build feedback systems
such that the conditioned state corresponds to the Gisin-Percival Schrödinger wavefunction. The

setup is described in Fig. 1. We take the system G to be the simple model
(
L1 =

1√
2
R, L2 =

i√
2
R, H

)
,

that is,

G∼
(
I2,



1√
2
R

i√
2
R


, H

)
. (45)

Both inputs are displaced by amplitudes βk(t) using Weyl Box post-filters that lead to the composite
system G CWeylβ(t) given by

G∼
(
I2,



1√
2
R + β1(t)

i√
2
R + β2(t)


, H +

1
√

2
Im

{
[β1(t) + iβ2(t)]∗R

})
. (46)

We perform homodyne measurements on the quadratures, recording the essentially classical
processes Y1(t) and Y2(t). Using this, we may compute the conditional wavefunction for the Belavkin-
Schrödinger equation, but now with the parameters (I2, L, H) replaced by the modulated ones
in (46).

At this stage, we compute a pair of processes αk(t) using the conditional stateψt . For the moment
we make only one assumption:

(A) The functions αk(t) are purely imaginary functions, depending causally on the measurement
records {Yk(s): k = 1, 2; 0 ≤ s ≤ t}.

The input displacements are then taken to be βk(t) which are Fock space based processes defined
by the pull-back transformation

I ⊗ βk(t)=U(t)αk(t)U(t)∗. (47)

Note that the βk(t) defined in this way are functions of the measurement records {Zk(s): k = 1, 2; 0
≤ s ≤ t}.

We now try and introduce feedback following the approach in Ref. 26. In terms of consistency,
we are now taking the displacements βk(t) to be adapted processes on the Fock space and describable
in terms of the processes Z1 and Z2. By this manner we make the feedback loops. While the model
is more involved than the constant coefficient or even time-dependent coefficient case, the dynamics
are still well defined, and arguably Markovian.

Let us look at the resultant filter in detail. First we have dY k(t) = dZk(t) + jt(Lk + βk(t) + H.c.)
dt. But as the βk are imaginary, this reduces to

FIG. 1. The setup is as follows. The overall system is driven by a pair of vacuum quantum input fields B1(t) and B2(t). These
drive the system and the output is subsequently modulated by Weyl Boxes with displacements β1(t) and β2(t), respectively.
We perform a pair of homodyne measurements on the (modulated) quadratures Y k(t) = Bout,k(t) + Bout,k(t)∗ and use this
information to compute the conditioned state |ψt〉 using the Belavkin filter. Using the filter we compute a pair of processes
αk(t) which are then fed back in as the displacements (βk(t)) for the respective Weyl Boxes.
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dY1(t)= dZ1(t) +
1

2
√

2
jt(R + R∗) dt,

dY2(t)= dZ2(t) +
i

2
√

2
jt(R − R∗) dt, (48)

and in both cases dIk(t)≡ dYk(t) − πt(Lk + L∗k ) dt.
The Belavkin-Schrödinger equation is now the one with the term (18) given by

dF(t)=
∑

k

(
Lk + αk(t)−

1
2
λk

)
dIk (t) +

(
− iH − i

∑
k

Im{α∗k(t)Lk } −
1
2

∑
k

(
(Lk + αk(t))∗

(
Lk + αk(t)

)
+

1
2

∑
k

λk(Lk + αk(t)) −
1
8

∑
k

λ2
k
))

dt. (49)

Some comments are in order. First of all (49) is obtained from (19) with the change Lk 7→ Lk

+ αk(t) and H 7→H +
∑

k Im{L∗kαk(t)}. We note that these equations involve the αk(t), which are
functions of the measurements {Y k}, rather than the βk(t), and the reason for this is that we have
to push forward to the output picture; see Ref. 8. The λk(t) should in principle be shifted to λk(t)
+ αk(t) + αk(t)∗. But this shift is by the real part of the βk(t) and we recall that these vanish by
assumption (A).

We now seek to arrange things so that (49) gives us the Gisin-Percival term dM(R ,H )(t)
and for the noise term, with the previous identification (38) for the noise, we see that we must
have

L1 + α1(t) −
1
2
λ1(t)≡

1
√

2

(
R − c(t)

)
,

L2 + α2(t) −
1
2
λ2(t)≡

i
√

2

(
R − c(t)

)
, (50)

and this implies the following choice:

α1(t)≡−
1

2
√

2
〈ψt |(R − R∗)ψt〉,

α2(t)≡−
i

2
√

2
〈ψt |(R + R∗)ψt〉. (51)

We remark that both of these choices determine purely imaginary expressions, and so the ansatz (A)
is in place. In fact, if we decompose c(t) = 〈ψt |R ψt〉 into real and imaginary parts c′(t) + ic′′(t),
then

λ1(t)=
√

2c′(t), λ2(t)=−
√

2c′′(t)

α1(t)=−
i
√

2
c′′(t), α2(t)=−

i
√

2
c′(t). (52)

With this choice of the αk(t)’s, we find that the dt term in (49) is

−iH −
1
2

∑
k

L∗kLk −
∑

k

(
α∗k(t) −

1
2
λk(t)

)
Lk −

1
2

∑
k

(
αk(t))∗ αk(t) − λkαk(t) +

1
4
λ2

k
)
, (53)

and it is straightforward to check that∑
k

(
α∗k(t) −

1
2
λk(t)

)
Lk ≡ c(t)∗R,

1
2

∑
k

αk(t))∗ αk(t)=
1
4

∑
k

λ2
k ≡

1
2
|c(t)|2,∑

k

λkαk(t)= 0. (54)

Substituting these explicit expressions in to (49) leads to dF(t) = dM(R ,H )(t), which is now exactly
as in (21). In other words, the setup with feedback leads to a conditioned state dynamics which is the
same as the Gisin-Percival-Schrödinger equation.
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V. CONCLUSION

The Gisin-Percival equation appears distinct from the usual stochastic Schrödinger equations
obtained through quantum filtering models. However, as shown by Wiseman and Milburn,3 it may be
obtained as a high detuning limit of a homodyne measurement. Here we have shown that the Gisin-
Percival equation is equivalent up to an overall phase to a specific quantum trajectories problem
(in fact, we obtain a general class and work with the simplest such representative). The phase term
will however be a stochastic process with non-trivial quadratic variation. The quantum measurement
scheme needs to ensure that the covariance symmetry of the Gisin-Percival equation holds, and in
the simplest case this is done by indirect measurement where two input-output channels couple to
the same system operator R and we make homodyne measurements of orthogonal quadratures of the
output fields.

In fact, we show that an appropriate feedback of the measured signals allows us to include this
phase term, leading to an exact analog simulation of the Gisin-Percival state diffusion in terms of
quantum trajectories.

The quantum state diffusion equation of Gisin and Percival is therefore not distinguishable from
standard quantum trajectory models.
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