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ARTICLE

Cascading lake drainage on the Greenland Ice
Sheet triggered by tensile shock and fracture
Poul Christoffersen 1, Marion Bougamont 1, Alun Hubbard2,3, Samuel H. Doyle3, Shane Grigsby 4 &

Rickard Pettersson5

Supraglacial lakes on the Greenland Ice Sheet are expanding inland, but the impact on ice

flow is equivocal because interior surface conditions may preclude the transfer of surface

water to the bed. Here we use a well-constrained 3D model to demonstrate that supraglacial

lakes in Greenland drain when tensile-stress perturbations propagate fractures in areas

where fractures are normally absent or closed. These melt-induced perturbations escalate

when lakes as far as 80 km apart form expansive networks and drain in rapid succession. The

result is a tensile shock that establishes new surface-to-bed hydraulic pathways in areas

where crevasses transiently open. We show evidence for open crevasses 135 km inland from

the ice margin, which is much farther inland than previously considered possible. We

hypothesise that inland expansion of lakes will deliver water and heat to isolated regions of

the ice sheet’s interior where the impact on ice flow is potentially large.
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Each summer thousands of surface melt lakes form across the
Greenland Ice Sheet and those that drain abruptly1–3 cause
short-lived4–7, yet pronounced accelerations in ice flow8,9

due to loss of basal traction10,11. These supraglacial lakes (SGLs)
typically start to form in late May and they grow in number and
extend as surface melting progresses to higher elevations during
the melt season1. SGLs have become larger and more numerous
since 20001,3, while also expanding inland to elevations as high as
2000 m above sea level and 130 km inland from the ice margin12.
The ability of these new inland lakes to enhance ice flow through
rapid drainage is, however, contested13. Several studies suggest
that lakes forming at high elevations tend to be larger and less
likely to drain rapidly compared to lakes at lower elevations1,2,14

where extensional flow is capable of initiating hydro-fractures
beneath lakes15. Hence, Poinar et al.15 argue that meltwater
produced above 1600 m elevation predominantly drains on the
surface and that the impact of inland SGL expansion therefore
may be limited in terms of ice dynamical feedbacks. Yet, Doyle
et al.16 argue that draining lakes may accelerate flow at 1840 m
elevation and as far as 140 km inland from the margin. They also
report year-on-year increases in ice flow corresponding to the
expanding extent of SGLs, a response that differs fundamentally
from the decadal slowdown observed closer to the margin17,18.
With SGLs predicted to expand 200 km inland from the margin
over the next 50 years19, it is critical to understand the lake
drainage mechanism and its role in delivering surface water to the
interior bed, where basal drainage is thought to be predominantly
inefficient20–22 and the impacts therefore potentially sustained16.

Here we apply a well-constrained, three-dimensional (3D) ice-
flow model of the Kangerlussuaq sector of the Greenland Ice
Sheet to test the hypothesis that SGL drainage is dynamically
triggered by the perturbation induced on the force balance of the
ice sheet when surface meltwater is routed along the bed in
summer. We show that distinct events, with up to 124 lakes
draining over the course of a few days, occur when basal lubri-
cation along subglacial drainage paths transiently induces high-
magnitude tensile stresses near the surface. This ephemeral
and previously overlooked alteration of the ice sheet’s force bal-
ance escalates into a tensile shock when many lakes drain col-
lectively in a chain reaction. We use cascading lake drainage to
describe the latter and show that most lakes drain in this dynamic
manner.

Results
Ice sheet model. We apply the higher order Community Ice Sheet
Model (CISM) to a 9000 km2 domain that extends 110 km inland
from ice sheet margin near Kangerlussuaq (67.10°N, 49.90°W)
and includes five outlet glaciers (Isunnguata Sermia, Russell,
Leverett, Ørkendalen and Isorlersuup glaciers in West Greenland)
(Fig. 1a). Model spin-up conditions were specified by inversion of
observed winter 2009–2010 surface velocities23, which yield a
robust fit (r2= 0.99, p < 0.01) between observation and the
initialised model (Supplementary Fig. 1). We then forced the
model with the record of 156 lakes, which transferred 0.43 km3 of
water to bed of the ice sheet during 663 individually observed
events in 2010 (ref. 1; Fig. 2a). The water from draining SGLs was
injected at the bed beneath each lake and then routed subglacially
in a basal hydrological system. The latter was coupled to a 5-m-
thick layer of soft basal till, which is a glacially produced sediment
observed beneath the ice sheet in this region24–26 including lake
sites26. In this model set-up, basal traction was specified by the till
layer’s shear strength, which evolved according to vertical water
flow within it as well as through exchange of water with a basal
hydrological system transporting water according to the gradients
of the hydro-potential surface (Methods). Although the total

runoff produced by surface melting in 2010 was 6.58 km3 (ref. 27)
and therefore considerably higher than the amount of water
stored in SGLs, we focus on the latter because previous work
found lake drainages to induce short-lived but sustained episodes
of ice flow acceleration, consistent with the observed seasonal
variation of ice flow in this11 and other sectors8 of the Greenland
Ice Sheet. Although a larger quantity of surface meltwater is
transferred to the bed through moulins forming where lakes have
drained and where supraglacial streams intersect open crevasses,
we exclude this water supply because its variability is insufficient
to drive a sustained response in the ice flow of our model11.

Cascading lake drainage. Modelled ice flow varies spatially and
temporally in a 6-month forward simulation, which starts on 15
May. Although a significant number of lakes drain during 25–28
May (Fig. 2a), our model does not initially reproduce the first
speed-up event observed during that period (Fig. 2d). To generate
this 'spring event', we included meltwater produced by friction at
the base of the ice sheet during winter and released it when the
first lakes drain on 25 May (Fig. 2d) (see ref. 11 and Methods).
From 1 June and onwards, the lake drainage record produces
distinct intra-seasonal variations in our model, with flow rapidly
accelerating by up to 400% compared to winter. The sustained,
but short-lived perturbations generated by draining lakes are in
good general agreement with daily ice-flow variations recorded by
a GPS receiver installed at site SHR on Russell Glacier (Fig. 2d).
The model outputs are also consistent with ice flow observed
more broadly in satellite remote imagery from 19 June, 11 July, 22
July and 11 November (Supplementary Fig. 2). In a previous
study we used this validated model set-up to show how basal
properties change when SGLs drain and flood the bed11; here, we
examine how the force balance of the ice sheet is altered when
basal traction is temporarily lost. To understand the dynamic
response to multiple lakes draining on the same day, we use an
observationally well-constrained event on 21 June, when 26 lakes
drained and transferred 21 × 106 m3 of surface meltwater to the
bed. After that event, water fluxes in the subglacial drainage
system of our model were >80 m3 s−1 in grid cells covering a 339
km2 area of the bed and locally as high as 489 m3 s−1 (Fig. 1b).
The basal shear strength was reduced by >5 kPa over a 152 km2

area and locally by up to 15 kPa (Fig. 1c). Although this reduction
is small compared to the mean value of the gravitational driving
stress (73±28 kPa), subglacial sediment weakening induced basal
slip by up to 237 m a−1, which is 282% faster than the previous
day (84 m a−1). The corresponding maximum surface velocity
was 247 m a−1, which is 229% faster than the day before (108 m a
−1). We also found surface velocity to increase by >5% over an
area of 4750 km2 (Fig. 1d), whereas basal traction decreased by
>5% over an area of only 233 km2 (Fig. 1c).

A similar cascading event on 18 July demonstrates the impact
caused by lakes draining at higher elevations later in the ablation
season. That day, the modelled subglacial drainage network
extended more than 100 km inland from the ice margin (Fig. 1e),
which is consistent with GPS observations16 and observed patterns
of acceleration mimicking glacial drainage networks28. Basal water
fluxes were >80m3 s−1 in grid cells covering a 504 km2 area of the
bed and locally as high as 524m3 s−1. The weakening of the bed
(Fig. 1f) and the corresponding acceleration of ice flow (Fig. 1g)
were similar to those on 21 June, with high-elevation lakes
influencing ice flow across a longer drainage path and thus over a
larger area, compared to lakes located closer to the margin.

Membrane stress. We find that basal traction is significantly
reduced in regions of the bed where SGL drainage results in basal
water fluxes in excess of 80 m3 s−1 per grid cell in our model
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(Fig. 2b). This loss of basal traction is compensated by large
longitudinal and transverse stress gradients within the ice sheet. The
longitudinal gradients in the along (x) and across (y) ice flow
direction can be calculated as ∂ HRxx

� �
=∂x and ∂ HRyy

� �
=∂y where

H is the ice thickness and Rxx and Ryy are the depth-averaged values
for the resistive stresses derived from the model’s deviatoric stress
tensor (see Methods). The transverse gradients ∂ HRxy

� �
=∂y and

∂ HRxy
� �

=∂x are likewise derived and henceforth we combine
and represent them as a single membrane stress. The coordinate
system is defined so that the dominant direction of ice flow follows
the x direction and extension yields positive values of Rxx (see
Methods).

The membrane stress is negligible in winter when basal
traction alone counters the gravitational driving stress. However,
it becomes critically important in summer when it compensates
for the sudden loss of basal traction along well-lubricated, high-
flux basal drainage pathways (Fig. 2c and Supplementary Fig. 3).
This transfer of resistive stress from the basal interface to the ice
sheet itself explains why ice flow doubled in speed on 21 June and
18 July (Fig. 1). Crucially, this acceleration occurs not only where
the bed is directly affected by lubricating surface water (Fig. 1c, f)
but over a much larger area (Fig. 1d, g). This spatially expansive

response is a consequence of the non-linear rheology of ice29,
which concentrates stresses towards the surface where ice is
colder and more viscous than ice nearer the bed.

Tensile shock. While sudden loss of basal traction induces a
membrane stress consisting of stress gradients, the associated
increases of the stresses’ absolute values are equally important as
they specify where, and to what depth, surface fractures form30,31.
Hence, we specifically analyse Rxx and Ryy for the 50–150-m-thick
top layer of our ice sheet model (henceforth Rsurf

xx andRsurf
yy ),

starting with the cascading drainage of 124 lakes on 6–10 June.
Before that event, 59 lakes had formed (Fig. 3a, b) with most
situated where ice flow was compressional (Fig. 3c), a precondi-
tion consistent with previous work8,10. On 6 June, however, 43
lakes drained either fully (15) or partially (28), transferring 20 ×
106 m3 of surface water to the bed. Sixteen lakes remained
unchanged (Fig. 3d, e). Due to basal lubrication, ice flow in the x
direction switched from compressional (Rsurf

xx <0) to extensional (
Rsurf
xx >0) over an area of 186 km2 (Fig. 3d). In the y direction, a

similar switch occurred over an area of 101 km2 (Fig. 3e). On 7
June, the next day, two new lakes had formed and 30 out of the 46
lakes observed that day drained either fully (9) or partially (21).
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The remaining 16 lakes were unchanged (Fig. 3g, h). With an
additional 34 × 106 m3 of water transferred to the bed, ice flow in
the x and y directions switched from compressional to extensional
over areas spanning 786 km2 (Fig. 3g) and 571 km2 (Fig. 3h)
respectively. Due to cloud cover there are no lake observations for

8–9 June. On 10 June, formation of 24 new lakes brought the total
number of lakes to 61 and 51 of those experienced drainage
(Fig. 3j, k). All but three of these 51 lakes were located in regions
where ice flow became extensional in response to basal lubrica-
tion (Fig. 3l) and 48 drained completely. A transfer of 40 × 106 m3
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of water to the bed on 10 June increased extensional ice flow in
the x and y directions by 914 and 606 km2 respectively, compared
to 5 June, and only 10 lakes remained intact (Fig. 3j, k).

Crevasse opening and fracture. To examine the mechanical
impact, we calculate the depth at which the tensile stress is cap-
able of propagating fractures, i.e. open surface crevasses. As a first
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approximation, we specify fractures to be confined to regions
where Rsurf

xx >0, and their tip to be the depth (d) at which this
tensile stress is countered by compression due the weight of the
overlying ice, yielding d ¼ Rsurf

xx =ρg31. We find that tensile stresses
do not only propagate existing fractures in areas where ice flow
was extensional to begin with; they also initiate new fractures
across an expansive area where ice flow was originally compres-
sional (Fig. 3). For example, on 5 June, we find that extensional
flow in the x direction propagates >10-m-deep surface crevasses
parallel to the y direction in small, isolated regions covering 18%
of the surface of our model (Fig. 3a). Similarly, we find that
extensional flow in the y direction propagates >10-m-deep surface
crevasses parallel to the x direction over an area covering 9% of
our model. As expected, most lakes are located outside of these
crevassed areas. However, as the cascading event unfolds, exten-
sional flow in the x direction leads to the propagation of >10-m-
deep surface crevasses (transverse to ice flow) in areas cover-
ing 20% (6 June), 37% (7 June) and 42% (8–10 June) of the-
surface (Fig. 3) while extensional flow in the y direction
propagates equally deep crevasses (parallel to ice flow) over areas
of 10% (6 June), 16% (7 June) and 18% (8–10 June) of the surface
(Fig. 3).

Dynamic triggering of lake drainage. Although our model does
not include a lake drainage mechanism, we investigate potential

causal mechanisms by comparing the tensile stress perturbation
generated by lakes draining in a cluster, e.g. 6 June, with the
distribution of lakes observed to subsequently drain in another
cluster, e.g. 7 June. For the purpose of this analysis we calculate
ΔRsurf

xx andΔRsurf
yy defined as the change in Rsurf

xx and Rsurf
yy relative

to the day before, as lakes progressively drain. After the 43 lake
drainage events on 6 June (Fig. 4a), ΔRsurf

xx and ΔRsurf
yy exceed 25

kPa over areas of 195 and 34 km2, respectively. The tensile stress
perturbation encircles all but three of the 30 lakes observed to drain
on 7 June, i.e. the following day, and 20 out of 30 lake drainages
occurred where ice flow had switched from compressional to
extensional (Fig. 4b, c). While the model cannot explain why 10
lakes drained in places where ice flow remained
compressional despite lakes draining the day before, we hypothe-
sise that these lakes may have drained as a consequence of the
tensile stresses generated on the same day by the 20 other exten-
sional lakes. While the temporal (daily) resolution of the lake
drainage record allows us to specify changes in ice flow from one
day to the next, we cannot specify potential changes occurring in
less than a day.

After the 30 lake drainages on 7 June (Fig. 4d), ΔRsurf
xx was >50

kPa over an area of 816 km2 and locally as high as 182 kPa
(Fig. 4e). Similarly, ΔRsurf

yy was almost as high (110 kPa),
although less extensive (>50 kPa over 263 km2; Fig. 4f). This
expansion of the tensile stress perturbation induced extensional
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ice flow at 48 out of the 51 lakes observed to drain during 8–10
June (Fig. 4e, f). Once those lakes had drained (Fig. 4g), ΔRsurf

yy
(196 kPa; Fig. 4i) surpassed that of ΔRsurf

xx (180 kPa; Fig. 4h),
although the latter increased by >50 kPa over a much larger
area (925 km2 compared to 95 km2). The 10 lakes that did
not drain during 6–10 June were all located outside the area
impacted by this tensile shock (Fig. 4h, i). We find Rsurf

xx >100 kPa
over wide regions of our model including the interior (Fig. 3j),
whereas Rsurf

yy >100 kPa occurs mainly near the terminus and
scattered interior patches (Fig. 3k). The shift from largely
compressional ice flow (Fig. 3c) to largely extensional ice flow
(Fig. 3f, i, l) explains the formation of extensional fractures
beneath lakes that drain. Because these fractures form in a
direction which is perpendicular to the applied tensile stress32,
our model explains the formation of fractures transverse to the
dominant ice flow direction when Rsurf

xx >0 while fractures parallel
to ice flow form when Rsurf

yy >0 (Fig. 5; Supplementary Fig. 4). The
latter explains the observed opening of fractures in the ice flow
direction5–7,10.

Discussion
Our analysis suggests that the dynamically evolving stress dis-
tribution within the Greenland Ice Sheet dictates where SGLs form,
and when and why they drain as observed. Due to atmospheric
warming, SGLs have become more numerous and larger while
expanding to higher elevations1,12. Recent studies have suggested
that new inland lakes are unlikely to drain rapidly because the
surface there lacks pre-existing fractures, asserting that
interior meltwater will drain predominantly on the surface and only
reach the bed at lower elevations where fractures already provide
access to the bed10,15. If this access remains stationary as pro-
posed10,15, the ice sheet’s response to inland lake expansion would
be controlled by the longitudinal coupling length, which specifies
the upstream distance over which ice flow accelerates when friction
along the bed is locally reduced. While this effect can explain
observed variations in ice flow in response to meltwater injected
several kilometres downstream4,33, the current view is that it is
nonetheless insufficient to have a sustained impact on future ice
sheet dynamics.
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both extent and magnitude, a network of draining lakes expands upstream as well as downstream. d An alternative scenario in which water is routed in
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Our model includes the longitudinal coupling effect, but
whereas earlier work addressed only the thickness-averaged effect
in the ice-flow direction33,34, we examine for the first time its
variation from one day to another, plus its full impact in 3D
(Fig. 2, Supplementary Fig. 3, Methods). The tensile shock
induced transiently when lakes drain is significantly larger than
the longitudinal coupling effect in previous studies, which did not
include lakes or basal hydrology, or the concentration of stresses
towards the surface, as reported here. Although the distributed
hydrological system in our model is simple (Methods), its inter-
action with the underlying till layer produces realistic day-to-day
variations in ice flow (Fig. 2, Supplementary Fig. 2). The good
agreement between model and observation is consistent with a
growing body of evidence, which points to distributed and weakly
connected hydrological systems linked to till as the dominant
control on ice flow rather than channels35. With ice flow coupled
to a till layer that interacts with a distributed hydrological system,
we show how tensile stresses are concentrated towards the surface
when water from draining lakes lubricates the bed. We use the
term ‘tensile shock’ on the basis of tensile stresses increasing by as
much as 182 kPa in a single day. Given that the yield strength of
ice is ~100 kPa32, this marks a significant and previously unre-
ported perturbation. The magnitude and spatially extensive nat-
ure of the tensile shock are underpinned by the observed as well
as the modelled variations in ice flow, which are similar (Fig. 2;
Supplementary Fig. 2).

Our model outputs suggest initiation of new fractures as well as
opening of existing crevasses across much of the ablation area,
and over short periods as far as 100 km inland from the margin
(Fig. 3). This response is supported by satellite imagery (Fig. 6)
showing open surface crevasses 95 km from the ice margin on 21
June, the same day we report a tensile shock from a cascading
event (Fig.1). While the interior crevasses observed on 21 June
were snow-filled, crevasses observed at the same location a year
later were water-filled (Fig. 6b). We also report evidence for
water-filled crevasses at 1800 m elevation on 12 August 2012
(Fig. 6c) when crevasses were also observed to open across the
Raven Skiway near Dye 2 station at 2100m elevation36. Our
model is also supported by satellite laser altimeter data, which
shows significant and sudden changes in surface-elevation relief,
consistent with opening of crevasses over short periods of time
and on a large spatial scale (Supplementary Fig. 5 and Methods).
Although crevasses are generally less frequent at the interior than
along the margin where ice flow is faster, our model shows >10-
m-deep penetration of crevasses in nearly half of the modelled
domain when cascading lake drainage events occur (Fig. 3).
A previous study showed that lakes as small as a few
hundred metres across and a few metres deep may contain suf-
ficient water to drive the propagation of a water-filled crevasse to
the base of 1-km-thick ice37. Contrary to recent work constrained
by mean over-winter strain fields15, we find no upper limit on
the initiation of fractures in our model when summer
meltwater transiently drives large variations in ice flow. Instead,
we find that SGLs become widely interconnected through the
perturbation they induce on the force balance of the ice sheet
when they drain. Of the 663 observed drainage events used to
force the model, the vast majority occurred when the bed was well
lubricated by water from other draining lakes. Over three quarters
of these drainages occurred within seven well-defined events,
which explain all major episodes of ice flow acceleration in 2010
(Fig. 2).

Our study is based on a lake drainage record from 2010. While
the timing of drainages can vary from 1 year to the next, lakes
usually form at the same location year after year1,14. In 2010,
lakes started to form about 2 weeks earlier than usual, but the
cumulative lake volume loss was close to the decadal average at
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Fig. 6 High-elevation crevasses on the Greenland Ice Sheet. a Worldview
image acquired on 21 June 2010 showing snow-filled crevasses at 1540m
elevation, 95 km inland from the ice sheet margin (48.05°W, 67.20°N)
during a cascading lake drainage event (see Fig. 1b–d for contemporaneous
model outputs). b Worldview image showing water-filled crevasses in the
same area on 17 June 2011. Inset shows approximate location of imagery
(coloured dots) and domain of numerical model (black box). c Worldview
image from 12 August 2012 showing high-altitude crevasses at the S10 site
(47.165W, 66.985N) at 1800 m elevation, 135 km inland from the margin,
which is where Doyle et al.16 observed year-on-year increases in ice flow
consistent with forcing by supraglacial lakes (Imagery © 2018
DigitalGlobe, Inc.)
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the end of the melt season1. Observations do not support the
hypothesis that lakes should drain when they reach a critical size
or depth1,6,10. Lakes often drain in clusters in both space and
time1,14 and this hitherto unexplained tendency indicates that the
cascading events in our model are common. Because we use an
observational lake drainage record to force ice flow in our model,
we cannot predict lake drainages nor explain the onset of cas-
cading lake drainage events. However, we propose conceptually
that cascading events occur as a chain reaction (Fig. 5). The
triggering of this chain reaction could be an isolated lake drainage
event or the formation of a moulin when a crevasse intercepts a
supraglacial meltwater stream. Either way, the delivery of melt-
water to the bed may lubricate basal motion locally, as observed
near lakes10, and ice flow should consequently accelerate along
the subglacial hydrological path (Fig. 5a). Lakes situated in com-
pressive basins along this path may drain when the loss of basal
traction temporarily induces membrane stresses of sufficient
magnitude to initiate and propagate crevasses beneath the lakes
(Fig. 5b), causing hydro-fracturing and new surface-to-bed
hydrological connections. With more water injected at the bed,
basal motion is further enhanced; the ice sheet flows yet faster and
more lakes drain as more crevasses open up. To compensate for
the increasing loss of friction along the bed, tensile stresses
develop laterally as well as longitudinally and upstream as well as
downstream (Fig. 5c). At this stage, lakes drain in rapid succes-
sion, with crevasses forming transverse (Fig. 5a–c) or parallel
(Fig. 5d) to the ice-flow direction, depending on the direction of
the tensile stress. The cascading event only abates when the
majority of the lakes affected by the tensile shock have drained
(Fig. 4).

Cascading lake drainage events are short-lived, lasting only a few
days; yet they provide answers to ambiguous and poorly understood
attributes of the SGL drainage mechanism. Specifically, they explain
why lakes situated in compressive basins often drain via
fractures forming by extension5–7,10, why lakes often drain in dis-
tinct clusters1,3,38, why lakes drain through transverse as well as ice-
flow-parallel fractures5–7,10, and why there is no apparent rela-
tionship between the timing of drainage and lake volume or
depth1,6,10. Moreover, the proposed cascading lake drainage
mechanism also explains the precursory activity and uplift recorded
by GPS near lakes before they drained6,10. The regularity of pre-
cursor events at a lake studied since 200610 provides strong
observational support for our model, while our model, in turn,
demonstrates that precursors not only stem from water supplied to
the bed via neighbouring moulins, as proposed10, but from
the hydro-dynamical inter-connectedness of lakes situated more
generally within the same basal drainage path and as far as 80 km
apart.

The expansion of SGLs to higher elevations has not only
occurred in West Greenland, but across the entire ice sheet at
similar rates12. The lakes in our studied region are predicted to
expand to elevations higher than 2000m over the next 50 years19.
Although the size of high-elevation lakes is generally larger than
lakes forming at lower elevation19, their ability to drain rapidly is a
matter of debate. Poinar et al.15 argue that the lake drainage
mechanism is largely confined to elevations below 1600m because
tensile stresses are insufficient to initiate hydro-fracturing beneath
lakes forming at higher elevations. Although lake drainages
below this limit in part may explain why Doyle et al.16 found ice
flow at 1800m elevation to be consistent with year-on-year
increases in lake extent, our study generally does not support
the presence of a fixed elevation limit on lakes ability to drain.
Instead, we find lake drainages to be confined by the spatial extent
of major tensile stress perturbations, which explains why a recent

study found lakes above 1600m elevation to be as likely to drain
rapidly as lakes situated at lower elevation39. While it is possible
that SGLs may form beyond the region affected by tensile shock, it
is unlikely that all future SGLs would fall outside this region. A
more likely scenario is a tensile shock that progressively expand
across larger distances as lakes migrate inland and become more
numerous19.

While the tensile shock is a transient state, its magnitude
and extent explain how crevasses open in regions where ice
flow is otherwise compressional and crevasses normally absent or
closed. Although this finding is based on numerical modelling, we
forced our model with observed SGL volumes and are able to
verify the fracturing of ice in our model with contemporaneous
imagery showing open surface crevasses at 1500 m elevation and
higher. We therefore expect more water to be delivered to pre-
viously isolated regions of the interior bed as climate warms40

and SGLs expand inland12. This delivery will be enhanced by
the continued expansion of the ablation area12,15 as well as
the accumulation area’s decreasing ability to retain meltwater in
firn 41,42. Water from the surface will, additionally, convert
gravitational potential energy as heat at the bed43, promoting
thawing of frozen and previously isolated regions of the bed,
together with easier deformation of warmer basal ice and faster
sliding44. These ice-flow enhancing processes can only be offset if
water from the surface is evacuated in an efficient basal drainage
system capable of withdrawing water from its surroundings
and thereby increasing the frictional resistance along the bed45,46.
The latter may, however, be confined to the ice sheet margin.
Theoretical work shows that ice velocity remains high farther
inland46 where thicker ice and flatter surfaces may preclude or
limit the development of efficient basal drainage systems20–22.
This is consistent with observations of efficient basal water sys-
tems as far as 30 km inland from the margin47 and the decadal
slowdown observed up to elevations of about 1000 m17. With
most lakes forming above that elevation and more lakes forming
in larger networks, more surface water is likely delivered to
potentially sensitive regions of the ice sheet interior as climate
warms.

Methods
Ice sheet model. Ice flow was simulated using the CISM, which solves the con-
servation of mass, thermal energy, and momentum based on the first-order
approximation to the Stokes’ equation for ice flow11,48,49. The model has a 1 km
spatial resolution and was initialised using a standard inversion technique through
which surface velocities were iterated towards specified target values. We first pre-
scribed a no-slip basal boundary condition that allowed internal ice deformation to
evolve to equilibrium. We then subtracted this value from the target surface
velocity so that the model iteratively produced the basal traction and sliding rates
needed to fully converge modelled and observed ice flow. The full details of this
procedure are given by Price et al.49 who used balance velocities as target values.
The target values in this work were observed winter 2009/2010 surface velocities
derived from TerraSAR-X image pairs9,23. With fixed initial model geometry pre-
scribed from a 2008 SPOT surface DEM and a bed DEM produced from ice
thickness measured by airborne and ground-based radio-echo sounding data50,
we converged ice temperature, effective ice viscosity, and ice velocity fields to
equilibrium. We obtained an excellent correspondence (r2= 0.99, p < 0.01) between
flow in our initialised model and that observed during the winter 2009/2010 (Sup-
plementary Fig. 1).

Forcing. To force the model, we used SGL drainage volumes for 2010 produced from
semi-automatic mapping of supraglacial water bodies in MODIS imagery. The
observations from 2010 (Fig. 2a) were part of a decadal (2002–2012) record. See
Fitzpatrick et al.1 for the full record and technical details. During the main simulation,
which started 15 May 2010 and spanned 6 months, ice thickness, velocity and
effective viscosity evolved freely in response to surface water injected at the bed
beneath each lake. The injected water volumes were based on MODIS-derived lake
losses, with the exception of Lake F, which drained rapidly on 29 June after four days
of observed steady lake volume decrease6. In this study, we have corrected the lake
drainage event on 29 June by incorporating four days of pre-drainage volume losses
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and reducing the volume that drained on 29 June according to in situ observations.
The total water volume from draining lakes was 0.43 km3. Water from each lake was
injected at the bed in a single grid cell with a time-step lasting 6 h, which made the
rate of discharge proportional to the observed reduction in lake volume. We justify
this simplifying assumption on the basis that the observational lake drainage record
does not inform the duration of discharge1. While previous studies have identified
both fast and slow modes of lake drainage7, the two modes are often defined by
different criteria and the reported frequencies thus vary for methodological reasons39.

Evolving basal conditions. To realistically simulate ice flow driven by this forcing
we used a dynamic basal sub-model in which sedimentary and hydrological pro-
cesses interact. This interaction was based on the assumption that the subglacial
environment is composed of a layer of till as well as a regional hydrological system
capable of transferring large volumes of surface water when SGLs drain. The till
layer was described using the Coulomb plastic rheology51,52, which is recognised as
a novel framework for modelling ice sheets and glaciers flowing over a soft bed53 as
observed in the Kangerlussuaq sector24,25 and elsewhere in Greenland54,55. Basal
traction in our model therefore evolved according to the quantity of water
accommodated by the till layer when SGLs drain. Water was injected at the bed
beneath each lake and routed in the hydrological system before interacting with the
sediment layer below. The routing of water was based on the D8 steady-state
directional algorithm where cells with lower hydraulic potential receive a fraction
of the outflow11. Although simplified, this approach is consistent with observed
tracer velocities of ~1 m s−1 in this region47, which shows that water is rapidly
distributed in the modelled domain and that water from drained lakes may flow as
far as 86 km within a day. No assumptions were made with reference to the nature
of the basal water system, which simply transfers water according to the slope of
the hydraulic potential surface. The sudden input of water from the surface gen-
erated high fluxes in the basal water system as well as vertical hydraulic gradients,
allowing for an exchange of water between the two systems. Thus, vertical intake of
water was most efficient when the horizontal flux in the basal hydrological system
was high. The return outflow was specified by hydraulic diffusion controlled by the
excess water pressure generated in the till layer when it had accommodated water
by expanding pore space. Full details on this dynamic and physically-based basal
parameterisation are provided in Bougamont et al.11.

Spring speed-up event. Although 95 lakes drained on 25–28 May (Fig. 2a), their
combined volume of 0.03 km3 was insufficient to reproduce the observed 'spring
speed-up' with the parameterisation used to simulate lake drainage events during
the subsequent summer (Fig. 2d). To reproduce the 'spring speed-up' with our
model, we injected 0.04 km3 of additional water on 24 May (Fig. 2d, ‘red line’). This
separate experiment was based on the assumption that water produced from
friction and the geothermal heat flux at the bed during the preceding winter (0.04
km3) may have been stored subglacially in winter when the thinnest portion of the
ice sheet’s margin becomes frozen, causing proglacial discharge to cease56,57.
Observations from Russell and Leverett glacier show that subglacial meltwater is
produced in winter, but not released until spring56,57.

Model validation. When our model was forced with the 2010 supraglacial lake
drainage record, ice flow evolved spatially as well as temporally. These intra-seasonal
variations, with flow accelerating by up to 400% compared to winter, closely mimic
those recorded with GPS at site SHR on Russell Glacier (Fig. 2d). With a three-day
running mean applied to smooth uncertainties tied to the timing of lake drainages, we
obtain a correlation coefficient of r2= 0.83 (p < 0.01) from 1 June when lakes alone
drive ice flow in our model. When the simulated spring speed-up event in late May is
included, the strength of the correlation increases. Furthermore, when modelled
surface velocities are averaged over the same 11-day periods used to obtain surface
velocities from TerraSAR-X image pairs centred on 19 June, 11 July, 22 July and 11
November, we obtain significant correlation coefficients (p < 0.01) of 0.79, 0.92, 0.90
and 0.94, respectively (Supplementary Fig. 2). While the TerraSAR-X tiles do not
capture the whole model domain, they cover the portion of the ice sheet where
velocities vary the most. The high level of correspondence with observations, spatially
as well as temporally, is a unique feature that validates our model. Additional
information can be found in Bougamont et al.11.

Ice sheet force balance. The longitudinal gradients in the x and y directions were
calculated as ∂ HRxx

� �
=∂x and ∂ HRyy

� �
=∂y where Rxx and Ryy are the depth-

averaged values for the resistive stresses Rxx= 2τxx− τyy and Ryy= 2τyy− τxx
derived from deviatoric stress (τij). The latter is defined as the total stress (σij)
minus the hydrostatic component ((1/3)σkkδij) and thus represents the stress that
contributes to ice deformation40. The transverse gradients ∂ HRxy

� �
=∂y and

∂ HRxy
� �

=∂x were in a similar manner derived from Rxy= τxy. The force balance in

the x and y directions are thus58:

ρgH ∂h
∂x ¼ τbx � ∂

∂x HRxx
� �� ∂

∂y HRxy
� �

¼ τbx �membranestressx
ð1Þ

ρgH ∂h
∂y ¼ τby � ∂

∂y HRyy
� �� ∂

∂x HRxy
� �

¼ τby �membrane stressy
; ð2Þ

where ρ, g and h respectively denote ice density, gravitational acceleration and surface
elevation. The left-hand side is the driving stress. The first term on the right-hand side
is basal drag tied to frictional resistance at the bed, which directly opposes the driving
stress. The second and third terms on the right-hand side are longitudinal and
transverse stress gradients, which either oppose or act in cooperation with the driving
stress. These gradient stresses make up the membrane stress.

Crevasses. Open crevasses were detected in satellite imagery (Fig. 6) and the
timing of opening was examined using GLAS05 ICESat-1 elevation data acquired
in repeat orbital tracks. We used data from spring and summer 2005 and 2006
(Supplementary Fig. 5), with no other year in the 2003–2009 ICESat data record
providing repeat seasonal overpasses in the studied region. The elevation data were
spatially subset and filtered to remove weak or invalid returns. Within-footprint
elevation relief (ER) was determined from the root mean square best Gaussian fit of
the return waveform, with the Full Width Half Max (FWHM) of the Gaussian fit
converted from nanoseconds to metres after accounting for the length of the
outgoing pulse59:

ER ¼ FWHMreturn � FWHMtransmitð Þ
´ 0:15m=nsð Þ ð3Þ

Terrain complexity was examined using Gaussian decomposition to identify the
number of modal peaks within the return waveforms59.

Overpasses on 28 February and 22 March 2005 show an ice sheet surface that was
flat and gently sloping, with near zero ER (Supplementary Fig. 5a). A repeat pass-over
on 22 May revealed little change in ER compared to 22 March, but on 29 May and 1
June the ER had increased to ~3m along two tracks that followed the 1700m elevation
contour, 110 km inland from the ice sheet margin near 67.5°N and 47.5°W
(Supplementary Fig. 5b). On 16 June, the ER had intensified to >10m at 1400m
elevation north of 67.5°N and slightly less (~3m) at lower elevations near 67°N. The
observed increase in ER was accompanied by changes from planar to complex
surfaces, often within days (Supplementary Fig. 5b). Although ER may increase from
the exposure of rough icy surfaces in places where snow disappears, the observed
changes in ER cannot be exclusively attributed to snow melt because they occur at low
(<1000m) and high (>1700m) elevations simultaneously and at different locations
from one year to the next. The increase in ER and the accompanying abrupt change
from planar to complex surfaces is consistent with crevasses becoming deeper and
more densely spaced locally. Significant elevation differences between overlapping
overpasses separated by only a few days highlight the short temporal scale of the
dynamic crevasse-opening mechanism (Fig. 5, Supplementary Fig. 4). The smaller ER
observed south of 67°N in late May and early June is in good agreement with
observations showing that lakes did not form in that region until 5 June that year1. In
2006, we observed overall similar evolution of ER, although significant short-term
elevation change also occurred south of 67°N, where crevasse may have opened in
response to lakes starting to form on 11 May1 (Supplementary Fig. 5c, d). The onset,
duration and total number of lakes observed in 2006 were similar to those of 20101.

Data availability. The model code used in this study is based off the Community
Ice Sheet Model, which is freely available (https://github.com/CISM). All input
datasets and model development code are available on request from the corre-
sponding author.
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