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ABSTRACT  

 
Simultaneously bio-based and bio-degradable plastics such as polybutylene succinate (PBS) have the potential to 

become a sustainable alternative to petrochemical-based plastics. PBS can be produced from bio-based succinic acid 

and 1,4-butanediol using first-generation (1G) or second-generation (2G) sugars. A cradle-to-grave environmental 

assessment was performed for PBS products in Europe to investigate the non-renewable energy use (NREU) and 

greenhouse gas (GHG) impacts. The products investigated are single-use trays and agricultural film, with 

incineration, industrial composting and degradation on agricultural land as end-of-life scenarios. Both end products 

manufactured from fully bio-based PBS and from partly bio-based PBS (made from bio-based succinic acid and 

fossil fuel-based 1,4 butanediol) were analysed. We examine corn (1G) as well as corn stover, wheat straw, 

miscanthus and hardwood as 2G feedstocks. For the cradle-to-grave system, 1G fully bio-based PBS plastic products 

were found to have comparable environmental impacts than their petrochemical incumbents, while 2G fully bio-

based PBS plastic products allow to reduce NREU and GHG by around one third under the condition of avoidance 

of concentration of sugars and energy integration of the pre-treatment process with monomer production. Without 

energy integration and with concentration of sugars (i.e., separate production), the impacts of 2G fully bio-based 

PBS products are approximately 15-20% lower than those of 1G fully bio-based PBS products. The environmental 

analysis of PBS products supports the value proposition related to PBS products while also pointing out areas 

requiring further research and development.  

 

Keywords: Bio-based polybutylene succinate, PBS, second generation feedstocks, energy balance, greenhouse gas 

emissions, GHG, LCA 



    

2 

 

  

1 INTRODUCTION 

 
The transition from 1st generation bio-based products derived from feedstocks including corn grain, soya, and wheat 

to 2nd generation products derived from lignocellulosic feedstocks, such as agricultural residues and energy crops, has 

recently become a policy objective. It is the consequence of increased concern about potential issues related to 1st 

generation bio-based products, including potentially accelerated deforestation (direct and indirect land use effects), 

biodiversity loss, exacerbation of water scarcity and potentially higher food prices resulting in social impacts.1,2 The 

priority given to the use of non-food feedstocks is stated in the European Renewable Energy Directive3 and has been 

specified in its recent amendment.4 While major progress has been made in R&D and demonstration of 2nd generation 

bioethanol as transportation fuel,5–10 it still needs to be demonstrated that advanced bio-based products (typically 

produced by application of biotechnology or catalytic processes) can be made from non-food feedstocks. Next to 

“drop-in solutions” (e.g. partially bio-based polyethylene terephthalate/PET, now representing approximately one 

third of bio-based plastics),11 this applies also to new, simultaneously bio-based and biodegradable plastics, for 

example, polylactic acid12,13 or polybutylene succinate (PBS) which can be derived from succinic acid.  

 

Succinic acid (SA) is one of the twelve high-value bio-based chemicals which, more than a decade ago, was identified 

by Werpy and Peterson14 as a compound that has the potential to improve the profitability and productivity of bio-

refineries, thereby facilitating the transition from today’s fossil-based industrial chemistry to sustainable bio-based 

production. This vision, which was reinforced by Bechthold et al.15 as well as Bozell and Peterson,16 is about to come 

to fruition. In 2010, a number of companies began to produce 1st generation bio-based SA in various locations across 

the world,17,18 with today’s key producers being the companies Reverdia, Bio-Amber, Myriant and Succinity GmbH 

(BASF+Purac). In line with today’s practice in industrial production, most publications on the environmental 

assessment of SA and its derivatives evaluate 1st generation pathways,18,19 with only very few exceptions.20–22 To our 

knowledge, there are no previous studies on the environmental impacts of end-products made from 2nd generation SA-

based plastics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 METHODOLOGY, PROCESS DESCRIPTION, AND INPUT DATA 
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We apply the principles of environmental life cycle assessment (LCA), which is an internationally standardized 

methodology for the environmental assessment of products and services,23,24 consisting of four phases: 1) Goal and 

scope definition, 2) Inventory analysis, 3) Impact assessment and 4) Interpretation (see below). Recently, a European 

standard tailored to bio-based products25 presented the LCA methodology from the perspective of its application to 

bio-based products, but it does not call for any changes compared to LCA studies conducted prior to its existence. In 

the following section, we explain the first three phases of our study, while we present the impact assessment in the 

results section, interpretation in the discussion and provide conclusions in the last section. 

 

2.1 Goal and scope definition 

The primary goal of this study is to analyse greenhouse gas emissions (GHG) and non-renewable energy use (NREU) 

for plastic end products made from the 2nd generation SA-based polymer polybutylene succinate (PBS). The chosen 

products are plastic trays used for food packaging (e.g. fruit) and agricultural mulching films. We assume 1 kg of 

product as the functional units, which represents 53 trays and 67 m2 of film (see Discussion and Appendix A1 for 

reasoning). The studied product system covers all steps from cradle to grave, with end-of-life waste management by 

a) degradation on the field (for film) and b) combustion with energy recovery in a municipal solid waste incineration 

(MSWI) plant or industrial composting (for trays; Figure 1). PBS products are compared to the current incumbent 

petrochemical products, i.e. polypropylene and polyethylene terephthalate (PP and PET, for trays) as well as 

polyethylene (PE, for films), all with MSWI as waste management. PBS trays are expected to compete primarily with 

PP trays because the two polymers can be used for similar applications in food packaging as a consequence of some 

similar features (both polymers are opaque, can be coloured, and have similar melting temperatures). However, the 

molecular structure and polymerisation routes of PBS are more closely related to those of PET (in comparison to PP 

and PE), which is used as a second incumbent reference material for trays. As a regional scope, we choose Europe, 

thereby aiming for average conditions in feedstock supply and industrial processing. The main feedstock considered 

is corn stover, with results for wheat straw, miscanthus and willow being briefly presented (see Discussion). By 

analogy, PBS is benchmarked against other SA-based polymers (PBST, PBSA and PBAT; see Discussion).  

 

2.2 Inventory analysis  

The main plastic studied in this paper is (fully or partly) bio-based PBS, a biodegradable polymer which is produced 

by polymerisation of SA with 1,4-butanediol (BDO). The mass percentages of these two monomers relative to the 

total feedstock inputs are 57% (SA) and 43% (BDO). We consider 2nd generation (2G) SA next to 1st generation (1G) 

SA; as further benchmark we consider petrochemical maleic anhydride and petrochemical SA. For BDO, we 

distinguish three routes, i.e. production from petrochemicals, hydrogenation of 2G SA22 and BDO produced by direct 

fermentation of C6 sugars (Innocenti F, Novamont Group, 2016, pers. comm.).26 We study fully bio-based (fb) PBS 

(produced from bio-based SA and BDO) and partly bio-based (pb) PBS (produced from bio-based SA and 

petrochemical BDO) both with 1st generation (1G) and 2nd generation (2G) feedstocks (Figure 1).  In addition, we 

study a Best, Reference and Conservative case for fb 2G PBS and a Reference and Conservative case for fb 1G PBS.  
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Figure 1: Flowsheet of PBS production (monomer production and polymerisation), conversion to end products, use, 

and end-of-life waste management options. Labels to the left correspond to contribution analysis (see Figure 5).  
 

Among the wide variety of lignocellulosic feedstocks, we choose corn stover due to its abundance in the northern 

hemisphere. Its primary constituents are cellulose (37%), hemicellulose (21%) and lignin (18%).27 We apply economic 

allocation to assign the impacts of cultivation to corn stover (versus corn28; see Appendix A3)* and pre-treatment 

processes to fractionate the stover (Villegas et al., forthcoming). We consider here two pre-treatment processes, Steam 

Explosion (SE; being the most commonly applied process in cellulosic ethanol demonstration plants) and the 

Organosolv process (OS; Figure 2 and Appendix A2). For SE, we assume a low-severity process (to minimize 

degradation products) while the OS process uses ethanol as the solvent and sulphuric acid as the catalyst (Table 1; 

Villegas et al., forthcoming). We also consider an alternative OS process based on wheat straw, which is employed 

                                                           
*In LCA, there are three predominant allocation methods, i.e. subdivision, system expansion (frequently applied as a credit 

approach) and economic allocation
23,24,29
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by Compagnie Industrielle de la Matière Végétale (CIMV, Appendix A2).29  All pretreatment processes produce C6 

sugars and C5 sugars, while only the Organosolv processes produce high purity lignin as well (see Figure 2).  

 

Figure 2: Simplified process scheme for pre-treatment by Organosolv (OS) and Steam Explosion (SE). Dissolved 

sugars are approximately 20% ds.  

 

For 2G PBS pathways, we assume SA production from C6 sugars by low-pH yeast fermentation with downstream 

processing by direct crystallisation (this process route co-produces biogas and causes lowest impacts),18 and account 

for the latest improvements in SA yields from C6 sugars (Theunissen, L. pers. comm. Reverdia) as well as the latest 

LCA data for European electricity generation (ENTSO according to Ecoinvent 328; see Table 2; Appendix A4). 

As default, the pre-treatment process for converting 2G biomass feedstock to sugars is assumed to be integrated with 

SA production on a single site (Appendix A5). Excess heat available from pre-treatment is used in SA production and 

the concentration of C6 sugars is avoided (otherwise required before transportation of C6 sugars to a distant SA plant; 

Table 1, item 1f; Villegas et al., forthcoming). It is assumed that BDO is produced in an integrated plant as well. For 

comparison, the non-integrated production of 2G SA and BDO (separate production of C6 sugars and bio-chemicals) 

is analysed. For both integrated and non-integrated production, the analysis is performed for a Reference Case and a 

Conservative Case. Only integrated production is considered in a Best Case (Table 1).  

As shown in Figure 2, both the SE and OS technology are multi-product processes, yielding C6 sugars from cellulose, 

C5 sugars from hemicellulose as well as oligomers and lignin. However, only C6 is used to produce SA in all cases. 

Therefore, allocation (partitioning) or in-house utilization of co-products becomes necessary:  

 There is currently no large-scale market for C5 sugars or oligomers of 2G origin, but a potential large-scale usage 

is 2G biogas production.30 Therefore, we consider the utilization of C5 sugars and oligomers in biogas production 

on site using conservative assumptions for biogas yields from corn stover and biowaste, respectively, for all 

integrated and non-integrated cases (Appendix A6).30  

 For both integrated and non-integrated production, valorisation of biogas and solid waste biomass in CHP 

facilities is assumed to provide heat and electricity; if required, natural gas is co-combusted together with biogas 

in the CHP facility. The CHP facilities are modelled with 12-21% electrical and 28%-61% thermal efficiencies 

(Table 1, item 1e) depending on their fuels and energy needs of each process.  Additional electricity demand is 

purchased from the grid. Excess biogas production, if applicable, is credited to the natural gas grid.  

 For lignin produced by SE, we assume lignin valorisation by combined heat and power (CHP) generation on site 

in the Reference Case and the Best Case (see Table 1). Only OS produces high purity lignin (HPL), for which 

we assume economic allocation (lignin allocation as by-product of C6 production; Conservative Case, see Table 
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1, item 1d and Appendix A5). For HPL and C6 we assume market values of 1.00 €/kg HPL and 0.36 €/kg C6 

(Villegas et al., forthcoming; Appendix A6).31 

For comparison, results for 1G PBS based on 1G sugar from corn are presented in two cases; Reference and 

Conservative*. To ensure consistency with 2G, we apply economic allocation also to 1G value chain (Appendix A3). 

As Reference Case, we assume production of 1G sugar in a highly efficient European plant (based on Cok et al.,18 but 

updated with latest LCA data for European electricity generation; see Table 2 and Yeung et al., forthcoming) integrated 

with SA production. Under the Conservative Case we assume a less efficient starch plant, which may be considered 

as average in Europe (based on EcoInvent 3,28 see Table 1 and 2) that is not integrated with SA production. To convert 

the starch to glucose, we assume the impacts of the efficient European process for glucose production and steam-based 

evaporation for glucose drying (Appendix A7). We assume SA production from 1G sugars and 2G sugars (in both 

cases in the form of sugar hydrolysate) to be identical.  

For 1G BDO, petrochemical BDO, and the incumbent materials, we use the data sources given in Table 2 (see also 

Yeung et al., forthcoming). The Reference Case for 1G BDO involves estimated data for non-integrated production 

of BDO by fermentation of dextrose (currently operated by Mater-Biotech in Italy; Innocenti F.D, pers. comm. 

Novamont Group).32 The Conservative Case for 1G PBS assumes hydrogenation of 1G SA to BDO (Table 2).22 

Similarly, the bio-based BDO used for 2G PBS is divided into three cases (with the best case assuming more energy 

efficient production of BDO by Mater Bio-Tech, Table 1) with stover as 2G feedstock and integration of a 2G pre-

treatment and BDO facility assumed (see Appendix A8 for 1G to 2G BDO adjustment).  

The polymerisation of PBS is traditionally done in two steps; esterification and transesterification.33 PBS 

polymerisation is like that of bottle-grade PET34, except that PBS polymerisation occurs at lower temperatures and 

without a solid-state polymerisation step (Theunissen L., Reverdia, 2017, pers. comm.). We therefore estimate the 

energy of PBS polymerisation by adjusting values from PlasticsEurope for PET bottle-grade to account for the lower 

temperature of PBS compared to PET and the lack of a solid-state polymerisation step (see Appendix A9).35 Molar 

yield for PBS polymerisation from monomers is assumed to be 95%, comparable to 97% for PET (EcoInvent 3).28  

 

PET trays from granulates are commercially produced in two steps, i.e. by sheet extrusion followed by thermoforming 

and calendaring; PP trays are manufactured by Sharpak in a more efficient process, reducing NREU by 19% (Cox M., 

Sharpak, 2016, pers. comm., see Appendix A9).36,37 It was assumed that PBS trays were produced in a two-step process 

much like PET. However, the energy use of this process was adjusted because of the lower melting point of PBS (see 

Appendix A9). Since the theoretical energy use for PBS extrusion and thermoforming was the average of the energy 

used for PP and PET, the impacts of making PBS trays was assumed to be the average of the extrusion and 

thermoforming of PET and PP for all cases.  For film production, we assume extrusion for all cases (Ecoinvent 328 

Table 2). The material efficiency for tray and film production is 99% and 97.7% respectively (Cox M., Sharpak, 2016, 

pers. comm.)28. Only pure plastic materials were assumed, while commercial production typically uses fillers and 

additives.  

  

We make the simplifying assumption of 1000 km of transportation by lorry for all bio-based cases, while, for 

petrochemical polymers, we assume the transportation services are embedded in the reference records (this difference 

reflects the typically more complex logistic chain of bio-based polymers). The use phases of the products are not 

considered because their impacts are considered negligible (except for transportation which cancels out across the 

options). At the end-of-life, PBS trays are incinerated and PBS film is left to decompose on the field (Table 2). As an 

alternative end-of-life scenario, we also consider the industrial composting of PBS trays. We assume 99% release of 

stored carbon for incineration and 95% release of stored carbon for biodegradation of films and industrial composting 

of trays (Yeung et al., forthcoming; see Appendix A10 and A11). In the case of composting, the avoidance of 

extracting non-renewable moss peat is considered.38 As for PBS films, biodegradation on the field is assumed, with 

no credit for avoided moss peat use. Since the incumbents are not biodegradable, MSWI is the only waste management 

                                                           
* See discussion section of Yeung et al (forthcoming) for a Best Case regarding 1G PBS production. 
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option considered (see Appendix A10 for energy credits). We assume the impacts for the removal of PE film from the 

field (Table 2) and 100km of transit to the incineration facility. 

 

When presenting results for SA or the PBS product (cradle-to-factory gate, see below in Figure 3), we consider 

temporary storage of atmospheric carbon (negative emissions) as has been suggested and applied for intermediate 

products (Innocenti F, 2016, pers. comm.).18,22,39 To ensure consistency, we consider the release of this carbon as 

positive emissions in the end-of-life stages (see “Embedded CO2 emissions” in Figure 4).  

 

Table 1: Differing assumptions for the three cases studied (Conservative Case, Reference Case and Best Case)  
 Process/Product Conservative Case Reference Case Best Case 

1.) 

Production 

of 2G C6 

sugar by pre-

treatment 

 

1a) Feedstock for 2G SA and 

2G BDO 

Corn Stover 

1b) Pretreatment technology1 Organosolv (OS) 

 

Steam explosion (SE) 

1c) Evaluation of C5 sugars 

and oligomers 2 

Conversion to biogas burnt on-site in CHP or (for non-integrated Reference 

and Best Case) credited to natural gas grid 

 

1d) Evaluation/Allocation of 

C6 sugars versus lignin 

Econ. alloc. based on 

raw sugar price and 

high purity lignin 

(HPL) price 

No alloc. needed (C6 is the only output because 

lignin is burnt on-site in CHP) 

 

1e) Total efficiency (%) of 

CHP (thermal/electrical 

output)  

i) integrated: 73%  

(0.61/0.12) 

ii) non-integrated: 74% 

(0.61/0.13) 

i) integrated: 50% 

(0.32/0.18) 

ii) non-integrated: 69% 

(0.59/0.18) 

i) integrated: 49% 

(0.28/0.21) 

 

1f) Share of theoretical 

product concentration energy 

use assumed to be avoided 

through integration 

80% 100% 

2.) 

Production 

of 1G C6 

sugar by wet 

milling 

1G Dextrose (Corn-based) 

 

Not integrated with 

SA production; 

EcoInvent 3 (Maize 

Starch {DE}, 

production)  

Integrated with SA 

production; Efficient 

corn starch mill 

(Cok et al.18) 

Integrated with SA 

production; Efficient 

corn starch mill 

(Cok et al.18)3 

3.) 

Production 

of BioBDO 

from C6 

sugars 

3a) 2G BioBDO 4 Hydrogenation of 2G 

SA 22 

2G-based Mater-

Biotech (estimated 

current production) 

2G-based Mater-

Biotech (more 

efficient/future 

production) 

3b) 1G BioBDO  Hydrogenation of 1G 

SA 22 

1G-based Mater-

Biotech (estimated 

current production) 

1G-based Mater-

Biotech (estimated 

current production)3 
 
1Each pre-treatment process is explained in Appendix A2 and the chosen allocation process is described in Appendix A4. 2 See 

flowsheets in Appendix A5. 3 This case is equivalent to 1G Reference Case; an optimistic estimation of 1G impacts is discussed 

in the `best` case modelled by Yeung et al (forthcoming). 4See Appendix A8 for adjustment of impacts from 1G BDO to 2G 

BDO. The estimated current production of BioBDO has not yet been validated by consolidated data because the plant has not 

been operational for more than a year.   
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Table 2: Key processes and sources of life cycle inventory data 
Process or Material Case/s Data Source * Notes 

Corn Stover 
All 2G cases EcoInvent 3 (28) Grain maize, IP, at farm, CH. From cradle to corn stover, 

economic allocation (Appendix A3) 

Corn Grain 
All 1G cases 

 

EcoInvent 3 (28) Grain maize, IP, at farm, CH. From cradle to grain, no 

economic allocation assumed (Appendix A3) 

Wheat Straw 
2G case in 

discussion section 

Villegas et al., 

forthcoming 

From cradle to straw at pretreatment plant gate, economic 

allocation (Appendix A3) 

Miscanthus 
2G case in 

discussion section 

Villegas et al., 

forthcoming 

From cradle to miscanthus at pretreatment plant gate 

Willow 
2G case in 
discussion section 

Villegas et al., 
forthcoming 

From cradle to willow at pretreatment plant gate 

Pre-treatment of Biomass 
(C6 Production from straw) 

All 2G cases Villegas et al., 

forthcoming 

SE and OS process; adjusted to latest LCA data for European 

electricity generation (ENTSO), with biogas production from 
C5 and oligomers (Appendix A2 and A6) 

Pre-treatment of Biomass 
(CIMV) 

Alternative OS 

technology 

developed by CIMV 

Benjelloun-

Mlayah, pers. 

comm. 

See Appendix A2.  

Biogas Credits 

2G non-integrated 

Reference Case 

EcoInvent 3(28) Credit assumes that impacts of extraction and delivery of 

natural gas (high pressure, Europe without Switzerland, market 

for), the embedded NREU and greenhouse gas emissions 
(0.056 kg CO2 eq/MJ) are avoided 

Wet Milling (Dextrose 
Production from corn grain) 

1G Best and Ref. 

Case 

Cok et al., 2014 

(18,40) 

Economic allocation adjusted from Tsiropolous et al29 

 

1G Cons. Case EcoInvent 3(28) Maize starch production, DE 

Succinic Acid Production 
from Dextrose or C6 

All cases Cok et al., 2014 
(18) 

Adjusted to latest LCA data for European electricity generation 
(ENTSO) (see electricity record below) 

BioBDO Production from 

SA 

Cons. Case Adom et al., 

2014 (22) 

Used stoichiometric amount of hydrogen (Dunn J, NREL pers. 

comm.)21 

BioBDO Production by 
fermentation of C6 from 1G 

or 2G Feedstocks  

Ref and Best Cases Novamont 
Group, pers. 

comm. 

Adjusted for 2G feedstocks in Appendix A8.  

PBS Polymerisation 
All Cases PlasticsEurope 

(35) 
Adjusted for lower melting temperature and lack of solid state 
polymerisation step for PBS in Appendix A9. 

PP Production PP EcoInvent 31(28) Granulate, RER 

PET Production PET  EcoInvent 31(28) Granulate, amorphous, RER 

PE Production PE EcoInvent 31(28) Low density polyethylene, granulate RER 

PP Extrusion and 
Thermoforming for trays  

PP Sharpak, pers 
comm. 

Based on PP tray production facility 

PET Extrusion and 

Thermoforming for trays 

PET Sharpak, pers 

comm. 

Based on PET tray production facility 

PBS Extrusion and 

Thermoforming for trays  

All Cases 
 

Sharpak, pers 
comm.  

PET extrusion and thermoforming adjusted for lower melting 
point of PBS in Appendix A9. Assume 99% material 

efficiency with scrap incinerated.  

Extrusion for films 
All cases EcoInvent 3(28) Extrusion, plastic film RER. Assume 97.7% material 

efficiency with scrap incinerated.  

Transportation by Lorry All cases EcoInvent 3(28) Transport, freight, lorry >32 metric tonne, EURO3 RER 

Incineration of Plastic2 

PP EcoInvent 3(28) Waste polypropylene CH, treatment of, municipal incineration 

PET EcoInvent 3 (28) Waste polyethylene terephthalate CH, treatment of, municipal 

incineration 

PE EcoInvent 3 (28) Waste polyethylene CH, treatment of, municipal incineration 

PBS EcoInvent 3 (28) Waste plastic, mixture CH, treatment of, municipal 

incineration 

Collection of Agricultural 
Film 

PE EcoInvent 3 (28) Baling CH, processing, without plastic wrapping impacts 

Incineration of Agricultural 

Film 

PE Briassoulis et 

al., 2012(41) 

See Appendix A10  

Heat Credits for MSWI 
(avoided heat production) 

All cases EcoInvent 3 (28) Heat, central or small scale, natural gas-fired boiler, Europe 
without Switzerland, at boiler condensing modulating <100kW 

Electricity 
All cases EcoInvent 3 (28) Electricity, medium voltage in Europe, ENTSO. Also used as 

electricity credit for MSWI 

Electricity for Sensitivity 

Analysis 

2G Ref. Case3 EcoInvent 3 (28)  Electricity, medium voltage in Norway, NO 
Electricity, medium voltage in Poland, PL 

Electricity, medium voltage in Italy, IT 

Industrial Composting Alt. to 2G Ref. Case EcoInvent 3 (28)  Biowaste CH, treatment of, composting4 

Carbon Balance of Industrial 

Compost 

2G Ref. Case Hermann et al, 
2011(38) 

In line with Yeung et al., forthcoming and see Appendix A11 
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Moss Peat Replacement 2G Ref. Case EcoInvent 3 (28) Peat Moss, RoW, peat moss production, horticultural use 

Degradation of Agricultural 
Film on field 

All PBS film cases Yeung et al., 
forthcoming 

See Appendix A11 

* Reference numbers, when applicable, are in parentheses.1 EcoInvent 328, instead of PlasticsEurope, was the source of incumbent polymer 

production data for consistency with Yeung et al., forthcoming. 2The fossil fuel emissions were changed for these processes to reflect 99% 

emission of embodied carbon from plastics (Yeung et al., forthcoming)42 and energy recovery credits acc. to Appendix A10. 3See discussion for 

sensitivity analysis. 4The climate change impacts were changed to reflect long-term carbon storage in compost (in line with Yeung et al., 

forthcoming, Appendix A11). 

2.3 Impact assessment  

The selected environmental performance indicators are non-renewable energy use (NREU, using indicator 

“Cumulative Energy Demand V1.09” in SimaPro) and greenhouse gas (GHG) emissions or climate change impact 

(IPCC 2013 GWP 100a in SimaPro). The early technology development stage of the pre-treatment processes and the 

resulting lack of data prevent a broader coverage of environmental impacts, which would be needed for a more 

complete understanding. 
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3 RESULTS 
 

As an important interim result, Figure 3 shows cradle-to-factory gate results for 2G SA and the respective values for 

1G SA. If produced in an integrated site (integration of pre-treatment with SA production), 2G SA based on the SE 

process causes 108% lower climate change impacts than 1G SA and requires 46% less NREU.  These climate change 

impacts account for storage of atmospheric carbon in the product (negative emissions); disregarding this storage as 

applied for cradle-to-grave analyses results in 37% lower GHG for 2G SA compared to 1G SA. The 1G results assume 

a modern, highly efficient wet mill in Europe, while less efficient starch production increases the impacts of 1G SA 

(by 58% for GHG and 27% for NREU; see Conservative Case in Figure 3). The impacts for OS are sensitive to the 

selling price of HPL (1.00 €/kg was assumed), as halving the price would increase impacts of SA by 42% and 11%, 

while doubling it would decrease SA impacts by 42% and 11%, respectively, for GHG (with accounting of carbon 

storage) and NREU (see error bars in Figure 3).   

 

 
Figure 3: Cradle-to-factory gate climate change impact and NREU of 1G SA Ref (1G Reference Case), 1G SA Cons 

(1G Conservative Case), 2G SA SE Ref (2G Reference Case), 2G SA OS Cons (2G Conservative Case) and 

CIMV-based Organosolv (2G SA Cons CIMV) in both integrated (Int) and non-integrated (NInt) plants for 

SE and OS. Results for the petrochemical (pc) counterparts maleic anhydride (pc-MA)18 and petrochemical 

SA (pc-SA)18 are also presented.* For bio-based SA, storage of atmospheric carbon in the product (approx. 

1.5 kg CO2 /kg SA) has been accounted for in the solid blue bars (as negative CO2 emissions, this storage or 

embodied carbon is represented as light blue bar sections in Figure 3A and – to ensure comparability – 

likewise the CO2 embodied in pc-SA and pc-MA is represented by light blue bar sections)  

 

The integration of SE pre-treatment and SA production plants leads to reduced impacts of SA (compared to a non-

integrated scenario). This is related to the avoidance of concentration of C6 (up to 4.7 MJ NREU/kg C6) and the 

readily usable excess heat from the pre-treatment process. The heat in the integrated facility is provided entirely by 

biomass and biogas valorisation. For OS, however, the impacts for the integrated and non-integrated scenarios are 

comparable. While the non-integrated OS and SA plants require more steam and electricity, these utilities are mostly 

supplied by the two CHPs (with a small amount of electricity from the grid for SA production) while, for the integrated 

                                                           
* Prior to the commercialisation of its bio-based route, succinic acid was exclusively produced from petrochemical sources, albeit 

in very small volumes. The impacts of petrochemical-based PBS trays are briefly mentioned in Appendix B5 in comparison to 

fully bio-based PBS. In this section, we do not present petrochemical-based PBS for trays and films because it is not competitive 

with petrochemical bulk materials.  
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plant scenario, more electricity is sourced from the grid in relation to the heat demand. Since this electricity is 

generated at lower efficiency than by CHP, the overall energy use is comparable in the integrated and non-integrated 

OS scenarios.  

 

In Figure 4, cradle-to-grave results for the end products (packaging trays and mulching films) are presented assuming 

the Reference Cases of 1G PBS and 2G integrated PBS. For all trays and PE films, the savings of energy and GHG 

emissions related to MSWI with energy recovery outweigh the impacts for transportation and any handling of the 

waste, resulting in credits (negative bar sections, Figure 4). The climate change impact of fully bio-based 2G PBS 

films and trays are smaller (by 34% and 36% respectively) compared to their primary petrochemical counterparts PE 

films and PP trays. In terms of NREU, fully bio-based 2G PBS films and trays are also smaller than those counterparts 

(by 36% and 41%, respectively). The GHG and NREU of fully bio-based 1G PBS trays are comparable to one of its 

petrochemical counterparts, the PET tray. However, 1G PBS trays have a 2% and 7% higher impact than PP trays for 

climate change and NREU, respectively (Figure 4, see Yeung et al., forthcoming)*.  

 

 
Figure 4: Cradle-to-grave climate change (A) and NREU (B) impacts for plastic trays and mulch films made from 1st 

generation (1G) and 2nd generation (2G) PBS, both fully bio-based (= fb) and partly bio-based (= pb) as 

well as from petrochemical plastics. These results reflect the Reference Case for both 1G PBS and 2G 

PBS, with corn grain and corn stover as feedstocks, respectively. For 2G PBS, the integration of steam 

explosion and SA production is assumed. End-of-life waste management of trays and PE film by 

incineration with energy recovery; for PBS films, biodegradation on the field. The points in the bar and 

labels on top of the bars indicate net climate change (A) or NREU (B) impacts.  

 

In the Reference Case of 2G PBS tray and film production we assume integration of pre-treatment and SA 

fermentation, with both occurring in the same facility (i.e. with a joint CHP and no need for concentration of C6 

sugars). With this integration, the cradle-to-grave impacts of PBS films and trays decrease by 25-30% for climate 

change and NREU, respectively compared to non-integrated 2G PBS films and trays (see Appendix B1). Non-

integrated Reference Case 2G PBS trays and films (produced with SE) have lower impacts than 1G PBS products and 

1G PBS products have comparable or slightly higher impacts than petrochemical incumbents. Non-integrated 

                                                           
* The conservative case 1G PBS trays has a 10% higher GHG impact and 17% higher NREU impact than PP trays (see Appendix 

B1). To balance this, there is an optimistic scenario presented in Yeung et al. (forthcoming).  
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Conservative Case 2G PBS trays and films (produced with OS) have higher NREU and lower GHG than 1G PBS and 

petrochemical incumbents (see Appendix B1).   

 

As shown in Figure 4, the cradle-to factory gate manufacturing of the PBS product (blue bar section) contributes 28%-

100% to the net impacts across the life cycle for 2G and 1G PBS (represented by points). Figure 5 provides a 

breakdown of impacts by process step for trays. The end of life phase emissions and credits of plastics are divided 

into three subsections; the emissions involved with only the treatment of plastic in MSWI, the carbon in the material 

that is released as CO2, and credits from the avoided emissions of heat and electricity generation (see End of Life 

emissions, Embedded carbon and Credits from MSWI in Figure 5). For PBS, the embedded CO2 emissions are 

equivalent to the bio-based carbon subtracted from 1,4 BDO and SA in the production stage of these chemicals. In the 

integrated Reference Case of fully bio-based 2G PBS trays, the main contributing factors (from high to low for NREU) 

are conversion to bio-based BDO, conversion to end-product, succinic acid, and polymerisation, while petrochemical 

BDO is the most contributing component in the case of partly bio-based PBS (see Yeung et al., forthcoming for 1G 

PBS contribution analysis).   

 

 

Figure 5: Cradle-to-grave impacts of fb and pb 2G PBS trays and PP trays, with a distinction by Best, Reference (Ref) 

and Conservative (Cons) Cases, all assuming integration, for 2G PBS production for climate change (A) and 

NREU (B) (see Tables 1 and 2 for scenario descriptions). The points in the bar and labels on top of the bars 

indicate net climate change (A) or NREU (B) impacts.  

 

Figure 5 demonstrates that, for trays, the 2G Best Case PBS cradle-to-grave climate change impacts and NREU are 

approximately 40% and 45% lower than the PP tray. For films, the impacts of the Best Case are also almost 40% and 

43% lower than those for the PE film (Appendix B1). The conservative cases for both trays and films, however, have 

higher impacts than their petrochemical incumbents for NREU and slightly lower impacts for climate change 

(Appendix B1).  
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As an alternative to incineration of trays (see Figures 4 and 5), it is possible to compost these PBS products. The net 

climate change impacts of composting (1.5 kg CO2 eq./kg trays) are larger than those of incineration (1.3 kg CO2 

eq./kg trays) because the credit for incineration (see avoided emissions in Figure 4) is larger than the credit given to 

compost for avoided moss peat production (not shown). The NREU credits for incineration of PBS trays (15 MJ/kg 

PBS tray; see credits from MSWI in Figure 4) are higher than those for avoided moss peat production (5 MJ/kg PBS 

tray) as well. Therefore, incineration is a more favourable end-of-life scenario when considering only climate change 

and NREU for trays. The incineration of films (not depicted) also has lower impacts (by 8 MJ/kg film and 0.4 kg CO2 

eq./kg film) than the degradation of PBS films on the field (Figure 4). 

 

The release of carbon from fb PBS (2.04 kg CO2 eq./kg) is marginally lower than for PET (2.28 kg CO2 eq./kg), and 

clearly lower than for PE and PP (3.14 kg CO2 eq./kg). In Figure 4, no distinction is made between carbon dioxide 

emissions from petrochemical polymers and bio-based PBS since avoided climate impact due to incorporation of 

atmospheric carbon in the bio-based chemicals has been considered in monomer production (negative emissions). 

These amounts need to be considered as emissions in the end-of-life stage (equally treated as fossil CO2). Therefore, 

the carbon emitted by incineration of the bio-based products resembles that of petrochemical incumbents.  

 

 

4 DISCUSSION 
 

The chosen functional unit of 1 kg of product can be questioned in view of the different properties of the polymers, 

typically leading to some differences in the quantities of materials needed to make functionally equivalent products. 

At the time of writing, there were no prototypes of 2G PBS trays or films that had been fully tested against the 

incumbents mentioned in this paper. Therefore, we choose one mass unit (1 kg) as functional unit. Alternatively, one 

could argue in favour of a volume functional unit (e.g. 1 liter), for example if PBS trays were found to be functionally 

equivalent to PP trays in the case of identical tray design is used (i.e. same shape and thickness). As a consequence of 

the lower density of PP (PBS is 29% denser), this alternative functional unit choice would lead to different finding 

compared to those presented above, making PP trays the preferred choice when considering non-integrated 2G PBS 

scenarios, and yielding comparable results for trays manufactured from PP and PBS from an integrated 2G PBS.  

The method developed by Ashby et al.43 allows the quantification of the amount of material to ensure functional 

equivalence in mechanical terms for a given application (as, for example, implemented by Schrijvers et al.,44 Hischier 

et al.,45 and Broeren et al.46). We considered Ashby’s methods for PBS trays and films in comparison to the incumbent 

materials (Appendix A1). For films, the Ashby’s method predicts that 1 kg of LDPE film can be replaced by only 0.3 

kg PBS, making PBS the preferred choice (Appendix A1). In contrast, around 1.5-2 kg of PBS would be needed to 

replace 1 kg of PP or PET in trays, making the incumbents the preferred choice in terms of NREU and GHG according 

to Ashby’s method. Interestingly, the PBS tray moulded by Sharpak on PET equipment (i.e. with roughly the same 

mass input of PBS and PET) showed satisfactory mechanical properties. In order to accurately determine the amount 

of PBS that is necessary to fulfil the same function as PP (for trays) and PE (for films) further testing of physical 

properties but also of processibility, transparency, sealing, thermal properties and material migration test would be 

needed, thereby also considering the usage of various fillers and additives. We conclude that the choice of 1kg of 

polymer as functional unit is adequate given the current level of knowledge. 

Wheat straw, miscanthus, and hardwood were studied as potential feedstocks for trays made from 2G fb PBS.  To this 

end, we used cultivation data and SE pre-treatment conditions modelled by Villegas et al. (forthcoming). Both wheat 

straw and miscanthus can be processed in the same manner as corn stover (low severity SE), but the pre-treatment of 

hardwood occurs at higher temperatures and pressures (high Severity SE, Appendix B2). Unlike wheat and corn, the 

cultivation and harvesting of miscanthus and hardwood do not call for allocation between food-grade products and 

agricultural residue. Compared to the 2G Reference Case PBS trays based on corn stover, the cradle-to-grave GHG 

impacts decreased by 31% and 36% for hardwood and miscanthus, but increased by 32% for wheat straw-based 

products. The NREU decreased by 13% for miscanthus but increased marginally by 2% and 8% for hardwood and 
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wheat straw-based PBS trays, respectively. The largest reduction in impact for 2G PBS trays was achieved by using 

miscanthus-based SA and BDO (5 MJ/kg PBS tray and 0.9 kg CO2 eq/kg PBS trays; see Appendix B2). 

As well as variations in feedstock, variations of pre-treatment technologies can be considered. This is especially the 

case with OS, which can be designed to use different acids as solvents. We therefore compared the OS route to 2G 

PBS trays, represented by the Conservative Case (no integration; 4.6 kg CO2 and 76 MJ/kg trays, see Table 1) with a 

real-world example: we considered the OS process developed by Compagnie Industrielle de la Matière Végétale 

(CIMV) which makes use of formic and acetic acid.29,47 We assumed CIMV pre-treatment of wheat straw (Benjelloun-

Mlayah B, CIMV, 2016, pers. comm.). We found that CIMV’s pre-treatment technology scores similarly well as the 

ethanol/sulphuric acid-based OS process (negligible change in NREU and 8% lower GHG impact compared to OS 

Conservative Case). The increased yield of C5 sugars and the avoidance of enzymes are advantages of the CIMV 

process. In addition, CIMV expects their HPL, BioligninTM, to be sold at a contract price of 1.45 €/kg, instead of the 

1.00 €/kg price assumed in the Conservative Case.31 Assuming that all other prices and inputs remain the same, this 

change in HPL price results in 16% and 7% fewer GHG emissions and NREU for fb 2G PBS trays made with CIMV 

process compared to the Conservative Case for PBS trays.  

 

It is also possible to sell other products of the pre-treatment process, such as C5 sugars. Using an optimistic market 

price for C5 derived from the co-fermentation of C5/C6 to bioethanol (Appendix A6), the economic allocation in the 

non-integrated Reference Case C6 was adjusted. When C5 was sold (partitioning) rather than converted to biogas 

(credit approach), the NREU impacts of C6 increase by 44% and the GHG impacts increase by only 4% , which is 

due to the higher GHG emission intensity of C6 value chain (including fertilizers) in comparison to the natural gas 

credits of C5. Another option for the utilization of C5 is the co-fermentation of C5 and C6 sugars to succinic acid and 

BDO, which has been demonstrated on a lab scale.32,48 In case of successful development of C5 fermentation routes, 

further LCA research will become necessary. 

 

It is worthwhile to compare the current results to those published in the context of the BREW study (published in 

2006).21 The impacts of C6 sugar production, as estimated by the BREW report, include significant energy credits due 

to the burning of waste biomass (Appendix A7), as does this paper in an integrated scenario. The pre-treatment system 

modelled in BREW yielded NREU impacts (-4.4 MJ/kg C6), similar to those of an integrated SE pre-treatment (-4 

MJ/kg C6) estimated in this paper (Appendix B3). For SA, Patel et al.21 published in the BREW report an NREU value 

of 22.0 MJ/kg for SA production from lignocellulosic feedstocks by anaerobic continuous fermentation with a workup 

via redox and crystallization. For comparison, 2G SA presented in this work has an NREU of 17 and 25 MJ/kg SA 

(integrated and non-integrated Reference Case, respectively). 

 

In this study, it was assumed that PBS trays were produced by thermoforming of pre-processed sheets on similar 

equipment as PET. However, Sharpak has also indicated that it is possible to convert PBS granulates to trays in a one-

heat process which avoids the intermediate step of producing and storing plastic sheets before they are thermoformed 

to the final product. This one-step process is not applicable to PET, but has been implemented for PP due to the high 

volumes and the properties of PP. Since no technical constraints limit PBS tray production in a one-step process, this 

could in the longer term decrease the GHG and NREU impacts of tray production from granulates by 14%, assuming 

the adjustment for impacts due to PBS’ lower melting temperature (see Appendix A9).  

 

While the PBS scenarios and inputs used in this paper are representative of Europe, we investigated specific locations 

of PBS production within Europe (Figure 6, Appendix B4). To this end, the electricity mix throughout the entire 

process was changed to that of Italy (proximity to Mater Bio-tech), Poland (89% fossil fuel electricity mix) and 

Norway (96% hydropower mix).  
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Figure 6: Indexed values of cradle-to-grave climate change and NREU impacts of fb 2G PBS trays (Reference Case, 

integrated) as a function of plant location. It is assumed that BDO production remains in Italy at Mater Bio-

tech plant for each case.  

 

Implementing the Italian electricity mix in comparison to ENTSO does not produce significant differences in the 

environmental impacts of PBS production (maximum change of 7%). If the process was operated in Norway, the GHG 

and NREU emissions would decrease by 16% and 26%, respectively. This reflects the low impacts of using 

hydropower as an electricity source. Electricity generation in Norway has approximately 96% lower impacts than 

ENTSO electricity for GHG and NREU.  The higher impacts of fossil fuel-based power generation in Poland cause a 

23% increase in GHG for PBS tray production.  

 

Although incineration of PBS trays has advantages in terms of GHG and NREU, composting of PBS has benefits that 

are not accounted for by these indicators. Biodegradable PBS trays would avoid the need for industrial composters to 

sort packaging from food waste. Similarly, degradable agricultural film from PBS would avoid the need for film 

removal from the field, thereby reducing labour, capital-related and energy costs. In addition, PE film causes soil 

contamination if it is not completely removed from the fields, which can be detrimental to crop growth.49,50 The 

avoided decrease in crop yields was not considered in this LCA because of insufficient data, but may be relevant.  

 

In addition to PBS trays, trays made from other SA-based polymers were analysed (see Appendix B5). These polymers 

are biodegradable and can be partly bio-based due to the use of SA or BDO monomers. The cradle-to-grave impacts 

of polybutylene succinate terephthalate (PBST), poly(butylene succinate-co-butylene adipate) (PBSA), and 

poly(butylene adipate-co-terephthalate) (PBAT) were analysed. The latter has a more established market than PBS 

and is cheaper. SA and BDO (from the 2G Reference Case, integrated) were assumed as monomers for PBST, PBSA 

and PBAT. Despite the use of these 2G monomers, the impacts of PBAT and PBSA trays are higher than PET or PP 

trays (by 40-260% compared to PP), which is due to the large NREU and especially CC impacts of petrochemical 

adipic acid. However, the impacts of 2G PBST tray production are comparable to those of PET and PP trays.  

 

Before concluding, it is necessary to point out that this paper is limited to only two environmental impact indicators. 

Although bio-based products usually demonstrate lower NREU and GHG impacts in comparison with petrochemical 

incumbents, the opposite is the case when considering land use or eutrophication as an indicator for sustainability.51 

However, the reduction of soil carbon emissions because of efficient land management has not been considered, which 

may be especially relevant for the miscanthus and willow-based PBS (Ni et al., forthcoming). The availability of 

further data on these and other attributes of PBS systems will support extension of this study to include a wider range 

of indicators.  
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5 CONCLUSIONS 

 
Using moderately optimistic technology assumptions (integrated Reference Case) for fully bio-based PBS products 

derived from 2G SA and BDO, the cradle-to-grave climate change impacts and NREU are 34-36% and 36%-40% 

lower than those of production from the main petrochemical polymers PP (trays) and PE (films) products, while the 

impacts of 1G PBS are comparable or slightly higher than production from petrochemical polymers. A key to the 

lower impacts of 2G SA is to integrate both pre-treatment and monomer acid production on the same site, with excess 

biomass being valorised by CHP and the avoidance of sugar concentration (as required in non-integrated plants). As 

discussed in this paper, there are some further hitherto unexploited opportunities for reducing NREU and GHG 

emissions (power supply mix, tray production process). The analysis hence shows the potential for the development 

of PBS products in the context of an emerging bio-economy. In addition, ongoing research indicates that there are still 

significant unused potentials for soil carbon management related to other renewable feedstocks such as perennial 

lignocellulosic biomass crops, thereby allowing further substantial reductions in climate change impact especially for 

2nd generation chemicals and plastics; this calls for further research. 
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Appendix A: Inventory Data 

 
Appendix A1: Correcting for material properties according to Ashby 

The functional unit of 1 kg of PBS, PP, PET and PE was chosen for the agricultural film and plastic tray end products. 

Compared to simply choosing 1 kg, a more accurate definition of the functional unit would account for the material 

properties of PBS and of the incumbent materials. Such a method was developed by Ashby1 allowing to calculate the 

material needed for different types of design objectives and constraints (e.g. twisting of a beam) (Table A1; Equation 

A1-A3). Such a constraint is described by Equation A1-1 which represents the Material Index (MI) for a light stiff tie, 

based on stiffness (E) and density (ρ), as the material should not deform or break under tensile load1 (this equation is 

applied to trays).  

 

 MIt = E 1/3 / ρ         Eq. (A1-1) 

  

For agricultural films, the material must not tear; this is described by Equation A1-2, representing a Material Index 

(MI) based on tensile strength (σ) and density (ρ).1 

 

 MIa = σ / ρ         Eq. (A1-2) 

 

The material use for a given application is inversely proportional to the material index MI. The percent change in 

weight of changing from one material (incumbent material P) to another (new material PBS) can therefore be 

calculated based on Equation A1-3. 

 

Change of weight (%) = (( MI [P] / MI [PBS])  -1) * 100    Eq. (A1-3) 

 

 

Table A1-1: The material properties of A-PET, PBS and LDPE utilized as inputs in Ashby calculations (PP, A-PET 

and LDPE from Ashby et al.;1 PBS from Theunissen2) 

Material Parameter  Value Unit 

PP 
Density ρ 0.9 t/m3 

Young’s Modulus E 1500 MPa 

A-PET *) 
Density ρ 1.33 t/m3 

Young’s Modulus E 2600 MPa 

PBS 

Tensile Strength σ 46 MPa 

Density ρ 1.26 t/m3 

Young’s Modulus E 575 MPa 

LDPE 
Tensile Strength σ 10 MPa 

Density ρ 0.92 t/m3 

*) A-PET represents amorphous PET. 

 

Table A1-2: Results for trays and film based on the Ashby method. Positive change of weight indicates more PBS is 

necessary to fulfil the same function.  

End Product Variable Value Change of weight  

PP Tray Mt 12.72 
PP to PBS: 92.7% 

PET to PBS: 56.7% 
PET Tray Mt 10.34 

PBS Tray Mt 6.60 

LDPE Film Ma 10.9 
LDPE to PBS: -70.2% 

PBS Film Ma 36.5 

 

Application of the Ashby method using the data given in Table A1-1 indicates that more PBS is needed to attain the 

same stiffness and strength as a PP or PET tray (Table A1-2). While PBS trays are not produced on industrial scale, 

Sharpak demonstrated that PBS trays can be processed with the same mould as PET (Cox M, Sharpak, 2016, pers. 
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comm.) and that the mechanical properties were very satisfactory (this would not have been expected based on the 

outcome of the Ashby method). One PBS tray weighed 18.9 grams. The various tests necessary to determine if these 

trays can be used in similar applications as PP or PET have not been completed. Given the difference in density 

between PET and PBS, the PBS trays are slightly lighter than the PET trays. To account for the fact that the Ashby 

method points in the opposite direction and the PBS tray has not yet been fully tested against its incumbents, we chose 

the conservative assumption that the functional unit is 1 kg of PBS, PP and PET trays.  

 

While in the context of the demonstration project the PBS trays were fabricated on equipment designed for PET trays, 

PBS trays will have to compete primarily with PP trays, which are processed on different equipment (see Appendix 

A8; Cox M, Sharpak, 2016, pers. comm.). PBS and PP have some similar properties, such as being slightly opaque 

and easily coloured. The large density difference between PP and PBS (see Table A1-1) does not necessarily mean 

that a different number of trays will be produced with the same mass of polymer; as the amount (both mass and 

volume-wise) of each plastic needed for the same application depends on its properties and equipment processing 

parameters. These uncertainties make it impossible at this stage in development to determine exactly the amounts of 

PP and PBS that will fulfil the same function; therefore, we choose the optimistic assumption of equal weights.  

 

To our knowledge, no PBS agricultural mulch film is currently being produced, which would allow to make a 

comparison with PE products. We therefore assume that the weight of PBS agricultural films is identical to the weight 

of an LDPE film. To estimate the area of agricultural film, it was assumed that 1 ha of land is covered by 150 kg of 

LDPE or PBS film.3 By application of the Ashby method we find that there is the possibility for significant material 

savings because of the superior tensile strength of PBS (see Table A1-2). Nevertheless, we choose as default the 

conservative assumption for the functional unit according to which that PBS and PE film have identical weights.  

 

 

 

Appendix A2: Pretreatment technologies 

 

For pre-treatment by Steam Explosion (SE), biomass is subjected to pressurized steam for seconds to several minutes, 

after which the reactor is quickly depressurized. Low and high severity SE use steam at temperatures between 190°C 

and 230°C and at pressures from 11 atm to 25 atm. After a decrease in pressure, mechanical expansion (resulting in 

increased reaction surface) and autohydrolysis lead to solubilisation of the hemicellulose sugars. By addition of water 

and enzymes, the cellulose is hydrolysed into C6 sugars (dissolved) and removed by filtering while the lignin is the 

remaining solid fraction. The yields of each the three output streams (C6, C5 and lignin, with oligomers present in 

both C5 and C6 streams) are reported in Table A2-1 (Villegas et al., forthcoming).  

Contrary to the SE process, the Organosolv (OS) process uses aqueous organic solvent mixtures to solubilize lignin 

and hemicellulose; cellulose remains solid and is further processed by enzymatic hydrolysis to produce C6 sugars. 

The filtrate, containing dissolved hemicellulose and dissolved lignin, is sent to a distillation column, where the solvent 

is recovered and the lignin precipitates. Apart from the C6 sugars the main products are lignin, C5 sugars and furfural 

(which is formed from the xylose fraction within the hemicellulose). Lignin from OS processes is purer compared to 

lignin from other processes and can therefore be used for high quality applications; in contrast, the lignin fraction from 

other pretreatment technologies is typically combusted (Villegas et al., forthcoming).  

 

It is important to note that there are various types of the Organosolv process depending on the chosen solvent system. 

The variant considered in this paper uses ethanol in combination with sulphuric acid (based on Eerhart et al.4 with 

reaction yields adapted from Kautto et al.5 and Pan et al.6). 

 

The process described in the discussion section is a pre-commercial application of the Organosolv process, developed 

by CIMV. Much like the Organosolv case presented in the Conservative Case, the feedstock undergoes an extraction 

step that separates lignin and the C5 sugar stream from the C6 stream (solid). Then, this C6 stream is de-acidified, 

washed, pressed. Finally, enzymes hydrolyse this stream to glucose. Lignin and the C5 stream are concentrated and 

the organic acid is removed. Next, the lignin is precipitated and washed. The remaining C5 stream is concentrated and 

stripped. The concentration of the resulting C5 and C6 streams are 60% ds (dry substance) and 22% ds respectively; 
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the yields are given in Table A2-1. Solvent is continuously recycled throughout this process, and supplemented with 

freshly added solvent (Benjelloun-Mlayah B, CIMV, 2016 pers. comm.).7 

  

 

 

 

 

 

 

Table A2-1:  Yields of pretreatment based on kg of dry output/tonne of biomass input. (Villegas et al., forthcoming, 

Benjelloun-Mlayah B, CIMV, 2016 pers. comm.)  

Pre-treatment Feedstock C6 monomers 

(kg/t biomass) 

C5 monomers 

(kg/t biomass) 

Lignin  

(kg/t biomass) 

SE Corn Stover 354 58  CHP 

SE Wheat 326 57 CHP 

OS Corn Stover 349 53 158 

OS Wheat 323 53 121 

OS-CIMV Wheat 490 2201 269 
1This stream is not purely C5 sugars, there are also other minor compounds that were present in the biomass  

 

To adjust the global scenario modelled by Villegas et al. (forthcoming) to the European scale, different impacts were 

utilized for the chemicals and energy necessary. European electricity (ENTSO), sulphuric acid (RER), ethanol 

(without water, in 95% solution from fermentation RER) impacts from EcoInvent 38 and the CHP impacts from Cok 

et al.9 replaced the corresponding global impacts assumed by Villegas et al. (forthcoming).  

 

 

 

Appendix A3: Economic allocation for feedstocks 

 

Economic allocation was chosen for the entire supply chain of PBS including the feedstocks. More specifically, 

allocation was required to determine the environmental impacts of corn stover (versus corn; see main text) as well as 

of wheat straw (versus wheat straw, see discussion section). This is complicated by the changing prices of both corn 

and wheat (Figure A3-1).  

 

For corn and corn stover, we assumed are the average prices reported by the USDA10 and the US Department of 

Energy,11 respectively. These prices were chosen because the USA is by far the largest producer of corn and corn 

stover. As modelled by the Billion Ton Report,12 the majority of the corn stover currently available is below the price 

of 60 $/tonne. This aligns well with the state of technology price reported by the MultiYear Biomass Plan, according 

to which the grower payment as well as harvesting and storage of stover is 68 USD/tonne.13  

 

For wheat and wheat straw we assumed the average prices in Denmark, where there is an extensive market for straw 

for energy use.14 This dataset was chosen because similar circumstances can be expected across Europe if wheat straw 

becomes a valorised resource. However, this price may be an overestimation considering current conditions where 

straw is used as animal feed.15 

 

Given the price changes over time and the choice of only two countries (see Figure A3-1) we apply a simple uniform 

approach for the two crops, assigning a price of 180 Euro/kg to the crop and 60 Euro/kg to the agricultural residue. 

However, if prices for corn and wheat continue to decrease and if the stover and straw pieces slightly increase or 

remain constant (see Figure A3-1), the environmental impacts we assign to stover and straw may be underestimated.  

 

For corn, we assume corn to stover ratio of 1, stover removal rate of 50% and a moisture content of 15% (Villegas et 

al.; forthcoming). For wheat, we assume that the wheat to straw ratio is 1.3, the straw removal rate is 50%, and the 

moisture content is 14.5% for both products (Villegas et al.; forthcoming).  
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Applying economic allocation, 14% of total impacts (main crop and agricultural residue) is assigned to corn stover, 

while the respective value for wheat straw in 11%. The removal of stover from the field also removes nutrients; the 

impacts of replacement fertilizer were assigned to corn stover per Villegas et al. (forthcoming).  

 

For consistency with Yeung et al. (forthcoming), the impacts of corn grain were not allocated. Because of the high 

value and yield of corn (in comparison to stover), this does not significantly impact the results of 1G PBS production. 

The impacts of 1G PBS trays and films would decrease by less than 2% if economic allocation was applied to corn 

grain was assumed. 

  

   
Figure A3-1: Prices of corn, corn stover, wheat and wheat straw10-15, in Euro/tonne (conversion using average of 2016 

exchange rates16) 

 

Appendix A4: Economic allocation for succinic acid process 

 

The effect of different allocation methods when calculating the environmental impact of one mass unit of 1G C6 

feedstock (dextrose) for bio-succinic acid is described in detail in Tsiropolous et al17 and Cok et al.9 As shown in Table 

A4-1, the differences in allocation methods have a limited effect on the impacts of succinic acid production. The 

allocation method chosen by Cok et al. as reference case was subdivision while we use for consistency reasons 

economic allocation (“Black Box economic”) for all analyses related to PBS. We updated Cok et al.’s SA work with 

the current average European electricity mix (ENTSO from EcoInvent 38) and various dextrose feedstocks (Table 2).9 

In line with the industrial development of succinic acid, the yield of SA from C6 has increased by 20 percentage points 

(Theunissen, L, pers. comm. Reverdia) since the publication Cok et al.`s study9. Therefore, yields of SA from C6 were 

updated as well.  
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Table A4-1: NREU and GHG impacts of 1st generation succinic acid production from corn, based on different 

allocation methods (in this paper, the choice of the European electricity mix and updated yields are the only changes 

applied to the work done by Cok et al. 9).  

Allocation System for 1G Succinic Acid NREU (MJ/kg SA) GHG (CO2 kg eq/kg SA) 

Black box mass 31.3 0.71 

Black box economic 32.0 0.77 

Subdivision 30.3 0.62 

Main process 33.1 0.98 

System exp. US 33.2 0.83 

System exp. Brazil 31.0 0.54 

System exp. US/Brazil 32.3 0.71 
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Appendix A5: Flowsheet of allocation and integration 

 
Figure A5-1: Flowsheets of integrated (b,d) and non-integrated (a,c) production of succinic acid through Steam 

Explosion (a,b) and Organosolv (c,d) pretreatment. The electricity from the grid represents excess demand 

of the process not covered by the CHP. The boundaries of economic allocation call for allocation between 

C6 and lignin for Organosolv (c,d).  
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Since the non-integrated SE pre-treatment and SA production plants (scenario a in Figure A5-1) have only one output 

at each facility (C6 and then SA), there is no need for allocation.  

 

In an integrated SE pretreatment and SA facility (case b in Figure A5-1) there is also one output, SA, again not 

requiring allocation. In both SE cases, lignin, hemicellulose and oligomers are valorised internally and provide energy 

to the facility.  

 

However, in OS processes, lignin is not used in the CHP. Therefore, the impacts of C6 and lignin coproduced in the 

OS process are allocated based on their economic values (case c in Figure A5-1). In the integrated scenario (d) it is 

necessary to first subdivide the facility into OS pretreatment and SA production, resulting in the same approach as 

case c). After having applied economic allocation to the pretreatment process (C6 and lignin) the impacts of SA 

production are added (case d in Figure A5-1). It is assumed that all the waste biomass is burned in a CHP plant, 

supplemented with natural gas, to meet the heat demand first of pretreatment, then SA production. Additional 

electricity needs are sourced from the grid.  

 

 

Appendix A6: Allocation for C5, oligomers, lignin, and C6 

For all cases of 2G PBS production, the conversion of oligomers (originating from the pretreatment processes) to 

biogas was estimated based on the work of Börjesson et al.18 However, since oligomers are generally more difficult 

to process than monomers,19 we assumed that the yield and process energy of oligomer conversion to biogas would 

be identical to the conversion of manure to biogas.19 We estimate the calorific value of oligomers based on the equation 

proposed by Barrio et al. 20 As a result that 28% of the calorific value of oligomers is available in the form of biogas. 

 

Similar to the conversion of oligomers, it was assumed that the C5 hydrolysate is converted to biogas, which is utilized 

in the CHP (accounted for by means of an energy credit). For the conversion of C5 hydrolysate to biogas the same 

yield and ratio of process energy to energy in biomass was assumed as for the conversion of maize to biogas18. As a 

result, 42% of the calorific value of the C5 hydrolysate20 was available in the form of biogas.  

 

For integrated cases, this biogas decreases the natural gas demand of the combined pretreatment and succinic acid 

process. Similarly, biogas replaces natural gas in the non-integrated Organosolv process. However, in the non-

integrated steam explosion process there is no such natural gas demand. Therefore, biogas is credited to the natural 

gas grid, replacing “natural gas, high pressure, Europe without Switzerland” Ecoinvent 3 record, with biogenic carbon 

subtracted.  

 

The Organosolv process assumed for the Conservative Case produces both a C6 stream and high purity lignin. We 

apply economic allocation in order to assign environmental impacts to each product. For the C6 hydrolysate, we use 

the price of raw sugar from Villegas et al. (forthcoming), converted to Euros using the conversion rates for 2015 (0.9 

EUR/1 USD16). The assumed price of C6 hydrolysate is therefore 360 EUR/tonne. The assumed price of lignin was 

1000 EUR/tonne, which was utilized by Piotrowski et al.,21 who assumed that the price of lignin would be slightly 

lower than the price for phenol (1200 EUR/tonne). Lignin is a possible partial replacement for phenol in polyurethanes 

and resins.22 Piotrowski et al.21 also mention the price of HPL from the CIMV process (see discussion section) at 1450 

EUR/tonne.  

 

In the discussion section, we assume as alternative option for allocation the use of C5 hydrolysate (from SE and OS 

pre-treatment) for bioethanol production. In other words, we chose to base the price of C5 on its value contribution to 

bioethanol, thereby assuming co-fermentation together with C6 hydrolysate. This assumption is based on the 

conversion of the C5 fraction for cellulosic ethanol production has been demonstrated and may become a commercial 

reality.23,24 

 

The price for ethanol chosen is that for 201513. To estimate the yields of ethanol from both the C5 and C6 fractions, 

the theoretical yields were calculated from the following stoichiometric equations:25  

 

3C5H10O5  5 C2H5OH + 5 CO2         (Eq A6-1) 
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C6H12O6 2 C2H5OH + 2 CO2         (Eq A6-2) 

 

These theoretical yields were multiplied by the experimentally determined percentage of C5 and C6 conversion to 

ethanol (75% and 90%) to determine the practical yield.25,26 On this basis we determine ethanol yield of 0.38 kg 

ethanol/kg C5 sugar.26–28 A virtual price can be assigned per kilogram of C5 sugar by multiplying the yield by the 

price of ethanol (0.67 EUR/kg ethanol). The calculation above assumes a fully developed bio-economy in which the 

C5 stream is fully valorised for bioethanol production. Under such conditions the value of C5 sugars is clearly higher 

than today.  

 

 

Appendix A7: Conversion of starch to glucose 

 

The inputs for the conversion of starch to glucose were derived from Tsiropoulos et al. 17. The hydrolysis of starch is 

carried out with two enzymes, α – amylase and gluco-amylase17. The input of this process is a dilute starch slurry (C6 

hydrolysate). We assume a dataset for starch from EcoInvent 3 (Maize starch production, DE8), with 14 weight-% of 

moisture. When adding the conversion impacts to the EcoInvent 3 record,8 it was assumed that the energy necessary 

to dissolve the starch is insignificant. We use a conservative assumption regarding the technology applied to dry the 

glucose slurry; a single-effect evaporator dries the solution (rather than steam supply from mechanical vapour 

recompression 17) from 32% ds to 50% ds.  To do this, 1.0 kg of water is evaporated for every kg of glucose. We 

assume that 1.2 kg of steam is needed per kg of water evaporated,29 and that the impacts of steam are the average of 

the chemical industry (Steam, in chemical industry, RER). 8  

 

 

 
Appendix A8: Petrochemical BDO and Bio-based BDO from 2G C6 

Petrochemical BDO data was sourced from EcoInvent 3 (butane-1,4-diol production, RER)8 assuming the production 

from petrochemical butyne-1,4-diol hydrogenation.  
 

The production of BDO by direct fermentation (currently employed by Mater Bio-Tech) was adjusted to 2G feedstocks 

using equation A8-1. To this end, the yield of BDO from dextrose or C6 was assumed to be 0.40 g/g or 80% of the 

theoretical yield;24 the impacts of 1G Dextrose in the Reference Case were subtracted from the entire BDO production 

data, and then the impacts of 2G C6 were added. 

 
i2G BDO = i1G BDO – i1G Dex/0.4 +i2G C6/0.4    Equation A8-1 

where i2G BDO, i1GBDO, i1G Dex, i2G C6 are the impacts of 2G BDO production, 1G BDO production, 1G Dextrose 

production, and 2G C6 production, respectively, per kg of chemical produced. To estimate the impacts of BDO 

production, these savings are heat and electricity credits that replace the gas CHP modelled for non-integrated SA or 

BDO production (Table A8-1). 

 

Table A8-1 Derivation of 2G BioBDO impacts 

Impact (units) BDO Production 

Scenario1 

i1GBDO i1G Dex i2G C6 i2G BDO 

Climate Change 

(kg CO2 eq/kg) 

Reference  2.37 0.95 0.22   

 

0.54 

Climate Change 

(kg CO2 eq/kg) 

Best  2.05 0.95 0.19 0.16 

NREU (MJ/kg) Reference  61 8.9 

 

-4.0 29 

NREU (MJ/kg) Best  56 8.9 -4.4 23 
1The impacts of 1G BDO and 1G dextrose are sourced from Novamont Group (Innocenti FD, pers. comm. 2016) and Cok et al.,9 

respectively. The impacts of 1G and 2G BDO have embedded biogenic carbon counted as negative emissions, while dextrose and 

C6 do not.  
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Appendix A9: Polymerisation and production of plastic trays 

For lack of available material-specific data, the impacts of the polymerisation of PBS are adjusted from those of the 

polymerisation of PET. Both polymers are formed by esterification and transesterification of monomers at similar 

time scales. However, the lower temperature of the PBS process and the lack of a solid-state polymerisation step 

(compared to PET) cause lower impacts in polymerisation. To quantify this difference, we estimated the difference 

in heating needs for the two polymers. It was assumed that the polymerisation of PBS occurred at 200C, while that 

of PET occurred at 250C.30,31 The energy needed to heat the monomers to these temperatures was calculated using 

the ratio from the following equation:  

𝒒𝒓𝒂𝒕𝒊𝒐 =
𝑴𝑺𝑨𝑪𝑺𝑨∆𝑻𝑷𝑩𝑺 + 𝑴𝑩𝑫𝑶𝑪𝑩𝑫𝑶∆𝑻𝑷𝑩𝑺

𝑴𝑬𝑮𝑪𝑬𝑮∆𝑻𝑷𝑬𝑻 + 𝑴𝑻𝑷𝑨𝑪𝑻𝑷𝑨∆𝑻𝑷𝑬𝑻

 

where M is the mass of the monomer, C is its specific heat, and T is the change in temperature (in K) of the monomer 

as it reaches the polymerisation temperature of PBS or PET from an assumed starting temperature of 293K. The 

weights of the monomers were assumed to those necessary to produce 1 kg of polymer (note that there are different 

synthesis efficiencies assumed). The specific heats of the monomers are assumed to be independent of temperature.32 

The above equation yielded a ratio of heat necessary of 0.88, i.e. 12% less energy use needed for PBS than for PET. 

Using the life cycle inventory of the polymerisation of amorphous PET (EcoInvent8 and PlasticsEurope33 assumed to 

represent a less efficient small scale case), the heating needs of the process were adjusted and new impacts calculated. 

It was assumed that electricity use and all other impacts remain the same. The heating needs and overall impacts of 

esterification and transesterification of PET are shown below (see Table A9-1), as well as the estimated impacts of 

PBS polymerisation. The most recent impacts reported for PET polymerisation34 are not used to estimate the impacts 

of PBS polymerisation because of their lack of transparency and the authors` assumption that the large scale and 

efficiency of PBS polymerisation will not be competitive with that of PET in the near future.  

 

Table A9-1: Summary of impacts of PET polymerisation and estimates of PBS polymerisation. Solid state 

polymerisation is not assumed for PBS so the impacts of this step for PET are not shown.   

Polymer PET PBS 

Impact GHG NREU GHG NREU 

Unit kg CO2/kg PET MJ/kg PET kg CO2/kg PBS MJ/kg PBS 

Heating 0.50 5.8 0.44 5.1 

All Impacts 0.60 7.2 0.54 6.5 

 

The plastic trays are commercially produced by sheet extrusion and subsequent thermoforming in two steps from the 

plastic material received in pellet form. The prototype trays were produced from pre-extruded sheets (Cox M, Sharpak, 

2016 pers. comm.). Upon receipt of PBS sheets, Sharpak expected the material to be too flexible for the intended 

purpose, but the final tray turned out to fulfil all physical property expectations (possibly partly related to the tray 

design with its ribs). Moreover, its mouldability exceeded that of the PET, being the incumbent material (Cox M, 

Sharpak, 2016 pers. comm.). The impact and physical properties tested thus far yielded satisfactory results but further 

trials regarding their application as a food tray are necessary. The equivalent functionality of PBS to petrochemical 

trays will be dependent on the intended uses of PBS trays (for example a coloured tray that can be frozen), which are 

not yet known. To determine the intended use of PBS trays, further testing on tray properties is necessary. As explained 

in the main body of the text, we ignore the small difference in PET and PBS density by choosing 1 kg of trays as 

functional unit. This simplification is also applied to PP and PBS trays (i.e. 1kg of each is used as a functional unit). 

 

While it is, in principal, possible to produce PBS trays on the same equipment as PP trays, this was not tested due to 

the small scale of the trials. The mass production of PP trays is performed in a one-step process instead of first 

extruding plastic sheets which are thermoformed in a separate step (Cox M, Sharpak, 2016 pers. comm.). The one-

step process allows to increase in energy efficiency, but this case was not considered for PBS trays which would 

presumably be produced with the same technology as PET for the time being.  
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Although the facilities that produce PP and PET trays are in England, the impacts of European electricity mix were 

assumed for consistency with the remainder of the paper.  

 

To calculate the energy necessary for the extrusion and thermoforming of PBS trays in comparison with PP and PET 

trays, the melting point and the specific heat of the materials was considered. Although these values depend on the 

crystallization and melting of the polymers, the energy requirements were estimated by integrating temperature-

dependent values of specific heat from 20ºC to the melting temperature 35,36,37 and assuming a 70% efficiency of an 

electric heater. The energy necessary to melt PBS twice (in the same two-step process as PET) was found to be roughly 

the average of the energy needed to a) melt PP once and b) melt PET twice. This is due to the lower melting 

temperature of PBS (see Table A9-2). Therefore, we assume the average impacts of PP and PET thermoforming and 

extrusion to be the impacts of the equivalent PBS process.  

 

Table A9-2: Comparison of physical properties of PBS and incumbent materials under comparable conditions.38,39  

Physical Property PBS PET PP 

Density (g/cm3) 1.26 1.37 0.90 

Glass Transition Temperature (K) 241 345 260 

Melting Temperature (K) 387-389 518-553 450 

Estimated energy use for melting 1 kg of polymer  

(in MJ electricity at plant) 

0.85 1.31 0.50 

 

The derived impacts for PP, PET, and (calculated) PBS impacts are less than those presented by EcoInvent for 

Europe (Figure A9-1) for the thermoforming and extrusion of plastics. However, the energy needs of Sharpak are 

like other European plants and are specific to tray production (Cox M, Sharpak, 2016 pers. comm.). Therefore, we 

chose to use adapted impacts of PBS thermoforming and extrusion to trays (derived from Sharpak data) rather than 

general EcoInvent data.  

 

 

Figure A9-1: Comparison of NREU impacts of thermoforming and extrusion of plastics.  

 

 

Appendix A10: Energy recovery credits (MSWI)  
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Both heat and electricity credits related to municipal solid waste incineration (MSWI) are specific to Europe. The heat 

and electricity exported from average MSWI plants was divided by the average calorific value of waste,40 resulting in 

yields of 0.12 GJ electricity/GJ heating value of waste and 0.30 GJ heat/GJ heating value of waste. The calorific value 

of each studied plastic was multiplied by these values to obtain the energy recovered from incineration of plastic 

waste. The impacts of avoided heat and electricity generation are sourced from EcoInvent 3 (see Table 2).8 

The authors acknowledge that complete collection and incineration of PE film is an optimistic assumption when 

considering current practices in Europe. The policies regarding collection of agricultural films varies dramatically by 

country. Although recycling of the collected film is technically feasible, is it not yet implemented throughout Europe.41 

Alternatively, the landfilling of waste is not desirable, and widespread efforts have been made to limit the landfilling 

of plastics.41 Therefore, as a middle ground, we assume incineration with energy recovery as a viable end of life option 

for agricultural films. It was additionally considered that contaminants from the field (soil, biomass etc.) would 

decrease the calorific value of the product (see Figure 5 and Table 13 in Briassoulis et al.42). This decreased the 

calorific value of LDPE mulch films by 46% to 24 MJ/kg film.  

 
Appendix A11: Composting and Degradation of Field of PBS 

 
Composting and degradation of PBS is assessed based on the model used by Yeung et al. (forthcoming). We assume 

that 60% of the embodied carbon in PBS is released at the composting facility43, and 35% of the embodied carbon in 

PBS is released within the hundred years after the application of compost. In other words, 5% of the carbon in PBS is 

stored in the soil. The final degradation of PBS in compost on the field is estimated based on a data published by 

Showa Denko44 and is in line with the empirical work done on PBS degradation in fields.45,46 

 

Furthermore, it is assumed that 1 kg of compost (or 2.5 kg of PBS film) replaces 0.79 kg of moss peat43. The impacts 

of moss peat production are sourced from EcoInvent 3 (peat moss production, RER) 8. 
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Appendix B: Results and Discussion 
 

Appendix B1: Results for 2G Reference and Conservative cases for integrated and non-integrated plants 

 

 
Figure B1-1: Cradle-to-grave Climate change (A) and NREU (B) impacts of 2G PBS trays from corn stover for a) the 

Best cast b) the Reference case (Ref) and c) the Conservative Case (Cons) with integrated (Int) and non-

integrated (N-Int) pretreatment. The points in the bar and labels on top of the bars indicate net climate change 

(A) or NREU (B) impacts.  

 

 
Figure B1-2: Cradle-to-grave Climate change (A) and NREU (B) impacts of 2G PBS films from corn stover for a) the 

Best Case, b) the Reference case (Ref) and c) the Conservative Case (Cons) with integrated (Int) and non-
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integrated (N-Int) pretreatment. The points in the bar and labels on top of the bars indicate net climate change 

(A) or NREU (B) impacts.  

 

 
Figure B1-3: Cradle-to-grave climate change (A) and NREU (B) impacts of 1G PBS trays and films from corn grain 

for a) the Reference case (Ref) and b) the Conservative Case. The points in the bar and labels on top of the 

bars indicate net climate change (A) or NREU (B) impacts.  

 

Appendix B2: Results for 2G fb PBS trays from various feedstocks 

 
Both wheat straw and miscanthus can be processed in the same manner as corn stover (low severity SE), but the 

pretreatment of hardwood occurs at higher temperatures and pressures (high Severity SE). This process involves 

higher residence times and temperatures (Villegas et al., forthcoming). High pressure steam and a lower concentration 

of biomass (20% versus 50% solids) are employed (Villegas et al, forthcoming). 
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Figure B2-1: Cradle-to-grave climate change (a) and NREU (b) of fb 2G PBS trays based on wheat straw, miscanthus, 

willow and corn stover from the integrated case with pretreatment by steam explosion. Besides feedstock 

changes, the records are analogous. 

 

Appendix B3: Comparison to BREW Report 

The similar feedstock and concentration of sugars between this work and that of Patel et al. 29 allow for a comparison 

between the two sources, although functional units and pretreatment processes vary.  

 

Ten years ago, the BREW report outlined the environmental impacts of producing dilute fermentable sugars (C6 and 

C5, no oligomer production assumed) from corn stover under the simplifying assumption that the both glucose and 

xylose could be used to produce bio-based chemicals. Today, it is not yet technically feasible to make all C5 and C6 

sugars, that are embodied in the feedstock, available for further processing. Instead, we assume that xylose and 

oligomers can instead be used in biogas production. Therefore, we compare the results for dilute fermentable sugars 

from BREW to our results regarding dilute C6 sugars because both functional units (and their corresponding impacts) 

were the assumed as the basis for bio-succinic acid in the respective papers.  

 

In regards to pretreatment, the BREW dataset assumes 1.4-1.5 tonnes of dry matter input of corn stover per tonne of 

fermentable sugar, a dilute hydrolysate product, and was based on the 2010 design case of the NREL study by Aden 

et al.47. In comparison to BREW, with its more optimistic process design assumptions for Dilute Acid pretreatment of 

corn stover, we assume as Reference Case pretreatment by low-severity steam explosion (SE, applied to corn stover) 

adapted from Villegas et al. (forthcoming). It results in a dilute C6 hydolysate (without need for transportation and 

storage) and the use of C5 and oligomers which can be converted to biogas. The impacts calculated for C6 sugars 

account for credits for co-produced energy from the CHP, as is the case for fermentable sugars in BREW. 29  

 

According to Figure B3-1 (see the data in row E, reproduced from the BREW report29), both the NREU and non-

renewable greenhouse gas (NRGHG) emissions for producing one tonne of fermentable sugar from corn stover (maize 

stover) are negative (-4.4 GJ/t sugars and -0.16 t CO2/t sugars without subtracting sequestered carbon). This is a 

consequence of the large credits for co-produced electricity and steam (these credits add up to 9.2 GJ/t) which exceed 

the process heat and electricity demand of the pretreatment process and the preceding value chains. In comparison, 

the Reference values of NREU and GHG for low-severity SE in this work amount to -4.0 GJ/t and + 0.22 t CO2/t of 

C6. The NREU value for sugars is similar among the two sources. For GHG impacts, the sign differs (slightly positive 

vs slightly negative) but both values are close to zero. As a consequence, the results for SA calculated in the BREW 

report and in the present study are quite similar (see Discussion section in main body of the paper).  
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Figure B3-1: Overview of energy and emission data for sugar feedstocks as used in the BREW model calculations 

(system boundary: cradle to fermentable sugar), reproduced from Patel et al. 29 

 

 

Appendix B4: European electricity supply  

 

To unify the electricity profiles across the entire value chain, the EcoInvent 3 record “ENTSO” for European grid 

electricity was assumed8 (plausible because the records are based on European data).   

 

 

 

 

 

 

 

 

Appendix B5: Comparison to other biodegradable polymers  

 

The monomers of PBAT, PBST and PBSA were chosen from lab scale experiments (Table B4-1). Just as for the 

Reference Case, we assumed the molar efficiency for polymerisation to be 95% and the mass efficiency of conversion 

of 1 kg of polymer (Table B4-1) to 1 kg of trays to be 95%. The integrated Reference Case for tray production, with 

MSWI as the chosen end of life option, was applied to these polymers (see Table 2). The results are presented 

graphically in Figure B4-1. 

1 2 3

Total 

renewable 

energy      

REU

Process 

energy 

NREU
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NREU 
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Seques- 
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Ran-   
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(Economic 
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Damen, K. (2001): Future prospects for biofuel production in Brazil, M.Sc. report, Department of Science, Technology and Society, Utrecht University, Utrecht, Netherlands, November 

2001
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Table B4-1: Monomer amounts of selected polymers.  

Monomer/Polymer  PBAT (1kg) PBST (1kg) PBSA (1kg) PBS (1kg) 

Succinic Acid(kg) 0 0.44 0.44 0.72 

1,4 Butanediol (kg) 0.28 0.33 0.33 0.55 

Terephthalic Acid (kg) 0.54 0.61 0 0 

Adipic Acid (kg) 0.46 0 0.54 0 

Molar mass of polymer 

(g/mol) 

332 392 284 172 

Bio-based carbon 

storage (kg CO2/kg 

polymer) 

0.80 1.20 1.20 2.04 

Molar efficiency for 

polymerisation 

95% 95% 95% 95% 

Source for monomer 

selection 

Schrijvers et al.3 Luo et al.48 Ahn et al.49 Tecchio50 

 

 

 

 Figure B4-1: Cradle-to-grave climate change impacts (a) and NREU (b) of PBAT, PBST, PBSA, and PBS based on 

petrochemical BDO and SA (dark blue), 1G SA and BDO (light blue) and 2G SA and BDO (blue). 1G and 2G SA 

and BDO impacts are based on the Reference case of PBS production. The remaining inputs for the polymers 

studied are from the integrated Reference case of PBS tray production.  
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