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From the late 1970s when Fred Sanger and Alan Coulson 
developed their chain termination method for rapid determi-
nation of DNA sequence [1], Sanger sequencing dominated nu-
cleic acid and genome research until about a decade ago when 
technical developments led to the “next big thing” in sequenc-
ing genomes. In 2005, the first workable sequencing strategies 
entailing arrays of millions of DNA templates sequenced in par-
allel became publicly available [2,3]. It was not long before such 
high-throughput, massively-parallel approaches transformed 
biological research, generating vast amount of genome data. 
However, for the successful interpretation of sequence data, 
the quality of primary sequence reads and correct assembly 
of contigs is paramount. While no sequencing technique is er-
ror-free, and biases have been accounted for with both first 
generation and next generation sequencing (NGS) technol-
ogies, when it comes to “difficult genomic regions”, it can be 
anticipated that results relying solely on just one sequencing 
approach may produce fundamental errors within published 
sequences, which are difficult if not impossible to identify with-
out closer examination. 

Mitochondria are the major energy providers in eukary-
otes. They are cytoplasmic, semi-autonomous organelles with 
the majority of their ~16.5kbp (in a standard vertebrate) origi-
nal precursor genome now integrated into the nuclear genome 
of the cell but with a small portion consisting of 37 genes and 
~1kb of non-coding sequence referred to as the control region 
(CR) remaining within the organelle itself [4]. Due to their high 
abundance, small genome size relative to nuclear DNA (nuD-
NA), and non-recombinant inheritance, mitochondria have 
been extensively employed in genetic studies. For example, 
mitochondrial DNA (mtDNA) has been widely used in forensic 
investigations [5], archaeogenomic research [6,7], population 
genetics to establish genetic relationships, as well as molecular 
systematics and reconstruction of species history [8,9]. Equally, 
the quality and quantity of mtDNA is often employed as a mark-
er of mitochondrial activity and, considering its bioenergetics 
role within cells, mtDNA variants and defects have been impli-
cated in a plethora of pathologies, metabolic syndromes (such 
as diabetes), aging, aging-associated degenerative diseases and 
cancer [10,11]. Consequently, if it is the mtDNA sequence on 
which a whole populations’ history is based, aetiology of a dis-
ease explained, or on which a judicial verdict depends – the 
sequence assembly must be 100% accurate. 

However, even with the current power of NGS platforms 
and decades of experience with Sanger sequencing, erroneous 
mitogenome sequences are published, have been deposited, 
and remain available within the databases. There are three 
main biological issues that have to be accounted for in order 
to obtain a true and accurate mitochondrial sequence. 1) mi-
tochondrial heteroplasmy: the high copy number that makes 
mtDNA an easily accessible and attractive tool for population 
genetics and ancient DNA studies may prove a tripping stone 
as sequence genotype can vary from organelle to organelle be-
tween different cell/tissue types and even over time [12]. 2) 

the fragments of mtDNA that are also integrated within germ-
line nuclear sequences – referred to as “numts” (nuclear mito-
chondrial sequences, [13-16]): while these “molecular fossils” 
provide exciting opportunities to study mtDNA and species 
evolution [15,17-18], it is not uncommon that numt sequences 
are mistaken for authentic mtDNA and included within mitose-
quences [19,20]. 3) mitochondrial gene duplications/deletions: 
a phenomenon associated with abnormality in mammals [21], 
but which have been found in normally functioning mitochon-
dria in other organisms [22-24]. Birds are a particularly good ex-
ample, as mitochondrial gene duplications and/or non-coding 
control region duplications (YCR), and different arrangements 
of the gene order have been observed arisen independently 
multiple times across the avian family [25-28]. 

When sequencing avian mitochondrial genomes, all of 
these three impediments will have to be taken into account: 
even though numts and heteroplasmy have been shown to ex-
ist in a wide number of taxa [16,29-30] and tandem repeat se-
quences within the CR have been observed in many mammalian 
species such as horse, deer, shrew, bat and various carnivores 
[31-35], birds are the only endotherms with reported genic du-
plications within the actual mitochondrial DNA [26,28,36,37]. 
To complicate matters further, some birds have been record-
ed to possess portions of the CR duplications integrated with-
in the nuclear genome and with heteroplasmy in terms of the 
repeat number within the variable domain of the YCR in mtD-
NA and/or nuDNA. For instance, a set of consistent underly-
ing peaks at 5-20% of maximum peak intensity can be clearly 
determined when analysing Sanger sequencing chromatogram 
of the YCR-specific PCR amplicons of the mitochondria of the 
Red kite (Milvus milvus) [38]. The double signal, which is pres-
ent only in female birds, originates from the presence of mito-
chondrial DNA sequences translocated to the W chromosome 
[39,40]. Illumina shotgun sequencing failed to characterise the 
mitochondrial and W-chromosome duplications, as most of the 
reads from these regions remained unmapped because of the 
highly repetitive and relatively long repeat structure (~1.5kb), 
thus they were discarded by the assembly package in the first 
place, during early contig assembly. A recent study by Nacer 
and do Amaral reported a striking pseudogenization in avian 
phylogenetics and concluded that avian numts may be much 
more frequent and longer than previously thought [41]. For in-
stance, a nuclear copy of mtDNA covering 93.6% of the mitog-
enome was found in the Peregrine falcon and numt sequenc-
es in falcons totalled ~49kb or ~0.004% of the whole nuclear 
genome. In another instance, a phylogenetic study of cranes 
based on standard PCR amplification of the mtDNA sequences 
by Krajewski et al. [42] did not report evidence for a duplica-
tion within crane mtDNA. Most of the mtDNA sequences used 
were obtained from ~500-1000bp overlapping amplicons pro-
viding ≥2× coverage for ̴25% of the mtDNA molecule. ND6 and 
CR sequences of all cranes were obtained from Krajewski et al. 
[43] and Fain [44], respectively, and incorporated within the 
sequence assembly. For seven years the deposited sequences 
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were believed to be a complete and accurate mitochondrial 
picture of the Crane (Gruidae) family members and these se-
quences are still accessible via NCBI [45]. However in 2017, Aki-
yama et al. [46] using a mix of initial long-range PCR (LR-PCR) 
and then nested PCRs to study the structure of mtDNA, showed 
that all the 13 analysed Gruidae species previously sequenced 
by Krajewsi et al. [42] possessed a duplication block consisting 
of Cytb, tRNAThr, tRNAPro, ND6, tRNAGlu and CR. The dupli-
cation was conserved across all the species and was similar to 
those detected in other unrelated avian species such as alba-
trosses (36,47], spoonbills [48], and boobies [49], in a stroke 
increasing the average size of Gruidae mitochondrial genome 
from 16.5kb to ~22kb. This error not only changed the percep-
tion of the linage divergence of the cranes, but also radically 
altered our understanding of the evolution of the YCR within 
the avian phylogeny [37,46,49,50].

To conclude, living in an era when obtaining large quan-
tities of sequencing data is no longer an obstacle, the effort 
should be focused on ensuring its correct validation. Whilst no 
sequencing technique is perfect and warning signs have been 
issued on numerous occasions [51,52], strategic approaches to 
dealing with “difficult sequence” such as mtDNA duplications, 
deletions and inerchromosomal transfers should be developed, 
whether these be mixtures of laboratory-based techniques 
such as LR-PCR, sequence capture and use of more than one 
sequencing approach (i.e. combining Sanger with NGS or use of 
the new long-read sequencers such as MinION) or the genera-
tion of novel bioinformatics pipelines for resolving these issues 
in existing datasets.
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