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Abstract: This study aimed at evaluating the synergistic use of Sentinel-1 and Sentinel-2 data
combined with the Support Vector Machines (SVMs) machine learning classifier for mapping land
use and land cover (LULC) with emphasis on wetlands. In this context, the added value of spectral
information derived from the Principal Component Analysis (PCA), Minimum Noise Fraction (MNF)
and Grey Level Co-occurrence Matrix (GLCM) to the classification accuracy was also evaluated. As a
case study, the National Park of Koronia and Volvi Lakes (NPKV) located in Greece was selected.
LULC accuracy assessment was based on the computation of the classification error statistics and
kappa coefficient. Findings of our study exemplified the appropriateness of the spatial and spectral
resolution of Sentinel data in obtaining a rapid and cost-effective LULC cartography, and for wetlands
in particular. The most accurate classification results were obtained when the additional spectral
information was included to assist the classification implementation, increasing overall accuracy
from 90.83% to 93.85% and kappa from 0.894 to 0.928. A post-classification correction (PCC) using
knowledge-based logic rules further improved the overall accuracy to 94.82% and kappa to 0.936.
This study provides further supporting evidence on the suitability of the Sentinels 1 and 2 data for
improving our ability to map a complex area containing wetland and non-wetland LULC classes.

Keywords: wetlands; Sentinel 1; Sentinel 2; Support Vector Machines; classification; SAR

1. Introduction

Land use and land cover (LULC) consists of fundamental characteristics of the Earth’s system
intimately connected with many human activities and the physical environment [1]. Information on
LULC is of key importance in environmentally or ecologically protected ecosystems or native habitat
mapping and restoration (Council Directive, 92/43/EEC, 1992). Wetlands in particular represent one
of the world’s most important and productive ecosystems, having a critical role in climate change,
biodiversity, hydrology, and human health [2,3]. Wetlands include permanent water bodies, lands
that remain completely dry over several months, and areas where water is below a dense vegetation
cover, such as peat bogs or mangroves [4]. Those also include important natural complex habitat
types such as fresh water marsh and riverine forests, scrublands, as well as agricultural landscapes [5].
Although freshwater wetlands cover only 1% of the Earth’s surface, these areas provide shelter to over
40% of the world’s flora and fauna species [6]. As such, wetlands are internationally recognized as an
indispensable resource for humans [2] providing a wide range of services that are dependent on water,
such as freshwater, agricultural production, fisheries and tourism [7].
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Despite their importance, wetlands are one of the most threatened ecosystems due to
anthropogenic factors such as intensive agricultural production, irrigation, water extraction for
domestic and industrial use, urbanization, infrastructure, industrial development and pollution [7–9].
Many wetlands are under pressure due to the natural and anthropogenic climate change (namely,
changes in rainfall patterns and temperature and extreme events [9], as well as changes in land use
brought by increasing populations and urban expansion). Environmental concerns on the degradation
of wetlands came to the fore during the Ramsar Convention [8]. Over the last century, it is estimated
that 50% of the world wetlands have disappeared, with an increased rate of 3.7 times that during the
20th and 21st centuries [10]. Thus, mapping and monitoring their dynamics over time is of crucial
importance, as well as in the broader context of quantifying the temporal and spatial patterns of land
use/land cover (LULC) and of its changes [11].

Earth Observation (EO) offers a repeated and frequent coverage of the Earth’s surface over long
time periods, which is ideal for monitoring wetlands [8]. This has resulted in EO becoming the preferred
method for natural resource managers and researchers [12]. Identification and characterization of key
resource attributes allows resource managers to monitor landscape dynamics over large areas, including
those where access is difficult or hazardous, and also facilitates extrapolation of expensive ground
measurements for monitoring and management [13]. LULC mapping using satellite or airborne images
allows for short- or long-term change detection and monitoring in such vulnerable habits [14–16].

Use of Synthetic Aperture Radar (SAR) imagery has been highly effective in wetland mapping and,
although they are less frequently used in land-cover classification studies than optical data, they can be
an important alternative or complementary data source [17]. Synergistic use of optical data with SAR
imagery may enhance the wetland-related information. This is because SAR provides data associated
with the inundation level, biomass, and soil moisture, complimentary to optical sensors’ information [18].
In this context, Sentinel-1 offers dual-polarimetric C-band data and Sentinel-2 offers a wide range of
high resolution spectral bands, thus testing their synergistic capability is of crucial importance.

Many studies have focused on mapping wetlands utilizing different band manipulation methods
(e.g., Tasseled Cap (TC), Normalized Difference Water Index (NDWI), and Normalized Difference
Vegetation Index (NDVI)) and image analysis techniques (e.g., Principal Component Analysis (PCA)
and Minimum Noise Fraction (MNF)) for assisting image classification [19–22]. Thus far, most studies
have been based on a single-date image, neglecting the seasonal phenology that a lake can have [8].
Recent studies published have explored the use of advanced machine learning classification algorithms,
such as Support Vector Machines (SVMs), random forests (RFs), decision trees (DTs) and artificial
neural networks (ANNs) for LULC mapping [15–17,23–30].

Although spectral information about ground objects is important in information extraction from
remote sensing data, previous studies have indicated that texture features are also important for
differentiating wetland classes [15,16,31–35]. Spectral features describe the tonal variations in different
bands, whereas texture features describe the spatial distribution [36]. The most commonly used
texture features are first order measurements (minimum, maximum, mean, range, standard deviation,
skewness, and kurtosis) and second order measurements (mean, angular second moment, contrast,
correlation, homogeneity, dissimilarity, variance, and entropy). First order statistics are used to quantify
the distribution properties of the images’ spectral tone for a given neighborhood, while second-order
statistics contain the frequency of co-occurring gray scale values and are calculated from the gray-level
co-occurrence matrix (GLCM) [15].

The recent growth of EO technology has resulted to the launch of sophisticated instruments
such as that of the Sentinels series from the European Space Agency (ESA). This has opened up
opportunities for new techniques development which aim at improving our ability to map wetland
ecosystems. The Sentinel Mission is part of Copernicus Programme for monitoring climate change,
natural resources management, civil protection and disaster management. Copernicus open data
are available at Copernicus Open Access Hub (https://scihub.copernicus.eu/). Sentinel-1 (S1) is
a Synthetic Aperture Radar (SAR) mission, providing data regardless of weather conditions and
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cloud coverage. Sentinel-2 (S2) is a land monitoring mission part of the Copernicus Program that
provides high-resolution optical imagery to perform terrestrial observations in support of land services.
The mission provides a global coverage of the Earth’s land surface every five days and at a spatial
resolution of 10, 20 and 60 m, making the data of great use in studies related to land use/cover mapping
and quantification of its changes. The Sentinel satellites can play a vital role in future land surface
monitoring programs. Thus, exploring and evaluating the use of Sentinel data for wetland mapping is a
thematic area of key interest and priority to develop. The improved discrimination capabilities offered
by S1 and S2 and their effectiveness for wetland mapping combined with contemporary classification
algorithms (e.g., Support Vector Machines (SVMs)) would therefore be important to be investigated.

This study aims at exploring the synergistic use between a range of spectral information products
derived from Sentinel 1 and 2 and the SVMs classifier in evaluating their ability to map a complex
area containing wetland and non-wetland LULC classes. In particular, the study objectives are: (1) to
analyze a number of secondary derivatives produced from S2 data with the SVMs to evaluate their
added value in mapping LULC and specifically wetlands; and (2) to investigate the suitability of S2
data and their synergistic use with S1 data with contemporary LULC mapping techniques (SVMs and
knowledge rules) for LULC mapping with emphasis on mapping wetlands.

2. Materials and Methods

2.1. Study Site

The National Park of Koronia and Volvi Lakes (NPKV) lies in the Mygdonia basin, a semi-urban
area located in a tectonic depression in northern Greece (Figure 1). The basin includes a large lowland
area around the lakes that offers abundant soil for cultivation, as well as some mountain ranges at its
borders. The rugged terrain creates a dense hydrographic network that ends up in the lakes. Climate is
typical Mediterranean and annual rainfall ranges from 400 to 450 mm, distributed almost entirely
during the winter season [37]. The wide rainfall range causes floods during the winter and serious
droughts during the summer. The area is characterized by relatively low temperature during winter,
ranging between −10 ◦C and 17 ◦C, whereas summer is warm with temperature ranging between
12 ◦C and 42 ◦C. NPKV is one of the most important Ramsar wetlands of Greece [38]. According to the
Greek Biotope/Wetland Centre (http://www.ekby.gr/ekby/en/), many flora and fauna reproduce,
nest, feed and rest in the wetland habitat. Two perennial plane trees between the lakes are characterized
as “Monument of Nature” and provide shelter to numerous bird species. It is a significant habitat
of structural and species diversity, also providing an important nesting and roosting site for many
endangered bird species (e.g., Milvus migrans, Haliaeetus albicilla and Hieraaetus pennatus) [5]. In addition,
19 amphibian and reptile species, 34 species of mammals (some of them are under protection such as
Myotis bechsteini, Myotis blyth, Lutra lutra, Canis aureus, Lutra lutra, Canis lupus and Capreolus capreolus)
and 24 species of fish (among them, the rare “Aspius aspius”) live and reproduce within the area.

The wetland is protected by numerous national and international conventions due to its
high environmental interest. It is also included in the European ecological network of protected
sites “NATURA 2000”. Koronia Lake is a very important ecosystem of Greece which is almost
vanishing because of non-sustainable water management practice in the region. It faces serious
environmental issues, such as decreasing water levels, deterioration of water quality and water
salinization [38]. The ongoing unsystematic economic growth of the area has resulted in water depletion
and environmental degradation with serious social and economic impacts.

http://www.ekby.gr/ekby/en/
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Figure 1. The National Park of Koronia and Volvi Lakes (NPKV) lies in the Mygdonia basin, northern 
Greece. The detail shows the land uses according to Corine Land Cover (CLC) 2012. 
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Sentinel data were acquired from Copernicus Open Access Hub (https://scihub.copernicus.eu/). 
The selection was based on the following criteria: (1) low cloud coverage for Sentinel 2 images; (2) 
coincidence of at least one Sentinel 1 and Sentinel 2 image; and (3) seasonal coverage. According to 
these, the images selected were a Single Look Complex (SLC) Sentinel-1 (C-band) image captured on 
2 August 2016 in Interferometric Wide Swath Mode (IW), a Sentinel 2 image also captured on 2 
August 2016 and a Sentinel 2 image captured on 28 January 2016 (Table 1).  

SLC product produces a 250 km swath at approximately 5 × 20 m resolution. The acquired 
imagery was obtained in dual-polarization mode at VV + VH. Sentinel 2 imagery was acquired in 
processing Level-1C which includes radiometric and geometric corrections, ortho-rectification and 
spatial registration on a global reference system with sub-pixel accuracy.  

Additionally, a digital elevation model (DEM) of the area was obtained from the Shuttle Radar 
Topography Mission (SRTM) [39] and auto-downloaded from the Sentinel Application Platform 
(SNAP, v5.0) (Table 1). The DEM version 2 (released on 2005) (https://www2.jpl.nasa.gov/srtm/ 
(accessed on 24 June 2016)) was used with a spatial resolution of 30 m (1 arc-second) (vertical and 
vertical accuracy at 16 m and 20 m respectively) [40].  

Table 1. Summary of the characteristics of the remotely sensed datasets used in this study. 

Sensor Name Sensor Type Acquisition Date Band Information Resolution (m)
Sentinel 1 C-band Radar 2 August 2016 VV + VH 5 × 20  
Sentinel 2 Optical 2 August and 28 January 2016 490–2190 nm 10–20  

SRTM C/X-band Radar 2005 DEM 30 
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Figure 1. The National Park of Koronia and Volvi Lakes (NPKV) lies in the Mygdonia basin, northern
Greece. The detail shows the land uses according to Corine Land Cover (CLC) 2012.

2.2. Datasets

Sentinel data were acquired from Copernicus Open Access Hub (https://scihub.copernicus.eu/).
The selection was based on the following criteria: (1) low cloud coverage for Sentinel 2 images;
(2) coincidence of at least one Sentinel 1 and Sentinel 2 image; and (3) seasonal coverage. According to
these, the images selected were a Single Look Complex (SLC) Sentinel-1 (C-band) image captured
on 2 August 2016 in Interferometric Wide Swath Mode (IW), a Sentinel 2 image also captured on
2 August 2016 and a Sentinel 2 image captured on 28 January 2016 (Table 1).

SLC product produces a 250 km swath at approximately 5 × 20 m resolution. The acquired
imagery was obtained in dual-polarization mode at VV + VH. Sentinel 2 imagery was acquired in
processing Level-1C which includes radiometric and geometric corrections, ortho-rectification and
spatial registration on a global reference system with sub-pixel accuracy.

Additionally, a digital elevation model (DEM) of the area was obtained from the Shuttle Radar
Topography Mission (SRTM) [39] and auto-downloaded from the Sentinel Application Platform (SNAP,
v5.0) (Table 1). The DEM version 2 (released on 2005) (https://www2.jpl.nasa.gov/srtm/ (accessed on
24 June 2016)) was used with a spatial resolution of 30 m (1 arc-second) (vertical and vertical accuracy
at 16 m and 20 m respectively) [40].

Table 1. Summary of the characteristics of the remotely sensed datasets used in this study.

Sensor Name Sensor Type Acquisition Date Band Information Resolution (m)

Sentinel 1 C-band Radar 2 August 2016 VV + VH 5 × 20
Sentinel 2 Optical 2 August and 28 January 2016 490–2190 nm 10–20

SRTM C/X-band Radar 2005 DEM 30
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3. EO Data Processing

3.1. Pre-Processing

The acquired S1 and S2 data were pre-processed using the SNAP open source software and
georeferenced in the WGS84 coordinate system and UTM projection, zone 34.

S1 data first had to split to the study site extend, de-burst the sub-swaths and apply the precise
orbit file to offer the highest geometric precision. A Refined Lee 7 × 7 speckle filter was applied after
suggestions [35] and the σ0 outputs were terrain corrected using SNAP’s “Range Doppler Terrain
Correction” algorithm with the SRTM 1 arc-sec DEM. H-Alpha (H-a) decomposition [41] was included,
allowing for entropy and alpha derivatives to be extracted from the data. Finally, all data were
resampled at 10 m using a bilinear method.

S2 data pre-processing included atmospheric correction to convert the Top-of-Atmosphere
reflectance values (TOA) to corrected Bottom-of-Atmosphere reflectance values (BOA). For the
atmospheric correction, ESA’s Sen2Cor plug-in was used. Sen2Cor is a processor for Sentinel-2
Level 2A product generation and formatting; it performs the atmospheric, terrain and cirrus correction
of Top-Of-Atmosphere Level 1C input data. Sen2Cor creates Bottom-Of-Atmosphere, optionally terrain
and cirrus corrected reflectance images, as well as Aerosol Optical Thickness, Water Vapor, snf Scene
Classification Maps, and Quality Indicators for cloud and snow probabilities. Its output product
format is equivalent to the Level 1C User Product. Subsequently, bands 1, 9 and 10 were removed from
the dataset. Then, the image was resampled at 10 m using a bilinear method and was also subset to the
study site extent.

The SRTM DEM (30 m) was processed using ArcGIS software. Topographic information, namely
slope, aspect and elevation, were derived and then resampled at 10 m utilizing the cubic convolution
resampling method to match the Sentinel-2 spatial resolution. The accuracy of the derived DEM and
the co-registration accuracy with the Sentinel images was assessed by comparing on a cell-by-cell basis
with some same scale reference vector data of the area. A positional accuracy within the sensor pixel
range (i.e., <10 m) was achieved which was considered satisfactory.

3.2. Analysis of Spectral Features

Spectral bands of S2 from 2 to 8A, 11 and 12 were used for this study (Figure 2). The Principal
Component Analysis (PCA) and Minimum Noise Fraction (MNF) transformation methods were
implemented to decrease the high correlation between the spectral bands providing independent
information. PCA is a classical statistical method for transforming attributes of a dataset into a new set
of uncorrelated attributes called principal components (PCs) and it is used to reduce the dimensionality
of a dataset, while still retaining as much of the variability of the dataset as possible [42]. The MNF
is used to determine the inherent dimensionality of image data, to segregate noise in the data and to
reduce the computational requirements for subsequent processing [43]. PCA components 1 to 3 and
MNF components 1 to 5 were used in this study to compose the new image for classification (Figure 3).
The used components contained over 98% of the original information.

In addition, the commonly used Normalized Difference Vegetation Index (NDVI) (Equation (1))
and the Normalized Difference Water Index (NDWI) (Equation (2)) were used in this study to help
discriminate vegetation types and water surfaces (Figure 2). Bands 8 (NIR) and 4 (Red) were used to
calculate NDVI according to the following equation:

NDVI =
NIRB8 − RB4

NIRB8 + RB4
(1)

Likewise, bands 8 (NIR) and 3 (Green) were used to calculate NDWI according to the
following equation:

NDWI =
GB3 −NIRB8

GB3 + NIRB8
(2)
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Figure 2. Spectral signatures of selected land use/land cover (LULC) classes (left). Vertical and 
horizontal axis represents the reflectance values (multiplied with scale factor of 10,000) of the Sentinel 
2 summer image and the spectral bands used in this study in nanometers, respectively. Spectral mean 
values for Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index 
(NDWI). Vertical axis represents the index values (right). The chart shows the values for the summer 
image (2 August 2016). 

 

Figure 3. Spectral mean values of: Principal Component Analysis (PCA) (left); and Minimum Noise 
Fraction (MNF) (right) components. Vertical axis represents the transformed values in both charts. 

3.3. Analysis of Texture Features 

Apart from the tone (spectral variation), satellite images also consist of texture (spatial variation) 
[36]. While spectral information is relatively easy to quantify, texture is more difficult as it involves 
measurements of variation in pattern, shape and size [44]. Texture is described mainly by histograms, 
the gray-level co-occurrence matrix (GLCM), local statistics, etc., with GLCM being the most often 
used [32]. In this study, four statistical indicators of texture information, namely homogeneity 
(HOM), dissimilarity (DIS), entropy (ENT) and angular second moment (ASM), were implemented 
(Figure 4). These indicators were selected as effective indicators for the texture description of different 
land cover types [35]. Texture measures are influenced by window size since the scale of the spatial 
patterns measured, is dependent on window size [45]. After several window size implementations, 
it was found that a window size of 7 × 7 pixels is suitable for the particular study site. The texture 
measures were applied on the NDVI index, PC3 and MNF—C5.  

Figure 2. Spectral signatures of selected land use/land cover (LULC) classes (left). Vertical and
horizontal axis represents the reflectance values (multiplied with scale factor of 10,000) of the Sentinel 2
summer image and the spectral bands used in this study in nanometers, respectively. Spectral mean
values for Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index
(NDWI). Vertical axis represents the index values (right). The chart shows the values for the summer
image (2 August 2016).
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3.3. Analysis of Texture Features

Apart from the tone (spectral variation), satellite images also consist of texture (spatial
variation) [36]. While spectral information is relatively easy to quantify, texture is more difficult
as it involves measurements of variation in pattern, shape and size [44]. Texture is described
mainly by histograms, the gray-level co-occurrence matrix (GLCM), local statistics, etc., with GLCM
being the most often used [32]. In this study, four statistical indicators of texture information,
namely homogeneity (HOM), dissimilarity (DIS), entropy (ENT) and angular second moment (ASM),
were implemented (Figure 4). These indicators were selected as effective indicators for the texture
description of different land cover types [35]. Texture measures are influenced by window size since
the scale of the spatial patterns measured, is dependent on window size [45]. After several window
size implementations, it was found that a window size of 7 × 7 pixels is suitable for the particular
study site. The texture measures were applied on the NDVI index, PC3 and MNF—C5.
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the separation of land cover types, as well as the limitation the shape attributes of the features [47,48]. 
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3.4. Analysis of Shape Features

Shape is one of the most useful features in a satellite image and is an important aid for the
extraction of information about ground objects [32]. The methods for discovering shape information
about ground objects include perimeter, area and other shape measurements [46]. From the visual
interpretation of the images, it was found that the shapes of the crops were relatively small and
rectangular, while the shape of natural vegetation had more irregular patterns. Therefore, crops can be
discriminated from natural vegetation, besides their spectral differentiation, based additionally on
the area and the near-rectangle shape. Thus, two shape indicators were used, namely rectangle fit
and compactness. An image segmentation was preceded using the “edge method” with scale factor
40% and merge factor 80% to ensure that the segments would be right-side to avoid the confusion in
the separation of land cover types, as well as the limitation the shape attributes of the features [47,48].
The segmentation was applied to red (R), green (G), blue (B), near-infrared (NIR) and NDVI bands to
both summer and winter images to identify seasonal changes in crops (Figure 5).
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3.5. Crop Features Extraction

To extract the crop features a combination of the previously mentioned methods was adopted.
The segmented image (Figure 5) was used and a range of permitted values for both spectral and shape
features was defined (Table 2). The values used for the extraction are shown in Table 2.

Table 2. Value range used for crop extraction.

Attribute Minimum Maximum

Spectral mean NDVI 0.3 0.9
Slope 1.5 5.0

Shape indicator
Rectangle Fit 0.45 1.00

Area 8000 800,000
Compactness 0.005 0.035

4. Wetlands Mapping from Sentinel

4.1. LULC Classes

The classification scheme used in this study was developed in two stages. In the first stage, land
use land cover (LULC) classes were defined which were representative of the scene’s attributes for a
particular image acquisition date (2 August 2016) (Table 3).

Table 3. Implemented land use/land cover (LULC) classes (first stage).

LULC Classes Class Description

Crops Non-wetland class, healthy and high yield arable farming land
Water Wetland class, exposed surface water
Artificial Surfaces Non-wetland class, impervious surfaces, urban fabric, roads, industrial facilities
Forest Non-wetland class, mixed forest with trees from medium to large size
Shrub Non-wetland class, long or short grass species, sparse trees and bushes
Sand Non-wetland class, exposed lake, river or estuarine bed, coarse sand
Soil Non-wetland class, bare land, very low or no vegetation
Marshes Wetland class, aquatic plants that are either emerge, submerge or floating in water
Swamps Wetland class, aquatic forest or shrubs

In the second stage, a multi-seasonal approach was attempted to classify all important area’s
attributes, thus both summer and winter multi-spectral images were used. LULC classes were
selected based on knowledge about the specific area. For this purpose, “Crops” were divided into
“Summer Crops”, “Winter Crops” and “Permanent Crops”, and a new class named “Grassland” was
implemented. A set of training points were selected representative of each class.

4.2. Support Vector Machines

Support Vector Machines (SVMs) is a nonlinear and non-parametric large margin supervised
machine learning classifier implementing Vapnik’s structural risk minimization principle [49].
SVMs have several advantages in comparison to other hard classification approaches (for an overview
of SVMs uses, see [50]). SVMs separate the samples of different classes by finding the separating
hyperplane related to maximal margin minimizing the hinge loss function. Such solution guarantees a
minimal generalization error. Essentially, the hyperplane is the decision surface on which the optimal
class separation takes place. Intuitively, a good separation is achieved by the hyperplane that has the
largest distance to the neighboring data points of both classes. Each training example is represented by
a feature vector. To avoid computational overload, this is not done by evaluating all training points,
but only a subset, called the “support vectors” of the algorithm.
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By using nonlinear kernel functions (e.g., Gaussian RBF and polynomial), the SVMs implicitly
work linearly in a higher dimensional space, corresponding to a nonlinear solution in the input space,
where the data naturally exist. Such mapping into the higher dimensional kernel space is implicitly
performed by applying a kernel function k(·,·), evaluating the dot product between samples mapped in
some higher dimensional space as φ(xi)′φ(xj), where ′ denotes vector transpose. For the standard binary
SVMs formulation implemented in this paper, the hyperplane f (x) = w′x + b optimally separating the
two classes is found by minimizing:

minw,b,ξ
1
2 ||w||+ C

N
∑

i=1
ξi

s.t.w′x + b > 1− ξi

ξi > 0, i = 1, . . . , N

(3)

The slack variables ξ allow some training errors, guaranteeing robustness to noise and outliers.
C corresponds to a user selected parameter to control the complexity of the model, acting as a trade-off
parameter between nonlinearity and number of training errors. This quadratic optimization is solved
by introducing Lagrange multipliers α to obtain the following dual form:

maxα

N
∑

i=1
αi − 1

2

N
∑

i=1
αiαjyiyjk

(
xi, xj

)
s.t. 0 6 αi 6 C,

N
∑

i=1
αiyi = 0

(4)

When the optimal solution of the latter optimization is found, i.e., the α, labels of unknown
samples xt are predicted by the side of the margin in which they lie, i.e., by the following expression:

ŷ = sign
(

f
(
xt)) = sign

(
N

∑
i=1

αik
(
xi, xt)) (5)

Note that standard SVMs are sparse in the α coefficients, so the final solution may be equivalently
expressed only by the samples having a non-zero α. These samples are the ones lying on the separating
margins f (x) = 1 and f (x) = −1.

To represent more complex hyperplane shapes than the linear methods, the techniques can be
extended by using kernel functions. In this case, the problem transforms into an equivalent linear
hyperplane problem of higher dimensionality. The use of the kernel function essentially allows the data
points to be classified to spread in a way that allows the fitting of a linear hyperplane. Commonly used
SVMs kernels include polynomial and radial basis function (RBF), and sigmoid kernels. In addition,
SVMs also introduces a cost parameter C to quantify the penalty of misclassification errors in order to
handle non-separable classification problems. In this study, RBF kernel was used for performing the
pair-wise SVMs classification due to its promising capabilities compared to linear and polynomial [23].
RBF kernel is defined from the following equation:

Radial Basis Function:
K(xi, xj) = exp(−γ‖(xi, xj)‖2), γ > 0 (6)

This kernel requires the definition of only a small number of input parameters (i.e., the C and
γ parameters) and has also already been shown to produce generally good results in a range of
classification studies (e.g., [29,30,51]). SVM optimum parameters of the classification implementation
were established. The γ value was kept as suggested, 1/number of features. After several tests, the
optimum C value was found at 2000 (Figure 6). From a C value of 1, overall accuracy rapidly rose up
to 500 before beginning to plateau at 2000.
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Figure 6. C value selection graph for Support Vector Machines (SVM) plotted against the overall
accuracy of the scene.

After parameter selection, the entire scene was classified with the entire dataset tested. For the
classification, different scenarios were implemented aiming at assessing the added value of the different
derivatives generated in the previous processing steps. All scenarios included NDVI, NDWI and
elevation, as their contribution is considered to be effective in recent studies [52–54]. Initially (SB), only
the original S2 channels were used. The first scenario (T) examined the performance of the transformed
images without the original channels. In the second scenario (T + SB), the contribution of the transformed
channels to the overall classification accuracy was examined using them along with the initials. The
third scenario (SAR) examined the contribution of the S1 data derivatives. The fourth scenario (GLCM)
examined the contribution of the texture characteristics resulting from the GLCM. Finally, in the fifth
scenario (MS), a seasonal approach was examined, using features from both the summer and the winter
images. The process was repeated until all components were examined and in each case, the channels
that appeared to contribute to the increase in accuracy were also used in the following scenarios.

4.3. Post-Classification Corrections

Although LULC maps reached high accuracies, each scenario was found promising for different
purposes. For example, the multi-seasonal approach (MS) contributed in the improvement of the
classification accuracy in vegetation classes more, while sand/soil and impervious surfaces were
better differentiated when the texture features were used (GLCM) (Table 4). A post-classification
refinement was developed and applied using the LULC maps and ancillary information built in a
hypothesis framework of Knowledge Engineer (ERDAS Imagine, 2016) to reduce classification errors.
The process involves the definition of hypotheses and variables, as well as the implementation of
true/false rules in a detailed decision tree (Figure 7). The variables in the decision tree classifier refer
to a band of data, while the terminal hypotheses represent the final classes of interest. A decision
tree is a type of multistage classifier that can be applied to a stack of images designed to implement
decision rules. The tree is made up of a series of decisions that are used to determine the correct class
for each pixel. The rules can be based on any available characteristic of the dataset. For example,
additional elevation information was used in this study to assist the correct classification of vegetation
types (i.e., forest–marshes). The classified images from previously implemented steps, along with the
ancillary information (e.g., cloud mask, NDVI, NDWI, slope, elevation, and crop features), were used
herein as variables.
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Table 4. The different scenarios tested were grouped in six main thematic categories.

v2.0 v2.1 v2.2 v2.3 v2.4 v2.5

Spectral Bands (SB) X X X X X
Transformations (T) X X X X X

SAR X X X
GLCM X X

Multi-seasonal (MS) X
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4.4. Accuracy Assessment

Accuracy assessment was carried out by the overall accuracy (OA) (Equation (7)) and kappa (K)
(Equation (8)) statistics. In addition, accuracy of each class was evaluated separately using User’s and
Producer’s accuracy (UA and PA), to reveal if error was evenly distributed between classes or if some
classes were classified more correctly or not. The detailed error matrix was also computed for each of
the classification images, as it allowed evaluating the UA and PA accuracy for each of the information
classes included in our classification scheme.

OA = ∑k
i=1

Nii
N

(7)

Kappa =
n ∑

q
i=1 nii −∑

q
i=1 nRinCi

n2 −∑
q
i=1 nRinCi

× 100 (8)

The selection of a sufficient number of training and validation samples, as well as their
representativeness, is critical for proper classification [55]. Samples are typically collected from
in-situ data, aerial photographs or very high resolution satellite images. In this study, Google Earth
images (20 March 2017) were used for the validation along with field photographs. The samples were
selected as groups of pixels (polygons and polylines) for each class. In total, 13,888 pixels (~0.2% of the
total pixels) were selected for training samples and 20% of those (2777) for validation (Table 5).
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Table 5. Training and validation samples for each land use/land cover LULC class collected as group
of pixels.

Training Validation

marshes 857 200
swamps 681 120

forest 2741 550
shrubs 853 170
crops 1457 300
sand 1188 200
soil 1493 300

urban 1862 370
water 2856 570

5. Results

5.1. Support Vector Machines

Regarding the overall classification accuracy, the curve ascended from 90.83% to 93.85% and kappa
from 0.894 to 0.928, which indicates a strong agreement with reality (Figure 8). Some exceptions were
observed when the initial S2 bands were removed. S2 bands seem to have the greatest contribution
to the classification results. The most significant contribution to the accuracy of the classification
appeared to be the texture features derived from the GLCM analysis and the seasonal approach for
the vegetation classes. Overall, the highest accuracy (93.85%) was reached when the NDVI and MNF
texture bands (entropy, homogeneity, dissimilarity, and angular second moment) were used. On the
other hand, the lowest accuracies were observed when the PCA components were used alone (82.50%)
and when the H-a dual decomposition derivatives were implemented (91.37%).
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Figure 8. The figure above represents the overall accuracy. All Support Vector Machines
(SVM)-based classifications were grouped into six groups according to the legend: SB, Spectral Bands;
T, Transformations; MS, Multi Seasonal; GLCM, Texture Analysis and SAR, Synthetic Aperture Radar
(as also shown in Table 4).

As mentioned above, each scenario’s results were promising for different LULC classes. Individual
class accuracies in vegetation classes decreased (up to ~20%) when S2 red bands (B5, B6, B7, and B8A)
were removed. S1 derivatives contributed mostly to distinguish bare ground and impervious surfaces.
Texture derivatives increased class accuracies for both vegetation (2–5%) and bare ground classes (4–7%).
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As shown in Table 6, the main misclassified classes are “marshes” and “crops”, followed by
“swamps” and “urban”. Producer’s and User’s accuracies (PA and UA) indicate that, while “swamps”
ranged between ~70% and ~80% and “urban” between ~77% and ~93%, “crops” did not exceed 75%
in any scenario tested. “Marshes” appears to be the most unreliable class, as many pixels misclassified
as marshes (mainly crops). UA in “marshes” class was lower than 70% in all scenarios while PA was
almost 95%. This means that, even though almost 95% of the reference marsh areas have been correctly
identified as “marshes”, less than 65% of the areas identified as “marshes” in the classification were
actually marshes. On the other hand, classes “water” and “forest” had the best results (>98.00%), as far
as User’s and Producer’s accuracy (UA and PA) is concerned.

Table 6. The User’s (UA) and Producer’s (PA) accuracies for all classes in the best scenario of each
group. The six groups are: SB (Spectral Bands); T (Transformations); T + SB (Transformations + Spectral
Bands); SAR (Synthetic Aperture Radar); GLCM (Texture features); and MS (Multi-seasonal).

SB T T + SB SAR GLCM MS

marshes
PA (%) 95.83 95.83 95.00 95.00 95.83 96.67
UA (%) 61.17 56.65 62.64 62.98 66.86 68.24

swamps PA (%) 78.00 70.50 78.50 78.50 83.50 82.50
UA (%) 82.54 81.03 83.96 83.96 82.27 80.88

forest
PA (%) 99.64 99.64 99.64 99.64 99.64 98.73
UA (%) 99.46 99.82 99.82 99.82 100.00 100.00

shrubs
PA (%) 97.65 99.41 98.82 98.82 98.82 98.24
UA (%) 75.11 85.35 81.55 80.77 90.32 89.78

crops PA (%) 69.67 70.00 72.00 72.33 74.33 73.67
UA (%) 84.27 84.34 85.38 85.43 88.14 87.01

sand
PA (%) 100.00 94.50 100.00 100.00 100.00 100.00
UA (%) 86.96 86.30 88.11 87.72 89.69 90.91

soil
PA (%) 93.33 91.00 92.67 92.33 96.33 96.33
UA (%) 94.28 88.93 93.92 93.58 98.63 98.30

urban
PA (%) 77.30 77.57 81.62 80.81 91.62 93.51
UA (%) 98.62 90.82 97.11 97.08 99.41 99.43

water
PA (%) 99.12 98.95 99.30 99.30 98.25 98.25
UA (%) 99.82 99.82 99.47 99.47 99.82 99.82

Overall (%) 90.83 89.78 91.69 91.58 93.85 93.78

Kappa 0.89 0.88 0.90 0.90 0.93 0.93

5.2. Post Classification

After the completion of the post-classification step, overall classification accuracy reached 94.82%
and kappa coefficient 0.9362 (Table 7). All LULC classes were also classified with fairly high accuracy
(for all classes, above 75%). For all vegetation classes, an accuracy above 80% was also reported
(Table 7). The classes with the highest misclassification error are “urban”, “sand” and “soil”, while
“forest” and “shrubs” appear to have some misclassification errors as well. Specifically, “shrubs”,
“urban” and “sand” classes appear more unreliable, with relatively high commission error, which
means a relatively low percentage of each class’s pixels actually represents the particular class on the
ground. For “forest” and “soil”, higher omission error was reported, which indicates that a relatively
low percentage of each class’s ground pixels also appears the same in the classified image.
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Table 7. Overall accuracy (OA) and kappa coefficient after the post-classification and User’s and
Producer’s accuracies (UA and PA) for all the classes.

OA (%)|Kappa 94.82%|0.9362

water marshes swamps forest shrubs grass

UA (%) 99.05% 94.37% 89.40% 79.32% 98.03% 96.47%
PA (%) 99.78% 85.59% 89.89% 97.06% 88.85% 95.85%

crops s crops w crops p urban sand soil

UA (%) 91.59% 97.25% 98.02% 95.59% 99.87% 88.53%
PA (%) 84.58% 96.50% 95.77% 80.90% 76.62% 99.38%

6. Discussion

Accuracy assessment results suggest that the synergistic use of S1 and S2 data can achieve high
classification accuracy, especially when combined with information on elevation, texture and shape.
In a wetland area, the classes that prevail are water, aquatic vegetation and agriculture. In our case,
water covers almost 15% of the area. The above, combined with the seasonality of both the lakes and
the different types of vegetation, constitute a highly complex ecosystem in which the classification
of LULC types may prove difficult. Moreover, weather conditions affect the quality of optical data
(e.g., cloud cover) and the ground conditions (e.g., drought) affect the quality of SAR data, since it
reduces the backscatter variations of the different classes due to their moisture difference. This is
confirmed by both OA, UA and PA for specific classes. Wetland classes (especially marshes) were the
most misclassified and the results were more accurate when texture and seasonality were considered.

Although vegetation classes have a similar spectral response, spectral signatures between some of
the different LULC types can be distinguished in the red-edge area of the spectrum. That may explain
the significant contribution of S2 red bands in the classification accuracy improvement. UA and PA for
vegetation classes (marshes, swamps and crops) decreased significantly when S2 bands were removed
(v2.1–T). Moreover, vegetation’s phenological cycle helped the separation of different types in the
multi-seasonal approach. A difficulty in distinguishing the aquatic and the inland vegetation was also
observed. Texture features helped in this respect, as indicated by several previous studies [35,56–58].
Crops were successfully separated from natural vegetation using shape features, which can be easily
explained as the cultivated land has more regular patterns and shape than natural vegetation areas.

Spectral features showed to be less effective in the separation of artificial, soil and sand classes,
which was possibly due to their low spectral separability (refer to Figure 2). While the first image was
acquired in mid-summer, the presence of moisture is significantly low on the ground which can lead
to high reflectance values and, thus, confusion between artificial surfaces and natural surfaces with
no vegetation (soil, sand). Specifically, according to data collected from the Meteorological Station of
Lagkadas (http://www.meteo.gr/meteoplus/index.cfm), the cumulative rainfall height for the previous
month was only 6.0 mm, with temperature ranging between 14 ◦C (nighttime) and 38.8 ◦C (daytime).
These weather conditions cause severe droughts to the area during the summer (see Section 2.1).

Findings reported herein also align with the other studies conducted independently using different
multispectral satellite data underlining as well the promising capabilities of SVMs [23,24,59–65].
Evidently, a proper parameterisation can highly affect the SVMs performance [66,67]. The technique
we chose to use in this study to parameterize the SVMs has been successfully implemented in other
LULC investigations [27,68,69]. RBF kernel was used due to its promising capabilities as suggested by
previous studies [23,50,68,70]. It is possible that another kernel function might have been more
appropriate to the particular study site and data. SVMs algorithm achieved high classification
accuracies, especially in wetland classes.

A number of studies have also indicated that SAR data may improve the classification accuracy,
especially in extracting artificial classes (roads, buildings, etc.) [71,72] and change detection (wetland
delineation, flood, etc.) [67,71–73]. However, in our study, S1 data slightly improved the classification

http://www.meteo.gr/meteoplus/index.cfm
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accuracy, since the accurateness enhancement was about 1%. As mentioned above, weather conditions
were not ideal at the specific time of the images acquisition, with high temperature and very low
rainfall which had caused severe drought in the area. Although SAR data are only affected by wind
speed, which in our case did not exceed 1.8 km/h (WSW direction), the severe drought conditions may
have affected the data quality. Finally, the differences in the spatial resolution between the combined
datasets and the image processing implemented to unify this spatial resolution could be another source
of misclassifications reported herein.

Previous studies have indicated the improvement of accuracy in classifying land cover when
knowledge rules are used [31–33]. In our study, post classification results achieved very high accuracy
and indicated the efficiency of this method in producing a high-accuracy LULC map (Figure 9).
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More broadly, the proposed methodology includes image analysis, extraction of key characteristics
(e.g., texture) and usage of additional information (e.g., elevation) to compose a new dataset that will
be used in the classification process. In this respect, findings of our study provide important assistance
towards the development of relevant EO-based products not only in Greece (where the method was
tested herein), but potentially also allowing a cost-effective and consistent long term monitoring of
wetland/non-wetlands at different scales based on the latest EO sensing technology. With the provision
of continuous, reliable spectral information from the ESA’s Sentinels 1 and 2 missions, the protraction of
the proposed herein methodology has to some extend been assured. The proposed methodology may
be easily transferred to be implemented at another location in terms of geographical scalability as well
as in different wetland types (e.g., coastal wetlands, river estuaries, etc.). For this to be done successfully,
the post-classification rules should be appropriately adapted when the method is implemented in
different settings. The inclusion of this adjustment may both further improve the accuracy of the
current technique and lead to a more detailed classification hierarchy. Finally, the present study also
meliorates existing EU international figures, assisting efforts towards the development of operational
products via the EU’s Copernicus service.

7. Conclusions

This study is, to our knowledge, among the first to investigate the combined use of Sentinel with
advanced machine learning algorithms for LULC mapping with an emphasis on wetlands, particularly
in a Mediterranean setting. Results showed that spatial, spectral and temporal resolutions of S2 data
are suitable for classifying wetland areas. Overall accuracy using S2 bands alone reached 90.83% and
kappa coefficient 0.894, which indicates a strong agreement with reality. The inclusion of S1 data did
not significantly improve classification overall accuracy (<1%), at least this was the case in our study.
However, the inclusion of additional spectral (NDVI, NDWI, PCA, and MNF), texture (GLCM) and
shape indicators improved classification results, in some cases not significantly. Highest accuracies
were achieved when the texture features (3%) where included, while the lowest when only selected



Remote Sens. 2017, 9, 1259 16 of 19

transformed components were used (<0.5%). Cultivated land was successfully separated from natural
using shape features. Finally, post classification techniques achieved very high overall accuracy
(94.82%) with individual class accuracies more than 75% for all classes, thus providing an accurate
map of the specific study site.

Wetlands are complex systems with a high presence of water and both natural and artificial
surfaces. Thus, mapping wetlands and monitoring their changes over time is a challenging procedure,
especially using multispectral imagery for this purpose. Sentinel missions can provide researchers
and decision-makers invaluable data, with a satisfactory spatial and temporal resolution and, most
importantly, free of charge. S2 proved to be appropriate for mapping such complex areas, thanks
to the high spectral and spatial resolution of the data. Further work is required to verify the results
obtained by testing the methods on other sites. The expansion of the techniques investigated herein
using multi-seasonal as well as multi-annual datasets would also be another direction to be perhaps
investigated next. Besides this, the use of other classifiers (e.g., random forests, artificial neural
networks, etc.) would be an interesting avenue to be explored, as it may also provide information
that can result in improving thematic information extraction accuracy from S1 and S2 satellites to map
wetlands worldwide.
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