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ASYMPTOTIC BEHAVIOR OF THE LONGITUDINAL
PERMEABILITY OF A PERIODIC ARRAY OF

THIN CYLINDERS

PAOLO MUSOLINO, VLADIMIR MITYUSHEV

Abstract. We consider a Newtonian fluid flowing at low Reynolds numbers
along a spatially periodic array of cylinders of diameter proportional to a

small nonzero parameter ε. Then for ε 6= 0 and close to 0 we denote by KII [ε]

the longitudinal permeability. We are interested in studying the asymptotic
behavior of KII [ε] as ε tends to 0. We analyze KII [ε] for ε close to 0 by an

approach based on functional analysis and potential theory, which is alternative
to that of asymptotic analysis. We prove that KII [ε] can be written as the

sum of a logarithmic term and a power series in ε2. Then, for small ε, we

provide an asymptotic expansion of the longitudinal permeability in terms of
the sum of a logarithmic function of the square of the capacity of the cross

section of the cylinders and a term which does not depend of the shape of the

unit inclusion (plus a small remainder).

1. Introduction

In this article, we study the asymptotic behavior of the longitudinal permeability
of a periodic array of cylinders, when a Newtonian fluid is flowing at low Reynolds
numbers around the cylinders. We assume that the diameter of the cylinders is
proportional to a small nonzero parameter ε and that the driving pressure gradient
is parallel to the cylinders. Then the velocity field has only one non-zero component
which, by the Stokes equations, satisfies a Poisson equation (cf. problem (1.2)). By
means of the longitudinal component of the velocity field, one can define for each ε
close to 0 the longitudinal permeability KII [ε]. Here, we are interested in studying
the behavior of KII [ε] as ε approaches the degenerate value ε = 0, in correspondence
of which the diameter of the cylinders collapses.

Several authors have studied the longitudinal permeability of arrays of cylinders
by exploiting different techniques. Emersleben [17] considered a square array of
contours of a constant value of a special Epstein zeta function. Happel [20] provided
an analysis for the dilute case on the basis that two concentric cylinders can serve
as the model for fluid moving through an assemblage of cylinders. In the seminal
paper [21], Hasimoto investigated the viscous flow past a cubic array of spheres,
in particular for the case when the radius of the spheres is small compared to the
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mutual distance. He also applied his results to the two-dimensional flow past a
square array of circular cylinders. His techniques are based on the construction
of a spatially periodic fundamental solution for the Stokes’ system and apply to
specific shapes (circular/spherical obstacles and square/cubic arrays). Schmid [42]
investigated the longitudinal laminar flow in an infinite square array of circular
cylinders.

Sangani and Yao [41] extended a method described in [40] in order treat the
problem of determining the permeability of random arrays of infinitely long cylin-
ders. In [41] the transverse and longitudinal permeabilities averaged over several
configurations of random arrays of circular cylinders are expressed as a function of
the area fraction of the cylinders. Adler and the second author in [34, 35] considered
the longitudinal permeability of periodic rectangular arrays of circular cylinders.
By methods of complex variable, they transformed the boundary value problem
defining the permeability into a functional equation. Then they expressed the solu-
tion to such a functional equation in terms of a series of the radius of the cylinders,
which can then be exploited to derive a formula for the longitudinal permeability as
a logarithmic term and a power series in the radius of the cylinder. More precisely,
first in [34] they considered the case of a single circular cylinder in the unit cell and
then in [35] they turned to study the case of an arbitrary (finite) distribution of
circular cylinders inside the periodicity cell.

In this article instead we investigate the asymptotic behavior of the longitudinal
permeability of a rectangular array of thin cylinders, corresponding to the so called
dilute case. Our method allows to treat general shapes of the cross section of the
cylinders without restrictions to circular cylinders. Our aim is twofold. From one
side, we extend the results of [34, 35] to very general shapes and we prove rigorously
that the longitudinal permeability can be represented as the sum of a logarithmic
term and a power series of the square of the ‘size parameter’ of the cylinders. This is
deduced by an analyticity result for a singularly perturbed boundary value problem.
Such a result is based on an operator theoretical reformulation of the problem and
on the Implicit Function Theorem in Banach spaces. From the other side, we
provide and justify an asymptotic expansion of the longitudinal permeability in
terms of the square of the logarithmic capacity of the cross section of the cylinders.
Once more, since there is no particular restriction on the shape of the cylinders,
this expression allows comparisons between different geometric assumptions.

In contrast, for example, with the functional equation method of [34, 35], here we
exploit a potential theoretical method to investigate to behavior of the longitudinal
permeability in the dilute case. Integral equation techniques have indeed revealed
to be a powerful tool to analyze the asymptotic behavior of a wide class of quantities
of physical interest. For example, in Vogelius and Volkov [44] the time-harmonic
Maxwell equation is considered and the leading order boundary perturbations are
derived. Ammari, Kang and Touibi [5] derived asymptotic expansions of the ef-
fective electrical conductivity of periodic dilute composites in terms of the volume
fraction occupied by the inclusions. In Ammari, Kang, and Lee [4] asymptotic
formulas for the effective parameters of a two-phase elastic medium consisting of
materials of different elastic properties are shown. Analogous results for the ef-
fective viscosity properties of dilute suspensions of arbitrarily shaped particles are
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obtained in Ammari, Garapon, Kang, and Lee [2]. For an extensive list of ap-
plications of this method, we refer, e.g., to the monograph by Ammari and Kang
[3].

Furthermore, the potential theoretical method proposed by Lanza de Cristoforis
for real analytic continuation properties of solutions of singularly perturbed linear
or nonlinear problems has been used to analyzed different problems of concrete
nature. As an example, in [12] the effective conductivity of periodic two-phase
dilute composites with nonideal contact condition was investigated, whereas in [27]
a quasi-linear heat transmission problem in a dilute composite was studied.

To introduce the mathematical problem, we fix

l ∈]0,+∞[ , Q ≡]0, l[×]0, 1/l[ , q ≡
(
l 0
0 1/l

)
.

Hence, the area |Q|2 of the cell Q holds unity. We denote by q−1 the inverse matrix
of q. Clearly, qZ2 ≡ {qz : z ∈ Z2} is the set of vertices of a periodic subdivision of
R2 corresponding to the fundamental periodicity cell Q. We also take

α ∈]0, 1[ and a bounded open connected subset Ω of R2 of class
C1,α such that R2 \ clΩ is connected and that 0 ∈ Ω.

(1.1)

The symbol cl denotes the closure. Moreover, we fix

p ∈ Q and ε0 ∈]0,+∞[ such that p+ εclΩ ⊆ Q for all ε ∈]− ε0, ε0[ .

To shorten our notation, we set

Ωp,ε ≡ p+ εΩ ∀ε ∈ R .

Then we introduce the periodic domains

S[Ωp,ε] ≡ ∪z∈Z2 (qz + Ωp,ε) , S[Ωp,ε]− ≡ R2 \ ∪z∈Z2 (qz + cl Ωp,ε) ∀ε ∈]− ε0, ε0[ .

If ε ∈]−ε0, ε0[, the set cl S[Ωp,ε]×R represents an infinite array of parallel cylinders.
Instead, the set S[Ωp,ε]− × R is the region where a Newtonian fluid of viscosity µ
is flowing at low Reynolds number. Then we assume that the driving pressure
gradient is constant and parallel to the cylinders. As a consequence, by a standard
argument based on the particular geometry of the problem (cf., e.g., Adler [1,
Ch. 4], Sangani and Yao [41], and [34, 35]), one reduces the Stokes system to
a Poisson equation for the non-zero component of the velocity field. Since we
are working with dimensionless quantities, we may assume that the viscosity of
the fluid and the pressure gradient are both set equal to 1. For a more complete
discussion on spatially periodic structures, we refer to Adler [1, Ch. 4]. Accordingly,
if ε ∈] − ε0, ε0[\{0}, we consider the following Dirichlet problem for the Poisson
equation:

∆u = 1 in S[Ωp,ε]− ,

u(x+ qz) = u(x) ∀x ∈ cl S[Ωp,ε]− ,∀z ∈ Z2 ,

u(x) = 0 ∀x ∈ ∂Ωp,ε .

(1.2)

If ε ∈]−ε0, ε0[\{0}, then the solution of problem (1.2) in the space C1,α
q (cl S[Ωp,ε]−)

of q-periodic functions in cl S[Ωp,ε]− of class C1,α (cf. Subsection 2) is unique and we
denote it by u[ε]. From the physical point of view, the function u[ε] represents the
non-zero component of the velocity field (cf. [34, §2]). By means of the function u[ε],
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we can introduce the effective permeability KII [ε] which we define as the integral
of the opposite of the flow velocity over the unit cell (cf. Adler [1], [34, §3]), i.e.,

KII [ε] ≡ −
∫
Q\Ωp,ε

u[ε](x) dx ∀ε ∈]− ε0, ε0[\{0} ,

and we pose the following question:

What can be said on the map ε 7→ KII [ε] when ε is close to 0? (1.3)

Questions of this type have long been investigated with the methods of asymp-
totic analysis, with the aim of providing asymptotic expansions for the quantities
of interest. Those techniques have been exploited to analyze a large class of sin-
gular perturbation problems by several authors. For example, in Maz’ya, Nazarov,
and Plamenevskij [30] one can find the method of compound asymptotic expan-
sions which allows the analysis of general Douglis-Nirenberg elliptic boundary value
problems in domains with holes and corners. Maz’ya, Movchan, and Nieves [29]
studied the asymptotic treatment of the Green’s kernel in domains with small holes.
Bonnaillie-Noël, Dambrine, Tordeux, and Vial [7] exploited the method of multi-
scale asymptotic expansions to study the behavior of the solution of the Poisson
equation in a domain with moderately close holes. Bonnaillie-Noël, Lacave, and
Masmoudi [8] investigated the effect of small inclusions of size ε on the behavior of
an ideal fluid governed by the 2D Euler system. Problems in perforated domains
have been considered also in the frame of shape optimization. For example, in
Novotny and Soko lowsky [39], the authors apply the topological derivative (i.e.,
the first term of the asymptotic expansion of a given shape functional with respect
to a small parameter that measures the size of singular domain perturbations) to
problems in elasticity and heat diffusion. Furthermore, boundary value problems
in periodic domains have been analyzed with the method of functional equations
(cf., e.g., Castro, Kapanadze, and Pesetskaya [10], Castro, Pesetskaya, and Rogosin
[9], Kapanadze, Mishuris, and Pesetskaya [22], and the works of the second-named
author and his collaborators Adler, Drygaś, and Rylko [16, 33, 34, 35, 36]). Such
a method is based on complex variable techniques and has revealed to be a useful
tool for specific shapes of the inclusions/obstacles.

Here, instead, we answer the question in (1.3) by showing that

KII [ε] = − log |ε|
2π

+ a0 + a1ε
2 + ε4J [ε] (1.4)

for ε 6= 0 close to 0, where a0, a1 are suitable real numbers (that we compute in
terms of the solution of explicit boundary value problems and integral equations)
and J is a real analytic function defined in a neighborhood of 0. We observe that
our approach does have its advantages. Indeed, equality (1.4) and the parity of J
(cf. Proposition 3.10) imply that

KII [ε] = − log |ε|
2π

+ a0 + a1ε
2 + ε4

+∞∑
j=0

bjε
2j , (1.5)

for a suitable sequence of coefficients {bj}+∞j=0, where the series converges absolutely
on a whole neighborhood of the degenerate value ε = 0. Such an approach has
been previously exploited by Lanza de Cristoforis, Dalla Riva and the first-named
author to analyze several singularly perturbed boundary value problems in period-
ically perforated domains. This method has shown to be a flexible tool to analyze
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problems of different nature. Indeed, linear and nonlinear boundary value problems
for the Laplace equation have been studied for example in [25, 37]. In [13], a non-
linear traction problem in linearized elastostatics is studied. In [12] the functional
analytic approach is exploited to investigate the asymptotic behavior of the effective
conductivity of a dilute composite in presence of a thermal resistance at the inter-
face. This approach has also allowed to study quasi-linear transmission problems.
Indeed, by this method, the asymptotic behavior of the temperature distribution of
a two-phase composite has been analyzed under the assumption that the thermal
conductivities of the materials depend nonlinearly upon the temperature (see [27]).

Then we show that by equation (1.5) we can deduce that the right-hand side of
(1.5) is equal to

− log ρ
4π

+ c+O(ρ) ρ ≡ (cap(εΩ))2 .

The quantity ρ ≡ (cap(εΩ))2 is the square of the logarithmic capacity of the inclu-
sion (cf., e.g., Goluzin [19, Ch. VII,§3] and Kirsch [23, §2]), i.e., of the cross section
of the cylinder. Since the area of the cell is normalized to unity, ρ ≡ (cap(εΩ))2 is
a measure of the concentration of inclusions in the host medium. Moreover, if we
set ρ ≡ (cap(εΩ))2 then the function KII [ε] equals the sum of − log ρ/(4π) and of
a real analytic function of ρ at zero. In the present paper, it is established that the
coefficient c does not depend on the shape of Ω. In particular,

c = −Rq,2(0) +
∫
Q

Sq,2(x) dx ,

where Sq,2 and Rq,2 are as in (2.1) and (2.2), respectively. The dimension of per-
meability is equal to the surface, i.e., length2 (cf. Adler [1]).

This article is organized as follows. Section 2 is a section of preliminaries and no-
tation. In Section 3 we prove our main result on the asymptotic behavior of KII [ε].
In Section 4 we exploit conformal maps to further investigate KII [ε]. Finally, in
Section 5 we present some remarks and conclusions.

2. Preliminaries

Notation. Let O ⊆ R2. Then clO denotes the closure of O and ∂O denotes
the boundary of O. For all R > 0, x ∈ R2, xj denotes the j-th coordinate of
x, xT the transpose vector, |x| denotes the Euclidean modulus of x in R2, and
B2(x,R) ≡ {y ∈ R2 : |x− y| < R}. Let Ω be an open subset of R2. If f ∈ Cm(Ω),
then Df denotes the gradient

(
∂f
∂x1

, ∂f∂x2

)
and D2f denotes the Hessian matrix.

For a multi-index η ≡ (η1, η2) ∈ N2 we set |η| ≡ η1 + η2. Then Dηf denotes
∂|η|f

∂x
η1
1 ∂x

η2
2

. The subspace of Cm(Ω) of those functions f whose derivatives Dηf

of order |η| ≤ m can be extended with continuity to cl Ω is denoted Cm(cl Ω).
The subspace of Cm(cl Ω) whose functions have m-th order derivatives which are
uniformly Hölder continuous with exponent α ∈]0, 1[ is denoted Cm,α(cl Ω). The
subspace of Cm(cl Ω) of those functions f such that f|cl(Ω∩B2(0,R)) ∈ Cm,α(cl(Ω ∩
B2(0, R))) for all R ∈]0,+∞[ is denoted Cm,αloc (cl Ω). Now let Ω be a bounded open
subset of R2. Then Cm(cl Ω) and Cm,α(clΩ) are endowed with their usual norm and
are well known to be Banach spaces. Similarly, we define the space Cm(cl Ω,R2)
and Cm,α(clΩ,R2) of functions from cl Ω to R2 of class Cm and Cm,α, respectively.
Then we denote by Cm,α(clΩ,O) the subset of those functions f ∈ Cm,α(clΩ,R2)
such f(cl Ω) ⊆ O. We say that a bounded open subset Ω of R2 is of class Cm or of
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class Cm,α, if clΩ is a manifold with boundary imbedded in R2 of class Cm or Cm,α,
respectively. We define the spaces Ck,α(∂Ω) for k ∈ {0, . . . ,m} by exploiting the
local parametrizations (cf., e.g., Gilbarg and Trudinger [18, §6.2]). For standard
properties of functions in Schauder spaces, we refer the reader to Gilbarg and
Trudinger [18]. We denote by νΩ the outward unit normal to ∂Ω, by dσ the arc
length element on ∂Ω, and by |Ω|2 the two-dimensional measure of Ω. Finally, for
the definition and properties of real analytic operators, we refer, e.g., to Deimling
[15, p. 150].

Spaces of bounded and periodic functions. If Ω is an arbitrary open subset
of R2, k ∈ N, β ∈]0, 1], we set

Ckb (clΩ) ≡ {u ∈ Ck(clΩ) : Dγu is bounded ∀γ ∈ N2 such that |γ| ≤ k} ,
and we endow Ckb (clΩ) with its usual norm ‖u‖Ckb (clΩ) ≡

∑
|γ|≤k supx∈clΩ |Dγu(x)|

for all u ∈ Ckb (clΩ). Then we set

Ck,βb (clΩ) ≡ {u ∈ Ck,β(clΩ) : Dγu is bounded ∀γ ∈ N2 such that |γ| ≤ k} .

We endow Ck,βb (clΩ) with its usual norm ‖u‖Ck,βb (clΩ) ≡
∑
|γ|≤k supx∈clΩ |Dγu(x)|+∑

|γ|=k |Dγu : clΩ|β for all u ∈ Ck,βb (clΩ), where |Dγu : clΩ|β denotes the β-Hölder
constant of Dγu. Next we turn to periodic domains. If ΩQ is an arbitrary subset
of R2 such that clΩQ ⊆ Q, we set

S[ΩQ] ≡ ∪z∈Z2(qz + ΩQ) = qZ2 + ΩQ , S[ΩQ]− ≡ R2 \ clS[ΩQ] .

Then a function u from clS[ΩQ] or from clS[ΩQ]− to R is q-periodic if u(x+ qz) =
u(x) for all x in the domain of definition of u and for all z ∈ Z2. If ΩQ is an open
subset of R2 such that clΩQ ⊆ Q and if k ∈ N and β ∈]0, 1[, then we denote by
Ckq (clS[ΩQ]), Ck,βq (clS[ΩQ]), Ckq (clS[ΩQ]−), and Ck,βq (clS[ΩQ]−) the subsets of the
q-periodic functions belonging to Ckb (clS[ΩQ]), to Ck,βb (clS[ΩQ]), to Ckb (clS[ΩQ]−),
and to Ck,βb (clS[ΩQ]−), respectively. We regard the sets Ckq (clS[ΩQ]), Ck,βq (clS[ΩQ]),
Ckq (clS[ΩQ]−), and Ck,βq (clS[ΩQ]−) as Banach subspaces of the space Ckb (clS[ΩQ]),
Ck,βb (clS[ΩQ]), Ckb (clS[ΩQ]−), and Ck,βb (clS[ΩQ]−), respectively.

Preliminaries of potential theory. To investigate problem (1.2) by a potential
theoretical approach, we need to introduce a periodic analogue of the fundamental
solution of the Laplace operator. As is well known there exists a q-periodic tempered
distribution Sq,2 such that

∆Sq,2 =
∑
z∈Z2

δqz − 1 ,

where δqz denotes the Dirac distribution with mass in qz. The distribution Sq,2 is
determined up to an additive constant, and we can take

Sq,2(x) ≡ −
∑

z∈Z2\{0}

1
4π2|q−1z|2

e2πi(q−1z)·x , (2.1)

where the series converges in the sense of distributions on R2 (cf., e.g., Hasimoto
[21], [37, Thm. 2.1]). Then, Sq,2 is real analytic in R2 \qZ2 and is locally integrable
in R2. Now, let S2 be the function from R2 \ {0} to R defined by

S2(x) ≡ 1
2π

log |x| ∀x ∈ R2 \ {0} .
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S2 is well known to be the fundamental solution of the Laplace operator on the
plane. Then Sq,2 − S2 is analytic in (R2 \ qZ2) ∪ {0} and we find convenient to set

Rq,2 ≡ Sq,2 − S2 in (R2 \ qZ2) ∪ {0} (2.2)

(see also [6]). Moreover, one has

Rq,2(x) = Rq,2(−x) ∀x ∈ (R2 \ qZ2) ∪ {0} . (2.3)

As a consequence,

DβRq,2(0) = 0 for all β ∈ N2 such that |β| is odd .

As observed in [34, p. 336], we note that in the case Q ≡]0, 1[2 (or equivalently
l ≡ 1), we have

Sq,2(x1, x2) =
1

2π
log |σ(x1 + ix2)| − 1

4π
(
cx2

1 + (2π − c)x2
2

)
for all x ≡ (x1, x2) ∈ R2 \Z2, where i is the imaginary unit, and the constant c and
the Weierstrass function σ(·) are derived in [34, Appendix A].

Let α ∈]0, 1[ and let Ω̃ be a bounded open subset of R2 of class C1,α. If µ ∈
C1,α(∂Ω̃), we define the classical double layer potential by setting

w[∂Ω̃, µ](x) ≡ −
∫
∂Ω̃

DS2(x− y) · νΩ̃(y)µ(y) dσy ∀x ∈ R2 .

As is well known, w[∂Ω̃, µ]|Ω̃ admits a continuous extension to clΩ̃, which we denote
by w+[∂Ω̃, µ] and w[∂Ω̃, µ]|R2\cl Ω̃ admits a continuous extension to R2\Ω̃, which we
denote by w−[∂Ω̃, µ]. Moreover, w+[∂Ω̃, µ] ∈ C1,α(clΩ̃) and w−[∂Ω̃, µ] ∈ C1,α

loc (R2 \
Ω̃) (cf., e.g., Miranda [32], Lanza de Cristoforis and Rossi [28, Thm. 3.1]).

Analogously, we introduce the periodic simple layer potential. Let α ∈]0, 1[ and
let ΩQ be a bounded open subset of R2 of class C1,α such that clΩQ ⊆ Q. If
µ ∈ C0,α(∂ΩQ), we set

vq[∂ΩQ, µ](x) ≡
∫
∂ΩQ

Sq,2(x− y)µ(y) dσy ∀x ∈ R2 .

The function v+
q [∂ΩQ, µ] ≡ vq[∂ΩQ, µ]|clS[ΩQ] belongs to C1,α

q (clS[ΩQ]), and the
function v−q [∂ΩQ, µ] ≡ vq[∂ΩQ, µ]|clS[ΩQ]− belongs to C1,α

q (clS[ΩQ]−). Similarly, we
introduce the periodic double layer potential. If µ ∈ C1,α(∂ΩQ), we set

wq[∂ΩQ, µ](x) ≡ −
∫
∂ΩQ

DSq,2(x− y) · νΩQ(y)µ(y) dσy ∀x ∈ R2 .

The restriction wq[∂ΩQ, µ]|S[ΩQ] can be extended uniquely to an element w+
q [∂ΩQ, µ]

of C1,α
q (clS[ΩQ]), and the restriction wq[∂ΩQ, µ]|S[ΩQ]− can be extended uniquely

to an element w−q [∂ΩQ, µ] of C1,α
q (clS[ΩQ]−), and we have w±q [∂ΩQ, µ] = ± 1

2µ +
wq[∂ΩQ, µ] on ∂ΩQ. Moreover,

wq[∂ΩQ, µ](x) = −
2∑
j=1

∂

∂xj

∫
∂ΩQ

Sq,2(x− y)(νΩQ(y))jµ(y) dσy , (2.4)

for all x ∈ R2 \ ∂S[ΩQ]. Here (νΩQ(·))j denotes the j-th component of νΩQ(·).
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3. Asymptotic behavior of KII [ε]

As a first thing, we face the issue of transforming the boundary value problem
(1.2) for the Poisson equation into a problem for the Laplace equation. To do so,
we need to introduce a periodic function Bε such that ∆Bε = 1. We introduce
such a function in the following lemma, whose validity follows immediately by [37,
Thm. 2.1].

Lemma 3.1. Let ε ∈]− ε0, ε0[\{0}. Let Bε be the function from R2 \ (p+ qZ2) to
R defined by

Bε(x) ≡ −Sq,2(x− p) +
log |ε|

2π
∀x ∈ R2 \ (p+ qZ2) .

Then

Bε|clS[Ωp,ε]− ∈ C
1,α
q (clS[Ωp,ε]−) , ∆Bε = 1 in S[Ωp,ε]− ,

Bε(p+ εt) = −S2(t)−Rq,2(εt) ∀t ∈ ∂Ω .

By means of the function Bε introduced in Lemma 3.1, we are in the position
to convert the homogeneous Dirichlet problem (1.2) for the Poisson equation into a
non-homogeneous Dirichlet problem for the Laplace equation. If ε ∈]− ε0, ε0[\{0},
we denote by u#[ε] the unique solution in C1,α

q (cl S[Ωp,ε]−) of the auxiliary boundary
value problem

∆u = 0 in S[Ωp,ε]− ,

u(x+ qz) = u(x) ∀x ∈ cl S[Ωp,ε]− ,∀z ∈ Z2 ,

u(x) = −Bε(x) ∀x ∈ ∂Ωp,ε .

(3.1)

Clearly,
u[ε] = u#[ε] +Bε in cl S[Ωp,ε]− ,

and accordingly

KII [ε] = −
∫
Q\Ωp,ε

u#[ε] dx−
∫
Q\Ωp,ε

Bε dx . (3.2)

Now for each ε ∈]− ε0, ε0[, we define the function Γ[ε] ∈ C1,α(∂Ω), by setting

Γ[ε](t) ≡ S2(t) +Rq,2(εt) ∀t ∈ ∂Ω . (3.3)

As a consequence, if ε ∈]− ε0, ε0[\{0}, the Dirichlet condition in problem (3.1) can
be rewritten as

u(x) = Γ[ε]
(
(x− p)/ε

)
∀x ∈ ∂Ωp,ε .

Now we would like to exploit the results of [38] to study the behavior of the integral
of u#[ε] in the perforated cell Q \ Ωp,ε. Indeed, in [38] real analytic continuation
properties for the solution of a Dirichlet problem in S[Ωp,ε]− upon ε and the Dirichlet
datum have been shown. Hence, in order to exploit those results, in the following
lemma we verify the analytic dependence of Γ[ε] upon ε.

Lemma 3.2. The map Γ from ]− ε0, ε0[ to C1,α(∂Ω), which takes ε to the function
of the variable t ∈ ∂Ω defined by (3.3), is real analytic.

Proof. We first note that if ε ∈]− ε0, ε0[, then εt ∈ (R2 \ qZ) ∪ {0} for all t ∈ cl Ω.
Clearly, the map from ]− ε0, ε0[ to C1,α(cl Ω, (R2 \ qZ) ∪ {0}) which takes ε to the
function εt of the variable t ∈ cl Ω is real analytic. Then by the analyticity of Rq,2
in (R2 \ qZ2)∪{0} and by analyticity results for the composition operator (cf., e.g.,
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Valent [43, Thm. 5.2, p. 44]), we deduce that the map from ]− ε0, ε0[ to C1,α(cl Ω)
which takes ε to the function Rq,2(εt) of the variable t ∈ cl Ω is real analytic. Finally,
by the continuity of the trace operator from C1,α(cl Ω) to C1,α(∂Ω) we immediately
deduce the validity of the lemma. �

In the following proposition, we provide an integral formulation of the auxiliary
problem (3.1). In order to do so, we need to introduce the space C1,α(∂Ω)0 ≡ {θ ∈
C1,α(∂Ω):

∫
∂Ω
θ dσ = 0}.

Proposition 3.3. Let Λ be the map from ] − ε0, ε0[×C1,α(∂Ω)0 × R to C1,α(∂Ω)
defined by

Λ[ε, θ, ξ] ≡ −1
2
θ(t)−

∫
∂Ω

DS2(t− s) · νΩ(s)θ(s) dσs

− ε
∫
∂Ω

DRq,2(ε(t− s)) · νΩ(s)θ(s) dσs + ξ − Γ[ε](t) ∀t ∈ ∂Ω ,

for all (ε, θ, ξ) ∈]−ε0, ε0[×C1,α(∂Ω)0×R. Then the following three statements hold:
(i) If ε ∈]− ε0, ε0[, then there exists a unique pair (θ, ξ) in C1,α(∂Ω)0 × R such

that Λ[ε, θ, ξ] = 0, and we denote such a pair by (θε, ξε). In particular, θ0 is the
unique function in C1,α(∂Ω)0 such that

−1
2
θ0(t)−

∫
∂Ω

DS2(t− s) · νΩ(s)θ0(s) dσs = S2(t)− lim
s→∞

H0(s) ∀t ∈ ∂Ω , (3.4)

ξ0 = lim
t→∞

H0(t) +Rq,2(0) , (3.5)

where H0 is the unique function in C1,α
loc (R2 \ Ω) such that

∆H0(t) = 0 ∀t ∈ R2 \ cl Ω ,

H0(t) = S2(t) ∀t ∈ ∂Ω ,

sup
t∈R2\Ω

|H0(t)| < +∞ .

Moreover,
w−[∂Ω, θ0] = H0 − lim

t→∞
H0(t) in R2 \ Ω . (3.6)

(ii) There exist ε1 ∈]0, ε0[ and a real analytic map (Θ,Ξ) from ] − ε1, ε1[ to
C1,α(∂Ω)0 × R such that (Θ[ε],Ξ[ε]) = (θε, ξε) for all ε ∈]− ε1, ε1[. Moreover,

(Θ[ε],Ξ[ε]) = (Θ[−ε],Ξ[−ε]) ∀ε ∈]− ε1, ε1[ . (3.7)

(iii) If ε ∈]− ε1, ε1[\{0}, then

u#[ε](x) = w−q [∂Ωp,ε,Θ[ε]((· − p)/ε)](x) + Ξ[ε] ∀x ∈ cl S[Ωp,ε]− .

As a consequence,

u#[ε](x) = −ε
∫
∂Ω

DSq,2(x− p− εs) · νΩ(s)Θ[ε](s) dσs + Ξ[ε] ∀x ∈ S[Ωε]− .

Proof. We first consider statement (i). If ε ∈]−ε0, ε0[, the existence and uniqueness
of a pair (θ, ξ) in C1,α(∂Ω)0 × R such that Λ[ε, θ, ξ] = 0 follows by [37, Lem. 3.4,
Prop. A.5]. By [38, Lem. 3.2], we deduce that

ξ0 =
∫
∂Ω

Γ[0]τ0 dσ ,
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where τ0 is the unique solution in C0,α(∂Ω) of the problem

−1
2
τ(t) +

∫
∂Ω

DS2(t− s) · νΩ(t)τ(s) dσs = 0 ∀t ∈ ∂Ω ,∫
∂Ω

τ dσ = 1 .
(3.8)

Next we note that ∫
∂Ω

Γ[0]τ0 dσ =
∫
∂Ω

S2(t)τ0(t) dσt +Rq,2(0) .

Then by classical potential theory (cf. [14, §7]), one shows that∫
∂Ω

S2τ0 dσ = lim
t→∞

H0(t) ,

and, as a consequence, the validity of (3.5) follows. Then by equality (3.5) one
verifies that θ0 is the unique solution of (3.4). By classical potential theory, we
deduce that w−[∂Ω, θ0] and H0 − limt→∞H0(t) are harmonic in R2 \ cl Ω, coincide
on ∂Ω, and vanish at infinity. Accordingly, the validity of (3.6) follows.

Statement (ii) follows by [37, Prop. 3.14] and Lemma 3.2. In particular, equality
(3.7) follows by (2.3) and (3.3). Finally, statement (iii) is a consequence of the
theorem of change of variables in integrals and of standard results for the periodic
double layer potential (cf. [37, Thm. 2.3, Lem. 3.4, and Rem. 3.15]). �

By Proposition 3.3, we can provide an asymptotic expansion of Ξ[ε] for ε close
to 0.

Lemma 3.4. There exist ε2 ∈]0, ε1[ and a real analytic function Ξ̃ from ]− ε2, ε2[
to R such that

Ξ[ε] = lim
t→∞

H0(t) +Rq,2(0) + ε2
(∫

∂Ω

∫
∂Ω

(t− s)TD2Rq,2(0)νΩ(s)θ0(s) dσsτ0(t) dσt

+
∑

β∈N2 ,|β|=2

DβRq,2(0)
β!

∫
∂Ω

tβτ0(t) dσt
)

+ ε4Ξ̃[ε] ∀ε ∈]− ε2, ε2[ ,

where τ0 is the unique solution in C0,α(∂Ω) of (3.8). Here, if β = (β1, β2) ∈ N2

and t = (t1, t2) ∈ R2, then tβ ≡ tβ1
1 tβ2

2 .

Proof. By Proposition 3.3, we deduce the existence of ε2 ∈]0, ε1[, ξ∗ ∈ R, and of a
real analytic function Ξ̃ from ]− ε2, ε2[ to R such that Ξ[ε] = ξ0 + ε2ξ∗ + ε4Ξ̃[ε] for
all ε ∈]− ε2, ε2[. As a consequence,

− 1
2

Θ[ε](t)−
∫
∂Ω

DS2(t− s) · νΩ(s)Θ[ε](s) dσs

− ε
∫
∂Ω

DRq,2(ε(t− s)) · νΩ(s)Θ[ε](s) dσs + lim
t→∞

H0(t) +Rq,2(0) + ε2ξ∗ + ε4Ξ̃[ε]

= S2(t) +Rq,2(εt) ∀t ∈ ∂Ω ,∀ε ∈]− ε2, ε2[ .

By the analyticity of Rq,2 in (R2 \ qZ2) ∪ {0} and by equality (2.3), we deduce the
existence of ε̃ ∈]0, ε2[ and of a bounded function R̃1 from ] − ε̃, ε̃[×∂Ω to R such
that

Rq,2(εt) = Rq,2(0) + ε2
∑

β∈N2 ,|β|=2

DβRq,2(0)
β!

tβ + ε4R̃1(ε, t) ∀t ∈ ∂Ω ,∀ε ∈]− ε̃, ε̃[ .
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Similarly, by possibly taking a smaller ε̃, we can assume that there exists a bounded
function R̃2 from ]− ε̃, ε̃[×∂Ω× ∂Ω to R such that

DRq,2(ε(t− s)) · νΩ(s) = ε(t− s)TD2Rq,2(ε(t− s))νΩ(s) + ε2R̃2(ε, t, s)

for all t, s ∈ ∂Ω and all ε ∈]− ε̃, ε̃[. As a consequence

− 1
2

Θ[ε](t)−
∫
∂Ω

DS2(t− s) · νΩ(s)Θ[ε](s) dσs

− ε2
∫
∂Ω

(t− s)TD2Rq,2(ε(t− s))νΩ(s)Θ[ε](s) dσs

− ε3
∫
∂Ω

R̃2(ε, t, s)Θ[ε](s) dσs + lim
t→∞

H0(t) +Rq,2(0) + ε2ξ∗ + ε4Ξ̃[ε]

= S2(t) +Rq,2(0) + ε2
∑

β∈N2 ,|β|=2

DβRq,2(0)
β!

tβ + ε4R̃1(ε, t)

(3.9)

for all t ∈ ∂Ω and all ε ∈]− ε̃, ε̃[. Now let τ0 be as in the proof of Proposition 3.3.
By the classical Fredholm Theory, we have∫

∂Ω

(
− 1

2
Θ[ε](t)−

∫
∂Ω

DS2(t− s) · νΩ(s)Θ[ε](s) dσs
)
τ0(t) dσt = 0 ,

for all ε ∈]− ε̃, ε̃[. Moreover,

lim
t→∞

H0(t) +Rq,2(0) =
∫
∂Ω

S2(t)τ0(t) dσt +Rq,2(0) .

Hence, by multiplying (3.9) by ε−2τ0(t) and integrating on ∂Ω with respect to
the variable t, we obtain

−
∫
∂Ω

∫
∂Ω

(t− s)TD2Rq,2(ε(t− s))νΩ(s)Θ[ε](s) dσsτ0(t) dσt

− ε
∫
∂Ω

∫
∂Ω

R̃2(ε, t, s)Θ[ε](s) dσsτ0(t) dσt + ξ∗ + ε2Ξ̃[ε]

=
∑

β∈N2 ,|β|=2

DβRq,2(0)
β!

∫
∂Ω

tβτ0(t) dσt

+ ε2
∫
∂Ω

R̃1(ε, t)τ0(t) dσt ∀t ∈ ∂Ω ,∀ε ∈]− ε̃, ε̃[ .

Thus, by letting ε tend to 0, we deduce

ξ∗ =
∫
∂Ω

∫
∂Ω

(t− s)TD2Rq,2(0)νΩ(s)θ0(s) dσsτ0(t) dσt

+
∑

β∈N2 ,|β|=2

DβRq,2(0)
β!

∫
∂Ω

tβτ0(t) dσt .

Hence, the validity of the statement follows. �

Remark 3.5. Let τ0 be the unique solution in C0,α(∂Ω) of (3.8). By classical
potential theory (cf. [14, §7]), one verifies that∫

∂Ω

tβτ0(t) dσt = lim
t→∞

H2,β(t) ∀β ∈ N2 , |β| = 2 ,
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where if β ∈ N2, |β| = 2 the function H2,β is the unique element of C1,α
loc (R2 \ Ω)

such that

∆H2,β(t) = 0 ∀t ∈ R2 \ cl Ω ,

H2,β(t) = tβ ∀t ∈ ∂Ω ,

sup
t∈R2\Ω

|H2,β(t)| < +∞ .

In the following proposition, we study the behavior of
∫
Q\Ωp,ε u#[ε] dx.

Proposition 3.6. There exist ε3 ∈]0, ε2[ and a real analytic function J#,1 from
]− ε3, ε3[ to R, such that∫

Q\Ωp,ε
u#[ε](x) dx

= lim
t→∞

H0(t) +Rq,2(0) + ε2
(
− |Ω|2

(
lim
t→∞

H0(t) +Rq,2(0)
)

+
∫
∂Ω

∫
∂Ω

(t− s)TD2Rq,2(0)νΩ(s)θ0(s) dσsτ0(t) dσt

+
∑

β∈N2 ,|β|=2

DβRq,2(0)
β!

∫
∂Ω

tβτ0(t) dσt

+
2∑
j=1

∫
∂Ω

(∫
∂Ω

S2(t− s)θ0(s)(νΩ(s))j dσs
)

(νΩ(t))j dσt
)

+ ε4J#,1[ε]

(3.10)

for all ε ∈]− ε3, ε3[\{0}, where τ0 is the unique solution in C0,α(∂Ω) of (3.8). Here
(νΩ(·))j denotes the j-th component of νΩ(·).
Proof. We proceed as in the proof of [38, Thm. 4.4]. Let ε ∈]− ε2, ε2[\{0}. Clearly,∫

Q\cl Ωp,ε

u#[ε](x) dx

=
∫
Q\cl Ωp,ε

w−q
[
∂Ωp,ε,Θ[ε]((· − p)/ε)

]
(x) dx

+
(

lim
t→∞

H0(t) +Rq,2(0)
)(

1− ε2|Ω|2
)

+ ε2
(∫

∂Ω

∫
∂Ω

(t− s)TD2Rq,2(0)νΩ(s)θ0(s) dσsτ0(t) dσt

+
∑

β∈N2 ,|β|=2

DβRq,2(0)
β!

∫
∂Ω

tβτ0(t) dσt
)(

1− ε2|Ω|2
)

+ ε4Ξ̃[ε]
(
1− ε2|Ω|2

)
.

By (2.4), we have

w−q
[
∂Ωp,ε,Θ[ε]((· − p)/ε)

]
(x)

= −
2∑
j=1

∂

∂xj
v−q
[
∂Ωp,ε,Θ[ε]((· − p)/ε)(νΩp,ε(·))j

]
(x) ∀x ∈ clQ \ cl Ωp,ε .

Now let j ∈ {1, 2}. By the Divergence Theorem and the periodicity of the periodic
simple layer potential, we have∫

Q\cl Ωp,ε

∂

∂xj
v−q
[
∂Ωp,ε,Θ[ε]((· − p)/ε)(νΩp,ε(·))j

]
(x) dx
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=
∫
∂Q

v−q
[
∂Ωp,ε,Θ[ε]((· − p)/ε)(νΩp,ε(·))j

]
(x)(νQ(x))j dσx

−
∫
∂Ωp,ε

v−q
[
∂Ωp,ε,Θ[ε]((· − p)/ε)(νΩp,ε(·))j

]
(x)(νΩp,ε(x))j dσx

= −ε
∫
∂Ω

v−q
[
∂Ωp,ε,Θ[ε]((· − p)/ε)(νΩp,ε(·))j

]
(p+ εt)(νΩ(t))j dσt .

Then we note that

v−q
[
∂Ωp,ε,Θ[ε]((· − p)/ε)(νΩp,ε(·))j

]
(p+ εt)

= ε

∫
∂Ω

S2(ε(t− s))Θ[ε](s)(νΩ(s))j dσs

+ ε

∫
∂Ω

Rq,2(ε(t− s))Θ[ε](s)(νΩ(s))j dσs ∀t ∈ ∂Ω .

We now observe that if ε 6= 0 and x ∈ R2 \ {0} then we have

S2(εx) = S2(x) +
1

2π
log |ε| . (3.11)

Moreover, by the Divergence Theorem, we have∫
∂Ω

(∫
∂Ω

Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt

=
(∫

∂Ω

Θ[ε](s)(νΩ(s))j dσs
)(∫

∂Ω

(νΩ(t))j dσt
)

= 0 .
(3.12)

Hence, by equalities (3.11) and (3.12), if ε ∈]− ε2, ε2[\{0}, we have∫
Q\cl Ωp,ε

w−q
[
∂Ωp,ε,Θ[ε]((· − p)/ε)

]
(x) dx

=
2∑
j=1

ε2
[∫
∂Ω

(∫
∂Ω

S2(t− s)Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt

+
∫
∂Ω

(∫
∂Ω

Rq,2(ε(t− s))Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt
]
.

Thus we set

J̃#,1[ε] ≡
2∑
j=1

[∫
∂Ω

(∫
∂Ω

S2(t− s)Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt

+
∫
∂Ω

(∫
∂Ω

Rq,2(ε(t− s))Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt
]
,

for all ε ∈] − ε2, ε2[. Then the analyticity of Θ, the continuity of the linear map
from C0,α(∂Ω) to C1,α(∂Ω) which takes f to the function

∫
∂Ω
S2(t− s)f(s) dσs of

the variable t ∈ ∂Ω (cf., e.g., Miranda [32], Lanza de Cristoforis and Rossi [28,
Thm. 3.1]), the continuity of the pointwise product in Schauder spaces, standard
properties of integral operators with real analytic kernels and with no singularity
(cf., e.g., [26, §4]), and standard calculus in Banach spaces imply that J̃#,1 is a real
analytic function from ]−ε2, ε2[ to R. Moreover, since

∫
∂Ω

(νΩ(t))j dσt = 0, we have

J̃#,1[0] =
2∑
j=1

∫
∂Ω

(∫
∂Ω

S2(t− s)θ0(s)(νΩ(s))j dσs
)

(νΩ(t))j dσt
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Furthermore, by (2.3) and by (3.7), J̃#,1[ε] = J̃#,1[−ε] for all ε ∈] − ε2, ε2[. As a
consequence, there exist ε3 ∈]0, ε2[ and a real analytic function J̃# from ] − ε3, ε3[
to R such that∫

Q\cl Ωp,ε

w−q
[
∂Ωp,ε,Θ[ε]((· − p)/ε)

]
(x) dx

= ε2
2∑
j=1

∫
∂Ω

(∫
∂Ω

S2(t− s)θ0(s)(νΩ(s))j dσs
)

(νΩ(t))j dσt + ε4J̃#[ε]

for all ε ∈]− ε3, ε3[\{0}. Hence, if we set

J#,1[ε] = J̃#[ε] + Ξ̃[ε]
(
1− ε2|Ω|2

)
− |Ω|2

(∫
∂Ω

∫
∂Ω

(t− s)TD2Rq,2(0)νΩ(s)θ0(s) dσsτ0(t) dσt

+
∑

β∈N2 , |β|=2

DβRq,2(0)
β!

∫
∂Ω

tβτ0(t) dσt
)
,

for all ε ∈]−ε3, ε3[, we immediately deduce that J#,1 is a real analytic function from
]− ε3, ε3[ to R such that equality (3.10) holds, and thus the proof is complete. �

Then we turn to analyze the behavior of
∫
Q\Ωp,ε Bε(x) dx and we prove the

following.

Proposition 3.7. There exist ε4 ∈]0, ε0[ and a real analytic function J#,2 from
]− ε4, ε4[ to R, such that∫

Q\Ωp,ε
Bε(x) dx = −

∫
Q

Sq,2(x) dx+
log |ε|

2π

+ ε2
(
Rq,2(0)|Ω|2 +

∫
Ω

S2(t) dt
)

+ ε4J#,2[ε] ,
(3.13)

for all ε ∈]− ε4, ε4[\{0}.

Proof. We first note that∫
Q\Ωp,ε

Bε(x) dx =
∫
Q

Bε(x) dx−
∫

Ωp,ε

Bε(x) dx

= (1− ε2|Ω|2)
log |ε|

2π
−
∫
Q

Sq,2(x− p) dx+ ε2
∫

Ω

Sq,2(εt) dt ,

for all ε ∈] − ε0, ε0[\{0}. Then we note that by the periodicity of Sq,2 we have∫
Q
Sq,2(x − p) dx =

∫
Q
Sq,2(x) dx (cf., e.g., Cioranescu and Donato [11, Lem. 2.3,

p. 27]). Moreover,∫
Ω

Sq,2(εt) dt =
∫

Ω

S2(t) dt+
|Ω|2 log |ε|

2π
+
∫

Ω

Rq,2(εt) dt ,

for all ε ∈] − ε0, ε0[\{0}. By the analyticity of Rq,2 in (R2 \ qZ2) ∪ {0} and by
analyticity results for the composition operator (cf., e.g., Valent [43, Thm. 5.2,
p. 44]), the map from ] − ε0, ε0[ to C0(cl Ω) which takes ε to the function Rq,2(εt)
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of the variable t ∈ cl Ω is real analytic. Hence, if we denote by J̃ the function from
]− ε0, ε0[ to R which takes ε to

J̃ [ε] ≡
∫

Ω

Rq,2(εt) dt ,

by standard calculus in Banach spaces, we deduce that J̃ is real analytic. Moreover,
by (2.3), we have J̃ [ε] = J̃ [−ε] for all ε ∈]− ε0, ε0[ and

J̃ [0] = Rq,2(0)|Ω|2 .
As a consequence, there exist ε4 ∈]0, ε0[ and a real analytic function J#,2 from
]− ε4, ε4[ to R such that

J̃ [ε] = Rq,2(0)|Ω|2 + ε2J#,2[ε] ∀ε ∈]− ε4, ε4[ .

Hence, equality (3.13) holds and the proof is complete. �

By equality (3.2) and Propositions 3.6 and 3.7, we can immediately deduce the
validity of our main result which concerns the behavior of KII [ε].

Theorem 3.8. Let ε3, H0 be as in Proposition 3.6. Let ε4 be as in Theorem 3.7.
Let ε# ≡ min{ε3, ε4}. Let τ0 be the unique solution in C0,α(∂Ω) of (3.8). Then
there exists a real analytic function J from ]− ε#, ε#[ to R such that

KII [ε] = − log |ε|
2π

− lim
t→∞

H0(t)−Rq,2(0) +
∫
Q

Sq,2(x) dx

+ ε2
(
|Ω|2 lim

t→∞
H0(t)−

∫
Ω

S2(t) dt

−
∫
∂Ω

∫
∂Ω

(t− s)TD2Rq,2(0)νΩ(s)θ0(s) dσsτ0(t) dσt

−
∑

β∈N2 ,|β|=2

DβRq,2(0)
β!

∫
∂Ω

tβτ0(t) dσt

−
2∑
j=1

∫
∂Ω

(∫
∂Ω

S2(t− s)θ0(s)(νΩ(s))j dσs
)

(νΩ(t))j dσt
)

+ ε4J [ε]

(3.14)

for all ε ∈]− ε#, ε#[\{0}.
Now we want to investigate parity properties of the function J of Theorem 3.8.

In order to do so, we need the following lemma on KII .

Lemma 3.9. We have

KII [ε] = KII [−ε] ∀ε ∈]− ε0, ε0[\{0} .
Proof. If ε ∈]−ε0, ε0[\{0} a simple computation shows that u[ε](x) = u[−ε](−x+2p)
for all x ∈ cl S[Ωp,ε]−. Then, by the Theorem of change of variable in integrals, we
have

−KII [ε] =
∫
Q\Ωp,ε

u[ε](x) dx =
∫
Q\Ωp,ε

u[−ε](−x+ 2p) dx

=
∫
−(Q\Ωp,ε)+2p

u[−ε](x) dx

=
∫

(−Q+2p)\Ωp,−ε
u[−ε](x) dx .
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Moreover, by the periodicity of u[−ε] we have∫
(−Q+2p)\Ωp,−ε

u[−ε](x) dx =
∫
Q\Ωp,−ε

u[−ε](x) dx = −KII [−ε]

(cf., e.g., Cioranescu and Donato [11, Lem. 2.3, p. 27]). As a consequence, KII [ε] =
KII [−ε]. �

By Theorem 3.8 and Lemma 3.9, we deduce the validity of the following state-
ment.

Proposition 3.10. Let ε5, J be as in Theorem 3.8. Then

J [ε] = J [−ε] ∀ε ∈]− ε5, ε5[ .

4. Lower order coefficients in KII [ε]

In this section, we compute via conformal mappings the quantity limt→∞H0(t),
which is the only Ω-dependent term in the zero order expansion of the quantity
KII [ε] + (log |ε|)/(2π) for ε close to 0. To do so, we identify R2 with the complex
plane C. Therefore, we suppose that Ω− ≡ C \ cl Ω is the exterior domain which is
outside the Jordan curve Γ ≡ ∂Ω. Then, there exists a unique conformal map fΩ−

of Ω− onto the set D− ≡ {w ∈ C : |w| > 1} normalized by the conditions

fΩ−(∞) =∞ , lim
z→∞

fΩ−(z)
z

∈]0,+∞[ .

The positive real number

cap(Ω) ≡
(

lim
z→∞

fΩ−(z)
z

)−1

is called the logarithmic capacity of Ω and is equal to the transfinite diameter of Ω
(cf., e.g., Goluzin [19, Ch. VII,§3] and Kirsch [23, §2]). Then one verifies that the
function which takes a point z ∈ cl Ω− to

1
2π

log
|z|

|fΩ−(z)|
is harmonic in Ω−, bounded at infinity, and that

1
2π

log
|z|

|fΩ−(z)|
=

1
2π

log |z| ∀z ∈ ∂Ω .

Thus

H0(z) =
1

2π
log

|z|
|fΩ−(z)|

∀z ∈ cl Ω− .

In particular,

lim
z→∞

H0(z) =
log cap(Ω)

2π
. (4.1)

Application of (4.1) to formula (3.14) allows us to deduce that

KII [ε] = − log |ε|
2π

− log cap(Ω)
2π

−Rq,2(0) +
∫
Q

Sq,2(x) dx+O(ε2) .

which implies

KII [ε] = − log |ε| cap(Ω)
2π

−Rq,2(0) +
∫
Q

Sq,2(x) dx+O(ε2) . (4.2)
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Thus, if we set ρ ≡ (cap(εΩ))2, then equation (4.2) can be rewritten as

KII [ε] = − log ρ
4π
−Rq,2(0) +

∫
Q

Sq,2(x) dx+O(ρ) ρ ≡ (cap(εΩ))2 . (4.3)

5. Conclusions

In the present paper, we prove that the longitudinal permeability of regular
arrays of cylinders can be expanded as in (1.5). Moreover, it can be rewritten as a
power series of the square of the logarithmic capacity of the inclusion ρ ≡ (cap(εΩ))2

plus a logarithmic term. Such quantity is a measure of the size of the section of
the cylinder inside the unit cell. It is justified that the zero-th order term does not
depend on the shape of cylinders.

The results can be extended to the case when the domain Ω is not connected.
Arbitrary sets of n disks were considered in [35]. In this case, the number n enters
in all the terms of the permeability including the logarithm. The dependence of
the permeability on locations of circular holes can be analyzed following [35, 36].

We also note that by Theorem 3.8 and Proposition 3.10, we can deduce the
existence of ε′# ∈]0, ε#[ and of a sequence {bj}+∞j=0 of real numbers, such that

KII [ε] = − log |ε|
2π

− lim
t→∞

H0(t)−Rq,2(0) +
∫
Q

Sq,2(x) dx

+ ε2
(
|Ω|2 lim

t→∞
H0(t)−

∫
Ω

S2(t) dt

−
∫
∂Ω

∫
∂Ω

(t− s)TD2Rq,2(0)νΩ(s)θ0(s) dσsτ0(t) dσt

−
∑

β∈N2 ,|β|=2

DβRq,2(0)
β!

∫
∂Ω

tβτ0(t) dσt

−
2∑
j=1

∫
∂Ω

(∫
∂Ω

S2(t− s)θ0(s)(νΩ(s))j dσs
)

(νΩ(t))j dσt
)

+ ε4
∞∑
j=0

bjε
2j ∀ε ∈]− ε′#, ε′#[\{0} ,

(5.1)

where the series in the right hand side converges absolutely on ]− ε′#, ε′#[. Formula
(5.1) provides a constructive asymptotic expansion valid for Ω as in (1.1). To prove
rigorously a result of as in (5.1), it is necessary to obtain an analyticity result for
KII [ε] + log |ε|

2π , which, to the best of our knowledge, is new. We emphasize that
such an analysis holds for any shape of the cylinders with the only assumption
(1.1). Therefore we are not confined to specific shapes as, e.g., circles or ellipses.

Once an analyticity result of this type is shown, it is of interest to compute the
coefficients {bj}+∞j=0. In [14], a completely constructive method has been shown
to compute the coefficients for the solution of a Dirichlet problem for the Laplace
equation in a planar domain with a small hole. The computation is based on the
solutions of systems of integral equations. An approach of this type can be exploited
also in the case of the present paper and can allow to provide explicit expression
for all the coefficients bj . Once again, this would hold for all the domains which
satisfy assumption (1.1). As in [14], in the case of circular cylinders, one expects



18 P. MUSOLINO, V. MITYUSHEV EJDE-2015/290

to have simplified expressions that recover certainly known formulas. Thus the
present paper provides the theoretical background for this aim. However, for the
sake of brevity, we decided not to perform this analysis here and this may be the
object of future investigations by the authors. Moreover, we plan to investigate
the dependence of the longitudinal permeability upon perturbations of the shape of
the cross-section of the cylinders. The integral approach of this paper may be used
to derive the shape differential and the topological derivative of the longitudinal
permeability. These quantities can then be used to find optimal shapes.

Furthermore, one can see that the constant term in expansion (4.3) does not
depend on the shape of Ω. Therefore, if Q ≡]0, 1[2, we can take the coefficient for
the circular inclusions calculated by formula [33, (41)] and (4.3) becomes

KII [ε] = − log ρ
4π
− 1

4π
(log π + 1.47644) +O(ρ), (5.2)

where ρ ≡ (cap(εΩ))2 is a measure of the concentration of the inclusions.
Formula (5.2) presents the asymptotic dependence of the macroscopic permeabil-

ity KII on the shape of Ωp,ε ≡ p+εΩ via the square of the logarithmic capacity, i.e.,
ρ ≡ (cap(εΩ))2 = ε2(cap(Ω))2. Previous constructive expansions for KII and for
general macroscopic constants of porous media and composites (conductivity and
elastic constants) were made by concentration or by a contrast parameter (cf. Mil-
ton [31], and [34, 35, 36]). Shapes parameters were introduced (see, for instance
Landau, Lifshitz, and Pitaevskii [24]) to describe the dependence of the macroscopic
constants on the inclusion. Here we propose to use the logarithmic capacity of the
cross section of the cylinder to describe the effective permeability. In this way, one
obtains an approximate expression for the longitudinal permeability as a sum of
a logarithmic function of the capacity and a term which does not depend on the
shape of the unit inclusion (plus a small remainder).
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