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Analytic dependence of a periodic analog of a fundamental solution
upon the periodicity parameters*

M. Lanza de Cristoforis & P. Musolino

Abstract: We prove an analyticity result in Sobolev-Bessel potential spaces for the periodic analog of the
fundamental solution of a general elliptic partial differential operator upon the parameters which determine
the periodicity cell. Then we show concrete applications to the Helmholtz and the Laplace operators. In
particular, we show that the periodic analogs of the fundamental solution of the Helmholtz and of the Laplace
operator are jointly analytic in the spatial variable and in the parameters which determine the size of the
periodicity cell. The analysis of the present paper is motivated by the application of the potential theoretic
method to periodic anisotropic boundary value problems in which the ‘degree of anisotropy’ is a parameter of
the problem.

Keywords: Periodic fundamental solution; Elliptic differential equation; Real analytic dependence; Helmholtz
equation; Laplace equation

MSC 2010: 47H30 42B99 31B10 45A05 35J25

1 Introduction

In this paper, we analyze analyticity properties of an analog of the periodic fundamental solution of an elliptic
operator with constant coefficients jointly in the spatial variable and in the parameters which determine the
size of the periodicity cell. We first introduce some notation. We fix once for all

neN\{0,1}.

Then we take
(qlla sy an) 6]07 +Oo[n )

and we introduce a periodicity cell

Q =107_4]0, gj5[ -
Then we denote by ¢ the diagonal matrix
qi 0 0
0 0
o=l 0o
0 0 Inn

and by m,(Q) the n-dimensional measure of the fundamental cell ). Clearly, ¢Z" = {qz : z € Z™} is the set
of vertices of a periodic subdivision of R™ corresponding to the fundamental cell @, and accordingly, one can
speak about g-periodic functions or distributions in R™. Next we introduce a family of differential operators.
Let Ny denote the number of multi-indexes a € N with |a| < 2. For each ¢ = (ca)|aj<2 € CN2, we set

c?® = (CE?))l,jzl,...,n e = (¢)j=1,.n
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P. Musolino acknowledges the support of an ‘assegno di ricerca INAAM’. P. Musolino has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 663830 and
from the Welsh Government and Higher Education Funding Council for Wales through the Sér Cymru National Research Network
for Low Carbon, Energy and Environment.



with cl(?) = 2_lcel+ej for j # 1, c§-2-) = Cejte,y and ¢j = ce;, where {e; : j =1,...,n} is the canonical basis of

R™. We note that the matrix ¢(® is symmetric. If ¢ € C2, then we set

Plc,z] = Z cax® Vo € R™.

|| <2

We also set

E={c=(ca)al<2 € CN2: inf R QY >00.

{ (Ca)jal<2 cer™ e{|§_:gc 3 } }

Clearly, &€ coincides with the set of coefficients ¢ = (ca)|q|<2 such that the differential operator
Ple,D] = Y caD”

o <2

is strongly elliptic and has complex coefficients. As is well known, if ¢ € £, a g-periodic distribution G is a
g-periodic fundamental solution of P[c, D] provided that

Ple,DIG = > 4,

ZEL™

where §,. denotes the Dirac measure with mass at gz, for all z € Z".

Unfortunately however, not all operators P|c, D] admit ¢-periodic fundamental solutions, not even in case
Plc, D] is the Laplace operator.

Instead, if we denote by Ear;e, the function defined by

Barie(s) = €% Vg e R",
for all £ € R™ and if ¢ € £, then one can show that the set
Z(c,q) = {z € Z" : Plc,2miq 'z] = 0}

is finite and that the g-periodic distribution

1 1
Sec,q = E TigTlz
4 Z 2(Q) Plc,2miqg—12] 2miq

m
z€Z™\Z(c,q)

satisfies the equality

f%M@a=Z%f-Z;i@@m%

zZ€L™ z€7Z(c,q)

(cf. e.g., Ammari and Kang [1, p. 53], [16, §3]). Now let ¢ € £ be fixed. We are interested into the analysis of
perturbation problems for the kernel Sc , and into the dependence of S, , upon ¢ and the spatial variable z,
and we note that by perturbing ¢, the set Z(c, q) is not stable. To circumvent such a difficulty, we fix a finite
subset Z of Z™, and we consider those ¢ and ¢ such that Z(c,q) C Z. Then we note that

1 1
SC#]»Z = Z P E27Tiq_1z (]-)
Tz mn(Q) Plc,2miqg=1z]
satisfies the equality
1
Plc, D](Se,q,z) = Z 0gz — Z mE%Tiq*lz' (2)
zZEL™ zeZ "

Equality (2) can be considered as an effective substitute of equality (??), and we say that Sc 4 z is a Z-analog
of a g-periodic fundamental solution of P[c, D].

Clearly, the distribution Se 4,z differs from S. , by an entire analytic function. Moreover, by interior elliptic
regularity theory, both S¢ 4 2z and Sc , are analytic in the open set R \ ¢Z".

Let S be a locally integrable real valued function in R™ such that

Plc,D]Se =6,  inR",



in the sense of distributions. Then S, is a fundamental solution for Plc, D] and the function Sc 4z — Sc can
be extended to an analytic function in (R™\ ¢Z") U {0}.

We denote such an extension of S 4 z —Sc by the symbol R ;4 z 5., and we say that R¢ 4 =z s. is the regular
part of S¢ 4,z (with respect to S¢). Obviously, Re 4 z.s, is not a g-periodic function.

In this paper we are interested into various questions on the analyticity of S¢ 4,z and R 4,z s, in the variable
(¢, 7). Here the difficulty is that the series in (1) is known to converge only in the sense of distributions. We
mention that Lin and Wang [20], Mityushev and Adler [24], and Mamode [22] have proved the validity of
a constructive formula for a g¢-periodic analog of the fundamental solution for the Laplace operator in case
n = 2 via elliptic functions which would imply the analyticity of Sc 4 z and Rc g4z, s, in the variable (q,x).
However, we are not aware of such formulas for n > 3 or for elliptic differential operators other than the
Laplace operator.

We denote by D, (R) the space of n x n diagonal matrices with real entries and by D, (R) the set of elements
of D, (R) with diagonal entries in ]0, +o0l.

We note that if we fix s € R such that s —2 < —(n/2), then S, 4 =z belongs to the Sobolev-Bessel potential
space of I-periodic functions H§(R™), and we prove that the map from the set of ¢ in D} (R) such that
Z(c,q) € Z to Hi(R™) which takes ¢ to Sc ¢,z © ¢ is real analytic (see Theorem 3.1). Here I denotes the n xn
identity matrix.

Then as an application we consider the Helmholtz operator A + k2 for some k € C, and we denote by ¢(x),
the element of € such that Plc(k), D] = A + x2 (cf. (14)—(16)). In this paper, we consider only the case in
which x = 0 and Z(¢c(0),q) C £ = {0}, and the case in which k£ # 0 and Z(c(x),q) € Z = 0, a case in which
—k? is not an eigenvalue for A in the space of g-periodic distributions in R™. Then we prove that if Q is a
bounded open subset of R™ \ Z™, m € N, a €]0, 1], then the map which takes ¢ to the restriction to clQ of the
function

Se(r),q,2 © 4(T) = Se(r),q,2(q) Ve e R"\Z",

is real analytic from suitable subsets of D) (R) to C™*(clQ2) (see Theorem 5.2).

Then we prove an analyticity result for the regular part of S¢(,) 4,z in the Roumieu space Cg, (1) of real
analytic functions in ¢l in case clQ C (R™\ Z") U {0} (cf. (4) and see Theorem 5.3).

As a consequence of our results, we prove that the function Re(y),q,z, Setn) (gx) is analytic in the variable
(g, z) (cf. Theorem 5.5), and that Sc(,),q,z(¢x) is analytic in the variable (g, z) (cf. Theorem 5.7). In particular,
we can deduce that the sum of the series

1 -
_ Z 6271'1((1 1z)~ac7 (3)

2|4—1,12
2ezm\{0} mn(Q)47r |q Z|

which converges in the sense of distributions to an analog of the g-periodic fundamental solution of the Laplace
operator defines an analytic function of (¢, ) € D;}f (R) x R™ such that ¢~ 'a ¢ Z", i.e., jointly in the variables
g and z (see Example 5.8 at the end of the paper). For a corresponding example for the Helmholtz operator,
see Example 5.9 at the end of the paper.

A central tool in periodic potential theory is represented by analogs of the periodic fundamental solution.
As an example, Ammari, Kang, and Touibi [3] have exploited an integral equation method to solve a periodic
linear transmission problem for the Laplace equation and to derive effective properties of composite materials.
Such an approach has been successfully exploited also for the study of the effective parameters of elastic
composites in Ammari, Kang, and Lim [2] (see also Ammari and Kang [1]).

An approach based on potential theory has been useful also for the analysis of nonlinear periodic problems.
For example, in [18] a quasi linear heat transmission problem has been investigated by means of integral
equations, whereas in [10] such an analysis has been performed for a nonlinear traction problem.

We also mention that Arens, Sandfort, Schmitt, and Lechleite [4], Berman and Greengard [5], Tornberg
and Greengard [26] have investigated the problem of actually computing the sum of series as that of (3).

The analysis of the present paper is motivated by the application of the potential theoretic method to

boundary value problems corresponding to anisotropic periodic problems in which the sizes ¢11,. .. ,gnn of the
periodic cell are subject to perturbation. Indeed, if one wants to apply periodic potential theory to study
the dependence of the solution of a periodic boundary value problem upon the parameters qi1,. .. ,qn, Which

determine the anisotropy of the problem, then one faces the problem to study the corresponding dependence
for the fundamental solution on which the potentials are based. In particular, an analyticity result upon the
parameters qi1,. - . ,gnn allows to to justify representation formulas for the solutions or for functionals related
to the solutions in terms of power series in qi1,. . . ,qnn and therefore also polynomial asymptotic expansions of
any desired degree with precise estimates on the remainder.

This paper continues the work of the authors and collaborators on the study of the behavior of the funda-
mental solution of an elliptic partial differential operator upon perturbation of the coefficients. For example,



in [7], Dalla Riva has constructed a family of fundamental solutions for elliptic partial differential operators
with real constant coefficients, where the elements of such a family are expressed by means of real analytic
functions of the coefficients of the operators and of the spatial variable. Then a corresponding result for elliptic
partial differential operators with quaternion constant coefficients has been shown in [9].

The paper is organized as follows. In section 2 we introduce some preliminaries, in particular on periodic
distributions. In section 3, we prove the analyticity result on S 4z o ¢ upon ¢ € D (R) in Sobolev-Bessel
spaces. In section 4 we compute all the differentials of a map related to S 4,z 0 ¢, which we need in the sequel.

In section 5 we consider the Helmholtz operator. We first prove the above mentioned analyticity result for
Se(r).a.2 © Qlciq, With values in C"%(cl€2).

Then we prove the analyticity of Re(x),q,z,5. (e © 412 Upon ¢ in Roumieu spaces and the joint analyticity of
the function Re(y),q,z,s.(qx) upon (g, z). Finally, we prove the analyticity Se(x),q,2 © ¢jci0 Upon ¢ in Roumieu
spaces and the joint analyticity of the function S¢(.) 4,z (qz) upon (g, z).

2 Preliminaries and notation

We denote the norm on a normed space X by || - ||x. Let X and ) be normed spaces. We endow the space
X x Y with the norm defined by ||(z, y)||xxy = ||z]lx + ||ly|ly for all (z,y) € X x Y, while we use the Euclidean
norm for R”. The symbol N denotes the set of natural numbers including 0. £V )(X ,V) denotes the space
of j-linear and continuous operators from X7 to ) for all j € N. Let E C R™. Then clE denotes the closure
of E and OE denotes the boundary of E. For all R > 0, z € R", z; denotes the j-th coordinate of z, |z|
denotes the Euclidean modulus of z in R", and B, (x, R) denotes the ball {y € R" : |z —y| < R}. A dot “”
denotes the inner product in R™, or the matrix product between matrices. Let €2 be an open subset of R™.
The space of m times continuously differentiable complex-valued functions on 2 is denoted by C™ (€2, R), or
more simply by C™ (). Let » € N\ {0}. Let f € (C™(£2))". The s-th component of f is denoted fs, and D f
denotes the Jacobian matrix (gﬁ) Low- Letn=(n1,...,m0) €N In[=m1 4+ -+, Then D"f denotes
1

s=
1=

aln\f B

of C’m( ) of those functions f whose derivatives D" f of order |n| < m can be extended with continuity to cl
is denoted C™(cl2). The subspace of C™(cl€) whose functions have m-th order derivatives that are Holder
continuous with exponent o €]0,1] is denoted C™(cl?) (cf. e.g., Gilbarg and Trudinger [13]). Let E C R".
Then C™%(cIQ, E) denotes {f € (C™(cl2))" : f(cI) C E}.

We say that a bounded open subset Q of R™ is of class C™ or of class C™ <, if cl) is a manifold with
boundary imbedded in R" of class C™ or C™®, respectively (cf. e.g., Gilbarg and Trudinger [13, §6.2]). For
standard properties of functions in Schauder spaces both on clf2 and on 0f), we refer the reader to Gilbarg
and Trudinger [13] (see also [15, §2, Lem. 3.1, 4.26, Thm. 4.28], [19, §2]).

We denote by do the area element of a manifold M imbedded into R™. We retain the standard notation
for the Lebesgue space LP(M) of p-summable functions. We note that throughout the paper ‘analytic’ means
always ‘real analytic’. For the definition and properties of analytic operators, we refer to Deimling [11, §15].

Next, we turn to introduce the Roumieu classes. For all bounded open subsets 2 of R™ and p > 0, we set

We denote by D(R"™) the space of functions of class C*°(R™) with compact support. The subspace

0 — oo .
Cy ,(cl) = {u € C*™(cl) : sup

Sup IBI' HD ul|coan) < -I-OO} (4)

and

18l
= p B 0
ullco (e1) = sup DPullcorein Yu € C;, ,(cl?),
H || 0, p(cl2) Behin |ﬂ|'” H (cl2) ,p( )

where | 8| = f1+- -+ 8, forall B = (51,...,0n) € N™. Asis well known, the Roumieu class (Cg,p(le), - llco p(clﬂ))

is a Banach space.

We denote by S(R™) the Schwartz space of rapidly decreasing functions, and by S&’(R™) the space of
tempered distributions in R", and by S;(R™) the subspace of S'(R™) of the I-periodic elements of S'(R"), i.e.,
of the tempered distributions which are periodic with respect to the fundamental cell 0, 1[™. If f is a complex
valued integrable function in R™, then we define the Fourier transform of f as follows

fly) = (271')_”/2/ e W f(x) de Yy € R,

and we still use the symbol ‘"’ to denote the corresponding Fourier transform in the space of tempered
distributions. Next we introduce the following characterization of S;(R™) of Triebel [27] (see also Schmeisser
and Triebel [25, 3.2.3]).



Proposition 2.1. If {a,}.czn is a family of complex numbers such that there exists m € N such that

sup _ee]
zezn (14 [2[2)m/2

Z azei27rz~m (6)

zZEL™

< +00, (5)

then the Fourier series

converges in 8'(R™) endowed with the weak*-topology to an element of S;(R™).

Conversely, if u € S;(R™), then there exists a unique family {a,(u)}.ezn in C which satisfies condition
(5) for some m € N and such that u equals the sum of the Fourier series in (6) with a, replaced by a.(u).
Moreover,

ar(u) = (27) 72 < u, (- — 27k)]" > VkeZ", (7)

for all ¢ € D(R™) which have support contained in the ball B, (0,27) and such that ¢(0) = 1.

We also note that the map from S;(R™) endowed with the weak*-tolology to C which takes u to ax(u) is
linear and continuous for all £ € Z™.

If s € R, then we denote by H*(R™) the Sobolev-Bessel space of tempered distributions w such that
(1 + |y|?)*/?a(y) belongs to L?(R™), and we set

el s emy = (L + [y*)*2a(y) |2 eny  Vu € HY(R™).
It is well known that (H*(R"™), | - || g=(~)) is a Banach space. Then we set
H . (R")={ueS[R"): up € H(R") Vo € D(R")},

and

lullme, ey = llupllms@ny — Vu € Hig (R"),

for all ¢ € D(R™). Then it is well known that H (R™) endowed with the family of seminorms ® = {J| -
llas (mny,p @ € D(R™)} is a Fréchet space. Next we introduce the space

H}(R™) = Hij, (R™) N SH(R™).

Clearly, Hj(R") is a closed subspace of the Fréchet space H (R") and is accordingly a Fréchet space. Next
we fix an arbitrary n € D(R™) such that there exists an open neighborhood U of [0, 1]™ such that

n(z) =1 VeelU. (8)

Since the tempered distributions of Hj(R") are I-periodic, one can easily verify that || - [[zs (rn),, is actually
a norm on Hj(R"). Since || - [|gz_(rn), belongs to ® and Hj(R") is a Fréchet space, we already know that
(Hi(R"™), || - llzg_rny,) is complete. Then the Open Mapping Theorem in Fréchet spaces implies that the
continuous identity map from (Hj(R"), ®) to (H7(R"), || - ||ms _(r),y) is actually a homeomorphism and that
accordingly | - || ms (rn),, generates the topology of the Fréchet space (Hf(R"), ®), no matter how we choose
n € D(R™) as in (8).

Now let 2 be an open subset of R™, then we denote by H*(Q2) the set of restrictions to 2 of the tempered
distributions of H*(R™), and we set

|l s ) = inf{HU”Hs(Rn) : v e HY(R™), Vo = u} Yu € H*(Q).

It is well known that (H*(), || - |+ (0)) is @ Banach space. We note that such a definition of H*(§2) coincides
with other ‘intrinsic’ definitions of H*(2) only in case {2 satisfies some regularity assumption.

If © is a bounded open subset of R™, and if we choose € D(R™) as in (8) such that 1 equals one in a
neighborhood of clQ?, then the definition of the norm in H*(2) implies that the restriction map is linear and
continuous from H7(R™) to H*(Q2) and that

lwellms@) < llullmy @y,  Yue HF(R"). 9)

loc

If c € &, g € DF(R), then we set
Leglul = > (¢7)%aD  Vue S'(RY),
lov] <2

o — T

where (¢71) g1t .. g for all @ € N”, and we have the following.



Lemma 2.2. Let ¢ € €. Let S be a fundamental solution for Plc,D]. Let ¢ € D} (R). Let Z be a finite
subset of Z™ such that Z(c,q) C Z. Then the following statements hold.

(i)
Leg[(det q)Se g,z 0 q] = Z Eoriz inR"\Z",
2€Z

and

Legl(det q)Regz.s. 0q) == Eamiz in (R™\ Z")U{0}.
z2EZ

(i) Legl(det q)Seqz 0q] =D cpm 02 — D, cz Boriz in S'(R™).

(ii1) ar (D ,czm 0z — Doz Boriz) = 0 for all k € Z (cf. (7)).

Proof. The first equality in (i) follows by the chain rule. Since L 4[(det ¢)Sc o g] = 0 in R™ \ {0}, the second
equality in statement (i) holds true in R™\ Z". Since R 4 z, s, can be continued analytically in a neighborhood
of 0, the second equality in statement (i) holds true in (R” \ Z"™) U {0}. We now prove statement (ii). The
equality of statement (ii) holds if and only if

> (o [ (et q)Se 2 (e DV0(E) de

lo|<2 "
=3 vl g2) Z/w £)ei2€ e

zEL™ z€EZ

for all ¥ € S(R™). By setting = = g€, we rewrite such an equality as

Seqz(x) Y (=D)1*lea D*(¢h(q ') d

R™

la|<2
= > <bewla) >3 | )™= da(det g) 7
ZEL™ zEZ

for all ¢ € S(R™). Now such an equality is certainly satisfied. Indeed, 1/(¢~!-) belongs to S(R™) and

1 . "
P[C7D]SC,Q,Z = Z 6qz — Z mEQWiq—lz mn 8/<R )

z€EL™ z€Z

Finally, to prove statement (iii), we note that the Poisson summation formula implies that

K (Z 5Z—ZE2MZ> = a (Z EQWZ-Z—ZEQWiZ) =0,

ZEL™ z€EZ zEL™ z€EZ
for all k € Z. O O]

Then we find convenient to introduce the following notation. Let Z be a finite subset of Z™. For each
s € R, we set

Hi z(R")={ue H{(R"): ar(u) =0 Vke Z}
(cf. (7)). By the continuity of the functionals ay(-) of (7) on S;(R™), the space H} z(R") is closed in H}(R"),
and it is accordingly a Banach space. Then we need the following result on the operator L., in the space
S7(R™) of I-periodic tempered distributions.

Proposition 2.3. Let c € £. Let ¢ € DS (R). Let Z be a finite subset of Z" such that Z(c,q) C Z. Then the
following statements hold.

(i) Let u € S;(R™). Then L¢g4[u] = 0 if and only if u belongs to the complex vector space generated by
{Eorin: k € Z(c, )}

(i1) Let f € S;(R™). Then there esists u € S;(R™) such that f = L¢q4[u] if and only if ax(f) = 0 for all
k € Z(c,q) (cf (7). Moreover, if ap(f) = 0 for all k € Z we can choose u so that ai(u) = 0 for all
ke Z.



(i1i) Let s € R. Then the operator L, maps Hi(R™) onto the subspace H;,i%c,q) (R™) of H; *(R"™), and

restricts a linear homeomorphism from the space Hj z(R™) onto Hf}Q(R”)

Proof. (i) The sufficiency of the condition follows by the chain rule and by the definition of Z(c, ¢). To prove
necessity, we note that equality L 4[u] = 0 implies that

Plc, DJu(qg™*-) =0.

On the other hand, by Proposition 2.1 there exists a unique family {a,(u)},ez» in C as in (5) such that

u(g™h) = Z a;(uw)Eorig—1, in S'(R").
z€EL™
Accordingly,
0=Ple,Dlu(g ") = Y _ a-(u)Plc,2miq " 2| Eanig1.
ZEL™
and so
a.(u)Plc,2miqg 2] = 0 VzeZ".

Thus, a,(u) = 0 for all z € Z™ \ Z(c, q). Hence, the validity of statement (i) follows.

(ii) We first assume that u exists. Then Proposition 2.1 implies that there exist m € N and a family of
complex numbers {b, }.czn satisfying condition (5) and equality u =) b.e™*® in §'(R") endowed with
the weak*-topology. Then by applying L. 4, we obtain

ZEL™

LC)Q[U] = Z (P[C, 27T’Lq_12]) bzeiQﬂ'z{r
2€2"\Z(c,q)

and accordingly ay(Leq[u]) = 0 for all k € Z(c, q).

Next we assume that ax(f) = 0 for all k € Z and we show the existence of u. By Proposition 2.1 there exist
m € N and a family of complex numbers {a.}.czn satisfying condition (5) and equality f =", ;. a.e?™="
in 8'(R™) endowed with the weak*-topology. Since ax(f) = 0 for all k € Z, we have a, = 0 for all k € Z.
Then we set a

by =0 VkeZ, bzzm VzeZ"\ Z.
Clearly, {b.}.cz» satisfies condition (5) with m replaced by m — 2, and accordingly the series Y-, . b.e?™*®
converges in the weak*-topology and defines a I-periodic element u of S'(R™). Moreover, ax(u) = 0 for all
k € Z. By definition of the coefficients {b,},czn, we have L¢ 4[u] = f.

(iii) Since Hj(R™) = H . (R™")NS;(R™), the second order differential operator L 4 is linear and continuous
from Hj(R™) to H; %(R™). By (ii), Lc,, maps H3(R") into H;i?qq) (R™). On the other hand if f € H; 2(R")
and a(f) = 0 for all k € Z(c, ¢), then statement (ii) ensures the existence of u € S7(R™) such that f = L 4[u]
and ay(u) = 0 for all k € Z(c,q). Since f € H{_*(R™), then classical elliptic regularity theory ensures that
u € H{ (R") (cf. e.g., Folland [12, (6.33), p. 214]). Thus we conclude that v € H{ (R") N S;(R") = H{(R™).
Similarly, (ii) implies that L., maps H} z(R") onto H: Z(R"). Ifu € Hj(R"), and Le 4[u] = 0, and ay(u) = 0
for all k € Z, then point (i) ensures that u belongs to the complex vector space generated by {Eaoik: k €
Z(c,q)} and thus condition ay(u) = 0 for all k € Z ensures that u = 0. Since both H} ;(R") and H;_; (R™)
are closed subspaces of Banach spaces, they are Banach spaces and the Open Mapping Theorem ensures that
also the last part of statement (iii) holds true. O O

3 An analyticity result for (det q)Sc, zoq in Sobolev-Bessel potential
spaces

Theorem 3.1. Let c € £. Let s € R be such that s —2 < —n /2. Let Z be a finite subset of Z™. Let W be an

open subset of D} (R) such that Z(c,q) C Z for all ¢ € W. Then the map S?,c,z from W to Hi z(R™) defined

by
Sg,c,Z(Q) = (detq)Sc,q,z 0 ¢ VgeWw,

is real analytic.



Proof. Let ¢ € W. We first prove that (detq)Sec 4,z © ¢ is the only I-periodic tempered distribution in R™
which satisfies the following system

Lqu[v] = ZzEZ" 52 - ZZGZ E27riz ’ (10)
ar(v) =0 Vk e Z.

By Lemma 2.2 (ii), (det ¢)Se,q,2 © ¢ satisfies the first equation in (10). Moreover, (1) implies that
ax((det ¢)Se,q,20¢9) =0 Vke Z.

Hence, (det ¢)Se,q,2 0 g satisfies system (10). Next we assume that v is an I-periodic tempered distribution in
R™ which satisfies system (10). Then

Leglv— (detq)Scq,z04q] =0,

and Proposition 2.3 (i) ensures that v — (det ¢)Sc ¢,z © g belongs to the complex vector space generated by
{E2rik: k € Z(c,q)}, and the second equation in (10) ensures that v — (det ¢)Sc,4.z 0 g = 0.
Next we show that the right hand side of the first equation in system (10) belongs to Hi ?(R"). Since

§—2 < —n/2, we have §, € H"*(R") for all z € Z". Hence, Y, ;. 0. belongs to HE ?(R™). Since > aczn 02

is obviously I-periodic, we also have ) _,.d. € Hfo(R"). Accordingly, the right hand side of the first
equation in system (10) belongs to H; *(R™).

Since (det g)Sc,q,2z © g is the only tempered distribution which satisfies system (10), the membership of the
right hand side of the first equation in system (10) to Hf72(R”) and Proposition 2.3 imply in particular that
(det ¢)Se,q,z © g belongs to H7(R™) and that (det ¢)Se,q,2 © ¢ is the only element of Hj(R™) which satisfies
system (10).

Next we consider the map A from W x Hj z(R") to the space Hf_; (R™) defined by the equality

A(Qa 'U) = Lc,q[v] - Z 5z + Z E27r7lz

ZEL™ zZEZ

for all (q,v) € W x H} z(R"). By our proof above, the set of zeros of A coincides with the graph of S?c,z.
Moreover, A is real analytic and if ¢ € W, then partial the Fréchet differential d, A(q, S?,c, zlq]) of A at the

point (g, S?C’Z[q]) with respect to the variable v coincides with the map Lc 4 from Hj z(R") to Hf}z (R™),
which is a linear homeomorphism by Proposition 2.3 (iii). Then the Implicit Function Theorem in Banach
spaces implies that S? .z is real analytic (cf. e.g., Deimling [11, Thm. 15.3]). O O

4 Explicit computation of the differentials of a map related to
(det q)Scq.2z © ¢ for a particular class of elliptic differential oper-
ators

We now introduce the set

go{c(ca)a|§2€5:ca01f|a|l
and co =0if a=¢; +¢; Withj,le{l,...,n},j;él}.

Let ¢ € &, g € DY (R). Since we will soon have to perform computations involving high order derivatives, we
find convenient to set

Lep[v] = Zbﬂcﬁ o 21}—1—001) Vv e Hif(R"),

)

for all b € D, (R) and s € R. Obviously,

Leg2=Lecy qeDI(R), Lep=Ley12  VbeDI(R),
where ¢~2 denotes the diagonal matrix with diagonal entries qi;27 j=1,...,n, and where b='/2 denotes the
diagonal matrix with diagonal entries b;jl/ 2, j=1,...,n. We also note that

L g [(det q)Sc gz 0q = L¢y-1/2 [(det 5_1/2)5},1,71/272 o b_l/ﬂ



whenever b = ¢=2, ¢ € D) (R), and that accordingly equality

Le 4 [(det q)Se g,z ©q] Z 0, — Z Eoriz Vg € D} (R),

ZEL" z€EZ

is equivalent to the equality

Lc,lfl/"’ {(det b_l/Q)Sc’bfl/z’Z o b_1/2:| - Z 62 - Z E27riz Vb € D:(R) )

z€Ln 2€Z
an equality which we rewrite in the form
Ley {(det b_1/2)sc,b*1/2,2 o 5_1/2} = Z 0, — Z Eori, Vb e DY (R). (11)
zEL™ z€Z

We also note that the following commutativity property holds.

Lemma 4.1. Letc, ¢! € &. Let b € D (R). Let Z be a finite subset of Z" such that Z(c,b='/?) C Z. Let
s € R. Then Ly restricts a linear homeomorphism from Hj z(R") onto Hy Z(R™) and

Lepo (LS, 0 Las )lul = (L8, 0 Les ) 0 Leplu]  Vu € Hf z(R™),
for all v € D, (R).

Proof. The first part of the statement is an immediate consequence of Proposition 2.3 (iii). In order to

prove the formula of the statement, we set u; = i;f;b” o icn’v[u]. Then we have Lep[uy] = Ecn’v[u]. Since
IN/c’b o Ecﬁ,v = Ecﬁ,v o ic,m we have f/c}b o ic’b[ul] = Ecuyv o ic,b[u] and thus the formula of the statement
follows. O O

If c € &y, we denote by c* the element of & defined by

c,=c, if|a]=2, c, =0 iflal <2

(03

Then we have the following, which provides a formula for the composite function S;, z of S? oz and of b=1/2
at the point b computed at (v1,...,v;) with vy = --- = v; = v for all natural numbers j, which we need to
write the Taylor formula for S IX ¢,z at the point b.

Proposition 4.2. Letc € &. Let s € R be such that s —2 < n/2 Let Z be a finite subset of Z™. Let W be

an open subset of D (R) such that Z(c,b=Y/2) C Z for allb € W. Let Ste.z be the map from W to H§(R™)
defined by .
SIX,C,Z(b) = Sg,c,Z(b71/2) VbeWw.

Then the following statements hold.

(i) LeblS e z(0)] = Y ocpn 0 — X oc s Bamiz for allb e W.

(i1) Let j € N\ {0}. The j-order differential of the map SIX’QZ at the point b satisfies the equality

j times (7 — 1) times
Lep djSIX’CVZ(b)[UM..,v] = —jLe djflSIX’QZ(b)[ v,..,0 ],

for allbe W and v € D, (R).
(iii) Let b € W. Then
J times

4S5 B = (-1t (G

s

Vo Le ) [85ez0)]  YoeDL(R).

for all j € N.



(iv) Let b € W. Then
Jj times

Lo |#87e 2001 | = (1931 (B 0 Lew) [ 32 6= 3 Bavid]

z€Zn z€Z
for allv € D, (R) and j € N\ {0}.

(v) Let j € N\ {0}. Ifb € W and v € D,(R), then the function @S} e z(0)[v,...,v] is real analytic in
R™ \ Z".

Proof. Statement (i) is an immediate consequence of equality (11). We now prove statement (ii). Since

Lo |Syez(®)] = Lew [S7e2(0)] + 087 2 0)

and Le- p[v] is bilinear in the variable (b,v), and S} 5 is differentiable, we can differentiate with respect to b
and obtain

Ly [S7ez0)] o 0] = < ’ >Ec,b (@187 2O, -, 0]]
+ ( { )L [@71857 e 200, 0]
for all (b,v) € W x D,(R) and j € N\ {0}. By (i), we have

@ {Lew [SFez®)]} 10, 0] =0

for all (b,v) € W x D, (R) and j € N\ {0}, and thus statement (ii) holds true.

We now prove statement (iii), and we argue by induction on j. If j = 0, then the statement is obvious. We
now assume that the statement holds for j and we prove it for j 4+ 1. By statement (ii) and by the inductive
assumption, we have

Lo [@185 s O, 0| = =G+ Dlew [ 57 200, 0]

—(+ 1) Ler [(—1)jj! (ig,—bu o Em)j [S;C’Z(b)]]

(12)

. ~ ~(_ ~ J
= (1P + D e o (L5, 0 Lo ) [S7ez(®)] W0 € Da(R). (13)
Since S IXC z and its differentials have values in Hj ;(R"), we can apply Ei;l) to both hand sides, and obtain

the formula of the statement with (j + 1) (cf. Proposition 2.3 (iii)).
Next we prove statement (iv). By statements (i),(iii) and by Lemma 4.1, we have

Leb [djSIX’C}Z(b) [v,... ,v]}

- . ~(_ ~ J
Leyp [(—1)13'! (Lf;bl) ° Lc*,v) [Siqz(b)]}

= (1t (B0 zm)j 0 Ley[Sf e 2(D)]
= (07t (B o Lea) [ 32 62 = 3 Fair]
zZEL™ z€Z

for all v € D,(R) and j € N\ {0}, and thus statement (iv) holds true. Statement (v) is an immediate
consequence of statement (iv), and of the analyticity of >, ;. 6. — > .z Fariz in R™ \ Z", and of classical
elliptic regularity theory. D O

5 Applications to the Helmholtz equation

5.1 An analyticity result in Schauder spaces

In this subsection we consider a concrete application of the results of Section 3 to the periodic analog of the
fundamental solution of the Helmholtz equation. In order to do so, if k € C, we define c(x) = (ca(k))|a|<2 €
CM2 by setting

Ce_7'+ej(/€) =1, vji€e{l,...,n}, (14)
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and
Ceyte; (k) =0 Ce, (K) =0, Vh,j,le{l,...,n}, 1 #7, (15)
and
co(k) = K2, (16)
Thus, if k € C, we have c(k) € & and
Plc(k), D] = A + k2.
Then, a straightforward computation shows that

Z(c(k),q) = {z € Z" : x* = 4r?|q¢ ' 2|*}, (17)

and we note that Z(c(x), q) is not empty precisely when —x2 is an eigenvalue of the Laplace operator in the

space of g-periodic distributions in R™ (see Proposition 2.3 (i)). We also note that
- n 92 )
Leoy,p = ;bjj@ + K vb € D, (R).

In order to proceed we need to introduce some Sobolev-Bessel potential spaces on a domain. Let €2 be an
open subset of R™. If s € R, we denote by H*() the closure of D(Q) in H*(R"), and we endow H*(Q) with
the norm of H*(R™). Instead, as customary, we denote by H(€2) the closure of D(Q2) in H*(2) (see also
McLean [23, p. 77]).

Then we have the following technical statement, which we prove in the Appendix.

Theorem 5.1. Let k € C. Let Q be a bounded open Lipschitz subset of R™. Let W be an open subset of D} (R)
such that y
{u € HY(Q) : Legeyolu] = o} = {0} Vbew. (18)

Then the following statements hold.

i) Let k € N\ {0}. If Q is of class C*~Y' and b € W, then Le(.), is a linear homeomorphism from
(1),
HE(Q)N HE () onto H*2(Q).

(ii) Let k € N\ {0}. If Q is of class C*~11, then the map @y i from W x H*"2(Q) to H*(Q) N H(Q)
which takes (b, f) to the unique element v € H*(Q) N H}(Q) such that EC(K),b[v] = f is real analytic.

(i4i) Let k € Z, k < 0. Let Q be of class C*=F1. If (b, f*) € W x HE(Q), then there exists v €]0, +oo[ such
that c1Bp,, (&) (b%,7) € W and a real analytic map ‘ic(m),k,bu,fﬁ from Bp, @) (b%,7) x H*=2(Q) to H*(Q)
such that 3

Do) vt 2 [0, [1 = Pe(ry,1[bs f] v(b, f) € BD"(R)(bﬂaT) x Hy(Q). (19)

Then we can prove the following.

Theorem 5.2. Let m € N, a €]0,1[. Let k € C. Let Z be a finite subset of Z". Let W be an open
subset of DF (R) such that Z(c(xk),b=Y2) C Z for all b € W. Let Q be a bounded open subset of R™ such
that c1} C R™ \ Z™. Then the map from W to C"™%(clQY), which takes b to the restriction RQSIXC(H) ~(b) of

ST e(ny.z(b) to Q is real analytic.

Proof. Let s € Z be such that s —2 < —n/2. By the Sobolev Imbedding Theorem, it suffices to show that the
map from W to H¥Fk(Q) which takes b to RQSIXC(K) ~(b) is analytic for all bounded open subsets of R™ such

that clQ C R™\ Z™ and for all k£ € N. Then the validity of the statement of the theorem for any m € N and
a €]0, 1] would follow by a proof which is indeed independent of m and «.

Case k = 0 is an immediate consequence of Theorem 3.1. Indeed, the restriction operator from Hj(R™) to
H?(Q) is linear and continuous and thus analytic (cf. (9)). We now assume that the statement holds for k
and we prove it for k 4+ 1. Since for every ) as above there exists ( € D(R™ \ Z™) which equals 1 on an open

neighborhood of clf2, it clearly suffices to show that if ( € D(R™\ Z") and if b; € VNV, then there exists an open
neighborhood W of b; contained in WW and a bounded open subset 27 of R™ of class C* such that

supp¢ C Q1 €l CR™\ 2", (20)

and such that the map from W, to H*+*+1(€)) which takes b to (SIXC(H) ~(b) is analytic. Indeed, the restriction
map is linear and continuous and ( is a multiplier for all Sobolev spaces on an open subset which contains the
support of .
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We take an arbitrary bounded open subset ©; of R™ of class C™ such that (20) holds. Possibly replac-

ing 2 by a dllation of O close to the identity, we can assume that —x? is not a Dirichlet eigenvalue for
2

Z 1(b1) ;2 a;c2 in ;. Indeed the spectrum of the elliptic operator Z?=1(bl)jj% with Dirichlet boundary

conditions in a bounded open subset of R™ of class C> is discrete and the eigenvalues scale by a positive
factor if the open set undergoes a dilation by a positive factor. Since —x? is not a Dirichlet eigenvalue for
5 -
_1(b1)jj5= in Q1, the operator L¢(.).p, is a linear homeomorphism from 1) onto H~*(£21). Since the
1 (b)jj 2 in 4, th tor Le(x)p, 18 a linear h hism from H{ (€2) onto H~1(€). Since th
J

map from W to L(H}(Q1), H (1)) which takes b to Ec(,@%b is linear and continuous and the set of linear
homeomorphisms is open, then there exists an open neighborhood W; of b; contained in W such that IN/C(,{)J,

is a linear homeomorphism from H{ () onto H=1(€) for all b € Wi. In particular, condition (18) holds in

Q, for all b € W.
Since 2 is of class C*° and CSI e(), ~(b) vanishes on an open neighborhood of 9€2;is of class C*°, we have

CSI c(k), Z( ) = (I)c(n),l |:b7 Ec(ﬁ)ab |:<SIX,C(;<;),Z(b):|:| ’ (21)
Loty [(5F e, 2®)] €D@1) VoW,
Next we show that if Q5 is an open subset of R™ of class C*° such that

ClQl Q QQ g CIQQ g Rn\zn’

then the map from W, to H*+k=1(Qy) which takes b to ﬂc(ﬂ)yb [CSIXC(H) Z(b)] is real analytic. To do so, we
note that

Loy [CW)S7 e, 20| = C0) Lty S e 20V )] (22)

n 8 a %
+2 z; bj; axi (y)ai% {SI,C(K%Z (b)} )
=

+SI><,C(KJ) zZ Z bJJ or 2 Vy S Q2 5

and that
- Z E2m’z< in R"

zZEZ

Cic(n),b |:SIX,C(K),Z(b):| = [Z 62 - Z E27riz

zEZL™ z€Z

(see Proposition 4.2 (i)). Thus it suffices to show that each summand in the right hand side of (22) defines a
real analytic map from W, to HHF=1(0Qy).

Since ¢ ),z Fori. € C(clfdy) C H*+tF=1(€),) is independent of b, the first summand in the right hand
side of (22) defines a real analytic map from Wi to HH’“*I(QQ)

By inductive assumption, we know that the map from W) to H5+*=1(Qy) which takes b to - [SIXC(H) Z(b)}

is real analytic. Since the multiplication by W is linear and continuous in H*T*~1(Qy), the map from W1 to
J

H*+tF=1(Q,) which takes b to the second summand in the right hand side of (22) is real analytic.
By inductive assumption, we know that the map from W; to H*T*({;) which takes b to SIXC(K) ~(b) is

analytic. Since the multiplication by % is linear and continuous in H57*(Qy), and H*+*¥(Qy) is continuously
J

imbedded into H***~1(,), the map from Wi to Hs k=1 (Q2) which takes b to the third summand in the right
hand side of (22) is real analytic.

Then we conclude that the map from W to H*+k=1(Qy) which takes b to the right hand side of (22) is
real analytic.

We now discuss separately cases s +k > 1 and case s +k < 0. Let s +k > 1. Since the restriction map
is linear and continuous from H**t*~1(Qy) to H*¥~1(Q;), the map from W; to H*T*=1(Q;) which takes b to
the right hand side of (22) is real analytic and Theorem 5.1 (ii) and equality (21) imply that the map from

Wi to H*HF+1(Qy) which takes b to CST ety

Now let s+ k < 0. Since the restriction map is linear and continuous from H*t5~1(Qy) to H5*=1(€)), the
map from W, to H*t+=1(;) which takes b to the right hand side of (22) is real analytic. We also note that
the right hand side of (22) belongs to D(Q) for all b € Wi. Then Theorem 5.1 (iii) and equality (21) imply

~(b) is real analytic.
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that the map from Wy to H*TF+1(Q;) which takes b to CSIXC(N) ~(b) is real analytic. Since the restriction map

is linear and continuous from H*+*+1(Qy) to HS+F+1(€y), the map from W, to H+H+1(€y) which takes b to
CSIXC(N) ~(b) is real analytic and the proof is complete. O O

5.2 An analyticity result for the regular part in Roumieu classes

We now show that the results of the previous sections can be exploited in order to obtain an analyticity result
in Roumieu classes.

Theorem 5.3. Let k € C. Let Z={0} if ck =0 and Z =0 if K # 0. Let Q be a bounded open subset of
D;f (R) such that c1Q C D (R) and that Z(c(k),q) C Z for all g € c1Q. Let Q be a bounded open subset of R™
such that

clQ C(R"\Z™)U{0}.
Let Se(xy be a fundamental solution of A + k2. Then there exists p €]0,+o0o[ such that the map from Q to
ngp(clﬂ) which takes q to Re(x).q,2.5.,, (q°)jc10 s real analytic.

Proof. Clearly, there is no loss of generality in assuming that 0 € Q. Let €’ be a bounded open subset of R™
of class C*° such that

QCcdQCQ Cel C(R*\Z")U{0}.
Next we note that Rc(n),q,z,scw o ¢, which equals S¢(x).q,z © ¢ — Se(x) © ¢ in R" \ Z™, is real analytic in

(R™\ Z")U {0} for each fixed value of ¢ € D;f (R). We treat separately the case k = 0 and the case k 7# 0. We
first consider the case x = 0. Since Z = {0}, S¢(q),q¢,z © ¢ satisfies equation

LC(ULq[SC(O),q,Z oq] = (detq)~ Z 5, —
ZGZ’”

(cf. (10)), and we deduce that Rc(o) Z,5e0) (q) = Re(0),0.2.5¢(0) © g1 solves the equation

1
# . .
LC(O)yq[Rc(o),z,sc(o) (9)] = " detgq in Q.
Then by performing a change of variables, we have
1 .
ARc(0),4,2,500) = “detq in g€ . (23)

In order to get rid of the inhomogeneous term in the equation (23), we set

uq(§) = €[> VEeR",

2ndet q

and we observe that Au, = and we rewrite (23) as

1
detq
A(RC(O)&Z,S«O) +ug) =0 in ¢Q'.

Since Re(0),9,2,500) T Ug = Se(0),q,2 — Se(0) + Uq in an open neighborhood of 9(¢f2’), then the Green represen-
tation formula implies that

RC(OM,Z,SC(o) (&) +uq(§)

0
= — S, —n)[Se — S +u do
L By 506~ D15e00,020) = St 0) + ) ey

0
— SC - a7 Sc - SC + u do. Ve € qQ/ ,
/éxqm & =) Avger () [Se(0.0,2 (1) = Se(o)(n) + g (m)] doy V¢

and in particular for all £ € ¢clQ2 C ¢©'. By elementary Calculus, we have

q v (y)

doy, = det qlg~"vor (y)|doy,  veor(qy) = la~tvar (y)|

0

87}9/[50(0),11,2 — Se(0) + ugl(qy)

= [D(Sc(0),q,2 — Sc(0) + ug)(qy)] - vear(qy) Yy € O,
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and thus we obtain
Re(0),4,2.5e(0) (42) + uq(q) (24)

= /BQ’ (DSC(O) (qx - qy)) Vg (qy)[sc(o),q,z(qy) — Sc(O) (qy) + uq(qy)]

xdet q\q*tz/g/ (y)| doy

- /@ . Sc(0)(qr — qy)[DSe(0),q,2(qy) — DSc(0)(qy) + Dug(qy)] - vear(qy)

xdet qlg v (y)| doy,

= — /89/ (DSC(O) (q$ — qy)) . q—tUQ'(y)[SC(O)}q’Z(qy) — SC(O) (qy) + uq(qy)]

xdet g do,

| Se(0)(qx = qy)[DSe(0),q.2(ay) — DSc0)(qy) + Dug(qy)] - ¢~ v (y)

xdet qdoy ,

for all z € cl. Since 0 € Q C €, there exists a bounded open subset 2" of R™ such that 9Q' C Q" C clQ)’ C
R™\ Z". By Theorem 5.2, the map from D;7 (R) to C'(clQ?"”) which takes ¢ to Sc(0),q,2 © Qe is Teal analytic.
Since S¢(gy is analytic in R™ \ {0} and 0 ¢ ¢clQ” for all ¢ € D;f (R), known results on composition operators
imply that the map from I} (R) to C*(cl2”) which takes ¢ to Se() © gjan is real analytic (cf. Bohme and
Tomi [6, p. 10], Henry [14, p. 29], Valent [28, Thm. 5.2, p. 44]). Since u4(qy) = m|qy\2 for all y € clQ”,
the map from D/ (R) to C'(clQ)”) which takes g to u,(g-) is real analytic. Since the restriction operator
from C1(clY”) to C*(9Y') is linear and continuous, the maps from D;f (R) to C°(9Y’) which take ¢ to the
function [Sc(0y,q,z © ¢ — Sc(0) © ¢ + uq(q-)]joer and to the function [DSe(g),q,2(q-) — DSe(0)(q-) + Dug(q-)]jaq
are real analytic. Then by a result on integral operators with real analytic kernels and with no singularity,
for each ¢ € clQ, there exists an open neighborhood Wj of ¢ in D} (R) and s > 0 such that the map from
Ws; to C’O (CIQ) which takes ¢ to the sum of the two 1ntegral operators in the right hand side of the integral
representatlon (24) for Re(0),4,2.50(0, (@) [c12 T Uq (") a1 18 real analytic (cf. [17, Thm. 3.1]). Since the map from
W to C9 5(cl2) which takes ¢ to u4(q-)jaq is obviously real analytic, the map from W; to CJ ;(cI2) which
takes q to Rc(O),q,Z,SC(O)( -)|clo is real analytic. Since the compact set clQ can be covered by a ﬁnlte family of
open neighborhoods as Wy, the proof of case x = 0 is complete.
We now turn to consider case x # 0. Since Z = (), Se(r),q,z © q satisfies equation

Lc(n),q[Sc(m) 0.2 [¢] q det q Z 52 s
ZGZH

(cf. (10)), and we deduce that RC(K) Z,Setm) (q) = Re(r),4.2,50.) © qjaier solves the equation

LC(K)yq[Ri(n),z,sc(m) (@))=0 inQ.
Then by performing a change of variables, we have
(A + HQ)[RC(K’)vqaZsSc(»e)] = 0 in qQ/ .

Since RC(H)@Z,SC(@ = Se(k),q,2 — Se(x) in an open neighborhood of 9(¢€Y'), then the Green representation
formula implies that

0

7Scm 5_77 Scn7, n_ScnndO'
v Dvaer () ) (€ = M)[Se(r).q.2(n) = Se(w) ()] doy

(R)7q727SC(K,) (6) /a
K 79 c(k qZ” c()\M (10’77 V£€qsz’
(qQ’) " Vg (77) (K).0. ()

and in particular for all £ € ¢clQ2 C ¢€)'. By elementary Calculus, we have

9
ey [P0,z ~ Se() (@) = [D(Se() 0.2 = Set)) (@) - vaer (qy) - Vy € O,
q

14



and thus we obtain
Re(x).q.2,500) (q7) (25)
== /BQ, (DSe(w) (@ — qy)) - Vaor (49)[Se(n).0,2(ay) — Se( (ay)]
xdet qlq~"ver (y)| doy

_ /69, Se(r) (4% = qy)[DSe(r),q.2(qy) — DSe(r) (ay)] - vaer (qv)

—t

xdet ¢|l¢” vor (y)| doy

- _ /a . (DSe(ey (@ — qy)) - 4~V () [Se(n).q.2(ay) — Setw)(qy)]det g do,

- . Sc(n) (qx - qy)[DSC(n),q,Z(qy) - DSC(I{) (qy)] : q_tVQ’ (y)detqday )
for all € cl2. Since 0 € Q C €, there exists a bounded open subset Q" of R” such that 9" C Q" C
clY” € R™ \ Z". Now let W be a bounded open neighborhood of clQ in D} (R) such that Z(c(x),q) C Z
for all ¢ € cW and that W C D (R). By Theorem 5.2, the map from W to C(cl2”) which takes ¢ to
Se(r),q,2 © Qe is real analytic. Since Sg(y) is analytic in R™ \ {0} and 0 ¢ ¢clQ” for all ¢ € D;f (R), known
results on composition operators imply that the map from D} (R) to C*(clQ”) which takes g to Se(x) © Qler
is real analytic (cf. Bohme and Tomi [6, p. 10], Henry [14, p. 29], Valent [28, Thm. 5.2, p. 44]). Since the
restriction operator from C(clQ”) to C*(9€Y) is linear and continuous, the maps from W to C°(9€) which
take q to [Sc(x),q,2 © ¢ — Sc(x) © @ljor and to [DSc(x),q,2(q) — DSc(x)(q-)]jaqr are real analytic. Then by a
result on integral operators with real analytic kernels and with no singularity, for each ¢ € clQ, there exists
an open neighborhood Wj; of ¢ contained in W and p > 0 such that the map from W; to C’O (le) which
takes ¢ to the sum of two integral operators in the right hand side of the integral representatlon (25) for
Re(x )’q’g’sc(n)( ‘)jelo is real analytic (cf. [17, Thm. 3.1]). Since the compact set clQ can be covered by a finite
family of open neighborhoods as Wy, the proof of case k # 0 is complete. O O

In order to prove the analyticity of Re(x),q,2,5,(. (gx) upon (g, z), we need the following technical lemma.

Lemma 5.4. Let Q be a bounded open subset of R". Let O be an open subset of D (R). Let p> 0. Let F be
a real analytic map from O to Cg’p(CIQ), Then the map F from O x Q to C defined by

F(qz) =F(q)(z)  V(g,z) €O xQ,

is real analytic.

Proof. We first prove by induction on m € N that F is of class C" (O x Q) and that if o, § € N*, |(«, B)| =
la| + |B] < m, then .
DIDSF(q)(x) = DYDEF(q,x)  V(g,2) €O x Q. (26)
We first consider case m = 0. Since o = = 0, the statement concerning the derivatives is satisfied by
definition of F' and we turn to prove the continuity of F. Let (§,#) € O x Q. Let r €]0, 400 be such that
Bp, &)(q,) % B,(Z,7) has closure contained in O x Q. Now let € €]0,+o0o[. By the continuity of F, there
exists 0 €]0, 7] such that
lg =gl <6 =[F(q) — F(dllco ca) <€/2. (27)

Since F'(§) is real analytic in €, possibly shrinking &, we can assume that
[z — 2] <6 = [F(q)(%) - F(q)(z)| <€¢/2. (28)
Then by combining (27) and (28), we conclude that
o =% <6, |g—dl <8=|F(q.%) — F(g,2)| = |[F(Q)(&) — F(a)(2)| < ¢/2+¢/2 =€, (29)

and thus F is continuous at (q,7).

Next we fix m € N and we show that if £ is of class C™ in O x ©Q and if (26) holds true for m, then F

is of class C™ ! in O x Q and if o, B € N, |(a, B)| = || + |3 = m + 1, then (26) is satisfied. It suffices to

prove that if o, f§ € N, |(«, 8)| = |oz| + |B] = m, then DO‘DBF has first order continuous partial derivatives
with respect to the Variables 11y -5 Qnny T1y - -y Ty I (9 x £ and that

Dy, (D“DﬁF)(q, z) = DDy, D3 F(q)(z),

D, (DD F) (g, ) = Do, DPDEF(g)(a) (30)
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for all (g,z) €e O x Qand j € {1,...,n}. Let (¢, %) € O x Q. We first prove that D, (DS‘DfF) is continuous

at (g, z) for all j € {1,...,n}. By assumption, F is analytic from O to C'm"‘l(le). Since D? is linear and
continuous from C’W‘H(CIQ) to C'(cl), we conclude that DFDJF is analytic from O to C*(clQ2). Hence,

Dy, (anDf F) exists and is continuous at ¢ as a map from O to C'(cl2). Since the limit of the incremental
ratio which defines D, (D?ijF) exists uniformly in & € clQ and D;‘DEF = D(‘I"Dfﬁ', we deduce that
Dy, (Dg‘Dfﬁ) exists and equals Dy, (DYDPF). Then the same argument we have exploited to prove (29)
shows that D, Dg‘DfF is continuous at (¢, Z).

Next we prove that D, D‘;Df F exists and is continuous at (g, Z). Since D;‘Dg F is analytic from O to
C*(cl) and D, is linear and continuous from C*(cl2) to C°(clf2), the map Dy, D¢ D F is analytic from O to
C°(clQ2) and D, DI DS F exists and is continuous at G as a map from O to C°(cl). Since Dy DS F = anDfF,
we deduce that Dy, D(‘;‘Dgl:“ = Dy, D(‘;‘Df F'. Then the same argument we have exploited to prove (29) shows
that D, Dg‘DfF = Dy, Dg‘DfF is continuous at (¢, Z). Hence, all partial derivatives of F up to order m + 1
are continuous, and F is of class C™+1.

We now prove the first equality of (30). If § = 0, the first equality of (30) is obvious. We now assume that

B # 0. There is no loss of generality in assuming that 8; > 0. Since F is of class C™ "1, inequality (26) in case
|(a, B)| < m implies that

D, (DyDIF)(g,x) = D DI~ D, D3 F(q. )
= D' DY D, D F(a)(x) = DD, DyF(a)(x)  V(g.2) € O x 9,

and thus the first equality of (30) holds true.

We now prove the second equality of (30). By the analyticity of Dy F from O to C1PI+1(cI) and by the
linearity and continuity of D? from C!#1+1(clQ) to C*(cl), the map DﬁDaF is analytic from O to C(cl2).
Moreover the inductive assumption implies that (26) holds. Since DﬁD“F( ) € C'(clQ) and F is of class
C™*! we can take the D, derivative in both hand sides of (26) and obtam the second equality of (30). Thus
the proof of our inductive argument is complete. Then F € C™ (O x Q) and we now turn to prove that Fis
analytic. By a known analyticity criterion, it suffices to show that if K7 and K are compact subsets of O and
(), respectively, then there exists r €]0, +o00[ such that

rlotsl D DB F(q. )
sup ————— sup q,x)| < +00.
a,BEN? |Oé + 6“ (g,z)EK1 X Ko N

Since F' is analytic, then there exist r1, My €]0, +o00[ such that

Ia\

||'

SuP DG F(a)llco (o) < My

for all ¢ € K;. Hence,
rlol pl] DADE Fa,)| < M
— o Sup oF <M
[at [B]! zean

for all o, 8 € N*, g € K;. Since |a|!|8]! < |a + ]!, we have

(min{ry, p})l+!

for all (¢q,x) € K7 x K» and for all «, § € N™. Hence, F is real analytic. O O
Theorem 5.3 and Lemma 5.4 imply the validity of the following.

Theorem 5.5. Let k € C. Let Z ={0} if k =0 and Z =0 if K # 0. Let Q be an open subset of D (R)
such that Z(c(k),q) € Z for all ¢ € Q. Let S,y be a fundamental solution of A + k2. Then the map from
Q x ((R™\Z")U{0}) to R which takes (q,z) to Re(x),q,2,5,., (q%) is real analytic.

Then we have the following.

Theorem 5.6. Let v € C. Let Z = {0} if k = 0 and Z = 0 if kK # 0. Let qo € D}(R) be such that
Z(c(k),q0) € Z. Let ' be a bounded open subset of R"™ such that

clQ) C (R™\ qoZ") U {0}.
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Let Sc(x) be a fundamental solution of A + k2. Then there exist p' €]0,+oc[ and an open neighborhood Qg of
qo0 in D} (R) such that

Z(c(k),q) C Z VqeclQy, clQY C (R™\ ¢Z™) U {0} Vg e Qp, (31)
and such that the map from Qg to C’SW, (clY) which takes q to Re(r),0.2.5000) (*)jc1c is real analytic.
Proof. By assumption gy 'clQ’ C (R™\ Z") U {0}. Let ¥ be the map from D; (R) x R™ to R defined by
U(g,z)=q 'z Y(g,z) € DF(R) x R™.

Since W is continuous, the set ¥ ((R™\ Z™) U {0}) is an open neighborhood of the compact set {go} X cl€?'.
Next we endow D (R) x R™ by the distance defined by

d((q1,71), (g2, 72)) = |q1 — q2| + |21 — 22| V(q1, 1), (g2, 72) € D} (R) x R™.

Let ¢ €]0,+o00[ be less than the distance between {go} x cl2’ and the complement of ¥ ((R™\ Z™) U {0}).
Then we have cIBp, gr)(qo, ) x cl2" € ¥ ((R™ \ Z") U {0}) and accordingly the second inclusion in (31) holds
for all ¢ € clBp, &)(q0,9). If K = 0, then Z(c(k),q) = {0} = Z for all ¢ € D;f(R), and in particular for
all ¢ € clBp, (r)(q0,0). We now show that if x # 0, then possibly taking a smaller §, we can assume that
Z(c(k),q) = 0 = Z for all ¢ € clBp, r)(qo,9). Let 01 €]0, +00[ be such that clBp,, &) (q0,01) € D} (R). By (17),
we have

Z(c(k),q) € Z"NclB,, (0, p1)
(32)

—1
. o . 1
wih =l (20 min i)
for all ¢ € clBp, &) (qo,61). Since Z(c(k),qo) = 0, the continuous function x? — 472|g; '2|? does not van-
ish for z in the compact set Z™ N clB,,(0,p1). Hence, possibly taking a smaller §, we may assume that
k? —47%|q12|? does not vanish for z € Z" NclB,, (0, p1) when ¢ € clBp,, (r)(qo,9). Hence, the inclusion in (32)
implies that Z(c(x),q) = 0 for all ¢ € clBp, (r)(go,). By Theorem 5.5 and by equality Re(x).4.2.5000) (z) =
Re(r).0.2,5() (¢¥(q, z)), the map which takes the pair (¢, z) to Re(r),0.2.5000) (x) is analytic in an open neigh-
borhood of ¢l (Bp,, (&)(qo,d) x €'). Then there exists p” €]0,+oo[ such that the map which takes the pair
(¢, ) to Re(r),0,2,5¢() (z) belongs to C&p,, (cl (an(R) (go,0) x Q’)) Then one can prove that the map from
Bp, r)(q0,6) to C'g,p, (cl©?") which takes ¢ to Rc(n))qyg,sc(ﬁ)(')‘clgl is real analytic for all p’ €]0, p"[ (cf. [8,
Prop. Al]). O

5.3 Two more analyticity results for S¢),z o q

Since Se(r),q,2 = Sc(x) + Be(k),q,2,5¢(s)» a0 Se(x) is analytic in R™ \ {0}, Theorem 5.5 implies the validity of
the following.

Theorem 5.7. Let k € C. Let Z={0} if k =0 and Z =0 if K # 0. Let Q be an open subset of D} (R) such
that Z(c(x),q) € Z for all ¢ € Q. Then the map from Q x (R™ \ Z") to R which takes (q,x) to Se(x),q,z(qx)
is real analytic.

Example 5.8. If we choose x = 0 in (14)—(16), then we have P[c(0),D] = A and Z(c(0),q) = {0} for all
q € D (R). Then Sc(p),q,z(x) with Z = {0} equals the sum of the series in (3) and Theorem 5.7 ensures the
analyticity of Se(0),4,z(qx) in (¢,2) € D (R) x (R™\ Z™), and accordingly the analyticity of the sum of the
series in (3) in the set of (¢,z) € D;f (R) x R™ such that ¢~z ¢ Z", i.e., jointly in the variables ¢ and .

Example 5.9. If we choose x # 0 in (14)—(16) and if we take an open subset Q of D;f (R) such that —x? is not
an eigenvalue of A in the space of g-periodic distributions in R™ for all ¢ € Q, we have Plc(k), D] = A + &2
and Z(c(k),q) = 0 for all ¢ € Q. Then S¢(,) q,z(z) with Z = () equals the sum of the following series

_ 1 2mi(q~ " 2)-x
2 @ =) ’ (33)

and Theorem 5.7 ensures the analyticity of Sg(.)q,z(gz) in (¢,2) € Q x (R™\ Z"), and accordingly the
analyticity of the sum of the series in (33) in the set of (¢,z) € Q@ x R™ such that ¢~ 1z ¢ Z", i.e., jointly in
the variables ¢ and x.
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Finally, we have the following.

Theorem 5.10. Let k € C. Let Z ={0} if k =0 and Z2 =0 if kK # 0. Let Q be a bounded open subset of
D (R) such that c1Q C D (R) and that Z(c(k),q) C Z for all q € c1Q. Let Q be a bounded open subset of R™
such that

cQ CR™\Z".

Then there exists p €]0, 400 such that the map from Q to Cg’p(CIQ) which takes q to the function Se(.) q,2(q")|c10
is real analytic.

Proof. Let S(.) be a fundamental solution of A + k2. Since Sc(x)(qx) is analytic in an open neighborhood of
the set cl(Q x ), then there exists p’ €]0, 400 such that Se(.(gz) € G, (cl(Q x Q)). Then the map from Q
to C’g)p(dQ), which takes ¢ to S¢(x)(q-)|c1o is real analytic for all p €]0, p'[ (cf. [8, Prop. Al]). Then equality
Se(r),a,2 = Se(r) + Re(1).4,2,5¢ and Theorem 5.3 imply the validity of the statement. O O

6 Appendix
We now prove the technical Theorem 5.1 and we first consider statements (i) and (ii).

of statements (i) and (ii) of Theorem 5.1. Statement (i) follows by condition (18) and by classical elliptic
regularity theory (cf. e.g., Lions and Magenes [21, Thm. 5.4, p. 165]). We now prove statement (ii). We
consider the map A from W x H*=2(Q) x (H*(2) N HZ(Q)) to the space H*~2(Q) defined by the equality

A, fv) = ic(,{)’b[v] —f

for all (b, f,v) € W x H*2(Q) x (H*(Q) N H}(2)). By definition, the set of zeros of A coincides with the
graph of ®¢(,y . Moreover, A is real analytic and if (b, f) € W x H*~2(Q), then the partial Fréchet differential
dy A, f, Po(),k[D, f]) of A at the point (b, f, Pc(,) x[b, f]) with respect to the variable v coincides with the
map ﬂc(ﬁ),b from H*(Q) N H}(Q) to H*~2(2), which is a linear homeomorphism by statement (i). Then
the Implicit Function Theorem in Banach spaces implies that ®(,)  is real analytic (cf. e.g., Deimling [11,
Thm. 15.3)). O O

Next we plan to compute the Taylor expansion of @, ; around each point of its domain. Since ®(,) 1 is
linear in the second variable f, it suffices to compute the partial differential of order j of ®¢(,)1 with respect
to b at the point (vq,...,v;) with v1 = --- = v; = v for all natural numbers j. We do so by means of the
following.

Proposition 6.1. Let k € C. Let Q be a bounded open Lipschitz subset of R™. Let W be an open subset of
D;F (R) such that condition (18) holds true. Let f € H=1(Q). Let d)j(K) s be the map from W to H} () defined

by
¢cx(n),f(b) = Pe) 1[0, f] vbeWw.

Then the following statements hold.
(Z) ZC(n),b[(b:(ﬁ)’f(b)] = f fO?” allbe W.

(i) Let 7 € N\ {0}. The j-order differential of the map gb:(ﬁ) f(b) at the point b satisfies the equality

j times (7 — 1) times
T j —N .5 i —_—
Lety o |# 0%, s 00770 | = —jLe(rye o | 000 ;O 0250 1]

for allbe W and v € D, (R).
(i1i) Let b € W. Then

Jj times

. N o ~(_ ~ 7
djd):(n),f(b) [U, s 7U] = (71)J]' (LE;(KI))J, o Lc(m)*,v) [(’b:(n),f(b)] Yv € Dn(R) .

for all j € N.
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Proof. The proof follows the lines of that of Proposition 4.2. Statement (i) is an immediate consequence of
the definition of (b:(ﬁ) - We now prove statement (ii). Since

Lot |92 O] = Loty o |62y O] + K265 4 (B)

and EC(H)*’b[v] is bilinear in the variable (b,v), and ¢CX(K) ;s differentiable in b, standard differentiation rules
imply the validity of formula (12) with S >(b), c and c* replaced by ¢:(K) (), c(x) and c(k)*, respectively
for all (b,v) € W x D, (R) and j € N\ {0}. By (i), we have

& {Ec(n),b [(b:(n),f(b)} } [v,...,v] =0

for all (b,v) € W x Dy, (R) and j € N\ {0}, and thus statement (ii) holds true.

We now prove statement (iii), and we argue by induction on j. If 7 = 0, then the statement is obvious. We
now assume that the statement holds for j and we prove it for j + 1. By statement (ii) and by the inductive
assumption, we deduce the validity of formula (13) with Sy, >(b), ¢ and c* replaced by qS:(N) (), c(k) and
c(k)*, respectively. Then by applying ii(ij)) , to both hand sides, we obtain the formula of the statement with
(j+1). O 0O

By the continuity of the imbedding of H}(Q) into H~1(2), and by Proposition 6.1 and by standard calculus
in Banach space, we readily deduce the following.

Corollary 6.2. Let kK € C. Let Q be a bounded open Lipschitz subset of R™. Let W be an open subset of
D} (R) such that condition (18) holds true. Let (b%, f*) € W x H}(Q). Then there exists r €]0, 400 such that
cBp, (r)(b*,7) C W and such that

e 1bs ] = Pegey 1 V%, £+ LG [ f = £7] (34)
)z j
+ Z (Lim bt © LC(N)*7b,bﬁ) (02 (0)]

for all (b, f) € By, &) (b*,7) x H} (), where the series is normally convergent in H} ().

Now the right hand side of (34) deliveres a (nonlinear) analytic map from the set By, g)(b%,7) x Hg () to

HE(Q) and we know that HE(€) is contained in both H*~2(Q) and H*(Q) when k < 1 is an integer, and we
ask whether there exists a nonlinear analytic map from Bp_ (g (b*,r) x H*=2(Q) to H*(Q) which extends the
right hand side of (34) perhaps for a smaller  and when k < 1 is an integer.

The idea is to replace the operator ‘factor’ (Ei(_:))bn o Zc(ﬁ)*7b_bu) which appears in the right hand side of

(34) and which maps H}(Q) to itself by a linear and continuous map from H*(Q) to H*(Q) which extends
the restriction of (Ziz,j){bu o -Z/c(;{)*,bfb“) to H}(Q), and to show that the corresponding ‘replacement’ series
converges normally in H k() for a perhaps smaller r. Since such a series is in the form of a power series in
the variable b, its sum is real analytic. Then we observe that the sum of the first two terms in the right hand
side of (34) equals Li(ﬁ))bﬁ [f] and can be extended to a linear and continuous map from H*~2(Q) to H*(Q) of
the variable f. Hence the sum of such extension and of the ‘replacement’ series’ delivers an analytic function
which equals the left hand side of (34) if we choose the argument (b, f) in By, () (b*,7) x H} () (for the smaller

r).

To do so, we need the following technical statement. For the convenience of the reader, we include a proof.

Theorem 6.3. Let ¢ € &. Let Q be a bounded open Lipschitz subset of R", b € D} (R). Let Ley be a linear
homeomorphism from HE(Q) onto H=(Q). Then the following statements hold.

(i) Let k € N\ {0}. If Q is of class C*~11, then Ley is a linear homeomorphism from H*(Q) N H(Q) onto
HR2(Q).

(ii) Let k € Z, k < 0. If Q is of class C1=%1 then there exists cy €]0, +00[ such that
7 (—1
1Zeo” Mney < exllfllsaiey ¥ € HH(®).

In particular there exists a unique linear and continuous operator Tep i from flk_g(ﬂ) to H* (Q) which
extends the restriction to H} () of L( 1).
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Proof. Since Lep is a linear homeomorphism from Hg (Q) onto H~'(£2), statement (i) follows by classical elliptic
regularity theory (cf. e.g., Lions and Magenes [21, Thm. 5.4, p. 165]). We now turn to prove statment (ii) by
transposition. Since k < 0, we have 2 — k > 2 and statement (i) implies that ic,b is a linear homeomorphism
from H2~#(Q) N H () onto H*(£2). Since Q is a Lipschitz subset of R”, the space H*() coincides with the
subspace

Hjq ={ue H*(R"): suppu C cl} ,

of H*(R™), for each s € R, and the map from H¥, = H*(Q) to the dual (H—*(Q))’, which takes v € H3g, to
the element of (H*(2))’ defined by

<v,u>E/ oU da Yue H%(Q),

where U is any element of H~*(R") such that Ujq = u is a linear isometry for each s € R (cf. e.g., McLean [23,

Thm 3.14 (i), Thm. 3.29]). Thus H*~2(Q) is homeomorphic to the dual of H2~*(Q) and H*(Q) is homeomor-
phic to the dual of H~*(Q). Next we set

(H**(Q) N H(Q))° = {v € HF2(Q) 1< v,u>=0Yu € HX*(Q)N H&(Q)} ,

and we denote by 7 the canonical projection from H*¥~2(Q) onto the quotient space H*~2(€)/(H>*(Q) N
H(2))°, and by j the inclusion of H27%(Q) N H} () into H2*(Q). Then it is known that the transpose map
j* is linear and continuous from (H27*(Q))" to (H27*(Q) N H}(Q))’, and that

Kerj' = (H25(Q) 1 HA(Q)),
and that the unique linear map (5*)~ such that
jt= () o
is a linear homeomorphism from (H2~%(Q))"/(H?7*(Q) N HZ(2))° onto the dual (H2~*(2) N H}(2))". Now

the transpose map (I}(:;jl))t is a linear homeomorphism from (H27%(Q) N H(2))" onto (H~*(£2))’. Hence the
composite map

1
(Ley ) o (i) om = (L") o
is linear and continuous from (H2~%(Q))’ to (H~*(£2))’, which are canonically isomorphic to H*2(Q) and to
HE(Q), respectively. In particular, there exists ¢ €]0,4+00[ such that

= (-1 .
I@ep) 0 i Mln ey < cullfllzn-sy  VF € HY(S),
with the due canonical indentifications. Thus statement (ii) follows by the equality
(L) o i =L ] ¥ € Hy(9), (35)
which we now turn to prove. Let f € H(Q). It suffices to show that if u € H~*(Q), then
< (L) o'l u>=< Ly [fu> .
Now we have
< (LS 0 gt flu >=< jU 1) LSV u] >=< £ [ul] >=< £, LS,V [u] >,

by definition of transpose map. Indeed, j is an inclusion map. By statement (i) with k replaced by 2 and by
2 — k, and by the membership of f in H}(2) C L%(Q) and of v in H~*(Q), we know that

e=LU Ve BAQNHLHQ),  v=L{"[u e H* Q) nHY(Q).

Then we have

< £ EG ] >=< Leyle] v >= / Fesl€vda.
Q

Since both ¢ and v belong to H2(£2) and have trace equal to 0 on 9, the second Green Identity implies that

/ Feslévdz = / eLeplv] dr =< € Loplt] >=< LGV (/] u >,
Q Q

(cf. e.g., McLean [23, Lem. 4.1, p. 114]). Hence, equality (35) holds true and the proof is complete. O O
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We are now ready for the following.

of statement (iii) of Theorem 5.1. Clearly,

1L ey ol -2y = Zvﬂ 57" < nfollull ge o
H’“*Q(Q)
V(v,u) € D, (R) x H*(Q),
and accordingly, }
||LC(K)*),U||[/(ﬁk(ﬂ),ﬁk—2(9)) <nr Yv € B]D)n(]R) (0, 7“) s

for all  €]0, +-00[. By Theorem 6.3 (ii), the operator T¢(y) 5 % is linear and continuous from H*=2(Q) to H*(Q)
for all b € W. Thus if we choose r €]0, +00] as in Corollary 6.2 and such that r < 27 n =T,
then we have

—1
L(H*=2(Q),H*(Q))’

[Te )b,k © Ly wll om0y, % )
< N Teoy bl er—2(0), i ) | Loty wll 2 (), o2 (0))
< ||TC(,€)7b,k||£(gk_2(9),gk(9))nr < 271 Yv € BDH(R)(O,T‘) .
Hence, the membership of ¢XH) fu(bﬁ) in H(Q) = H'(Q) C H*(Q) implies that the power series in the
right hand side of (34) with (L (s ))bﬁ o LC(R)* b bu) replaced by ( c(k),btk © LC(K)* be bn) is norm convergent

in H*(Q) for all b € ]B%D”(R)(bﬁ, r). Accordingly, the map @c(ﬁ)7k7bn7fu from IB%DH(R)(bﬁ, r) x HF=2(Q) to H*(Q)
defined by

Dy 0t 12 [0, f] = c(n) vtk [F*] + Tegoy o i lf — f1]
J % §
+Z ( o).tk © Loy b—bﬂ) [Pey.pt (0F)]

V(b f) € Bp, ) (b, 7) x H**(),

is real analytic. Since @ (. 1[b*, f] = Te(wy,0t,1Lf] for all f € Hj(Q), then Corollary 6.2 ensures that equality
(19) holds true. O O
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