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Analytic dependence of a periodic analog of a fundamental solution

upon the periodicity parameters∗

M. Lanza de Cristoforis & P. Musolino

Abstract: We prove an analyticity result in Sobolev-Bessel potential spaces for the periodic analog of the
fundamental solution of a general elliptic partial differential operator upon the parameters which determine
the periodicity cell. Then we show concrete applications to the Helmholtz and the Laplace operators. In
particular, we show that the periodic analogs of the fundamental solution of the Helmholtz and of the Laplace
operator are jointly analytic in the spatial variable and in the parameters which determine the size of the
periodicity cell. The analysis of the present paper is motivated by the application of the potential theoretic
method to periodic anisotropic boundary value problems in which the ‘degree of anisotropy’ is a parameter of
the problem.

Keywords: Periodic fundamental solution; Elliptic differential equation; Real analytic dependence; Helmholtz
equation; Laplace equation

MSC 2010: 47H30 42B99 31B10 45A05 35J25

1 Introduction

In this paper, we analyze analyticity properties of an analog of the periodic fundamental solution of an elliptic
operator with constant coefficients jointly in the spatial variable and in the parameters which determine the
size of the periodicity cell. We first introduce some notation. We fix once for all

n ∈ N \ {0, 1} .

Then we take
(q11, . . . , qnn) ∈]0,+∞[n ,

and we introduce a periodicity cell
Q ≡ Πn

j=1]0, qjj [ .

Then we denote by q the diagonal matrix

q ≡


q11 0 . . . 0
0 q22 . . . 0
. . . . . . . . . . . .
0 0 . . . qnn


and by mn(Q) the n-dimensional measure of the fundamental cell Q. Clearly, qZn ≡ {qz : z ∈ Zn} is the set
of vertices of a periodic subdivision of Rn corresponding to the fundamental cell Q, and accordingly, one can
speak about q-periodic functions or distributions in Rn. Next we introduce a family of differential operators.
Let N2 denote the number of multi-indexes α ∈ Nn with |α| ≤ 2. For each c ≡ (cα)|α|≤2 ∈ CN2 , we set

c(2) ≡ (c
(2)
lj )l,j=1,...,n c(1) ≡ (cj)j=1,...,n

∗The authors acknowledge the support of “Progetto di Ateneo: Singular perturbation problems for differential operators –
CPDA120171/12” - University of Padova and the support of “INdAM GNAMPA Project 2015 - Un approccio funzionale analitico
per problemi di perturbazione singolare e di omogeneizzazione”. M. Lanza de Cristoforis acknowledges the support of the grant
EP/M013545/1: “Mathematical Analysis of Boundary-Domain Integral Equations for Nonlinear PDEs” from the EPSRC, UK.
P. Musolino acknowledges the support of an ‘assegno di ricerca INdAM’. P. Musolino has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 663830 and
from the Welsh Government and Higher Education Funding Council for Wales through the Sêr Cymru National Research Network
for Low Carbon, Energy and Environment.
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with c
(2)
lj ≡ 2−1cel+ej for j 6= l, c

(2)
jj ≡ cej+ej , and cj ≡ cej , where {ej : j = 1, . . . , n} is the canonical basis of

Rn. We note that the matrix c(2) is symmetric. If c ∈ CN2 , then we set

P [c, x] ≡
∑
|α|≤2

cαx
α ∀x ∈ Rn .

We also set

E ≡
{
c ≡ (cα)|α|≤2 ∈ CN2 : inf

ξ∈Rn,|ξ|=1
Re

{∑
|α|=2

cαξ
α

}
> 0

}
.

Clearly, E coincides with the set of coefficients c ≡ (cα)|α|≤2 such that the differential operator

P [c, D] ≡
∑
|α|≤2

cαD
α

is strongly elliptic and has complex coefficients. As is well known, if c ∈ E , a q-periodic distribution G is a
q-periodic fundamental solution of P [c, D] provided that

P [c, D]G =
∑
z∈Zn

δqz ,

where δqz denotes the Dirac measure with mass at qz, for all z ∈ Zn.
Unfortunately however, not all operators P [c, D] admit q-periodic fundamental solutions, not even in case

P [c, D] is the Laplace operator.
Instead, if we denote by E2πiξ, the function defined by

E2πiξ(x) ≡ e2πiξ·x ∀x ∈ Rn ,

for all ξ ∈ Rn and if c ∈ E , then one can show that the set

Z(c, q) ≡ {z ∈ Zn : P [c, 2πiq−1z] = 0}

is finite and that the q-periodic distribution

Sc,q ≡
∑

z∈Zn\Z(c,q)

1

mn(Q)

1

P [c, 2πiq−1z]
E2πiq−1z

satisfies the equality

P [c, D](Sc,q) =
∑
z∈Zn

δqz −
∑

z∈Z(c,q)

1

mn(Q)
E2πiq−1z

(cf. e.g., Ammari and Kang [1, p. 53], [16, §3]). Now let c ∈ E be fixed. We are interested into the analysis of
perturbation problems for the kernel Sc,q and into the dependence of Sc,q upon q and the spatial variable x,
and we note that by perturbing q, the set Z(c, q) is not stable. To circumvent such a difficulty, we fix a finite
subset Z of Zn, and we consider those c and q such that Z(c, q) ⊆ Z. Then we note that

Sc,q,Z ≡
∑

z∈Zn\Z

1

mn(Q)

1

P [c, 2πiq−1z]
E2πiq−1z (1)

satisfies the equality

P [c, D](Sc,q,Z) =
∑
z∈Zn

δqz −
∑
z∈Z

1

mn(Q)
E2πiq−1z . (2)

Equality (2) can be considered as an effective substitute of equality (??), and we say that Sc,q,Z is a Z-analog
of a q-periodic fundamental solution of P [c, D].

Clearly, the distribution Sc,q,Z differs from Sc,q by an entire analytic function. Moreover, by interior elliptic
regularity theory, both Sc,q,Z and Sc,q are analytic in the open set Rn \ qZn.

Let Sc be a locally integrable real valued function in Rn such that

P [c, D]Sc = δ0 in Rn ,

2



in the sense of distributions. Then Sc is a fundamental solution for P [c, D] and the function Sc,q,Z − Sc can
be extended to an analytic function in (Rn \ qZn) ∪ {0}.

We denote such an extension of Sc,q,Z−Sc by the symbol Rc,q,Z,Sc , and we say that Rc,q,Z,Sc is the regular
part of Sc,q,Z (with respect to Sc). Obviously, Rc,q,Z,Sc is not a q-periodic function.

In this paper we are interested into various questions on the analyticity of Sc,q,Z and Rc,q,Z,Sc in the variable
(q, x). Here the difficulty is that the series in (1) is known to converge only in the sense of distributions. We
mention that Lin and Wang [20], Mityushev and Adler [24], and Mamode [22] have proved the validity of
a constructive formula for a q-periodic analog of the fundamental solution for the Laplace operator in case
n = 2 via elliptic functions which would imply the analyticity of Sc,q,Z and Rc,q,Z,Sc in the variable (q, x).
However, we are not aware of such formulas for n ≥ 3 or for elliptic differential operators other than the
Laplace operator.

We denote by Dn(R) the space of n×n diagonal matrices with real entries and by D+
n (R) the set of elements

of Dn(R) with diagonal entries in ]0,+∞[.
We note that if we fix s ∈ R such that s− 2 < −(n/2), then Sc,q,Z belongs to the Sobolev-Bessel potential

space of I-periodic functions Hs
I (Rn), and we prove that the map from the set of q in D+

n (R) such that
Z(c, q) ⊆ Z to Hs

I (Rn) which takes q to Sc,q,Z ◦ q is real analytic (see Theorem 3.1). Here I denotes the n×n
identity matrix.

Then as an application we consider the Helmholtz operator ∆ +κ2 for some κ ∈ C, and we denote by c(κ),
the element of E such that P [c(κ), D] = ∆ + κ2 (cf. (14)–(16)). In this paper, we consider only the case in
which κ = 0 and Z(c(0), q) ⊆ Z = {0}, and the case in which κ 6= 0 and Z(c(κ), q) ⊆ Z = ∅, a case in which
−κ2 is not an eigenvalue for ∆ in the space of q-periodic distributions in Rn. Then we prove that if Ω is a
bounded open subset of Rn \Zn, m ∈ N, α ∈]0, 1[, then the map which takes q to the restriction to clΩ of the
function

Sc(κ),q,Z ◦ q(x) ≡ Sc(κ),q,Z(qx) ∀x ∈ Rn \ Zn ,

is real analytic from suitable subsets of D+
n (R) to Cm,α(clΩ) (see Theorem 5.2).

Then we prove an analyticity result for the regular part of Sc(κ),q,Z in the Roumieu space C0
ω,ρ(clΩ) of real

analytic functions in clΩ in case clΩ ⊆ (Rn \ Zn) ∪ {0} (cf. (4) and see Theorem 5.3).
As a consequence of our results, we prove that the function Rc(κ),q,Z,Sc(κ)

(qx) is analytic in the variable
(q, x) (cf. Theorem 5.5), and that Sc(κ),q,Z(qx) is analytic in the variable (q, x) (cf. Theorem 5.7). In particular,
we can deduce that the sum of the series

−
∑

z∈Zn\{0}

1

mn(Q)4π2|q−1z|2
e2πi(q−1z)·x , (3)

which converges in the sense of distributions to an analog of the q-periodic fundamental solution of the Laplace
operator defines an analytic function of (q, x) ∈ D+

n (R)×Rn such that q−1x /∈ Zn, i.e., jointly in the variables
q and x (see Example 5.8 at the end of the paper). For a corresponding example for the Helmholtz operator,
see Example 5.9 at the end of the paper.

A central tool in periodic potential theory is represented by analogs of the periodic fundamental solution.
As an example, Ammari, Kang, and Touibi [3] have exploited an integral equation method to solve a periodic
linear transmission problem for the Laplace equation and to derive effective properties of composite materials.
Such an approach has been successfully exploited also for the study of the effective parameters of elastic
composites in Ammari, Kang, and Lim [2] (see also Ammari and Kang [1]).

An approach based on potential theory has been useful also for the analysis of nonlinear periodic problems.
For example, in [18] a quasi linear heat transmission problem has been investigated by means of integral
equations, whereas in [10] such an analysis has been performed for a nonlinear traction problem.

We also mention that Arens, Sandfort, Schmitt, and Lechleite [4], Berman and Greengard [5], Tornberg
and Greengard [26] have investigated the problem of actually computing the sum of series as that of (3).

The analysis of the present paper is motivated by the application of the potential theoretic method to
boundary value problems corresponding to anisotropic periodic problems in which the sizes q11,. . . ,qnn of the
periodic cell are subject to perturbation. Indeed, if one wants to apply periodic potential theory to study
the dependence of the solution of a periodic boundary value problem upon the parameters q11,. . . ,qnn which
determine the anisotropy of the problem, then one faces the problem to study the corresponding dependence
for the fundamental solution on which the potentials are based. In particular, an analyticity result upon the
parameters q11,. . . ,qnn allows to to justify representation formulas for the solutions or for functionals related
to the solutions in terms of power series in q11,. . . ,qnn and therefore also polynomial asymptotic expansions of
any desired degree with precise estimates on the remainder.

This paper continues the work of the authors and collaborators on the study of the behavior of the funda-
mental solution of an elliptic partial differential operator upon perturbation of the coefficients. For example,
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in [7], Dalla Riva has constructed a family of fundamental solutions for elliptic partial differential operators
with real constant coefficients, where the elements of such a family are expressed by means of real analytic
functions of the coefficients of the operators and of the spatial variable. Then a corresponding result for elliptic
partial differential operators with quaternion constant coefficients has been shown in [9].

The paper is organized as follows. In section 2 we introduce some preliminaries, in particular on periodic
distributions. In section 3, we prove the analyticity result on Sc,q,Z ◦ q upon q ∈ D+

n (R) in Sobolev-Bessel
spaces. In section 4 we compute all the differentials of a map related to Sc,q,Z ◦ q, which we need in the sequel.

In section 5 we consider the Helmholtz operator. We first prove the above mentioned analyticity result for
Sc(κ),q,Z ◦ q|clΩ, with values in Cm,α(clΩ).

Then we prove the analyticity of Rc(κ),q,Z,Sc(κ)
◦q|clΩ upon q in Roumieu spaces and the joint analyticity of

the function Rc(κ),q,Z,Sc
(qx) upon (q, x). Finally, we prove the analyticity Sc(κ),q,Z ◦ q|clΩ upon q in Roumieu

spaces and the joint analyticity of the function Sc(κ),q,Z(qx) upon (q, x).

2 Preliminaries and notation

We denote the norm on a normed space X by ‖ · ‖X . Let X and Y be normed spaces. We endow the space
X ×Y with the norm defined by ‖(x, y)‖X×Y ≡ ‖x‖X +‖y‖Y for all (x, y) ∈ X ×Y, while we use the Euclidean
norm for Rn. The symbol N denotes the set of natural numbers including 0. L(j)(X ,Y) denotes the space
of j-linear and continuous operators from X j to Y for all j ∈ N. Let E ⊆ Rn. Then clE denotes the closure
of E and ∂E denotes the boundary of E. For all R > 0, x ∈ Rn, xj denotes the j-th coordinate of x, |x|
denotes the Euclidean modulus of x in Rn, and Bn(x,R) denotes the ball {y ∈ Rn : |x − y| < R}. A dot “·”
denotes the inner product in Rn, or the matrix product between matrices. Let Ω be an open subset of Rn.
The space of m times continuously differentiable complex-valued functions on Ω is denoted by Cm(Ω,R), or
more simply by Cm(Ω). Let r ∈ N \ {0}. Let f ∈ (Cm(Ω))

r
. The s-th component of f is denoted fs, and Df

denotes the Jacobian matrix
(
∂fs
∂xl

)
s=1,...,r,
l=1,...,n

. Let η ≡ (η1, . . . , ηn) ∈ Nn, |η| ≡ η1 + · · ·+ ηn. Then Dηf denotes

∂|η|f
∂x
η1
1 ...∂xηnn

. We denote by D(Rn) the space of functions of class C∞(Rn) with compact support. The subspace

of Cm(Ω) of those functions f whose derivatives Dηf of order |η| ≤ m can be extended with continuity to clΩ
is denoted Cm(clΩ). The subspace of Cm(clΩ) whose functions have m-th order derivatives that are Hölder
continuous with exponent α ∈]0, 1] is denoted Cm,α(clΩ) (cf. e.g., Gilbarg and Trudinger [13]). Let E ⊆ Rr.
Then Cm,α(clΩ,E) denotes {f ∈ (Cm,α(clΩ))

r
: f(clΩ) ⊆ E}.

We say that a bounded open subset Ω of Rn is of class Cm or of class Cm,α, if clΩ is a manifold with
boundary imbedded in Rn of class Cm or Cm,α, respectively (cf. e.g., Gilbarg and Trudinger [13, §6.2]). For
standard properties of functions in Schauder spaces both on clΩ and on ∂Ω, we refer the reader to Gilbarg
and Trudinger [13] (see also [15, §2, Lem. 3.1, 4.26, Thm. 4.28], [19, §2]).

We denote by dσ the area element of a manifold M imbedded into Rn. We retain the standard notation
for the Lebesgue space Lp(M) of p-summable functions. We note that throughout the paper ‘analytic’ means
always ‘real analytic’. For the definition and properties of analytic operators, we refer to Deimling [11, §15].

Next, we turn to introduce the Roumieu classes. For all bounded open subsets Ω of Rn and ρ > 0, we set

C0
ω,ρ(clΩ) ≡

{
u ∈ C∞(clΩ) : sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clΩ) < +∞

}
, (4)

and

‖u‖C0
ω,ρ(clΩ) ≡ sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clΩ) ∀u ∈ C0

ω,ρ(clΩ) ,

where |β| ≡ β1+· · ·+βn for all β ≡ (β1, . . . , βn) ∈ Nn. As is well known, the Roumieu class
(
C0
ω,ρ(clΩ), ‖ · ‖C0

ω,ρ(clΩ)

)
is a Banach space.

We denote by S(Rn) the Schwartz space of rapidly decreasing functions, and by S ′(Rn) the space of
tempered distributions in Rn, and by S ′I(Rn) the subspace of S ′(Rn) of the I-periodic elements of S ′(Rn), i.e.,
of the tempered distributions which are periodic with respect to the fundamental cell ]0, 1[n. If f is a complex
valued integrable function in Rn, then we define the Fourier transform of f as follows

f̂(y) ≡ (2π)−n/2
ˆ
Rn
e−iy·xf(x) dx ∀y ∈ Rn ,

and we still use the symbol ‘ ˆ ’ to denote the corresponding Fourier transform in the space of tempered
distributions. Next we introduce the following characterization of S ′I(Rn) of Triebel [27] (see also Schmeisser
and Triebel [25, 3.2.3]).
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Proposition 2.1. If {az}z∈Zn is a family of complex numbers such that there exists m ∈ N such that

sup
z∈Zn

|az|
(1 + |z|2)m/2

< +∞ , (5)

then the Fourier series ∑
z∈Zn

aze
i2πz·x (6)

converges in S ′(Rn) endowed with the weak∗-topology to an element of S ′I(Rn).
Conversely, if u ∈ S ′I(Rn), then there exists a unique family {az(u)}z∈Zn in C which satisfies condition

(5) for some m ∈ N and such that u equals the sum of the Fourier series in (6) with az replaced by az(u).
Moreover,

ak(u) = (2π)−n/2 < u, [ϕ(· − 2πk)]
∧
> ∀k ∈ Zn , (7)

for all ϕ ∈ D(Rn) which have support contained in the ball Bn(0, 2π) and such that ϕ(0) = 1.

We also note that the map from S ′I(Rn) endowed with the weak∗-tolology to C which takes u to ak(u) is
linear and continuous for all k ∈ Zn.

If s ∈ R, then we denote by Hs(Rn) the Sobolev-Bessel space of tempered distributions u such that
(1 + |y|2)s/2û(y) belongs to L2(Rn), and we set

‖u‖Hs(Rn) ≡ ‖(1 + |y|2)s/2û(y)‖L2(Rn) ∀u ∈ Hs(Rn) .

It is well known that (Hs(Rn), ‖ · ‖Hs(Rn)) is a Banach space. Then we set

Hs
loc(Rn) ≡ {u ∈ S ′(Rn) : uϕ ∈ Hs(Rn) ∀ϕ ∈ D(Rn)} ,

and
‖u‖Hsloc(Rn),ϕ ≡ ‖uϕ‖Hs(Rn) ∀u ∈ Hs

loc(Rn) ,

for all ϕ ∈ D(Rn). Then it is well known that Hs
loc(Rn) endowed with the family of seminorms Φ ≡ {‖ ·

‖Hsloc(Rn),ϕ : ϕ ∈ D(Rn)} is a Fréchet space. Next we introduce the space

Hs
I (Rn) ≡ Hs

loc(Rn) ∩ S ′I(Rn) .

Clearly, Hs
I (Rn) is a closed subspace of the Fréchet space Hs

loc(Rn) and is accordingly a Fréchet space. Next
we fix an arbitrary η ∈ D(Rn) such that there exists an open neighborhood U of [0, 1]n such that

η(x) = 1 ∀x ∈ U . (8)

Since the tempered distributions of Hs
I (Rn) are I-periodic, one can easily verify that ‖ · ‖Hsloc(Rn),η is actually

a norm on Hs
I (Rn). Since ‖ · ‖Hsloc(Rn),η belongs to Φ and Hs

I (Rn) is a Fréchet space, we already know that
(Hs

I (Rn), ‖ · ‖Hsloc(Rn),η) is complete. Then the Open Mapping Theorem in Fréchet spaces implies that the
continuous identity map from (Hs

I (Rn),Φ) to (Hs
I (Rn), ‖ · ‖Hsloc(Rn),η) is actually a homeomorphism and that

accordingly ‖ · ‖Hsloc(Rn),η generates the topology of the Fréchet space (Hs
I (Rn),Φ), no matter how we choose

η ∈ D(Rn) as in (8).
Now let Ω be an open subset of Rn, then we denote by Hs(Ω) the set of restrictions to Ω of the tempered

distributions of Hs(Rn), and we set

‖u‖Hs(Ω) ≡ inf{‖v‖Hs(Rn) : v ∈ Hs(Rn), v|Ω = u} ∀u ∈ Hs(Ω) .

It is well known that (Hs(Ω), ‖ · ‖Hs(Ω)) is a Banach space. We note that such a definition of Hs(Ω) coincides
with other ‘intrinsic’ definitions of Hs(Ω) only in case Ω satisfies some regularity assumption.

If Ω is a bounded open subset of Rn, and if we choose η ∈ D(Rn) as in (8) such that η equals one in a
neighborhood of clΩ, then the definition of the norm in Hs(Ω) implies that the restriction map is linear and
continuous from Hs

I (Rn) to Hs(Ω) and that

‖u|Ω‖Hs(Ω) ≤ ‖u‖Hsloc(Rn),η ∀u ∈ Hs
I (Rn) . (9)

If c ∈ E , q ∈ D+
n (R), then we set

Lc,q[u] ≡
∑
|α|≤2

(q−1)αcαD
αu ∀u ∈ S ′(Rn) ,

where (q−1)α ≡ q−α1
11 . . . q−αnnn for all α ∈ Nn, and we have the following.
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Lemma 2.2. Let c ∈ E. Let Sc be a fundamental solution for P [c, D]. Let q ∈ D+
n (R). Let Z be a finite

subset of Zn such that Z(c, q) ⊆ Z. Then the following statements hold.

(i)

Lc,q[(det q)Sc,q,Z ◦ q] = −
∑
z∈Z

E2πiz in Rn \ Zn ,

and
Lc,q[(det q)Rc,q,Z,Sc ◦ q] = −

∑
z∈Z

E2πiz in (Rn \ Zn) ∪ {0} .

(ii) Lc,q[(det q)Sc,q,Z ◦ q] =
∑
z∈Zn δz −

∑
z∈Z E2πiz in S ′(Rn).

(iii) ak(
∑
z∈Zn δz −

∑
z∈Z E2πiz) = 0 for all k ∈ Z (cf. (7)).

Proof. The first equality in (i) follows by the chain rule. Since Lc,q[(det q)Sc ◦ q] = 0 in Rn \ {0}, the second
equality in statement (i) holds true in Rn \Zn. Since Rc,q,Z,Sc can be continued analytically in a neighborhood
of 0, the second equality in statement (i) holds true in (Rn \ Zn) ∪ {0}. We now prove statement (ii). The
equality of statement (ii) holds if and only if∑

|α|≤2

(−q−1)αcα

ˆ
Rn

(det q)Sc,q,Z(qξ)Dαψ(ξ) dξ

=
∑
z∈Zn

ψ(q−1qz)−
∑
z∈Z

ˆ
Rn
ψ(ξ)ei2πz·ξ dξ ,

for all ψ ∈ S(Rn). By setting x = qξ, we rewrite such an equality as

ˆ
Rn
Sc,q,Z(x)

∑
|α|≤2

(−1)|α|cαD
α(ψ(q−1x)) dx

=
∑
z∈Zn

< δqz, ψ(q−1·) > −
∑
z∈Z

ˆ
Rn
ψ(q−1x)ei2πq

−1z·x dx(det q)−1 ,

for all ψ ∈ S(Rn). Now such an equality is certainly satisfied. Indeed, ψ(q−1·) belongs to S(Rn) and

P [c, D]Sc,q,Z =
∑
z∈Zn

δqz −
∑
z∈Z

1

mn(Q)
E2πiq−1z in S ′(Rn) .

Finally, to prove statement (iii), we note that the Poisson summation formula implies that

ak

(∑
z∈Zn

δz −
∑
z∈Z

E2πiz

)
= ak

(∑
z∈Zn

E2πiz −
∑
z∈Z

E2πiz

)
= 0 ,

for all k ∈ Z.

Then we find convenient to introduce the following notation. Let Z be a finite subset of Zn. For each
s ∈ R, we set

Hs
I,Z(Rn) ≡ {u ∈ Hs

I (Rn) : ak(u) = 0 ∀k ∈ Z}

(cf. (7)). By the continuity of the functionals ak(·) of (7) on S ′I(Rn), the space Hs
I,Z(Rn) is closed in Hs

I (Rn),
and it is accordingly a Banach space. Then we need the following result on the operator Lc,q in the space
S ′I(Rn) of I-periodic tempered distributions.

Proposition 2.3. Let c ∈ E. Let q ∈ D+
n (R). Let Z be a finite subset of Zn such that Z(c, q) ⊆ Z. Then the

following statements hold.

(i) Let u ∈ S ′I(Rn). Then Lc,q[u] = 0 if and only if u belongs to the complex vector space generated by
{E2πik : k ∈ Z(c, q)}.

(ii) Let f ∈ S ′I(Rn). Then there esists u ∈ S ′I(Rn) such that f = Lc,q[u] if and only if ak(f) = 0 for all
k ∈ Z(c, q) (cf. (7)). Moreover, if ak(f) = 0 for all k ∈ Z we can choose u so that ak(u) = 0 for all
k ∈ Z.
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(iii) Let s ∈ R. Then the operator Lc,q maps Hs
I (Rn) onto the subspace Hs−2

I,Z(c,q)(R
n) of Hs−2

I (Rn), and

restricts a linear homeomorphism from the space Hs
I,Z(Rn) onto Hs−2

I,Z (Rn).

Proof. (i) The sufficiency of the condition follows by the chain rule and by the definition of Z(c, q). To prove
necessity, we note that equality Lc,q[u] = 0 implies that

P [c, D]u(q−1·) = 0 .

On the other hand, by Proposition 2.1 there exists a unique family {az(u)}z∈Zn in C as in (5) such that

u(q−1·) =
∑
z∈Zn

az(u)E2πiq−1z in S ′(Rn) .

Accordingly,

0 = P [c, D]u(q−1·) =
∑
z∈Zn

az(u)P [c, 2πiq−1z]E2πiq−1z

and so
az(u)P [c, 2πiq−1z] = 0 ∀z ∈ Zn .

Thus, az(u) = 0 for all z ∈ Zn \ Z(c, q). Hence, the validity of statement (i) follows.
(ii) We first assume that u exists. Then Proposition 2.1 implies that there exist m ∈ N and a family of

complex numbers {bz}z∈Zn satisfying condition (5) and equality u =
∑
z∈Zn bze

i2πz·x in S ′(Rn) endowed with
the weak∗-topology. Then by applying Lc,q, we obtain

Lc,q[u] =
∑

z∈Zn\Z(c,q)

(
P [c, 2πiq−1z]

)
bze

i2πz·x

and accordingly ak(Lc,q[u]) = 0 for all k ∈ Z(c, q).
Next we assume that ak(f) = 0 for all k ∈ Z and we show the existence of u. By Proposition 2.1 there exist

m ∈ N and a family of complex numbers {az}z∈Zn satisfying condition (5) and equality f =
∑
z∈Zn aze

i2πz·x

in S ′(Rn) endowed with the weak∗-topology. Since ak(f) = 0 for all k ∈ Z, we have ak = 0 for all k ∈ Z.
Then we set

bk ≡ 0 ∀k ∈ Z , bz ≡
az

P [c, 2πiq−1z]
∀z ∈ Zn \ Z .

Clearly, {bz}z∈Zn satisfies condition (5) with m replaced by m− 2, and accordingly the series
∑
z∈Zn bze

i2πz·x

converges in the weak∗-topology and defines a I-periodic element u of S ′(Rn). Moreover, ak(u) = 0 for all
k ∈ Z. By definition of the coefficients {bz}z∈Zn , we have Lc,q[u] = f .

(iii) Since Hs
I (Rn) = Hs

loc(Rn)∩S ′I(Rn), the second order differential operator Lc,q is linear and continuous
from Hs

I (Rn) to Hs−2
I (Rn). By (ii), Lc,q maps Hs

I (Rn) into Hs−2
I,Z(c,q)(R

n). On the other hand if f ∈ Hs−2
I (Rn)

and ak(f) = 0 for all k ∈ Z(c, q), then statement (ii) ensures the existence of u ∈ S ′I(Rn) such that f = Lc,q[u]
and ak(u) = 0 for all k ∈ Z(c, q). Since f ∈ Hs−2

loc (Rn), then classical elliptic regularity theory ensures that
u ∈ Hs

loc(Rn) (cf. e.g., Folland [12, (6.33), p. 214]). Thus we conclude that u ∈ Hs
loc(Rn) ∩ S ′I(Rn) = Hs

I (Rn).
Similarly, (ii) implies that Lc,q maps Hs

I,Z(Rn) onto Hs−2
I,Z (Rn). If u ∈ Hs

I (Rn), and Lc,q[u] = 0, and ak(u) = 0
for all k ∈ Z, then point (i) ensures that u belongs to the complex vector space generated by {E2πik : k ∈
Z(c, q)} and thus condition ak(u) = 0 for all k ∈ Z ensures that u = 0. Since both Hs

I,Z(Rn) and Hs−2
I,Z (Rn)

are closed subspaces of Banach spaces, they are Banach spaces and the Open Mapping Theorem ensures that
also the last part of statement (iii) holds true.

3 An analyticity result for (det q)Sc,q,Z ◦q in Sobolev-Bessel potential
spaces

Theorem 3.1. Let c ∈ E. Let s ∈ R be such that s− 2 < −n/2. Let Z be a finite subset of Zn. Let W be an

open subset of D+
n (R) such that Z(c, q) ⊆ Z for all q ∈ W. Then the map S]I,c,Z from W to Hs

I,Z(Rn) defined
by

S]I,c,Z(q) ≡ (det q)Sc,q,Z ◦ q ∀q ∈ W ,

is real analytic.
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Proof. Let q ∈ W. We first prove that (det q)Sc,q,Z ◦ q is the only I-periodic tempered distribution in Rn
which satisfies the following system{

Lc,q[v] =
∑
z∈Zn δz −

∑
z∈Z E2πiz ,

ak(v) = 0 ∀k ∈ Z . (10)

By Lemma 2.2 (ii), (det q)Sc,q,Z ◦ q satisfies the first equation in (10). Moreover, (1) implies that

ak((det q)Sc,q,Z ◦ q) = 0 ∀k ∈ Z .

Hence, (det q)Sc,q,Z ◦ q satisfies system (10). Next we assume that v is an I-periodic tempered distribution in
Rn which satisfies system (10). Then

Lc,q[v − (det q)Sc,q,Z ◦ q] = 0 ,

and Proposition 2.3 (i) ensures that v − (det q)Sc,q,Z ◦ q belongs to the complex vector space generated by
{E2πik : k ∈ Z(c, q)}, and the second equation in (10) ensures that v − (det q)Sc,q,Z ◦ q = 0.

Next we show that the right hand side of the first equation in system (10) belongs to Hs−2
I (Rn). Since

s− 2 < −n/2, we have δz ∈ Hs−2(Rn) for all z ∈ Zn. Hence,
∑
z∈Zn δz belongs to Hs−2

loc (Rn). Since
∑
z∈Zn δz

is obviously I-periodic, we also have
∑
z∈Zn δz ∈ Hs−2

I (Rn). Accordingly, the right hand side of the first

equation in system (10) belongs to Hs−2
I (Rn).

Since (det q)Sc,q,Z ◦ q is the only tempered distribution which satisfies system (10), the membership of the
right hand side of the first equation in system (10) to Hs−2

I (Rn) and Proposition 2.3 imply in particular that
(det q)Sc,q,Z ◦ q belongs to Hs

I (Rn) and that (det q)Sc,q,Z ◦ q is the only element of Hs
I (Rn) which satisfies

system (10).
Next we consider the map A from W ×Hs

I,Z(Rn) to the space Hs−2
I,Z (Rn) defined by the equality

A(q, v) ≡ Lc,q[v]−
∑
z∈Zn

δz +
∑
z∈Z

E2πiz

for all (q, v) ∈ W ×Hs
I,Z(Rn). By our proof above, the set of zeros of A coincides with the graph of S]I,c,Z .

Moreover, A is real analytic and if q ∈ W, then partial the Fréchet differential dvA(q, S]I,c,Z [q]) of A at the

point (q, S]I,c,Z [q]) with respect to the variable v coincides with the map Lc,q from Hs
I,Z(Rn) to Hs−2

I,Z (Rn),
which is a linear homeomorphism by Proposition 2.3 (iii). Then the Implicit Function Theorem in Banach

spaces implies that S]I,c,Z is real analytic (cf. e.g., Deimling [11, Thm. 15.3]).

4 Explicit computation of the differentials of a map related to
(det q)Sc,q,Z ◦ q for a particular class of elliptic differential oper-
ators

We now introduce the set

E0 ≡
{
c ≡ (cα)|α|≤2 ∈ E : cα = 0 if |α| = 1

and cα = 0 if α = el + ej with j, l ∈ {1, . . . , n}, j 6= l

}
.

Let c ∈ E0, q ∈ D+
n (R). Since we will soon have to perform computations involving high order derivatives, we

find convenient to set

L̃c,b[v] ≡
n∑
j=1

bjjc
(2)
jj

∂2

∂x2
j

v + c0v ∀v ∈ Hs
I (Rn) ,

for all b ∈ Dn(R) and s ∈ R. Obviously,

L̃c,q−2 = Lc,q q ∈ D+
n (R) , L̃c,b = Lc,b−1/2 ∀b ∈ D+

n (R) ,

where q−2 denotes the diagonal matrix with diagonal entries q−2
ij , j = 1, . . . , n, and where b−1/2 denotes the

diagonal matrix with diagonal entries b
−1/2
jj , j = 1, . . . , n. We also note that

Lc,q [(det q)Sc,q,Z ◦ q] = Lc,b−1/2

[
(det b−1/2)Sc,b−1/2,Z ◦ b−1/2

]
8



whenever b = q−2, q ∈ D+
n (R), and that accordingly equality

Lc,q [(det q)Sc,q,Z ◦ q] =
∑
z∈Zn

δz −
∑
z∈Z

E2πiz ∀q ∈ D+
n (R) ,

is equivalent to the equality

Lc,b−1/2

[
(det b−1/2)Sc,b−1/2,Z ◦ b−1/2

]
=
∑
z∈Zn

δz −
∑
z∈Z

E2πiz ∀b ∈ D+
n (R) ,

an equality which we rewrite in the form

L̃c,b

[
(det b−1/2)Sc,b−1/2,Z ◦ b−1/2

]
=
∑
z∈Zn

δz −
∑
z∈Z

E2πiz ∀b ∈ D+
n (R) . (11)

We also note that the following commutativity property holds.

Lemma 4.1. Let c, c] ∈ E0. Let b ∈ D+
n (R). Let Z be a finite subset of Zn such that Z(c, b−1/2) ⊆ Z. Let

s ∈ R. Then L̃c,b restricts a linear homeomorphism from Hs
I,Z(Rn) onto Hs−2

I,Z (Rn) and

L̃c,b ◦ (L̃
(−1)
c,b ◦ L̃c],v)[u] = (L̃

(−1)
c,b ◦ L̃c],v) ◦ L̃c,b[u] ∀u ∈ Hs

I,Z(Rn) ,

for all v ∈ Dn(R).

Proof. The first part of the statement is an immediate consequence of Proposition 2.3 (iii). In order to

prove the formula of the statement, we set u1 ≡ L̃
(−1)
c,b ◦ L̃c],v[u]. Then we have L̃c,b[u1] = L̃c],v[u]. Since

L̃c,b ◦ L̃c],v = L̃c],v ◦ L̃c,b, we have L̃c,b ◦ L̃c,b[u1] = L̃c],v ◦ L̃c,b[u] and thus the formula of the statement
follows.

If c ∈ E0, we denote by c∗ the element of E0 defined by

c∗α = cα if |α| = 2, c∗α = 0 if |α| < 2.

Then we have the following, which provides a formula for the composite function S×I,c,Z of S]I,c,Z and of b−1/2

at the point b computed at (v1, . . . , vj) with v1 = · · · = vj ≡ v for all natural numbers j, which we need to
write the Taylor formula for S×I,c,Z at the point b.

Proposition 4.2. Let c ∈ E0. Let s ∈ R be such that s− 2 < −n/2. Let Z be a finite subset of Zn. Let W̃ be

an open subset of D+
n (R) such that Z(c, b−1/2) ⊆ Z for all b ∈ W̃. Let S×I,c,Z be the map from W̃ to Hs

I (Rn)
defined by

S×I,c,Z(b) ≡ S]I,c,Z(b−1/2) ∀b ∈ W̃ .

Then the following statements hold.

(i) L̃c,b[S
×
I,c,Z(b)] =

∑
z∈Zn δz −

∑
z∈Z E2πiz for all b ∈ W̃.

(ii) Let j ∈ N \ {0}. The j-order differential of the map S×I,c,Z at the point b satisfies the equality

L̃c,b

djS×I,c,Z(b)[

j times︷ ︸︸ ︷
v, . . . , v]

 = −jL̃c∗,v

dj−1S×I,c,Z(b)[

(j − 1) times︷ ︸︸ ︷
v, . . . , v ]

 ,
for all b ∈ W̃ and v ∈ Dn(R).

(iii) Let b ∈ W̃. Then

djS×I,c,Z(b)[

j times︷ ︸︸ ︷
v, . . . , v] = (−1)jj!

(
L̃

(−1)
c,b ◦ L̃c∗,v

)j
[S×I,c,Z(b)] ∀v ∈ Dn(R) .

for all j ∈ N.
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(iv) Let b ∈ W̃. Then

L̃c,b

djS×I,c,Z(b)[

j times︷ ︸︸ ︷
v, . . . , v]

 = (−1)jj!
(
L̃

(−1)
c,b ◦ L̃c∗,v

)j [ ∑
z∈Zn

δz −
∑
z∈Z

E2πiz

]
for all v ∈ Dn(R) and j ∈ N \ {0}.

(v) Let j ∈ N \ {0}. If b ∈ W̃ and v ∈ Dn(R), then the function djS×I,c,Z(b)[v, . . . , v] is real analytic in
Rn \ Zn.

Proof. Statement (i) is an immediate consequence of equality (11). We now prove statement (ii). Since

L̃c,b

[
S×I,c,Z(b)

]
= L̃c∗,b

[
S×I,c,Z(b)

]
+ c0S

×
I,c,Z(b)

and L̃c∗,b[v] is bilinear in the variable (b, v), and S×I,c,Z is differentiable, we can differentiate with respect to b
and obtain

dj
{
L̃c,b

[
S×I,c,Z(b)

]}
[v, . . . , v] =

(
j
0

)
L̃c,b

[
djS×I,c,Z(b)[v, . . . , v]

]
+

(
j
1

)
L̃c∗,v

[
dj−1S×I,c,Z(b)[v, . . . , v]

] (12)

for all (b, v) ∈ W̃ × Dn(R) and j ∈ N \ {0}. By (i), we have

dj
{
L̃c,b

[
S×I,c,Z(b)

]}
[v, . . . , v] = 0

for all (b, v) ∈ W̃ × Dn(R) and j ∈ N \ {0}, and thus statement (ii) holds true.
We now prove statement (iii), and we argue by induction on j. If j = 0, then the statement is obvious. We

now assume that the statement holds for j and we prove it for j + 1. By statement (ii) and by the inductive
assumption, we have

L̃c,b

[
dj+1S×I,c,Z(b)[v, . . . , v]

]
= −(j + 1)L̃c∗,v

[
djS×I,c,Z(b)[v, . . . , v]

]
= −(j + 1)L̃c∗,v

[
(−1)jj!

(
L̃

(−1)
c,b ◦ L̃c∗,v

)j
[S×I,c,Z(b)]

]
= (−1)j+1(j + 1)!L̃c∗,v ◦

(
L̃

(−1)
c,b ◦ L̃c∗,v

)j
[S×I,c,Z(b)] ∀v ∈ Dn(R) . (13)

Since S×I,c,Z and its differentials have values in Hs
I,Z(Rn), we can apply L̃

(−1)
c,b to both hand sides, and obtain

the formula of the statement with (j + 1) (cf. Proposition 2.3 (iii)).
Next we prove statement (iv). By statements (i),(iii) and by Lemma 4.1, we have

L̃c,b

[
djS×I,c,Z(b)[v, . . . , v]

]
= L̃c,b

[
(−1)jj!

(
L̃

(−1)
c,b ◦ L̃c∗,v

)j
[S×I,c,Z(b)]

]
= (−1)jj!

(
L̃

(−1)
c,b ◦ L̃c∗,v

)j
◦ L̃c,b[S

×
I,c,Z(b)]

= (−1)jj!
(
L̃

(−1)
c,b ◦ L̃c∗,v

)j [ ∑
z∈Zn

δz −
∑
z∈Z

E2πiz

]
,

for all v ∈ Dn(R) and j ∈ N \ {0}, and thus statement (iv) holds true. Statement (v) is an immediate
consequence of statement (iv), and of the analyticity of

∑
z∈Zn δz −

∑
z∈Z E2πiz in Rn \ Zn, and of classical

elliptic regularity theory.

5 Applications to the Helmholtz equation

5.1 An analyticity result in Schauder spaces

In this subsection we consider a concrete application of the results of Section 3 to the periodic analog of the
fundamental solution of the Helmholtz equation. In order to do so, if κ ∈ C, we define c(κ) = (cα(κ))|α|≤2 ∈
CN2 by setting

cej+ej (κ) ≡ 1 , ∀j ∈ {1, . . . , n} , (14)
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and
cel+ej (κ) ≡ 0 ceh(κ) ≡ 0 , ∀h, j, l ∈ {1, . . . , n} , l 6= j , (15)

and
c0(κ) ≡ κ2 . (16)

Thus, if κ ∈ C, we have c(κ) ∈ E0 and
P [c(κ), D] = ∆ + κ2 .

Then, a straightforward computation shows that

Z(c(κ), q) ≡ {z ∈ Zn : κ2 = 4π2|q−1z|2} , (17)

and we note that Z(c(κ), q) is not empty precisely when −κ2 is an eigenvalue of the Laplace operator in the
space of q-periodic distributions in Rn (see Proposition 2.3 (i)). We also note that

L̃c(κ),b =

n∑
j=1

bjj
∂2

∂x2
j

+ κ2 ∀b ∈ Dn(R) .

In order to proceed we need to introduce some Sobolev-Bessel potential spaces on a domain. Let Ω be an
open subset of Rn. If s ∈ R, we denote by H̃s(Ω) the closure of D(Ω) in Hs(Rn), and we endow H̃s(Ω) with
the norm of Hs(Rn). Instead, as customary, we denote by Hs

0(Ω) the closure of D(Ω) in Hs(Ω) (see also
McLean [23, p. 77]).

Then we have the following technical statement, which we prove in the Appendix.

Theorem 5.1. Let κ ∈ C. Let Ω be a bounded open Lipschitz subset of Rn. Let W be an open subset of D+
n (R)

such that {
u ∈ H1

0 (Ω) : L̃c(κ),b[u] = 0
}

= {0} ∀b ∈ W . (18)

Then the following statements hold.

(i) Let k ∈ N \ {0}. If Ω is of class Ck−1,1 and b ∈ W, then L̃c(κ),b is a linear homeomorphism from

Hk(Ω) ∩H1
0 (Ω) onto Hk−2(Ω).

(ii) Let k ∈ N \ {0}. If Ω is of class Ck−1,1, then the map Φc(κ),k from W × Hk−2(Ω) to Hk(Ω) ∩ H1
0 (Ω)

which takes (b, f) to the unique element v ∈ Hk(Ω) ∩H1
0 (Ω) such that L̃c(κ),b[v] = f is real analytic.

(iii) Let k ∈ Z, k ≤ 0. Let Ω be of class C1−k,1. If (b], f ]) ∈ W ×H1
0 (Ω), then there exists r ∈]0,+∞[ such

that clBDn(R)(b
], r) ⊆ W and a real analytic map Φ̃c(κ),k,b],f] from BDn(R)(b

], r) × H̃k−2(Ω) to H̃k(Ω)
such that

Φ̃c(κ),k,b],f] [b, f ] = Φc(κ),1[b, f ] ∀(b, f) ∈ BDn(R)(b
], r)×H1

0 (Ω) . (19)

Then we can prove the following.

Theorem 5.2. Let m ∈ N, α ∈]0, 1[. Let κ ∈ C. Let Z be a finite subset of Zn. Let W̃ be an open

subset of D+
n (R) such that Z(c(κ), b−1/2) ⊆ Z for all b ∈ W̃. Let Ω be a bounded open subset of Rn such

that clΩ ⊆ Rn \ Zn. Then the map from W̃ to Cm,α(clΩ), which takes b to the restriction RΩS
×
I,c(κ),Z(b) of

S×I,c(κ),Z(b) to Ω is real analytic.

Proof. Let s ∈ Z be such that s− 2 < −n/2. By the Sobolev Imbedding Theorem, it suffices to show that the

map from W̃ to Hs+k(Ω) which takes b to RΩS
×
I,c(κ),Z(b) is analytic for all bounded open subsets of Rn such

that clΩ ⊆ Rn \ Zn and for all k ∈ N. Then the validity of the statement of the theorem for any m ∈ N and
α ∈]0, 1[ would follow by a proof which is indeed independent of m and α.

Case k = 0 is an immediate consequence of Theorem 3.1. Indeed, the restriction operator from Hs
I (Rn) to

Hs(Ω) is linear and continuous and thus analytic (cf. (9)). We now assume that the statement holds for k
and we prove it for k + 1. Since for every Ω as above there exists ζ ∈ D(Rn \ Zn) which equals 1 on an open

neighborhood of clΩ, it clearly suffices to show that if ζ ∈ D(Rn \Zn) and if b1 ∈ W̃, then there exists an open

neighborhood W̃1 of b1 contained in W̃ and a bounded open subset Ω1 of Rn of class C∞ such that

supp ζ ⊆ Ω1 ⊆ clΩ1 ⊆ Rn \ Zn , (20)

and such that the map from W̃1 to Hs+k+1(Ω1) which takes b to ζS×I,c(κ),Z(b) is analytic. Indeed, the restriction

map is linear and continuous and ζ is a multiplier for all Sobolev spaces on an open subset which contains the
support of ζ.
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We take an arbitrary bounded open subset Ω1 of Rn of class C∞ such that (20) holds. Possibly replac-
ing Ω1 by a dilation of Ω1 close to the identity, we can assume that −κ2 is not a Dirichlet eigenvalue for∑n
j=1(b1)jj

∂2

∂x2
j

in Ω1. Indeed the spectrum of the elliptic operator
∑n
j=1(b1)jj

∂2

∂x2
j

with Dirichlet boundary

conditions in a bounded open subset of Rn of class C∞ is discrete and the eigenvalues scale by a positive
factor if the open set undergoes a dilation by a positive factor. Since −κ2 is not a Dirichlet eigenvalue for∑n
j=1(b1)jj

∂2

∂x2
j

in Ω1, the operator L̃c(κ),b1 is a linear homeomorphism from H1
0 (Ω1) onto H−1(Ω1). Since the

map from W̃ to L(H1
0 (Ω1), H−1(Ω1)) which takes b to L̃c(κ),b is linear and continuous and the set of linear

homeomorphisms is open, then there exists an open neighborhood W̃1 of b1 contained in W̃ such that L̃c(κ),b

is a linear homeomorphism from H1
0 (Ω1) onto H−1(Ω1) for all b ∈ W̃1. In particular, condition (18) holds in

Ω1 for all b ∈ W̃1.
Since Ω1 is of class C∞ and ζS×I,c(κ),Z(b) vanishes on an open neighborhood of ∂Ω1is of class C∞, we have

ζS×I,c(κ),Z(b) = Φc(κ),1

[
b, L̃c(κ),b

[
ζS×I,c(κ),Z(b)

]]
, (21)

L̃c(κ),b

[
ζS×I,c(κ),Z(b)

]
∈ D(Ω1) ∀b ∈ W̃1 .

Next we show that if Ω2 is an open subset of Rn of class C∞ such that

clΩ1 ⊆ Ω2 ⊆ clΩ2 ⊆ Rn \ Zn ,

then the map from W̃1 to Hs+k−1(Ω2) which takes b to L̃c(κ),b

[
ζS×I,c(κ),Z(b)

]
is real analytic. To do so, we

note that

L̃c(κ),b

[
ζ(y)S×I,c(κ),Z(b)(y)

]
= ζ(y)L̃c(κ),b

[
S×I,c(κ),Z(b)(y)

]
(22)

+2

n∑
j=1

bjj
∂ζ

∂xj
(y)

∂

∂xj

[
S×I,c(κ),Z(b)

]
(y)

+S×I,c(κ),Z(b)(y)

n∑
j=1

bjj
∂2ζ

∂x2
j

(y) ∀y ∈ Ω2 ,

and that

ζL̃c(κ),b

[
S×I,c(κ),Z(b)

]
=

[∑
z∈Zn

δz −
∑
z∈Z

E2πiz

]
ζ = −

∑
z∈Z

E2πizζ in Rn

(see Proposition 4.2 (i)). Thus it suffices to show that each summand in the right hand side of (22) defines a

real analytic map from W̃1 to Hs+k−1(Ω2).
Since ζ

∑
z∈Z E2πiz ∈ C∞(clΩ2) ⊆ Hs+k−1(Ω2) is independent of b, the first summand in the right hand

side of (22) defines a real analytic map from W̃1 to Hs+k−1(Ω2).

By inductive assumption, we know that the map from W̃1 to Hs+k−1(Ω2) which takes b to ∂
∂xj

[
S×I,c(κ),Z(b)

]
is real analytic. Since the multiplication by ∂ζ

∂xj
is linear and continuous in Hs+k−1(Ω2), the map from W̃1 to

Hs+k−1(Ω2) which takes b to the second summand in the right hand side of (22) is real analytic.

By inductive assumption, we know that the map from W̃1 to Hs+k(Ω2) which takes b to S×I,c(κ),Z(b) is

analytic. Since the multiplication by ∂2ζ
∂x2
j

is linear and continuous in Hs+k(Ω2), and Hs+k(Ω2) is continuously

imbedded into Hs+k−1(Ω2), the map from W̃1 to Hs+k−1(Ω2) which takes b to the third summand in the right
hand side of (22) is real analytic.

Then we conclude that the map from W̃1 to Hs+k−1(Ω2) which takes b to the right hand side of (22) is
real analytic.

We now discuss separately cases s + k ≥ 1 and case s + k ≤ 0. Let s + k ≥ 1. Since the restriction map
is linear and continuous from Hs+k−1(Ω2) to Hs+k−1(Ω1), the map from W̃1 to Hs+k−1(Ω1) which takes b to
the right hand side of (22) is real analytic and Theorem 5.1 (ii) and equality (21) imply that the map from

W̃1 to Hs+k+1(Ω1) which takes b to ζS×I,c(κ),Z(b) is real analytic.

Now let s+k ≤ 0. Since the restriction map is linear and continuous from Hs+k−1(Ω2) to H̃s+k−1(Ω1), the

map from W̃1 to H̃s+k−1(Ω1) which takes b to the right hand side of (22) is real analytic. We also note that

the right hand side of (22) belongs to D(Ω1) for all b ∈ W̃1. Then Theorem 5.1 (iii) and equality (21) imply
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that the map from W̃1 to H̃s+k+1(Ω1) which takes b to ζS×I,c(κ),Z(b) is real analytic. Since the restriction map

is linear and continuous from H̃s+k+1(Ω1) to Hs+k+1(Ω1), the map from W̃1 to Hs+k+1(Ω1) which takes b to
ζS×I,c(κ),Z(b) is real analytic and the proof is complete.

5.2 An analyticity result for the regular part in Roumieu classes

We now show that the results of the previous sections can be exploited in order to obtain an analyticity result
in Roumieu classes.

Theorem 5.3. Let κ ∈ C. Let Z = {0} if κ = 0 and Z = ∅ if κ 6= 0. Let Q be a bounded open subset of
D+
n (R) such that clQ ⊆ D+

n (R) and that Z(c(κ), q) ⊆ Z for all q ∈ clQ. Let Ω be a bounded open subset of Rn
such that

clΩ ⊆ (Rn \ Zn) ∪ {0} .

Let Sc(κ) be a fundamental solution of ∆ + κ2. Then there exists ρ ∈]0,+∞[ such that the map from Q to
C0
ω,ρ(clΩ) which takes q to Rc(κ),q,Z,Sc(κ)

(q·)|clΩ is real analytic.

Proof. Clearly, there is no loss of generality in assuming that 0 ∈ Ω. Let Ω′ be a bounded open subset of Rn
of class C∞ such that

Ω ⊆ clΩ ⊆ Ω′ ⊆ clΩ′ ⊆ (Rn \ Zn) ∪ {0} .

Next we note that Rc(κ),q,Z,Sc(κ)
◦ q, which equals Sc(κ),q,Z ◦ q − Sc(κ) ◦ q in Rn \ Zn, is real analytic in

(Rn \Zn)∪ {0} for each fixed value of q ∈ D+
n (R). We treat separately the case κ = 0 and the case κ 6= 0. We

first consider the case κ = 0. Since Z = {0}, Sc(0),q,Z ◦ q satisfies equation

Lc(0),q[Sc(0),q,Z ◦ q] = (det q)−1
∑
z∈Zn

δz −
1

mn(Q)
,

(cf. (10)), and we deduce that R]c(0),Z,Sc(0)
(q) ≡ Rc(0),q,Z,Sc(0)

◦ q|clΩ′ solves the equation

Lc(0),q[R
]
c(0),Z,Sc(0)

(q)] = − 1

det q
in Ω′ .

Then by performing a change of variables, we have

∆Rc(0),q,Z,Sc(0)
= − 1

det q
in qΩ′ . (23)

In order to get rid of the inhomogeneous term in the equation (23), we set

uq(ξ) ≡
1

2ndet q
|ξ|2 ∀ξ ∈ Rn ,

and we observe that ∆uq = 1
det q and we rewrite (23) as

∆(Rc(0),q,Z,Sc(0)
+ uq) = 0 in qΩ′ .

Since Rc(0),q,Z,Sc(0)
+ uq = Sc(0),q,Z − Sc(0) + uq in an open neighborhood of ∂(qΩ′), then the Green represen-

tation formula implies that

Rc(0),q,Z,Sc(0)
(ξ) + uq(ξ)

=

ˆ
∂(qΩ′)

∂

∂νqΩ′(η)
Sc(0)(ξ − η)[Sc(0),q,Z(η)− Sc(0)(η) + uq(η)] dση

−
ˆ
∂(qΩ′)

Sc(0)(ξ − η)
∂

∂νqΩ′(η)
[Sc(0),q,Z(η)− Sc(0)(η) + uq(η)] dση ∀ξ ∈ qΩ′ ,

and in particular for all ξ ∈ qclΩ ⊆ qΩ′. By elementary Calculus, we have

dση = det q|q−tνΩ′(y)| dσy , νqΩ′(qy) =
q−tνΩ′(y)

|q−tνΩ′(y)|
∂

∂νqΩ′
[Sc(0),q,Z − Sc(0) + uq](qy)

= [D(Sc(0),q,Z − Sc(0) + uq)(qy)] · νqΩ′(qy) ∀y ∈ ∂Ω′ ,
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and thus we obtain

Rc(0),q,Z,Sc(0)
(qx) + uq(qx) (24)

= −
ˆ
∂Ω′

(DSc(0)(qx− qy)) · νqΩ′(qy)[Sc(0),q,Z(qy)− Sc(0)(qy) + uq(qy)]

×det q|q−tνΩ′(y)| dσy

−
ˆ
∂Ω′

Sc(0)(qx− qy)[DSc(0),q,Z(qy)−DSc(0)(qy) +Duq(qy)] · νqΩ′(qy)

×det q|q−tνΩ′(y)| dσy

= −
ˆ
∂Ω′

(DSc(0)(qx− qy)) · q−tνΩ′(y)[Sc(0),q,Z(qy)− Sc(0)(qy) + uq(qy)]

×det q dσy

−
ˆ
∂Ω′

Sc(0)(qx− qy)[DSc(0),q,Z(qy)−DSc(0)(qy) +Duq(qy)] · q−tνΩ′(y)

×det q dσy ,

for all x ∈ clΩ. Since 0 ∈ Ω ⊆ Ω′, there exists a bounded open subset Ω′′ of Rn such that ∂Ω′ ⊆ Ω′′ ⊆ clΩ′′ ⊆
Rn \Zn. By Theorem 5.2, the map from D+

n (R) to C1(clΩ′′) which takes q to Sc(0),q,Z ◦ q|clΩ′′ is real analytic.
Since Sc(0) is analytic in Rn \ {0} and 0 /∈ qclΩ′′ for all q ∈ D+

n (R), known results on composition operators
imply that the map from D+

n (R) to C1(clΩ′′) which takes q to Sc(0) ◦ q|clΩ′′ is real analytic (cf. Böhme and

Tomi [6, p. 10], Henry [14, p. 29], Valent [28, Thm. 5.2, p. 44]). Since uq(qy) = 1
2ndet q |qy|

2 for all y ∈ clΩ′′,

the map from D+
n (R) to C1(clΩ′′) which takes q to uq(q·) is real analytic. Since the restriction operator

from C1(clΩ′′) to C1(∂Ω′) is linear and continuous, the maps from D+
n (R) to C0(∂Ω′) which take q to the

function [Sc(0),q,Z ◦ q − Sc(0) ◦ q + uq(q·)]|∂Ω′ and to the function [DSc(0),q,Z(q·) − DSc(0)(q·) + Duq(q·)]|∂Ω′

are real analytic. Then by a result on integral operators with real analytic kernels and with no singularity,
for each q̃ ∈ clQ, there exists an open neighborhood Wq̃ of q̃ in D+

n (R) and ρ̃ > 0 such that the map from
Wq̃ to C0

ω,ρ̃(clΩ) which takes q to the sum of the two integral operators in the right hand side of the integral
representation (24) for Rc(0),q,Z,Sc(0)

(q·)|clΩ +uq(q·)|clΩ is real analytic (cf. [17, Thm. 3.1]). Since the map from

Wq̃ to C0
ω,ρ̃(clΩ) which takes q to uq(q·)|clΩ is obviously real analytic, the map from Wq̃ to C0

ω,ρ̃(clΩ) which
takes q to Rc(0),q,Z,Sc(0)

(q·)|clΩ is real analytic. Since the compact set clQ can be covered by a finite family of
open neighborhoods as Wq̃, the proof of case κ = 0 is complete.

We now turn to consider case κ 6= 0. Since Z = ∅, Sc(κ),q,Z ◦ q satisfies equation

Lc(κ),q[Sc(κ),q,Z ◦ q] = (det q)−1
∑
z∈Zn

δz ,

(cf. (10)), and we deduce that R]c(κ),Z,Sc(κ)
(q) ≡ Rc(κ),q,Z,Sc(κ)

◦ q|clΩ′ solves the equation

Lc(κ),q[R
]
c(κ),Z,Sc(κ)

(q)] = 0 in Ω′ .

Then by performing a change of variables, we have

(∆ + κ2)[Rc(κ),q,Z,Sc(κ)
] = 0 in qΩ′ .

Since Rc(κ),q,Z,Sc(κ)
= Sc(κ),q,Z − Sc(κ) in an open neighborhood of ∂(qΩ′), then the Green representation

formula implies that

Rc(κ),q,Z,Sc(κ)
(ξ) =

ˆ
∂(qΩ′)

∂

∂νqΩ′(η)
Sc(κ)(ξ − η)[Sc(κ),q,Z(η)− Sc(κ)(η)] dση

−
ˆ
∂(qΩ′)

Sc(κ)(ξ − η)
∂

∂νqΩ′(η)
[Sc(κ),q,Z(η)− Sc(κ)(η)] dση ∀ξ ∈ qΩ′ ,

and in particular for all ξ ∈ qclΩ ⊆ qΩ′. By elementary Calculus, we have

∂

∂νqΩ′
[Sc(κ),q,Z − Sc(κ)](qy) = [D(Sc(κ),q,Z − Sc(κ))(qy)] · νqΩ′(qy) ∀y ∈ ∂Ω′ ,
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and thus we obtain

Rc(κ),q,Z,Sc(κ)
(qx) (25)

= −
ˆ
∂Ω′

(DSc(κ)(qx− qy)) · νqΩ′(qy)[Sc(κ),q,Z(qy)− Sc(κ)(qy)]

×det q|q−tνΩ′(y)| dσy

−
ˆ
∂Ω′

Sc(κ)(qx− qy)[DSc(κ),q,Z(qy)−DSc(κ)(qy)] · νqΩ′(qy)

×det q|q−tνΩ′(y)| dσy

= −
ˆ
∂Ω′

(DSc(κ)(qx− qy)) · q−tνΩ′(y)[Sc(κ),q,Z(qy)− Sc(κ)(qy)]det q dσy

−
ˆ
∂Ω′

Sc(κ)(qx− qy)[DSc(κ),q,Z(qy)−DSc(κ)(qy)] · q−tνΩ′(y)det q dσy ,

for all x ∈ clΩ. Since 0 ∈ Ω ⊆ Ω′, there exists a bounded open subset Ω′′ of Rn such that ∂Ω′ ⊆ Ω′′ ⊆
clΩ′′ ⊆ Rn \ Zn. Now let W̃ be a bounded open neighborhood of clQ in D+

n (R) such that Z(c(κ), q) ⊆ Z
for all q ∈ clW̃ and that clW̃ ⊆ D+

n (R) . By Theorem 5.2, the map from W̃ to C1(clΩ′′) which takes q to
Sc(κ),q,Z ◦ q|clΩ′′ is real analytic. Since Sc(κ) is analytic in Rn \ {0} and 0 /∈ qclΩ′′ for all q ∈ D+

n (R), known
results on composition operators imply that the map from D+

n (R) to C1(clΩ′′) which takes q to Sc(κ) ◦ q|clΩ′′

is real analytic (cf. Böhme and Tomi [6, p. 10], Henry [14, p. 29], Valent [28, Thm. 5.2, p. 44]). Since the

restriction operator from C1(clΩ′′) to C1(∂Ω′) is linear and continuous, the maps from W̃ to C0(∂Ω′) which
take q to [Sc(κ),q,Z ◦ q − Sc(κ) ◦ q]|∂Ω′ and to [DSc(κ),q,Z(q·) − DSc(κ)(q·)]|∂Ω′ are real analytic. Then by a
result on integral operators with real analytic kernels and with no singularity, for each q̃ ∈ clQ, there exists
an open neighborhood Wq̃ of q̃ contained in W̃ and ρ̃ > 0 such that the map from Wq̃ to C0

ω,ρ̃(clΩ) which
takes q to the sum of two integral operators in the right hand side of the integral representation (25) for
Rc(κ),q,Z,Sc(κ)

(q·)|clΩ is real analytic (cf. [17, Thm. 3.1]). Since the compact set clQ can be covered by a finite
family of open neighborhoods as Wq̃, the proof of case κ 6= 0 is complete.

In order to prove the analyticity of Rc(κ),q,Z,Sc(κ)
(qx) upon (q, x), we need the following technical lemma.

Lemma 5.4. Let Ω be a bounded open subset of Rn. Let O be an open subset of D+
n (R). Let ρ > 0. Let F be

a real analytic map from O to C0
ω,ρ(clΩ). Then the map F̃ from O × Ω to C defined by

F̃ (q, x) ≡ F (q)(x) ∀(q, x) ∈ O × Ω ,

is real analytic.

Proof. We first prove by induction on m ∈ N that F̃ is of class Cm(O × Ω) and that if α, β ∈ Nn, |(α, β)| =
|α|+ |β| ≤ m, then

Dβ
xD

α
q F (q)(x) = Dα

qD
β
x F̃ (q, x) ∀(q, x) ∈ O × Ω . (26)

We first consider case m = 0. Since α = β = 0, the statement concerning the derivatives is satisfied by
definition of F̃ and we turn to prove the continuity of F̃ . Let (q̃, x̃) ∈ O × Ω. Let r ∈]0,+∞[ be such that
BDn(R)(q̃, r) × Bn(x̃, r) has closure contained in O × Ω. Now let ε ∈]0,+∞[. By the continuity of F , there
exists δ ∈]0, r[ such that

|q − q̃| < δ ⇒ ‖F (q̃)− F (q)‖C0
ω,ρ(clΩ) < ε/2 . (27)

Since F (q̃) is real analytic in Ω, possibly shrinking δ, we can assume that

|x− x̃| < δ ⇒ |F (q̃)(x̃)− F (q̃)(x)| < ε/2 . (28)

Then by combining (27) and (28), we conclude that

|x− x̃| < δ , |q − q̃| < δ ⇒ |F̃ (q̃, x̃)− F̃ (q, x)| = |F (q̃)(x̃)− F (q)(x)| < ε/2 + ε/2 = ε , (29)

and thus F̃ is continuous at (q̃, x̃).
Next we fix m ∈ N and we show that if F̃ is of class Cm in O × Ω and if (26) holds true for m, then F̃

is of class Cm+1 in O × Ω and if α, β ∈ Nn, |(α, β)| = |α| + |β| = m + 1, then (26) is satisfied. It suffices to
prove that if α, β ∈ Nn, |(α, β)| = |α| + |β| = m, then Dα

qD
β
x F̃ has first order continuous partial derivatives

with respect to the variables q11, . . . , qnn, x1, . . . , xn in O × Ω and that

Dqjj (D
α
qD

β
x F̃ )(q, x) = Dβ

xDqjjD
α
q F (q)(x) ,

Dxj (D
α
qD

β
x F̃ )(q, x) = DxjD

β
xD

α
q F (q)(x) ,

(30)
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for all (q, x) ∈ O ×Ω and j ∈ {1, . . . , n}. Let (q̃, x̃) ∈ O ×Ω. We first prove that Dqjj (D
α
qD

β
x F̃ ) is continuous

at (q̃, x̃) for all j ∈ {1, . . . , n}. By assumption, F is analytic from O to C |β|+1(clΩ). Since Dβ
x is linear and

continuous from C |β|+1(clΩ) to C1(clΩ), we conclude that Dα
qD

β
xF is analytic from O to C1(clΩ). Hence,

Dqjj (D
α
qD

β
xF ) exists and is continuous at q̃ as a map from O to C1(clΩ). Since the limit of the incremental

ratio which defines Dqjj (D
α
qD

β
xF ) exists uniformly in x ∈ clΩ and Dα

qD
β
xF = Dα

qD
β
x F̃ , we deduce that

Dqjj (D
α
qD

β
x F̃ ) exists and equals Dqjj (D

α
qD

β
xF ). Then the same argument we have exploited to prove (29)

shows that DqjjD
α
qD

β
x F̃ is continuous at (q̃, x̃).

Next we prove that DxjD
α
qD

β
x F̃ exists and is continuous at (q̃, x̃). Since Dα

qD
β
xF is analytic from O to

C1(clΩ) and Dxj is linear and continuous from C1(clΩ) to C0(clΩ), the map DxjD
α
qD

β
xF is analytic from O to

C0(clΩ) and DxjD
α
qD

β
xF exists and is continuous at q̃ as a map from O to C0(clΩ). Since Dα

qD
β
xF = Dα

qD
β
x F̃ ,

we deduce that DxjD
α
qD

β
x F̃ = DxjD

α
qD

β
xF . Then the same argument we have exploited to prove (29) shows

that DxjD
α
qD

β
x F̃ = DxjD

α
qD

β
xF is continuous at (q̃, x̃). Hence, all partial derivatives of F̃ up to order m+ 1

are continuous, and F̃ is of class Cm+1.
We now prove the first equality of (30). If β = 0, the first equality of (30) is obvious. We now assume that

β 6= 0. There is no loss of generality in assuming that β1 > 0. Since F̃ is of class Cm+1, inequality (26) in case
|(α, β)| ≤ m implies that

Dqjj (D
α
qD

β
x F̃ )(q, x) = De1

x D
β−e1
x DqjjD

α
q F̃ (q, x)

= De1
x D

β−e1
x DqjjD

α
q F (q)(x) = Dβ

xDqjjD
α
q F (q)(x) ∀(q, x) ∈ O × Ω ,

and thus the first equality of (30) holds true.
We now prove the second equality of (30). By the analyticity of Dα

q F from O to C |β|+1(clΩ) and by the

linearity and continuity of Dβ
x from C |β|+1(clΩ) to C1(clΩ), the map Dβ

xD
α
q F is analytic from O to C1(clΩ).

Moreover the inductive assumption implies that (26) holds. Since Dβ
xD

α
q F (q) ∈ C1(clΩ) and F̃ is of class

Cm+1, we can take the Dxj derivative in both hand sides of (26) and obtain the second equality of (30). Thus

the proof of our inductive argument is complete. Then F̃ ∈ C∞(O × Ω) and we now turn to prove that F̃ is
analytic. By a known analyticity criterion, it suffices to show that if K1 and K2 are compact subsets of O and
Ω, respectively, then there exists r ∈]0,+∞[ such that

sup
α,β∈Nn

r|α+β|

|α+ β|!
sup

(q,x)∈K1×K2

|Dα
qD

β
x F̃ (q, x)| < +∞ .

Since F is analytic, then there exist r1, M1 ∈]0,+∞[ such that

sup
α∈Nn

r
|α|
1

|α|!
‖Dα

q F (q)‖C0
ω,ρ(clΩ) ≤M1

for all q ∈ K1. Hence,

r
|α|
1

|α|!
ρ|β|

|β|!
sup
x∈clΩ

|Dβ
xD

α
q F̃ (q, x)| ≤M1

for all α, β ∈ Nn, q ∈ K1. Since |α|!|β|! ≤ |α+ β|!, we have

(min{r1, ρ})|α+β|

|α+ β|!
|Dβ

xD
α
q F̃ (q, x)| ≤M1

for all (q, x) ∈ K1 ×K2 and for all α, β ∈ Nn. Hence, F̃ is real analytic.

Theorem 5.3 and Lemma 5.4 imply the validity of the following.

Theorem 5.5. Let κ ∈ C. Let Z = {0} if κ = 0 and Z = ∅ if κ 6= 0. Let Q be an open subset of D+
n (R)

such that Z(c(κ), q) ⊆ Z for all q ∈ Q. Let Sc(κ) be a fundamental solution of ∆ + κ2. Then the map from
Q× ((Rn \ Zn) ∪ {0}) to R which takes (q, x) to Rc(κ),q,Z,Sc(κ)

(qx) is real analytic.

Then we have the following.

Theorem 5.6. Let κ ∈ C. Let Z = {0} if κ = 0 and Z = ∅ if κ 6= 0. Let q0 ∈ D+
n (R) be such that

Z(c(κ), q0) ⊆ Z. Let Ω′ be a bounded open subset of Rn such that

clΩ′ ⊆ (Rn \ q0Zn) ∪ {0} .
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Let Sc(κ) be a fundamental solution of ∆ + κ2. Then there exist ρ′ ∈]0,+∞[ and an open neighborhood Q0 of
q0 in D+

n (R) such that

Z(c(κ), q) ⊆ Z ∀q ∈ clQ0 , clΩ′ ⊆ (Rn \ qZn) ∪ {0} ∀q ∈ Q0 , (31)

and such that the map from Q0 to C0
ω,ρ′(clΩ′) which takes q to Rc(κ),q,Z,Sc(κ)

(·)|clΩ′ is real analytic.

Proof. By assumption q−1
0 clΩ′ ⊆ (Rn \ Zn) ∪ {0}. Let Ψ be the map from D+

n (R)× Rn to Rn defined by

Ψ(q, x) ≡ q−1x ∀(q, x) ∈ D+
n (R)× Rn .

Since Ψ is continuous, the set Ψ← ((Rn \ Zn) ∪ {0}) is an open neighborhood of the compact set {q0} × clΩ′.
Next we endow D+

n (R)× Rn by the distance defined by

d((q1, x1), (q2, x2)) = |q1 − q2|+ |x1 − x2| ∀(q1, x1), (q2, x2) ∈ D+
n (R)× Rn .

Let δ ∈]0,+∞[ be less than the distance between {q0} × clΩ′ and the complement of Ψ← ((Rn \ Zn) ∪ {0}).
Then we have clBDn(R)(q0, δ)×clΩ′ ⊆ Ψ← ((Rn \ Zn) ∪ {0}) and accordingly the second inclusion in (31) holds
for all q ∈ clBDn(R)(q0, δ). If κ = 0, then Z(c(κ), q) = {0} = Z for all q ∈ D+

n (R), and in particular for
all q ∈ clBDn(R)(q0, δ). We now show that if κ 6= 0, then possibly taking a smaller δ, we can assume that
Z(c(κ), q) = ∅ = Z for all q ∈ clBDn(R)(q0, δ). Let δ1 ∈]0,+∞[ be such that clBDn(R)(q0, δ1) ⊆ D+

n (R). By (17),
we have

Z(c(κ), q) ⊆ Zn∩clBn(0, ρ1)

with ρ1 ≡ |κ|
(

2π min
q∈clBDn(R)(q0,δ1)

min
j∈{1,...,n}

q−1
jj

)−1 (32)

for all q ∈ clBDn(R)(q0, δ1). Since Z(c(κ), q0) = ∅, the continuous function κ2 − 4π2|q−1
0 z|2 does not van-

ish for z in the compact set Zn ∩ clBn(0, ρ1). Hence, possibly taking a smaller δ, we may assume that
κ2 − 4π2|q−1z|2 does not vanish for z ∈ Zn ∩ clBn(0, ρ1) when q ∈ clBDn(R)(q0, δ). Hence, the inclusion in (32)
implies that Z(c(κ), q) = ∅ for all q ∈ clBDn(R)(q0, δ). By Theorem 5.5 and by equality Rc(κ),q,Z,Sc(κ)

(x) =
Rc(κ),q,Z,Sc(κ)

(qΨ(q, x)), the map which takes the pair (q, x) to Rc(κ),q,Z,Sc(κ)
(x) is analytic in an open neigh-

borhood of cl
(
BDn(R)(q0, δ)× Ω′

)
. Then there exists ρ′′ ∈]0,+∞[ such that the map which takes the pair

(q, x) to Rc(κ),q,Z,Sc(κ)
(x) belongs to C0

ω,ρ′′(cl
(
BDn(R)(q0, δ)× Ω′

)
). Then one can prove that the map from

BDn(R)(q0, δ) to C0
ω,ρ′(clΩ′) which takes q to Rc(κ),q,Z,Sc(κ)

(·)|clΩ′ is real analytic for all ρ′ ∈]0, ρ′′[ (cf. [8,
Prop. A1]).

5.3 Two more analyticity results for Sc(κ),q,Z ◦ q
Since Sc(κ),q,Z = Sc(κ) + Rc(κ),q,Z,Sc(κ)

, and Sc(κ) is analytic in Rn \ {0}, Theorem 5.5 implies the validity of
the following.

Theorem 5.7. Let κ ∈ C. Let Z = {0} if κ = 0 and Z = ∅ if κ 6= 0. Let Q be an open subset of D+
n (R) such

that Z(c(κ), q) ⊆ Z for all q ∈ Q. Then the map from Q× (Rn \ Zn) to R which takes (q, x) to Sc(κ),q,Z(qx)
is real analytic.

Example 5.8. If we choose κ = 0 in (14)–(16), then we have P [c(0), D] = ∆ and Z(c(0), q) = {0} for all
q ∈ D+

n (R). Then Sc(0),q,Z(x) with Z = {0} equals the sum of the series in (3) and Theorem 5.7 ensures the
analyticity of Sc(0),q,Z(qx) in (q, x) ∈ D+

n (R) × (Rn \ Zn), and accordingly the analyticity of the sum of the
series in (3) in the set of (q, x) ∈ D+

n (R)× Rn such that q−1x /∈ Zn, i.e., jointly in the variables q and x.

Example 5.9. If we choose κ 6= 0 in (14)–(16) and if we take an open subset Q of D+
n (R) such that −κ2 is not

an eigenvalue of ∆ in the space of q-periodic distributions in Rn for all q ∈ Q, we have P [c(κ), D] = ∆ + κ2

and Z(c(κ), q) = ∅ for all q ∈ Q. Then Sc(κ),q,Z(x) with Z = ∅ equals the sum of the following series

−
∑
z∈Zn

1

mn(Q)(4π2|q−1z|2 − κ2)
e2πi(q−1z)·x , (33)

and Theorem 5.7 ensures the analyticity of Sc(κ),q,Z(qx) in (q, x) ∈ Q × (Rn \ Zn), and accordingly the
analyticity of the sum of the series in (33) in the set of (q, x) ∈ Q × Rn such that q−1x /∈ Zn, i.e., jointly in
the variables q and x.
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Finally, we have the following.

Theorem 5.10. Let κ ∈ C. Let Z = {0} if κ = 0 and Z = ∅ if κ 6= 0. Let Q be a bounded open subset of
D+
n (R) such that clQ ⊆ D+

n (R) and that Z(c(κ), q) ⊆ Z for all q ∈ clQ. Let Ω be a bounded open subset of Rn
such that

clΩ ⊆ Rn \ Zn .

Then there exists ρ ∈]0,+∞[ such that the map from Q to C0
ω,ρ(clΩ) which takes q to the function Sc(κ),q,Z(q·)|clΩ

is real analytic.

Proof. Let Sc(κ) be a fundamental solution of ∆ + κ2. Since Sc(κ)(qx) is analytic in an open neighborhood of
the set cl(Q×Ω), then there exists ρ′ ∈]0,+∞[ such that Sc(κ)(qx) ∈ C0

ω,ρ′(cl(Q×Ω)). Then the map from Q
to C0

ω,ρ(clΩ), which takes q to Sc(κ)(q·)|clΩ is real analytic for all ρ ∈]0, ρ′[ (cf. [8, Prop. A1]). Then equality
Sc(κ),q,Z = Sc(κ) +Rc(κ),q,Z,Sc(κ)

and Theorem 5.3 imply the validity of the statement.

6 Appendix

We now prove the technical Theorem 5.1 and we first consider statements (i) and (ii).

of statements (i) and (ii) of Theorem 5.1. Statement (i) follows by condition (18) and by classical elliptic
regularity theory (cf. e.g., Lions and Magenes [21, Thm. 5.4, p. 165]). We now prove statement (ii). We
consider the map A from W ×Hk−2(Ω)× (Hk(Ω) ∩H1

0 (Ω)) to the space Hk−2(Ω) defined by the equality

A(b, f, v) ≡ L̃c(κ),b[v]− f

for all (b, f, v) ∈ W × Hk−2(Ω) × (Hk(Ω) ∩ H1
0 (Ω)). By definition, the set of zeros of A coincides with the

graph of Φc(κ),k. Moreover, A is real analytic and if (b, f) ∈ W×Hk−2(Ω), then the partial Fréchet differential
dvA(b, f,Φc(κ),k[b, f ]) of A at the point (b, f,Φc(κ),k[b, f ]) with respect to the variable v coincides with the

map L̃c(κ),b from Hk(Ω) ∩ H1
0 (Ω) to Hk−2(Ω), which is a linear homeomorphism by statement (i). Then

the Implicit Function Theorem in Banach spaces implies that Φc(κ),k is real analytic (cf. e.g., Deimling [11,
Thm. 15.3]).

Next we plan to compute the Taylor expansion of Φc(κ),1 around each point of its domain. Since Φc(κ),1 is
linear in the second variable f , it suffices to compute the partial differential of order j of Φc(κ),1 with respect
to b at the point (v1, . . . , vj) with v1 = · · · = vj ≡ v for all natural numbers j. We do so by means of the
following.

Proposition 6.1. Let κ ∈ C. Let Ω be a bounded open Lipschitz subset of Rn. Let W be an open subset of
D+
n (R) such that condition (18) holds true. Let f ∈ H−1(Ω). Let φ×c(κ),f be the map from W to H1

0 (Ω) defined

by
φ×c(κ),f (b) ≡ Φc(κ),1[b, f ] ∀b ∈ W .

Then the following statements hold.

(i) L̃c(κ),b[φ
×
c(κ),f (b)] = f for all b ∈ W.

(ii) Let j ∈ N \ {0}. The j-order differential of the map φ×c(κ),f (b) at the point b satisfies the equality

L̃c(κ),b

djφ×c(κ),f (b)[

j times︷ ︸︸ ︷
v, . . . , v]

 = −jL̃c(κ)∗,v

dj−1φ×c(κ),f (b)[

(j − 1) times︷ ︸︸ ︷
v, . . . , v ]

 ,
for all b ∈ W and v ∈ Dn(R).

(iii) Let b ∈ W. Then

djφ×c(κ),f (b)[

j times︷ ︸︸ ︷
v, . . . , v] = (−1)jj!

(
L̃

(−1)
c(κ),b ◦ L̃c(κ)∗,v

)j
[φ×c(κ),f (b)] ∀v ∈ Dn(R) .

for all j ∈ N.
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Proof. The proof follows the lines of that of Proposition 4.2. Statement (i) is an immediate consequence of
the definition of φ×c(κ),f . We now prove statement (ii). Since

L̃c(κ),b

[
φ×c(κ),f (b)

]
= L̃c(κ)∗,b

[
φ×c(κ),f (b)

]
+ κ2φ×c(κ),f (b)

and L̃c(κ)∗,b[v] is bilinear in the variable (b, v), and φ×c(κ),f is differentiable in b, standard differentiation rules

imply the validity of formula (12) with S×I,c,Z(b), c and c∗ replaced by φ×c(κ),f (b), c(κ) and c(κ)∗, respectively

for all (b, v) ∈ W̃ × Dn(R) and j ∈ N \ {0}. By (i), we have

dj
{
L̃c(κ),b

[
φ×c(κ),f (b)

]}
[v, . . . , v] = 0

for all (b, v) ∈ W̃ × Dn(R) and j ∈ N \ {0}, and thus statement (ii) holds true.
We now prove statement (iii), and we argue by induction on j. If j = 0, then the statement is obvious. We

now assume that the statement holds for j and we prove it for j + 1. By statement (ii) and by the inductive
assumption, we deduce the validity of formula (13) with S×I,c,Z(b), c and c∗ replaced by φ×c(κ),f (b), c(κ) and

c(κ)∗, respectively. Then by applying L̃
(−1)
c(κ),b to both hand sides, we obtain the formula of the statement with

(j + 1).

By the continuity of the imbedding of H1
0 (Ω) into H−1(Ω), and by Proposition 6.1 and by standard calculus

in Banach space, we readily deduce the following.

Corollary 6.2. Let κ ∈ C. Let Ω be a bounded open Lipschitz subset of Rn. Let W be an open subset of
D+
n (R) such that condition (18) holds true. Let (b], f ]) ∈ W ×H1

0 (Ω). Then there exists r ∈]0,+∞[ such that
clBDn(R)(b

], r) ⊆ W and such that

Φc(κ),1[b, f ] = Φc(κ),1[b], f ]] + L̃
(−1)

c(κ),b]
[f − f ]] (34)

+

∞∑
j=1

(−1)j
(
L̃

(−1)

c(κ),b]
◦ L̃c(κ)∗,b−b]

)j
[φ×

c(κ),f]
(b])] ,

for all (b, f) ∈ BDn(R)(b
], r)×H1

0 (Ω), where the series is normally convergent in H1
0 (Ω).

Now the right hand side of (34) deliveres a (nonlinear) analytic map from the set BDn(R)(b
], r)×H1

0 (Ω) to

H1
0 (Ω) and we know that H1

0 (Ω) is contained in both H̃k−2(Ω) and H̃k(Ω) when k < 1 is an integer, and we
ask whether there exists a nonlinear analytic map from BDn(R)(b

], r)× H̃k−2(Ω) to H̃k(Ω) which extends the
right hand side of (34) perhaps for a smaller r and when k < 1 is an integer.

The idea is to replace the operator ‘factor’
(
L̃

(−1)

c(κ),b]
◦ L̃c(κ)∗,b−b]

)
which appears in the right hand side of

(34) and which maps H1
0 (Ω) to itself by a linear and continuous map from H̃k(Ω) to H̃k(Ω) which extends

the restriction of
(
L̃

(−1)

c(κ),b]
◦ L̃c(κ)∗,b−b]

)
to H1

0 (Ω), and to show that the corresponding ‘replacement’ series

converges normally in H̃k(Ω) for a perhaps smaller r. Since such a series is in the form of a power series in
the variable b, its sum is real analytic. Then we observe that the sum of the first two terms in the right hand

side of (34) equals L̃
(−1)

c(κ),b]
[f ] and can be extended to a linear and continuous map from H̃k−2(Ω) to H̃k(Ω) of

the variable f . Hence the sum of such extension and of the ‘replacement’ series’ delivers an analytic function
which equals the left hand side of (34) if we choose the argument (b, f) in BDn(R)(b

], r)×H1
0 (Ω) (for the smaller

r).
To do so, we need the following technical statement. For the convenience of the reader, we include a proof.

Theorem 6.3. Let c ∈ E0. Let Ω be a bounded open Lipschitz subset of Rn, b ∈ D+
n (R). Let L̃c,b be a linear

homeomorphism from H1
0 (Ω) onto H−1(Ω). Then the following statements hold.

(i) Let k ∈ N \ {0}. If Ω is of class Ck−1,1, then L̃c,b is a linear homeomorphism from Hk(Ω)∩H1
0 (Ω) onto

Hk−2(Ω).

(ii) Let k ∈ Z, k ≤ 0. If Ω is of class C1−k,1, then there exists ck ∈]0,+∞[ such that

‖L̃(−1)
c,b [f ]‖H̃k(Ω) ≤ ck‖f‖H̃k−2(Ω) ∀f ∈ H1

0 (Ω) .

In particular there exists a unique linear and continuous operator Tc,b,k from H̃k−2(Ω) to H̃k(Ω) which

extends the restriction to H1
0 (Ω) of L̃

(−1)
c,b .
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Proof. Since L̃c,b is a linear homeomorphism fromH1
0 (Ω) ontoH−1(Ω), statement (i) follows by classical elliptic

regularity theory (cf. e.g., Lions and Magenes [21, Thm. 5.4, p. 165]). We now turn to prove statment (ii) by
transposition. Since k ≤ 0, we have 2− k ≥ 2 and statement (i) implies that L̃c,b is a linear homeomorphism

from H2−k(Ω)∩H1
0 (Ω) onto H−k(Ω). Since Ω is a Lipschitz subset of Rn, the space H̃s(Ω) coincides with the

subspace
Hs

clΩ ≡ {u ∈ Hs(Rn) : suppu ⊆ clΩ} ,
of Hs(Rn), for each s ∈ R, and the map from Hs

clΩ = H̃s(Ω) to the dual (H−s(Ω))′, which takes v ∈ Hs
clΩ to

the element of (H−s(Ω))′ defined by

< v, u >≡
ˆ
Rn
v̂Û dx ∀u ∈ H−s(Ω) ,

where U is any element of H−s(Rn) such that U|Ω = u is a linear isometry for each s ∈ R (cf. e.g., McLean [23,

Thm 3.14 (i), Thm. 3.29]). Thus H̃k−2(Ω) is homeomorphic to the dual of H2−k(Ω) and H̃k(Ω) is homeomor-
phic to the dual of H−k(Ω). Next we set

(H2−k(Ω) ∩H1
0 (Ω))o ≡

{
v ∈ H̃k−2(Ω) :< v, u >= 0 ∀u ∈ H2−k(Ω) ∩H1

0 (Ω)
}
,

and we denote by π the canonical projection from H̃k−2(Ω) onto the quotient space H̃k−2(Ω)/(H2−k(Ω) ∩
H1

0 (Ω))o, and by j the inclusion of H2−k(Ω)∩H1
0 (Ω) into H2−k(Ω). Then it is known that the transpose map

jt is linear and continuous from (H2−k(Ω))′ to (H2−k(Ω) ∩H1
0 (Ω))′, and that

Ker jt = (H2−k(Ω) ∩H1
0 (Ω))o ,

and that the unique linear map (jt)∼ such that

jt = (jt)∼ ◦ π

is a linear homeomorphism from (H2−k(Ω))′/(H2−k(Ω) ∩H1
0 (Ω))o onto the dual (H2−k(Ω) ∩H1

0 (Ω))′. Now

the transpose map (L̃
(−1)
c,b )t is a linear homeomorphism from (H2−k(Ω) ∩H1

0 (Ω))′ onto (H−k(Ω))′. Hence the
composite map

(L̃
(−1)
c,b )t ◦ (jt)∼ ◦ π = (L̃

(−1)
c,b )t ◦ jt

is linear and continuous from (H2−k(Ω))′ to (H−k(Ω))′, which are canonically isomorphic to H̃k−2(Ω) and to
H̃k(Ω), respectively. In particular, there exists ck ∈]0,+∞[ such that

‖(L̃(−1)
c,b )t ◦ jt[f ]‖H̃k(Ω) ≤ ck‖f‖H̃k−2(Ω) ∀f ∈ H1

0 (Ω) ,

with the due canonical indentifications. Thus statement (ii) follows by the equality

(L̃
(−1)
c,b )t ◦ jt[f ] = L̃

(−1)
c,b [f ] ∀f ∈ H1

0 (Ω) , (35)

which we now turn to prove. Let f ∈ H1
0 (Ω). It suffices to show that if u ∈ H−k(Ω), then

< (L̃
(−1)
c,b )t ◦ jt[f ], u >=< L̃

(−1)
c,b [f ], u > .

Now we have

< (L̃
(−1)
c,b )t ◦ jt[f ], u >=< jt[f ], L̃

(−1)
c,b [u] >=< f, j[L̃

(−1)
c,b [u]] >=< f, L̃

(−1)
c,b [u] > ,

by definition of transpose map. Indeed, j is an inclusion map. By statement (i) with k replaced by 2 and by
2− k, and by the membership of f in H1

0 (Ω) ⊆ L2(Ω) and of u in H−k(Ω), we know that

ξ ≡ L̃(−1)
c,b [f ] ∈ H2(Ω) ∩H1

0 (Ω) , v ≡ L̃(−1)
c,b [u] ∈ H2−k(Ω) ∩H1

0 (Ω) .

Then we have

< f, L̃
(−1)
c,b [u] >=< L̃c,b[ξ], v >=

ˆ
Ω

L̃c,b[ξ]v dx .

Since both ξ and v belong to H2(Ω) and have trace equal to 0 on ∂Ω, the second Green Identity implies that
ˆ

Ω

L̃c,b[ξ]v dx =

ˆ
Ω

ξL̃c,b[v] dx =< ξ, L̃c,b[v] >=< L̃
(−1)
c,b [f ], u > ,

(cf. e.g., McLean [23, Lem. 4.1, p. 114]). Hence, equality (35) holds true and the proof is complete.
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We are now ready for the following.

of statement (iii) of Theorem 5.1. Clearly,

‖L̃c(κ)∗,v[u]‖H̃k−2(Ω) =

∥∥∥∥∥∥
n∑
j=1

vjj
∂2

∂x2
j

u

∥∥∥∥∥∥
H̃k−2(Ω)

≤ n|v|‖u‖H̃k(Ω)

∀(v, u) ∈ Dn(R)× H̃k(Ω) ,

and accordingly,
‖L̃c(κ)∗,v‖L(H̃k(Ω),H̃k−2(Ω)) ≤ nr ∀v ∈ BDn(R)(0, r) ,

for all r ∈]0,+∞[. By Theorem 6.3 (ii), the operator Tc(κ),b,k is linear and continuous from H̃k−2(Ω) to H̃k(Ω)

for all b ∈ W. Thus if we choose r ∈]0,+∞[ as in Corollary 6.2 and such that r < 2−1n−1‖Tc(κ),b,k‖−1

L(H̃k−2(Ω),H̃k(Ω))
,

then we have

‖Tc(κ),b,k ◦ L̃c(κ)∗,v‖L(H̃k(Ω),H̃k(Ω))

≤ ‖Tc(κ),b,k‖L(H̃k−2(Ω),H̃k(Ω))‖L̃c(κ)∗,v‖L(H̃k(Ω),H̃k−2(Ω))

≤ ‖Tc(κ),b,k‖L(H̃k−2(Ω),H̃k(Ω))nr < 2−1 ∀v ∈ BDn(R)(0, r) .

Hence, the membership of φ×
c(κ),f]

(b]) in H1
0 (Ω) = H̃1(Ω) ⊆ H̃k(Ω) implies that the power series in the

right hand side of (34) with
(
L̃

(−1)

c(κ),b]
◦ L̃c(κ)∗,b−b]

)
replaced by

(
Tc(κ),b],k ◦ L̃c(κ)∗,b−b]

)
is norm convergent

in H̃k(Ω) for all b ∈ BDn(R)(b
], r). Accordingly, the map Φ̃c(κ),k,b],f] from BDn(R)(b

], r) × H̃k−2(Ω) to H̃k(Ω)
defined by

Φ̃c(κ),k,b],f] [b, f ] ≡ Tc(κ),b],k[f ]] + Tc(κ),b],k[f − f ]]

+

∞∑
j=1

(−1)j
(
Tc(κ),b],k ◦ L̃c(κ)∗,b−b]

)j
[φ×

c(κ),f]
(b])]

∀(b, f) ∈ BDn(R)(b
], r)× H̃k−2(Ω) ,

is real analytic. Since Φc(κ),1[b], f ] = Tc(κ),b],k[f ] for all f ∈ H1
0 (Ω), then Corollary 6.2 ensures that equality

(19) holds true.
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