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Highlights

• A framework which incorporates knowledge into neural network is pro-
posed.

• The framework is a kind of architecture to produce knowledge based text
features.

• A method for transforming a raw text into a conceptualized text is pro-
posed.

• The framework is tested on the sentence level task and the document level
task.
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Abstract

Text representations is a key task for many natural language processing appli-
cations such as document classification, ranking, sentimental analysis and so
on. The goal of it is to numerically represent the unstructured text documents
so that they can be computed mathematically. Most of the existing methods
leverage the power of deep learning to produce a representation of text. How-
ever, these models do not consider about the problem that text itself is usually
semantically ambiguous and reflects limited information. Due to this reason,
it is necessary to seek help from external knowledge base to better understand
text.

In this paper, we propose a novel framework named Text Concept Vector
which leverages both the neural network and the knowledge base to produce a
high quality representation of text. Formally, a raw text is primarily conceptu-
alized and represented by a set of concepts through a large taxonomy knowledge
base. After that, a neural network is used to transform the conceptualized text
into a vector form which encodes both the semantic information and the concept
information of the original text. We test our framework on both the sentence
level task and the document level task. The experimental results illustrate the
effectiveness of our work.
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1. Introduction

Learning good representations of text plays an important role in many nat-
ural language processing (NLP) tasks, such as document classification, ranking,
sentimental analysis and so on. Different representations may capture and disen-
tangle different degrees of explanatory ingredients hidden in the text. Therefore,5

it has attracted considerable amount of attention from many researchers, and
various types of models have been proposed for text representations.

The commonly used text representation is bag-of-words (BOW) (Harris
(1981)). The BoW model regards text as unordered sets of words and words’
interactions. Each word is a unique feature. However, the BOW model ignores10

the word order and syntactic features. Therefore, different sentences may have
the same representation.

Recently, neural network based methods have provided new solutions for text
representation and achieved remarkable results in many applications compared
with BoW models. These models can extract features for variable-length text,15

among phrases, sentences and documents. Recurrent Neural Networks (RNN)
is a kind of order-sensitive model by utilizing the sequence of the context words.
Through its recurrent structure, RNN can naturally process sequence informa-
tion, which takes the word order into consideration. However, the recurrent
structure also leads to the problem that former words have less effect on the20

final representation of text than latter words. Different from RNN, Convolu-
tional Neural Networks (CNN) regards each word fairly through a convolution
layer and leverages sliding windows with different width and filters to perform
the feature mapping. Afterwards, max pooling operation is utilized to obtain a
fixed-length output.25

The above methods have been proved their effectiveness ( Kim (2014); John-
son & Zhang (2015); Zhang et al. (2015)). However, they don’t consider about
unique properties of texts. For example, image and speech understanding rely
more on the information contained in the image and speech themselves than the
background knowledge, while text understanding often needs to seek help from30

various external knowledge since text itself only reflects limited information
and is sometimes ambiguous. In other words, the structures of neural network
methods on the speech and image domains lies in its capability of discovering
important signals from noisy input, while the major challenge for text under-
standing is instead the missing information and semantic ambiguity (Bian et al.35

(2014)).
To address these problems, we propose a new framework named Text Con-

cept Vector (TCV) for the text representation which extracts the concept level
information of text. For the first step, we recognize entities in text through
Backward Maximum Matching (Sproat et al. (1996)) algorithm. Afterwards,40

we determine the sense (i.e., concept) of the entity by leveraging a large taxon-
omy knowledge base.
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After that, raw text is transformed into conceptualized text which is com-
posed of a set of concepts. Then the id of the text and its concepts are separately
mapped to a unique vector. A neural network is used for training these two kinds45

of vectors through the stochastic gradient descent. After training, the text con-
cept vectors can be regarded as the concept level features of the original text
and used to natural language processing (NLP) tasks such as text classification.

To evaluate the performance of our framework, we test it on both the sen-
tence level task: semantic relatedness of the sentence pair on SICK dataset50

(Marelli et al. (2014)), and the document level task: document sentiment clas-
sification on IMDB reviews and Yelp reviews.

The main contributions of this paper are as follows:

• We propose a text concept extracting method to transform a raw text into
a conceptualized text. This helps us to capture the background concept55

information of the original text and avoid the surface match.

• Based on the neural network, we achieve a vector representation of the
conceptualized text. By incorporating the knowledge and neural network,
our framework not only extracts the concept level information of the text
but also takes term order into consideration.60

• The framework we propose is a kind of architecture to produce knowledge
based text features. Although we chose Probase (Wu et al. (2012)) as
the running example, other knowledge bases also can be applied to our
framework

• We test our framework on both the sentence level task and the document65

level task. The experimental results illustrate the effectiveness of our work.

The rest of the paper is organized as follows. Section 2 briefly reviews the
related work. Section 3 introduces the knowledge base that we use in this
paper. Section 4 describes the whole framework of Document Concept Vector.
Experimental results are presented and analyzed in section 5. Finally, section 670

concludes the paper.

2. Related Work

In recent years, numerous methods have been proposed for learning text
representation and used for various kinds of text mining tasks. Le & Mikolov
(2014) proposed doc2vec method by extending the word2vec algorithm (Mikolov75

et al. (2013b)). A document id is treated as a word in every sliding window and
train the same word2vec again to obtain the document vector. This extension
further improves the understanding of long paragraphs. Kiros et al. (2015)
proposed skip-thought model which applies the word2vec algorithm
to the sentence level. This model reconstructs surrounding sentences80

of the input sentence by using an encoder-decoder structure. The
encoder and decoder are RNNs. Given a tuple (si−1, si, si+1) of con-
tiguous sentences, with si the i-th sentence of a book, the sentence
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see the cat on the steps. This was strange. Unattached arrows are connected to the encoder
output. Colors indicate which components share parameters. 〈eos〉 is the end of sentence
token

Figure 2: The sequence autoencoder for the sequence “WXYZ”. The sequence autoencoder
uses a recurrent network to read the input sequence into the hidden state, which can then be
used to reconstruct the original sequence.

si is encoded and tries to reconstruct the previous sentence si−1 and
next sentence si+1. The model is shown in Figure 1. Dai & Le (2015)85

proposed a semi-supervised sequence learning method. In this model,
the sequence autoencoder uses a recurrent network to read the input
sequence in to the hidden state, which can then be used to reconstruct
the original sequence. The weights for the decoder network and the
encoder network are the same and these weights are used as an ini-90

tialization for standard LSTM to improve training and generalization.
The output layer of this model predicts the document label from the
LSTM output at the last time step. This model is shown in Figure 2.
Hierarchical Document Vector (HDV) (Djuric et al. (2015)) learned text rep-
resentation through a document stream. The model first learns the document95

representation similar to doc2vec and then enriches the representations through
exploiting the document sequence in the stream. Doc2Sent2Vec (Gupta et al.
(2016)) is also a two-phase approach for learning document embedding. Firstly,
it learns the sentence embeddings using the word sequence generated from the
sentence. In the next phase, it learns the document representation from the100

sentence sequence generated from the document. The difference between HDV
and Doc2Sent2Vec is that HDV doesn’t model sentence while Doc2Sent2Vec
doesn’t assume the existence of a document stream.

The deep learning based methods also make a contribution to text represen-
tation. Kim (2014) used convolutional neural networks (CNN) to the sentence105

classification directly by defining an architecture with two channels for capturing
local and global semantic. Johnson & Zhang (2015) improved the performance
by utilising high-dimensional one-hot vectors as input. Zhang et al. (2015) pro-
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posed a character-level convolutional networks (ConvNets) which treats text as
a kind of raw signal at character level. Huang & Wang (2016) introduced this110

method into Chinese corpus. Socher et al. (2013) proposed several kinds of
recursive neural networks for sentence-level text classification. The extended
recursive neural networks varied between deep recursive layer (İrsoy & Cardie
(2014)), global feed backward (Paulus et al. (2014)), tuning feature weight (Li
et al. (2015)), adaptive composition functions (Dong et al. (2014)), and com-115

bining with Combinatory Categorial Grammar (Hermann & Blunsom (2013)).
Most of these deep learning based techniques directly leverage the models that
are used in other domains like computer vision and speech. However, these
attempts ignore the unique properties of text.

Some works studied on the structure of models. Lai et al. (2015) and Zhou120

et al. (2015) incorporated CNN and long short-term memory (LSTM) (Hochre-
iter & Schmidhuber (1997)) structure. Tai et al. (2015) used tree-structured
LSTMs to improve the semantic representations of text. These works were ap-
plied to sentence classification. Tang et al. (2015a) modeled documents through
a hierarchical structure method. The sentence vectors of a document were ini-125

tially produced by a CNN or a LSTM, then a gated recurrent neural network was
utilized to compose the sentence vectors for the document vectors generating.
Tang et al. (2015b) incorporated user and product information into a convolu-
tional neural network for modeling documents. Gui et al. (2016) used a inter
subjectivity network to obtain user representation and combines it with a CNN130

for document classification. Gui et al. (2017) utilized a heterogeneous network
to model the shared polarity in product reviews and learn representations of
users, products they commented on and words they used simultaneously. These
method leverage such text related information into consideration, however, they
can be applied to the specific task such as sentiment text classification.135

There are some works utilize knowledge based methods to un-
derstand text. Yao et al. (2017b) proposed KGE-LDA which incor-
porates knowledge graph embeddings into topic model. This method
explicitly models document-level word co-occurrence in a corpus with
knowledge encoded by entities embeddings automatically learned from140

an external knowledge base in a unified model, which could extract
more coherent topics and better representation of a document in the
topic space. Nakashole & Flauger (2017) proposed KBLSTM which
utilizes knowledge graph embeddings to enhance the learning of re-
current neural networks for machine reading. At each time step,145

KBLSTM retrieves KB concepts that are potentially related to the
current word. Comparing with our method, these two methods also
uses external knowledge base to better understand text. Both of them
learn distributed representations of WordNet (Miller (1995)) con-
cepts using knowledge graph embedding methods. However, these150

models can’t solve the ambiguous problem of the text. Wei et al.
(2016) proposed a model named TRMBK to establish background
knowledge automatically and offer supports for the current text com-
prehension. In this method, each domain in datasets needs to build
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its own background knowledge and background knowledge is con-155

structed through simply association rules. Different from TRMNK,
our method can be applied to different kinds of text since Probase is
a large scale general knowledge base.

3. Preliminary Knowledge

In this section, we will have a brief description of the knowledge base and160

its two functions which we use to conceptualize text.

3.1. External Knowledge Base

For better representing text, we utilize external knowledge base to capture
the background concept information of text. Existing large scale knowledge
bases, such as Freebase (Bollacker et al. (2008)), YAGO (Suchanek et al. (2007)),165

Wikipedia (Gabrilovich & Markovitch (2006)) and Probase (Wu et al. (2012)),
are available for this task. YAGO builds on entities and relations and
currently contains more than 1 million entities and 5 million facts.
The facts have been automatically extracted from Wikipedia and uni-
fied with WordNet. Besides, YAGO is compatible with RDFS. Free-170

base is a practical, scalable tuple database used to structure general
human knowledge. The data in Freebase is collaboratively created,
structured, and maintained. Freebase currently contains more than
125,000,000 tuples, more than 4000 types, and more than 7000 prop-
erties. Probase is an universal, general-purpose, probabilistic tax-175

onomy automatically constructed from entire web and it integrates
most of the worldly facts. It contains 2.7 million concepts harnessed
automatically from a corpus of 1.68 billion web pages.

In this paper, We choose Probase as the external knowledge base.
Comparing with Freebase, YAGO and Wikipedia, entities and con-180

cepts are associated with each other in the form of probability. This
setting allows us to use Probase itself to disambiguate the entity in
the text so that we can achieve more precise concepts of the text

In probase, an entity may belong to many concepts and a concept may
contain many entities. Concepts and Entities are connected by various relations.185

The benefit is that such links are data-driven rather than handcrafted (Wu et al.
(2012)).

In our work, we use isA relation to describe the relation between an entity
and a concept. The isA relation in Probase is harvested from 1.68 billion web
pages and two-years’ worth of Microsoft Bings search log using syntactic pat-190

terns (i.e., the Hearst patterns and the isA pattern) (A. Hearst (1992)). For an
example, “Apple is an company”. Here “company” is a concept c and “Apple”
is an entity e.
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3.2. Typical Score

In probase, an entity may belong to many concepts and a concept may195

contain many entities. Each isA relation (e isA c) is presented as conditional
probabilities P (e|c) and P (c|e) (a.k.a. Typical Score). The P (c|e) means how
typical a concept c is among the concepts which contain the entity e while P (e|c)
denotes the typical score of e when c is given:

P (c|e) =
n(e, c)

n(e)
, P (e|c) =

n(e, c)

n(c)
.

Here, n(e), n(c) and n(e, c) are the occurrences of e, c and co-occurrences200

of e and c in the Hearst extraction. With these two conditional probabilities,
we can quantify the relationship between an entity e and a concept c so that
typical concepts of an entity can be obtained.

3.3. Concept Cluster

Since there are millions concepts in probase, many of them are similar to205

each other, such as “company” and “corporation”, “movie” and “film”, etc.
These similar concepts are clustered into a same cluster through a K-Medoids
algorithm (Li et al. (2013)). A concept cluster has a central concept to present
the general sense of this cluster. For example, the concepts around the central
concept “company” are related to “company”, such as “corporation”, “large210

company”, “international company”, “manufacturer” etc. In our framework,
concept clusters are used in sense detection and disambiguation.

4. The Text Concept Vector Framework

In this section, we will introduce the Text Concept Vector (TCV), a frame-
work for the text representation which consists of two steps: Text Conceptual-215

izing and Text Vector Representation. The whole framework is shown in Figure
3.

4.1. Text Conceptualization

This part is inspired by BocSTC (Wang et al. (2014)). The goal of text con-
ceptualization is to transform a raw text into a set of concepts. For an original220

text which consists of n words ti = {w1, w2, w3, ..., wn}, we primarily operate en-
tity recognition of the text Eti = {e1, e2, e3, ..., ej}, and then capture the precise
concepts of the entities Cti = {c1, c2, c3, ..., cj}. Here, cj indicates the concept
of jth entity in the original text. This step is composed of following three steps:
Entity Recognition, Sense Detection and Disambiguation. For example, after225

entity recognition step, text “Beyonce music and songs” has entity
list Et = {Beyonce,music, songs}. After sense detection step, vague
entity Beyonce has senses {artist, designer}, unambiguous entities
music and songs have same sense music. After disambiguation step,
vague entity Beyonce has precise sense artist.230
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Original Text

ti={w1,w2,...wn}

Entity Recognition

ti={w1,w2,...wn} 

=>Eti={e1,e2,...ej} 

Sense Detection

(Detec senses of 

each ej)

Disambiguation

Eti={e1,e2,...ej} 

=>Cti={c1,c2,...cj} 

Conceptualized 

Text

Cti={c1,c2,...cj} 

Knowledge 

Base

Training 

concept vectors

Learning text 

vectors

Applications

Concept 

Vectors

Text Vectors

Figure 3: The framework of Text Concept Vector.

4.1.1. Entity Recognition

Entity recognition is the first stage for text conceptualization. With recog-
nized entities, we can achieve their concepts through the knowledge base. In
recognition stage, a raw text is first split into sentences, and then the Backward
Maximum Matching (BMM) (Sproat et al. (1996)) is leveraged to recognize235

entities in the sentences. BMM is proposed to deal with the Chinese
segmentation as each Chinese word is composed of separate Chinese
characters. We use BMM in English corpus for entity recognition pur-
pose for the reason that an entity in Probase is composed of separate
words, which is similar to Chinese. Comparing with other popular240

string matching algorithms such as Aho-Corasick String Matching,
BMM is easy to implement and efficient enough. Specifically, BMM
selects a string S with N words from right to left of text as the maxi-
mum string (N<=maxlen), and uses it to match entities in Probase. If
there is such an entity Probase, the match is successful and the string245

is segmented from text. If there is no such an entity, the match is
failed. Then the algorithm removes the first word in the string and
matches the remaining strings again until the match is successful or
the length of the remaining string is 0. The flow chart of BMM is
show in Figure 4. Due to the abundance of the entities in the Probase250

that we have used, all entities in Probase are utilized as the matching dictio-
nary. Maxlen in BMM is set to 5. This is because that most of entities in
Probase are composed of less than 5 words. After entity recognition, we obtain
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Input: text t, maxlen

Output: Entity list Et

t=Null Output Et

Select N words 

String S from right 

to left of txet t. 

N<=maxlen

S is an entity in 

Probase

Et=Et.append(S)

t=t-S

Remove the 

first word in S

S=NULL

Y

Y

Y

N

N

N

Remove the last 

word in t

Figure 4: The flow chart of Backward Maximum Matching.

an entity list Eti = {e1, e2, e3, ..., ej} of the original text.

4.1.2. Sense Detection255

As described in section 3.2, each entity in a text may belong to many con-
cepts. In this stage, the goal is to detect senses (i.e., concepts) of each entity in
a text entity list Eti and determine whether an entity is ambiguous or not in the
context. Specifically, for an entity ej in a text entity list Eti , we choose top Nt

concepts as its typical concepts ar first. The top Nt concepts are ranked by the260

Typical Score P (c|e) (Nt=15 in this paper). After that, the stop concepts, which
generally have many diverse instances and tend to be in the high level of con-
cept hierarchy (these concepts are already pre-recognized with these two rules
in Probase), are removed. For an entity ej , we now have its typical concepts
list Cej = {ck, k = 1, 2, ..., Nt}. Since the concepts are clustered into different265
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clusters, we also have a concept cluster set of an ej entity CCLej = {cclm,m =
1, 2, ...}. For example, entity Beyonce has the typical concepts list
CBeyonce = {singer,musician,artist,model, designer} and the con-
cept cluster set CCLBeyonce = {artist, design}. After above steps, we
calculate the entropy of the concept cluster distribution and regard it as the270

ambiguity of ej :

H(ej) = −
∑

cclm∈CClej

P (cclm|ej)× log2P (cclm|ej). (1)

Here, P (cclm|ej) is the probability of ej belonging to the concept cluster
cclm. It is calculated by cumulating the typical scores of all ej ’s concepts be-
longing to cclm. In our work, we assume the 30% lowest entropy entities are
unambiguous entities.275

After this stage, for each entity ej in a text entity list Eti , we have its concept
list Cej , concept cluster list CCLej and entropy value H(ej).

4.1.3. Disambiguation

For vague entities in a text entity list Eti , the unambiguous entities in the
context are used for disambiguation. Specially, for every concept cluster280

cclm in the concept cluster set of an vague entity CCLevi
, P (cclm|evi ) of

a vague entity evi is re-calculated as:

P ′(cclm|evi ) =
∑

ccln∈CCLeu
j
,euj ∈Eti

CS(cclm, ccln). (2)

Here euj means the unambiguous entity and CCLeuj
is the concept

cluster set of an unambiguous euj . CS(cclm, ccln) is the concept cluster
similarity which is calculated as follow:285

CS(cclm, ccln) =
1

|cclm|
∑

ck∈cclm
Maxcj∈ccln

∣∣Eck

⋂
Ecj

∣∣
∣∣Eck

⋃
Ecj

∣∣ . (3)

Here, ck/cj means concepts belong to the concept cluster cclm/ccln
and Eck/Ecj means all the entities belong to the concept ck/cj including the
typical entities. For the vague entity, the central concept of the concept cluster
that has the highest probability P ′(cclm|evi ) is regarded as the evi ’s sense. For the
unambiguous entity, the central concept of the domain cluster is selected as its290

sense. For example, P (artist|Beyonce) = 0.5, P (design|Beyonce) =
0.5, P (music|music) = 1 and P (song|music) = 1. Beyonce is vague
entity while music and song are unambiguous entities. Recalculated
P ′(artist|Beyonce) = 0.324 and P (design|Beyonce) = 0.036 so that
the sense of Beyonce is artist. After finishing the above steps, an origi-295

nal text ti = {w1, w2, w3, ..., wn} is conceptualized and represented by a set of
concepts Cti = {c1, c2, c3, ..., cj}.
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4.2. Text Vector Representation

With the conceptualized text Cti = {c1, c2, c3, ...cj}, we utilize a neural
network based method to generate the text vector representation which is similar300

to Paragraph Vector model (Le & Mikolov (2014)). This method contains two
steps. Firstly, we utilize Skip-gram model (Mikolov et al. (2013a,b)) to train
the concept embeddings. Secondly, we put the document id into every sliding
window as a concept and train the same skip-gram model again to achieve the
text vector.

 !"#$ "%&'()$ &! &#$"#$

 !"#$%&'(

*+,-

*+,./-

*+,.0-

*+,10-

*+,1/-

23*4567,

86*,39

Figure 5: The Skip-gram architecture we adapted for generating the concept embeddings. The
goal is to predict concepts within a certain window size around the current concept. Dashed
part is used for replacing c(t) only when learning text vectors.

305

4.2.1. Concept Embeddings

The well-known word2vec (Mikolov et al. (2013a,b)) ( including the continu-
ous bag-of-word (CBOW) model and the Skip-Gram model) is a kind of model
for constructing distributed representations of words and Phrases. Benefiting
from its structure, word2vec can encode the semantic and syntactic information310

into a continuous vector. Due to this advantage, similar words in a corpus are
close to each other in the vector space. The continuous Bag-of-Words model
utilizes the surrounding words of a word to maximize the classification of this
word and does not take the word order into consideration. In contrast, the Skip-
gram model uses the order of the sequence to sample the words that appear less315

frequently during training time (Franco-Salvador et al. (2015)).
In this paper, we select the Skip-Gram model to train the concept embed-

dings due to its better performance on average especially at the semantic level
Yao et al. (2017a).

Formally, given a sequence of training concepts c1, c2, c3, ...cT , the objective
of the Skip-gram is to maximize the average log probability of the central concept

12
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when given the surrounding concepts inside a window size

1

T

T∑

t=1

∑

−n≤j≤n,j 6=0

log p(ct+j |ct) (4)

where ct is the central concept and c(t − n), c(t − n + 1),..., c(t + n) are its320

surrounding concepts inside a window size 2n+ 1.
Softmax function is used for estimate the conditional probability p(ct+j |ct):

p(ct+j |ct) =
exp(vT

ct+j
vct+j

)
∑C

c=1exp(vct

T
vct)

(5)

where vct+j
and vct are the vector representations of ct+j and ct. Vectors

are initialized randomly. C is the total number of concepts in all conceptualized
text.325

The average log probability is optimized through stochastic gradient descent.
Updating of vct+j and vct are as follows:

vct+j − αs

( exp{f(cp)}
exp{f(cp)}+ 1

− I [ct+j = cp]
)
vct (6)

vct − αs

∑

−n≤j≤n,j 6=0

( exp{f(cp)}
exp{f(cp)}+ 1

− I [ct+j = cp]
)
vct+j (7)

where:

• vct+j
and vct are the vector representations of ct+j and ct.

• cp is the central concept predicted by the model.330

• αS is the learning rate.

• f(cp) = vct+j
Tvct

• I [x] equals 1 if x is true.

4.2.2. Learning Text Vector

After obtaining the concept embeddings, the adapted version of the Skip-
gram architecture is used to produce the text vector tv for text representation.
Specifically, before each context window movement, c(t) is replaced by the cur-
rent text id tid with the objective of maximizing the average log probability (see
Figure 5).

1

T

T∑

t=1

∑

−n≤j≤n,j 6=0

log p(ct+j |tid). (8)
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Softmax function that is used for estimate the conditional probability335

p(ct+j |tid) is shown as follow:

p(ct+j |tid) =
exp(vT

ct+j
vct+j

)
∑C

c=1exp(vtid

T
vtid)

. (9)

Here, vtid is the vector representation of current text (i.e., tv).

4.3. Applications

After being trained, the text concept vector tv can be regarded as the feature
of the original text and used for nlp tasks.340

5. Experiments

To evaluate the effectiveness of the text representation, our model will be
tested both on the sentence level task and the document level task. For the
sentence level task, we test our model by predicting the semantic relatedness
of sentence pairs. For the document level task, our model will be tested on345

sentiment classification.

5.1. Semantic relatedness

This experiment aims to measure the semantic relatedness of two sentences.
For a given pair of sentences, the goal is to predict a real-valued score which
means how semantically related these two sentences are.350

5.1.1. Dataset

The dataset we use in this experiment is Sentences Involving Compositional
Knowledge (SICK) dataset (Marelli et al. (2014)). This dataset contains 4500
training pairs, 500 development pairs and 4927 testing pairs. Each sentences
pair has a relatedness score which takes values between 1 and 5. A score of 1355

means that two sentences are unrelated while a score of 5 indicates two sentences
are very related. Each score is the average of 10 ratings labeled by 10 different
human annotators. All sentences in the dataset are derived from existing image
and video annotation datasets.

5.1.2. Implementation Details360

We take similar method for predicting the relatedness score of two sentences
as (Tai et al. (2015)). Specifically, we first use TCV to obtain the vector rep-
resentation for each sentence in a sentence pair (vsL , vsR). The dimension
of TCV is 200 and the window size is 3. We have tested different vec-
tor dimension and different window size. However, the results don’t365

have statistically significant differences. These two parameters are
not sensitive. With the vector representations, the relatedness score ŷ can
be calculated through a neural network. Specifically, we first calculate the the
element-wise product of vsL and vsR , and their absolute difference and then we

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

concatenate together. With the concatenate vector, we use a fully connected370

layer to transform it to real-valued vector whose length is 5. After that, we add
a softmax layer to calculate the conditional probabilities and utilize an integer
vector which ranges from 1 to 5 to produce the relatedness score.

v× = vsL � vsR ,

v+ = |vsL − vsR |,
vc = concatenate{v×;v+}
vh = W (h)vc + b(h),

p̂θ = softmax(vh),

ŷ = rT p̂θ. (10)

Here, v× and v+ mean the element-wise product of vsL and vsR , and their
absolute difference. What’s more, rT = [1, ..., 5] is an integer vector which375

ranges from 1 to 5. The predicted rating ŷ is expected to be close to the gold
rating y :

ŷ = rT p̂θ ≈ y, y ∈ [1, 5] (11)

Therefore, the target distribution p is constructed as follow:

pi =





y − byc, i = byc+ 1

byc − y + 1, i = byc
0 otherwise

(12)

The KL-divergence between distribution p̂θ and distribution p is used as the
cost function:

J(θ) =
1

m

m∑

j=1

KL(p(j)||p̂(j)
θ ) (13)

where m is the total number of sentence pairs in the training pairs and the su-
perscript j means the jth sentence pair. The cost function is optimized through
AdaGrad (Duchi et al. (2011)) with respect to the whole set of parameters380

θ =
[
W (h); b(h)

]
.

Pearson’s r:

r =

∑n
i=1(predictedsi − predicteds)(realsi − reals)√∑n

i=1(predictedsi − predicteds)2
√∑n

i=1(realsi − reals)2
, (14)

where:

• n is the total number of sentence pairs in the test set.

• predictedsi indicates the predicted score of ith sentence pair385

in the test set.
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• realsi indicates the real score of ith sentence pair in the test
set.

• predicteds is the mean of predicted scores and analogously for
predicteds.390

Spearman’s ρ:

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)

di = rg(realsi)− rg(predictedsi)

(15)

where:

• rg(realsi) is the rank of ith sentence pair in test set sorted by
the real score.

• rg(predictedsi) is the rank of ith sentence pair sorted by the
predicted score.395

• di means the the difference between the two ranks.

Mean Squared Error (MSE):

MSE =
1

n

n∑

i=1

(predictedsi − realsi)2 (16)

where n, predictedsi and realsi are defined as above.

5.1.3. Baselines

For this experiment, previous submissions in the SemEval 2014 competition
and several state-of-the-art methods are served as baselines.400

1. Tree-LSTM. The Tree-LSTM (Tai et al. (2015)) is a kind of tree-structured
network topologies. This network composes its state from an input vector
and the hidden states of arbitrarily many child units. The updating of
memory cell and gating vectors are dependent on the states of many child
units.405

2. Skip-Thought Vectors. The Skip-thought framework (Kiros et al. (2015))
remodel the input sentence’s surrounding sentences by leveraging an encoder-
decoder structure. The encoder and decoder are RNNs.

3. CNN-LSTM encoder-decoder. The CNN-LSTM encoder-decoder method
(Dai & Le (2015)) uses a CNN to perform pooling operations on the in-410

put sentence and a fully-connected layer is used to produce a fixed-length
vector representation of the sentence. This vector is fed into a LSTM to
produce target sentence.

4. Text Concept Vector with CBOW. This method is an adaption of
original TCV. The Skip-gram is replaced by CBOW.415
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5.1.4. Results

The results of semantic relatedness on the SICK are shown in table 1. The
first group is the results of SemEval 2014 submissions. The second group is
the results of sequential LSTMs. The third group and fourth group are the
baselines reported by (Tai et al. (2015)) and the results of its own methods420

Method Pearsons r Spearmans ρ MSE
Illinois-LH 0.7993 0.7538 0.3692
UNAL-NLP 0.8070 0.7489 0.3550
Meaning Factory 0.8268 0.7721 0.3224
ECNU 0.8414 - -
LSTM 0.8528 0.7911 0.2831
Bidirectional LSTM 0.8567 0.7966 0.2736
2-layer LSTM 0.8515 0.7896 0.2838
2-layer Bidirectional LSTM 0.8558 0.7965 0.2762
Mean vectors 0.7577 0.6738 0.4557
DT-RNN 0.7923 0.7319 0.3822
SDT-RNN 0.7900 0.7304 0.3848
Constituency Tree-LSTM 0.8582 0.7966 0.2734
Dependency Tree-LSTM 0.8676 0.8083 0.2532
Uni-skip 0.8477 0.7780 0.2872
Bi-skip 0.8405 0.7696 0.2995
Combine-skip 0.8584 0.7916 0.2687
Combine-skip+COCO 0.8655 0.7995 0.2561
Autoencoder 0.8284 0.7577 0.3258
Future predictor 0.8132 0.7342 0.3450
Hierarchical model 0.8333 0.7646 0.3135
Composite model 0.8434 0.7767 0.2972
Combine 0.8533 0.7891 0.2791
Hierarchical model + emb 0.8352 0.7588 0.3152
Composite model + emb 0.8425 0.7742 0.3005
Combine + emb 0.8554 0.7893 0.2789
Our Method
Text Concept Vector 0.8691 0.8044 0.2497
Text Concept Vector with CBOW 0.8689 0.8044 0.2501

Table 1: The results of semantic relatedness on the SICK dataset. The first group are the
results of SemEval 2014 submissions. The second group are the results of sequential LSTMs.
The third group and fourth group are the baselines reported by (Tai et al. (2015)) and the
results of its own methods (i.e., Constituency Tree-LSTM and Dependency Tree-LSTM). The
fifth group are the results of Skip-Thought Vectors (Kiros et al. (2015)). The sixth group and
seventh group are the results of CNN-LSTM encoder-decoder (Dai & Le (2015)) and results
of its different version with different vocabulary expansion method. Comparing with best
results, improvements of Pearsons r (p<0.002) and MSE (p<0.001) are significant
based on students t-test.
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(i.e., Constituency Tree-LSTM and Dependency Tree-LSTM). The fifth group
is the results of Skip-Thought Vectors (Kiros et al. (2015)). The sixth group
and seventh group are the results of CNN-LSTM encoder-decoder (Dai & Le
(2015)) and results of its different version with different vocabulary expansion
method. The last one is our own method and we report mean results over 5425

runs, which is the same as previous works.
From the table we can see that our framework outperforms Skip-Thought

Vectors, CNN-LSTM encoder-decoder and all the previous submissions in Se-
mEval 2014 submissions. The CNN-LSTM encoder-decoder based methods do
not outperform the sequential LSTMs models. It may be that these two kinds430

of methods capture same level features. The extension version of Skip-Thought
Vectors (combine-skip + COCO) achieves remarkable result. It is because that
it uses features derived from an image-sentence embedding model trained on
the Microsoft COCO dataset (Lin et al. (2014)). This external features help the
original model to improve the performance, however, its result is still slightly435

worse than our method. This is because that our framework utilizes the text
background concept information which is more appropriate for the text repre-
sentation. Comparing with the state-of-the-art tree-LSTM methods, our frame-
work obtains better result than the constituency tree-LSTM and performs about
the same with the dependency tree-LSTM. The dependency tree-LSTM has440

higher Spearman’s ρ while our framework has higher Pearson’s r and lower
mean squared error. Improvements of Pearsons r (p<0.002) and MSE
(p<0.001) are significant based on students t-test. It is due to that the
dependency tree-LSTM produces dependency parses of each sentence, which
makes the model more suitable for the task. Results of Text Concept Vec-445

tor with CBOW illustrate that knowledge information of text is more
important than the term order since CBOW doesn’t consider order
information.

5.2. Sentimental Classification

For the document level task, our framework will be tested on sentiment450

document classification.

5.2.1. Datasets

Datasets of this experiment are IMDB reviews and Yelp Dataset Challenge.

1. IMDB Reviews. IMDB reviews dataset is obtained from (Diao et al.
(2014)). Each review is marked with a rating (ranges from 1 to 10) which455

indicates the sentimental level. Reviews with higher scores tend to more
positive.

2. Yelp Reviews. The Yelp reviews dataset comes from the Yelp Dataset
Challenge in 2013, 2014 and 2015. We use the version provided by (Tang
et al. (2015a)) Reviews are labeled with 5 different levels of sentiment (the460

higher the score the more positve the review).
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Corpus Training Samples Test Samples Class Vocabulary #s/d #w/d #e/d
Yelp 2013 268,013 33,504 5 211,245 8.9 151.6 130.2
Yelp 2014 900,363 112,549 5 476,191 9.2 156.9 131.9
Yelp 2015 1,255,409 156,928 5 612,636 9.0 151.9 131.5
IMDB 280,593 34,029 10 115,831 14.02 325.6 268.0

Table 2: Statistical information of the datasets. #s/d, #w/d and #e/d indicate average
number of sentences, average number of words and average number of entities in one document.
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Figure 6: The neural network used to perform the classification. The input is the review
vector vr whose length is N . Then a fully connected layer is used to transform the review
vector to a real-valued vector r̂ whose length is same as the number of sentiment class labels
C. After that, a softmax layer is used to predict probabilities of each sentiment class label lc

The statistical information of these two datasets are summarized in table 2. The
datasets are divided into training, development and testing sets with 80/10/10.
Stanford CoreNLP is leveraged for sentence splitting and tokenization on all
these datasets. The run time of these four datasets in text conceptualization465

stage and text vector representation stage is shown in table 3.

Corpus Yelp 2013 Yelp 2014 Yelp 2015 IMDB
Text Conceptualization Stage 5.2 hours 17.3 hours 23.5 hours 9.7 hours
Text Vector Representation Stage 2.3 hours 8.2 hours 10 hours 2.4 hours

Table 3: Run time of Yelp 2013, Yelp 2014, Yelp 2015 and IMDB in text conceptualization
stage and text vector representation stage.

5.2.2. Implementation Details

For predicting the sentiment label of reviews, we use TCV to obtain the
vector representation of each review and treat it as the input feature. Then we
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use a neural network to perform the classification. Figure 3 shows the detail.
Given a review vector vr, a fully connect layer is added to transform it to a real-
valued vector r̂ whose length is same as the number of sentiment class labels.
After that, a softmax layer is used to predict probabilities of each sentiment
class label:

r̂ = W (r)vr + b(r) (17)

lc =
exp(e(r̂c))∑C

k=1 exp(e(r̂k))
, c ∈ [1, C] (18)

Here, C is the number of sentiment class labels and lc is predicted probability
of sentiment class label c.

The training objective is to minimize the categorical cross-entropy loss be-
tween the ground truth label distribution lg(r) and the predicted sentiment class
label distribution l(r).

J(θ) = −
∑

r∈M

C∑

c=1

lgc (r) log(lc(r)) (19)

where M is the total number of reviews in the training data and r represents a470

review. The ground truth label distribution lg(r) is one-hot represented scheme
with ground truth being 1 and others being 0. The derivative of loss function
is taken through back-propagation with respect to the whole set of parameters
θ =

[
W (r); b(r)

]
and parameters are updated by stochastic gradient descent.

The evaluation metric is classification accuracy (ACC):

ACC =

∑
predictedli

=correctli
1

Ntest
, (20)

where predictedli and correctli indicate the predicted label and correct label of475

ith review in test set. Ntest means the total number of reviews in test set.

5.2.3. Baselines

Our framework will be compared to several methods for document level
sentiment classification as follows:

1. Majority. Majority is a kind of heuristic method. In this method, the480

prominent sentiment label in the training set is assigned to each document
in test set.

2. Unigrams and Bigrams. These two methods use bag-of-unigrams and
bag-of-bigrams as features respectively and feed them into a SVM classi-
fier.485

3. TextFeature. TextFeature method (Kiritchenko et al. (2014)) extracts
several kinds of text features including character n-grams, word n-grams
and sentiment lexicon features. Afterwards, a SVM classifier is trained for
classification.
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4. AverageSG. AverageSG first learns word embeddings of a document490

through the word2vec and then word embeddings are averaged to obtain
the representation of the document, which is regarded as features and fed
into a SVM classifier.

5. SSWE. This method generates sentiment-specific word embeddings (SSWE) (Tang
et al. (2014))(SSWE) as features. After that, max/min/average pooling495

is utilized to obtain the document representation , and then a SVM is
trained.

6. Paragraph Vector. The original distributed representation of docu-
ments (Le & Mikolov (2014)).

7. CNN. Directly uses the convolutional neural network for sentiment clas-500

sification (Kim (2014)).

8. Conv-GRNN and LSTM-GRNN. These two models use a CNN or a
LSTM to generate the sentence vectors, and then feed them into a recur-
rent neural network (GRNN) for producing the document representation
(Tang et al. (2015a)).505

9. UPNN. UPNN (Tang et al. (2015b)) incorporates user and product in-
formation into a convolutional neural network for to modeling documents.

10. Heterogeneous Embedded CNN. This method utilizes a heteroge-
neous network to model the shared polarity in product reviews and learn
representations of users, products they commented on and words they510

used simultaneously (Gui et al. (2017)).

11. ISN. Inter subjectivity Network Embedding (ISN) (Gui et al. (2016)),
uses a inter subjectivity network to obtain user representation and com-
bines it with a CNN for document classification.

5.2.4. Results515

Table 4 gives the sentiment classification results of all baselines. Results of
Majority, Unigrams, Bigrams, SSWE, Paragraph Vector, CNN, Conv-GRNN
and LSTM-GRNN are reported in (Tang et al. (2015a)). Results of Heteroge-
neous Embedded CNN and ISN are reported in (Gui et al. (2017)).

From the table 3, we can see that method Majority gives the worst perfor-520

mances because it doesn’t take any text features into consideration . Among
the SVM classifier based methods, Unigrams, Bigrams and TextFeatures are the
traditional features while AverageSG and SSWE are features generated by deep
learning methods. However, the traditional features give better results than the
features generated by the deep learning methods. What’s more, unigram and bi-525

gram features are almost the strongest baselines. Original neural network based
models without composition methods, such as CNN and Paragraph vectors,
have little improvement for the document level sentiment classification. This
may be caused by the fact that for the large scale text, bag-of-ngram features
are no worse than simple neural network methods for the text representation.530

Models leveraging composition methods can obviously improve the classifi-
cation accuracy. Conv-GRNN and LSTM-GRNN use a hierarchical structure to
model the document which is similar to the hierarchical structure of document.
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Method Yelp2013 Yelp2014 Yelp2015 IMDB
Majority (Tang et al. (2015a)) 35.6 36.1 36.9 17.9
SVM + Unigrams (Tang et al. (2015a)) 58.9 60.0 61.1 39.9
SVM + Bigrams (Tang et al. (2015a)) 57.6 61.6 62.4 40.9
SVM + TextFeatures (Tang et al. (2015a)) 59.8 61.8 62.4 40.5
SVM + AverageSG (Tang et al. (2015a)) 54.3 55.7 56.8 31.9
SVM + SSWE (Tang et al. (2015a)) 53.5 54.3 55.4 26.2
SVM + Paragraph Vector (Tang et al. (2015a)) 57.7 59.2 60.5 34.1
CNN (Tang et al. (2015a)) 59.7 61.0 61.5 37.6
Conv-GRNN (Tang et al. (2015a)) 63.7 65.5 66.0 42.5
LSTM-GRNN (Tang et al. (2015a)) 65.1 67.1 67.6 45.3
UPNN (Gui et al. (2017)) 57.7 58.5 – 40.5
ISN (Gui et al. (2017)) 62.3 63.5 – 47.6
Heterogeneous Embedded CNN (Gui et al. (2017)) 65.6 66.2 – 50.9
Our Method
Text Concept Vector 67.8 69.2 71.5 50.5

Table 4: Sentiment classification results of all methods. Results of Majority, Unigrams, Bi-
grams, SSWE, Paragraph Vector, CNN, Conv-GRNN and LSTM-GRNN are reported in (Tang
et al. (2015a)). Results of Heterogeneous Embedded CNN and ISN are reported in (Gui et al.
(2017)). Comparing with best results, improvements of Yelp2013 (p< 0.0002), Yelp2014
(p< 0.0002) and Yelp2015 (p<0.00015) are significant based on students t-test.

This setting helps the model better represent the document. The classifica-
tion accuracy of Conv-GRNN and LSTM-GRNN are much higher than CNN535

and Paragraph vectors. UPNN, ISN and Heterogeneous Embedded CNN are
other kinds of composition methods. Their models take the document related
information into consideration such as writers of reviews and words they used.
These external features enhance the classification performance of their methods.
Heterogeneous Embedded CNN performs best on IMDB dataset. This may be540

because that IMDB has a large average number of words per review and this
can help Heterogeneous Embedded CNN model to better capture words-writer
relations for sentiment classification.

Comparing with above baselines, our proposed framework TCV achieves
the best results on three datasets. Results of Heterogeneous Embedded CNN545

and ISN are reported in (Gui et al. (2017)). Comparing with best re-
sults, improvements of Yelp2013 (p<0.0002), Yelp2014 (p<0.0002)
and Yelp2015 (p<0.00015) are significant based on students t-test.
The original Paragraph Vector method is same as TCV without knowledge
base. Our TCV outperforms it obviously. It is because with the help of external550

knowledge base Probase, TCV can solve the semantic ambiguity in sentimental
text. Results of TCV demonstrate the effectiveness of our framework.
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5.3. Parameter Sensitivity

5.3.1. Effect of the percentage of lowest entropy entities

As we described in section 4.1.3, one of the important step is using unam-555

biguous entities to disambiguate vague entities. So, it is important to set the
percentage of lowest entropy entities as unambiguous entities. In this exper-
iment, we test the effect of setting the different percentage of lowest entropy
entities as unambiguous entities. The results are shown in figure 7a and figure
7b. From figures we can see that for both semantic relatedness task and senti-560

ment classification, TCV achieves best result when percentage is set to be 25%
to 30%. Performances of TCV decay rapidly when percentage is over 35%. This
is because if we set large percentage of lowest entropy entities as unambiguous
entities, vague entities will be included in them.

5.3.2. Effect of the number of typical concepts565

Another critical parameter for TCV is the the number of typical concepts
of an entity ej (eg., Nt). This parameter can effect the concept cluster of the
entity ej which is important to determine the sense of the entity. Figure 8a
and figure 8b show the results. It can be seen from figures that the number
of typical concepts has smaller influence on sentiment classification than on570

semantic relatedness. The sentiment classification results do not have much
fluctuations. This is because the data used in sentiment classification are larger
than the data used in semantic relatedness. Semantic relatedness obtains best
results when the number of typical concepts is 15. Too many typical concepts
will contain noise.575

6. Conclusion and Future Works

We describe a knowledge-based framework (TCV) to obtain concept level of
text.Distinct from the previous works, our framework does not simply focus on
text itself which reflects limited information and is usually semantically ambigu-
ous but includes concepts that are extracted from a external knowledge base.580

This framework utilizes an external knowledge base to encode the
background knowledge and semantic information of text into repre-
sentation. It first uses Probase to capture the concepts of text. Then
a neural network is employed to generate the concept level repre-
sentation of text. Our framework is applied to both sentence level585

task and document level task. For the sentence level task, we test
our model by predicting the semantic relatedness of sentence pairs.
For the document level task, our model will be tested on sentiment
classification. Experimental results show that our proposed frame-
work achieves state-of-the-art performances on both tasks. We chose590

Probase as the running example, other knowledge bases also can be applied to
our framework. For an example, one can use Wikipedia via Wikification to
generate text concepts.
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In the future, we will further modify our framework which will
be more unified and elegant. What’s more, due to the fact that text595

is constructed by human based on morphological and grammatical
rules, it already contains well defined morphological and syntactic
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Figure 7: The effect of setting the different percentage of lowest entropy entities

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0.86

0.861

0.862

0.863

0.864

0.865

0.866

0.867

0.868

0.869

0.87

5 10 15 20 25 30

P
e

a
rs

o
n

 c
o

rr
e

la
ti

o
n

s 
r

The  number of typical concepts

(a) Pearson correlations r of semantic relatedness with different number of typical
concepts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30

A
cc

u
ra

cy

The number of typical concepts

Yelp2013

Yelp2014

Yelp2015

IMDB

(b) Classification accuracy of four datasets with different number of typical concepts

Figure 8: The effect of the number of typical concepts

knowledge. We will try to integrate other kinds of knowledge (such
as morphological, syntactic, and semantic knowledge) to represent
text.600
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