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Abstract 22 

Atmospheric nitrogen pollution has severe impacts on biodiversity, but approaches to value them 23 

are limited. This paper develops a spatially explicit methodology to value the benefits from 24 

improvements in biodiversity resulting from current policy initiatives to reduce nitrogen emissions. 25 

Using the UK as a case study, we quantify nitrogen impacts on plant diversity in four habitats: 26 

heathland, acid grassland, dunes and bogs, at fine spatial resolution. Focusing on non-use values for 27 

biodiversity we apply value-transfer based on household’s willingness to pay to avoid changes in 28 

plant species richness, and calculate the benefit of projected emission declines of 37% for nitrogen 29 

dioxide (NO2) and 6% for ammonia (NH3) over the scenario period 2007 – 2020. The annualised 30 

benefit resulting from these pollutant declines is £32.7m (£4.4m to £109.7m, 95% Confidence 31 

Interval), with the greatest benefit accruing from heathland and acid grassland due to their large 32 

area. We also calculate damage costs per unit of NO2 and NH3 emitted, to quantify some of the 33 

environmental impacts of air pollution for comparison with damage costs for human health in policy 34 

appraisal. The benefit is £103 (£33 to £237) per tonne of NO2 saved, and £414 (£139 to £1,022) per 35 

tonne of NH3 saved.  36 
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 42 

 43 

1. Introduction 44 

Air pollution is a global issue that has substantial adverse impacts on human health, but also on the 45 

environment (Galloway et al., 2008; Oenema et al., 2011). For example, plant diversity at sites 46 

receiving high atmospheric nitrogen deposition in Europe is typically 50% lower than sites receiving 47 

low levels of nitrogen (Maskell et al., 2010; Stevens et al., 2004). While decades of research have 48 

catalogued the impacts of nitrogen deposition on natural systems (e.g. Pardo et al., 2011; Phoenix et 49 

al., 2012), there is increasing interest in using an ecosystem services perspective to evaluate the 50 

wider impacts of nitrogen on flows of goods and services (Compton et al., 2011; Jones et al., 2014; 51 

Smart et al., 2011).  52 

 53 

Nitrogen deposition has started to decline in Western Europe due to targeted policies on emissions, 54 

with emissions 25% lower than their peak in 1990 (Oenema et al., 2011). Applying an ecosystem 55 

services approach to evaluate the non-health impacts of this pollution decline has shown both 56 

negative and positive impacts (Jones et al., 2014). For example, there are some costs to society as a 57 

result of the decline in ‘free’ fertiliser from atmospheric deposition. These costs come in the form of 58 

lower productivity of agricultural grasslands, and reductions in tree growth and in carbon 59 

sequestration. However, there are also major benefits to society through reductions in emissions of 60 

the greenhouse gas N2O, improvements in water quality, and there may be large benefits to 61 

biodiversity, although this is difficult to value. 62 

 63 

For a pollutant like nitrogen, this leads to potential tensions in deriving a Total Economic Value of 64 

those impacts, because provisioning services generally increase with nitrogen, and are much easier 65 

to value than cultural services where nitrogen generally has an adverse impact. In many cases 66 

provisioning services can be linked to market values, providing the basis for a relatively 67 

straightforward economic assessment (e.g. agricultural crop productivity, livestock productivity, or 68 

timber productivity). By contrast cultural benefits, including non-use values for biodiversity 69 

conservation, are the domain of non-market valuation methods (Hanley and Barbier, 2009). Deriving 70 

a TEV which fails to account for impacts on biodiversity may lead to incomplete assessment of the 71 

net benefit arising from lower levels of nitrogen deposition. There is therefore a need to improve the 72 

robustness of valuation approaches focusing on biodiversity and the drivers which impact on it. 73 

 74 

A key knowledge gap relates to economic valuation of changes to biodiversity. Biodiversity is 75 

important at all levels in ecosystem services, playing a role in supporting, intermediate and final 76 

services (Mace et al., 2012). Both the level and the stability of ecosystem services tend to improve 77 

with increasing biodiversity (Isbell et al., 2011), while nitrogen decreases plant diversity (Field et al. 78 

2014). Nitrogen alters the core processes, functions and biodiversity which underpin a wide range of 79 

supporting and intermediate services. It also influences final services directly through effects on 80 

environmental attributes such as plant and animal diversity and landscape aesthetics which people 81 

care about (Clark et al., 2017; Rhodes et al., 2017). Stated preference methods are the main 82 

approach to value the effect of changes in biodiversity on cultural services and non-use values 83 

(Champ et al., 2003; Christie et al., 2006), but studies need to be robust enough to satisfy value 84 

transfer requirements (Ninan, 2014). 85 

 86 

A number of other issues present problems for valuing biodiversity impacts. These centre on spatial 87 

context and the relationships between nitrogen and biodiversity. Robust assessment of impacts 88 
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requires information on the spatial location of both pressures (nitrogen) and receptors (biodiversity). 89 

Previous approaches have only been applied at national level (Smart et al., 2011). However, omitting 90 

spatial context may lead to considerable over- or under-estimation of impact depending on whether 91 

the changes in air pollution occur in the same location as the components of the ecosystem 92 

experiencing damage. Addressing this spatial disconnect is most important where the pattern of an 93 

air pollutant such as ammonia is heterogeneous at relatively fine scales (Loubet et al., 2009), and 94 

where the receptor plant communities have an uneven spatial distribution. 95 

 96 

This approach requires sufficient understanding of the dose-response function between nitrogen 97 

and biodiversity.  This can be a challenge because the evidence for nitrogen impacts on organisms 98 

covers a relatively small number of species (Dise et al., 2011), and relatively few of those studies 99 

provide the dose response functions required to model impacts across a range of nitrogen 100 

deposition. The most promising are studies that have evaluated statistical relationships between 101 

nitrogen and diversity but which also account for the effects of confounding factors like climate and 102 

other pollutants (Field et al., 2014; van den Berg et al., 2016). 103 

 104 

Policy makers are increasingly required to utilise economic tools to evaluate the positive and 105 

negative impacts of policy measures (HM Treasury, 2003) in order to justify and to better target 106 

those policies. Therefore, there is a need to develop more sophisticated approaches to quantifying 107 

air pollution impacts on ecosystem services, which incorporate spatial context, and which value 108 

those impacts in ways that can be incorporated into policy appraisal (Dickens et al., 2013).  109 

 110 

In this paper, we develop and apply new approaches to address these issues, using the UK as a case 111 

study. We i) outline a spatially-explicit methodology to quantify the impacts of N on biodiversity, ii) 112 

present a value-transfer approach to translate those impacts into economic values and iii) combine 113 

these techniques to answer the policy question: What is the economic impact to biodiversity of 114 

forecast reductions in nitrogen pollution? Lastly, we calculate the damage cost per unit of nitrogen 115 

dioxide (NOx) or ammonia (NH3) emitted, for use in policy appraisal. These forms of nitrogen are 116 

emitted from two main sources: nitrogen dioxide primarily from combustion processes, and 117 

ammonia primarily from agricultural practices. Therefore, the effect of policies which only address 118 

emissions in particular sectors will vary spatially, eliciting different economic values.  119 

 120 

Thus, we calculate the marginal value associated with a decline in nitrogen pollution and its 121 

subsequent impacts on the ‘cultural’ service ‘Appreciation of biodiversity’. This service was identified 122 

in Jones et al. (2014) as requiring considerable development, in particular an improved evidence 123 

base for quantifying the nitrogen impacts and the development of spatial analysis. The approach 124 

taken focuses on one aspect of biodiversity –the non-use value component associated with 125 

conservation of species and maintaining species abundance. We use plant species richness as a 126 

proxy for the wider impacts of N deposition on biodiversity because responses of plant communities 127 

to N deposition are the best characterised of all organism groups, and because impacts on plants 128 

cascade up to higher trophic levels (Clark et al., 2017). We quantify the impact on species richness 129 

spatially in four habitats (heathland, acid grassland, dunes and bogs), and calculate the marginal 130 

economic value of declining nitrogen deposition per 5x5km grid cell of the UK, applying a value 131 

transfer procedure developed using data from Christie & Rayment (2012). Data are presented by 132 

region of the UK, including the uncertainty bounds for these estimates. 133 

 134 

 135 

2. Materials and methods 136 
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2.1 Ecosystem services assessment: the Impact pathway for air (nitrogen) pollution. 137 

We use the impact pathway approach (Friedrich and Bickel, 2001) for assessing the ecosystem 138 

services impacts of atmospheric nitrogen pollution (Figure 1). This shows how a policy initiative to 139 

curb air pollution results in a change in emissions of NOx and NH3 which leads, via changes in 140 

deposition, to an altered impact on biological receptors (plant species richness) and hence to the 141 

ecosystem service (Appreciation of biodiversity) they underpin. The steps are described in the 142 

following sections. 143 

 144 

 145 
                                        146 

Figure 1. Impact pathway for nitrogen impacts on the ecosystem service ‘Appreciation of 147 

biodiversity’. Blue outlines represent quantified impact on the ecosystem service. 148 

 149 

 150 

 151 

2.2 Policy scenario, and nitrogen emissions and deposition 152 

The first stage of the impact pathway is to specify alternative policy scenarios on the likely changes 153 

to N deposition. In this study, we compare a projected decline in N deposition from 2007 to 2020, 154 

against a counterfactual. Our scenarios were based on the UEP43 energy scenario 3 for 2020 (Misra 155 

et al., 2012). This scenario was seen as the most likely outcome of planned initiatives to reduce 156 

pollutant emissions across a range of sectors. The scenario estimated that policies designed to 157 

reduce air pollution emissions from combustion sources lead to a projected 37% decline in oxidised 158 

N emissions (nitrogen dioxides, NOx), while policies to reduce emissions from agriculture lead to a 159 

projected 6% decline in the forms of reduced N from agriculture (primarily ammonia, NH3). The 160 

counterfactual assumes emissions continue at 2007 levels. Thus, our scenarios essentially asks: 161 

“What is the expected impact on ecosystem service values under forecast reductions in nitrogen 162 

deposition”? 163 

Nitrogen emissions data were obtained from Murrells et al. (2010) and Misra et al. (2012), while 164 

nitrogen deposition data were available at 5x5 km resolution across the United Kingdom. Deposition 165 

for 2007 used Concentration-Based Estimated Deposition (CBED) data (Centre for Ecology and 166 

Hydrology), taking a three-year average (2006-2008) to smooth inter-annual differences in 167 

deposition caused by variations in rainfall. Deposition for 2020 was calculated using the FRAME (Fine 168 

Resolution Atmospheric Multi-pollutant Exchange) model, a Lagrangian atmospheric transport 169 

model used to assess the long-term annual mean deposition of reduced and oxidised nitrogen and 170 

sulphur over the United Kingdom (Smith et al., 2000). FRAME model outputs were calibrated to 171 

CBED deposition in 2008.  172 

 173 

2.3 Biological receptors: Dose response functions for nitrogen impacts on plant species richness 174 

Four habitat types were selected that are known to be amongst the most sensitive to nitrogen 175 

deposition: acid grassland (Dupré et al., 2010; Stevens et al., 2004), upland and lowland ericoid 176 
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heaths dominated by the shrub Calluna vulgaris (Pilkington et al., 2007; Power et al., 2006), sand 177 

dune grasslands (Jones et al., 2013; Plassmann et al., 2009; Remke et al., 2009) and bogs (Bragazza 178 

et al., 2012; Sheppard et al., 2011). Habitat area for these habitats was derived from CEH Land Cover 179 

Map 2007 (Morton et al., 2011), where acid grassland is defined as ‘acid grassland’ (class 8), 180 

heathland is defined as ‘heather’ (class 10) + ‘heather grassland’ (class 11), dune grassland is defined 181 

as ‘supra-littoral sediment’ (class 18) occurring within 2 km of the coast and where Ammophila 182 

arenaria was recorded in Biological Records Centre databases, and bogs were defined as ‘bogs’ (class 183 

12). 184 

 185 

The impacts of changing N deposition on biodiversity were calculated using dose response functions. 186 

These were developed from re-analysis of data from targeted gradient surveys of nitrogen impacts 187 

on plant species richness in the four selected UK habitats (Field et al., 2014). The nitrogen deposition 188 

gradients were characterised across a minimum of 20 sites for each habitat. Sites were selected to 189 

control for confounding effects of temperature and rainfall as far as possible. Total species richness 190 

of all vascular and lower plants at each site was summed over 5 quadrats, each of 2x2m, in total 20 191 

m2. Relationships for upland and lowland heaths were not significantly different and data were 192 

therefore combined. Dose response relationships were calculated by curve fitting in Sigmaplot v13.1, 193 

using AIC to determine the most parsimonious fit. 194 

 195 

2.4 Ecosystem services: Valuation of change in ecosystem service provision 196 

We utilised value transfer techniques (Johnston et al., 2015) to apply existing data on the value of 197 

biodiversity to our N deposition scenarios. The value transfer is based on Christie and Rayment 198 

(2012) who applied a discrete choice experiment (Louviere and Hensher, 1982; Louviere and 199 

Woodworth, 1983) to estimate willingness to pay (WTP) for the management of Sites of Special 200 

Scientific Interest (SSSI) for the provision of a suite of ecosystem services, under three funding 201 

scenarios. In this study we only used the ecosystem service attribute relating to species diversity for 202 

non-charismatic species1, and for the habitats of interest in this study. WTP values were available for 203 

other services, including charismatic species, but these were excluded. We acknowledge that the 204 

parameters for non-charismatic species were not significant in the Christie study, but this remains 205 

the only study to our knowledge which quantifies and values the magnitude of change in biodiversity 206 

of non-charismatic species, allowing direct application to this study. Therefore, we decided to 207 

continue to use these values to demonstrate proof of concept for the overall methodology. Christie 208 

and Rayment (2012) specified a change in species richness for two scenarios: increase SSSI funding 209 

(25% increase in species richness), or remove SSSI funding (50% decrease in species richness), 210 

compared with the status quo of maintain SSSI funding (no change in species richness). We re-211 

interpret the ‘Increase funding’ scenario as analogous to a situation where species richness increases 212 

relative to the status quo (2007 reference situation) due to a decline in N deposition, and we use the 213 

WTP estimates associated with that scenario as the basis for our value transfer, taking into account 214 

the predicted % change in species richness under our scenarios.  215 

Christie and Rayment (2012) provide both unit WTP values per hectare for each habitat, based on 216 

habitat area within SSSI sites in England and Wales, and aggregate values for England and Wales. In 217 

                                                           
1 Non-charismatic species include all plants, all insects apart from butterflies, in contrast to charismatic species 
such as birds, butterflies and animals (Christie & Rayment 2012). 



6 
 

this study we used the unit values per hectare, in order to scale up to the whole of the UK. The WTP 218 

per habitat is shown in Table 1.  219 

 220 

2.5 Calculating economic impacts of N deposition on ‘Appreciation of biodiversity’ service 221 

Our first economic measure relates to the impact that change in N deposition has on the value of the 222 

ecosystem service ‘appreciation of biodiversity’. All ecosystem service calculations were made at the 223 

resolution of the N deposition data, i.e. on a 5 x 5 km grid. Nitrogen deposition data for each grid cell 224 

were scaled linearly between 2007 and 2020, the start and end time-points of the scenario 225 

comparison. In each 5 x 5 km grid cell and for each year of the scenario analysis, we calculated the 226 

predicted species richness under the N deposition for that year using the dose response 227 

relationships developed earlier. The percentage difference in species richness from the reference 228 

year was then calculated, as the basis for calculating economic value. The economic value was scaled 229 

according to the percentage change in species richness, relative to the percentage change in species 230 

richness used in Christie & Rayment (2012) – see Figure 2, to give a £ per ha for the change in species 231 

richness within each grid cell. This was multiplied by the area of habitat in each cell (Table 1).  232 

 233 

 234 

 

Heathland 

Acid 

grassland Dunes Bogs 

Total 4 

habitats 

WTP (£/ha) £46.40 £44.45 £58.10 £57.55 n/a 

Habitat area 

(ha)      

England 363,725 319,997 15,850 196,513 896,085 

Wales 111,875 283,861 6,126 41,608 443,470 

Scotland 1,567,895 1,023,537 19,505 769,461 3,380,398 

Northern 

Ireland 
73,971 21,709 1,502 92,808 189,990 

UK 2,117,466 1,649,104 42,983 1,100,390 4,909,943 

 235 

Table 1. WTP values per hectare for increase in diversity of non-charismatic species (Christie and 236 

Rayment, 2012) and area of each habitat (ha) (CEH Land Cover Map 2007) in the UK. 237 

 238 

In each scenario year, the difference in value between the scenario and the counterfactual 239 

(reference scenario) was calculated. Values for all grid cells were aggregated to country and to 240 

national UK level. Aggregated economic values are presented in terms of an equivalent annual value 241 

(EAV) for the scenario, estimated as: 242 

 243 
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   [1] 244 

 245 

Where PV is the present value of the change in ecosystem service value and A is the relevant annuity 246 

factor for time horizon t with discount rate r.  The present value of the change in ecosystem service 247 

value is estimated in the standard manner: 248 

 249 

  [2] 250 

 251 

Where V denotes the value of the change in ecosystem service provision. A discount rate of 3.5% 252 

was used, following UK Government guidance (HM Treasury, 2003). Calculation of the PV of the 253 

change in ecosystem service value provides an estimate of the accumulated damage to ecosystem 254 

services from air pollution over the 13 year duration of the scenario, whilst the EAV provides a 255 

measure of the annualised change in the value of the flow of ecosystem services for the scenario. 256 

 257 

 258 

Figure 2. Scaling of changes in species richness and associated WTP relative to values in Christie & 259 

Rayment (2012). p1 is the difference between species richness under the reference level of N 260 

deposition (counterfactual) and the projected N deposition. P represents the 25% increase specified 261 

in the choice experiment of Christie & Rayment. Values were scaled as the ratio of p1/P of the 262 

scenario WTP. 263 

 264 

2.6 Calculating damage costs 265 
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Our second economic measure investigated related to the damage cost impacts per tonne of 266 

ammonia or tonne of nitrogen oxides emitted. This entailed separate calculation of the ecological 267 

impacts of ammonia and of nitrogen dioxide. There is currently no consensus on whether oxidised or 268 

reduced N is more damaging to plant species richness, and robust dose-response relationships do 269 

not exist separately for reduced forms of N and for oxidised forms of N (van den Berg et al., 2016). 270 

Therefore, for this study it was assumed that they have equal impact per unit of N deposited. Since 271 

the dose response functions we derived are based on total N deposition, separate oxidised or 272 

reduced N deposition cannot simply be substituted into the equation. Therefore the total impact in 273 

each year was calculated using total N deposition, and the value apportioned to oxidised or reduced 274 

N according to the proportion of change in the deposition of each N form. i.e. If total deposition 275 

declined by 2 kg N ha-1 yr-1 and 25% of this change (0.5 kg N ha-1 yr-1) was in deposition of reduced 276 

forms of N, then 25% of the value was apportioned to reduced forms of N, and the remaining 75% to 277 

declines in oxidised N. The calculated EAV was divided by the average change in oxidised N 278 

emissions and in ammonia emissions over the scenario period (Table S1). 279 

 280 

2.7 Uncertainty 281 

There is uncertainty in all steps of the impact pathway, from estimates of nitrogen emission and 282 

deposition to the model parameters for the dose response functions. We used Monte Carlo 283 

simulation to propagate the uncertainty in the parameters and variables through the model, thereby 284 

calculating the uncertainty in the estimated value of impacts on biodiversity. Probability density 285 

functions were derived to describe the uncertainties in each model parameter and variable. Details 286 

are given in Tables S2 and S3 in Supplementary Material. We assumed that the uncertainties in the 287 

model parameters were at the UK scale and so for any one iteration of the Monte Carlo simulation 288 

the same values of the model parameters were applied in each grid cell. For other inputs the 289 

uncertainties were applied at the scale of a grid cell and assumed to be independent. We used 290 

@Risk software (Palisade Corporation, USA, 2010) to run the Monte Carlo simulation. We used Latin 291 

hypercube sampling and ran the simulation for 50,000 iterations. Uncertainty in the economic value 292 

of impacts is expressed as 95% Confidence Intervals. We followed the IPCC convention and assumed 293 

this interval to be defined by the 2.5th and 97.5th percentiles (Eggleston et al., 2006), while noting 294 

that this is not precisely the same as the usual meaning of a confidence interval in statistics. 295 

 296 

3. Results 297 

3.1 Change in N deposition  298 

In response to the 37% decrease in emissions of nitrogen oxides and 6% decrease in ammonia 299 

emissions in our scenario, the average UK deposition projected by the FRAME model fell by 11%. 300 

This relatively small decrease is because approximately two-thirds of deposition is in the form of 301 

ammonia and other compounds of reduced N. Emissions from these compounds did not decrease as 302 

much as those of oxidised N. Figure 3 shows the spatial distribution of nitrogen deposition in 2007 303 

and the change between 2007 and 2020. Nitrogen deposition is greatest in the uplands of north-304 

west England and Wales, driven by high wet deposition in rainfall, and in large agricultural source 305 

areas such as Northern Ireland and in Norfolk in the east of England. By 2020, it is projected to 306 

decline in most areas, with the greatest decrease in areas which currently have high deposition, but 307 
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will also decrease around large urban areas such as London. Nitrogen deposition at a few locations is 308 

projected to increase, attributed to expansion of localised point sources.  309 

 310 

 311 

 312 

Figure 3. Nitrogen deposition in the UK (kg N ha-1 yr-1) showing a) Spatial pattern in 2007, b) Forecast 313 

difference from 2007 to 2020.  314 

 315 

 316 

3.2 Dose response functions for nitrogen and species richness 317 

Log relationships provided the most parsimonious fit for all habitats except bogs, where a linear fit 318 

was the most appropriate (Figure 4). A quadratic relationship for acid grasslands gave a higher R2, 319 

but was rejected due to the shape of the curve at high N deposition which predicted an increased 320 

species richness above 35 kg N ha-1 yr-1, which was not supported by the data. All curves were 321 

significant. The equations for each habitat are summarised in Table 2. 322 

 323 

3.3 Change in species richness due to nitrogen 324 

In response to the general decline of N deposition, there is a corresponding predicted increase in 325 

species richness. The spatial pattern of increase reflects the combination of habitat location and 326 

declines in N deposition (Figure S1, Supplementary Material). Heathlands have the greatest UK 327 

coverage and show up to 20% increases in species richness with a spatial pattern reflecting that of 328 

changes in N deposition. Acid grasslands also occur widely across the UK, with greatest increases in 329 
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species richness in the uplands of north-west England and Wales. Bogs have a more restricted 330 

distribution in the north and west UK, and show smaller increases, typically up to 10%, in species 331 

richness. Dune grasslands are distributed all around the UK coasts and show increases up to 20% in 332 

species richness. 333 

 334 

 335 

 336 

Figure 4. Dose response curves for nitrogen impacts on plant species richness for a) heathland, b) 337 

acid grassland, c) dune grassland and d) bogs, showing fitted equations (Table 2). 338 

 339 

 340 

 341 

Habitat Number 
of sites 
surveyed 

N deposition 
range (kg N ha-

1 yr-1) 

Form of 
equation 

Coefficients (SE) R2, SE, 
(Significance) of 
equation 

Heaths: 
Upland + 
Lowland  

25 + 27 5.9 – 32.4 f = y0 + 
a*ln(x)  

y0 =  49.6654
 (6.5632) 
a = -11.3114
 (2.2716) 

0.3315, 6.6414, 
(p<0.001) 
 

Acid 
grassland 

22 7.8 – 40.8 f = y0 + 
a*ln(x) 

y0 = 65.1623
 (7.927) 
a = -14.026
 (2.7211) 

0.5705, 6.1451, 
(p<0.001) 

Dune 24 5.4 – 16.8 f = y0 + y0 = 98.351 0.3346,10.2808, 

c) d) 
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grassland a*ln(x)  (15.06) 
a = -20.4662
 (6.1534) 

(p=0.003) 

Bogs 29 5.9 – 30.9 f = y0 + a*x y0 = 27.6647
 (1.9195) 
a = -0.2909
 (0.1074) 

0.2136, 3.6072, 
(p=0.012) 

 342 

Table 2. Dose response equations linking N deposition to plant species richness. Data re-analysed 343 

from Field et al. (2014). Heath data from upland and lowland surveys were combined prior to 344 

analysis. Species richness was calculated as number of species in an area of 20 m2 (five random 345 

quadrats of 2x2m). 346 

 347 

3.4 Change in value of ‘appreciation of biodiversity’ ecosystem service 348 

The economic value of projected declines in N deposition to 2020 on the ecosystem service 349 

‘appreciation of biodiversity’ are shown in Table 3. Heathlands show the greatest benefit from 350 

declines in N deposition, with a projected benefit of £17.1 m (£2.7 – 56.0 m, 95% CI) EAV, while acid 351 

grasslands show a benefit of £12.2 m (£1.8 – 39.9 m, 95% CI) EAV. Despite their large area, the 352 

benefit to bogs is much lower £3.0 m (£0.3 – 10.7 m, 95% CI) EAV, since bogs occur primarily in 353 

lower deposition areas. Similarly, despite their high species richness, the limited area of dunes 354 

means the value to dunes is also relatively low at £0.2 m (£0.01 – 0.8 m, 95% CI) EAV. The combined 355 

annualised benefit to the whole UK is £32.6 m (£4.4 – 109.7 m, 95% CI) EAV. Figure 5 shows the 356 

spatial pattern in EAV from the four habitats combined. The combined benefit from reductions in N 357 

deposition is greatest in Scotland, and the upland areas of NW England and Wales reflecting the 358 

greater extent of the semi-natural habitats in these areas (Table 1). The economic benefit per ha 359 

(Figure 6) differs between habitats and is strongly non-linear, with the greatest economic benefit 360 

found at low levels of N deposition, with the exception of bogs which show a linear relationship. 361 

 362 

3.5 Damage costs 363 

The unit damage costs show the benefit to biodiversity per tonne decrease in emission of the main 364 

nitrogen compounds. For emissions of nitrogen oxides the benefit was £102.8 (£33.3 to £237.4, 95% 365 

CI) per tonne of NO2 emission saved, and for ammonia the benefit was £413.8 (£139.1 to £1,021.5) 366 

per tonne of NH3 not emitted. 367 

 368 

 369 

 370 

 371 

 372 

 373 
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 374 

 375 

Equivalent 

Annual Value 

Heaths  

 

Acid 

grassland 

 

Dune 

grassland 

 

Bogs 

 

Total 4 

habitats 

England £4.1m £3.0m £0.09m £1.2m £8.3m 

Wales £0.9m £1.9m £0.03m £0.2m £3.0m 

Scotland £11.7m £7.3m £0.1m £1.4m £20.6m 

Northern Ireland £0.4m £0.1m £0.008m £0.2m £0.7m 

UK 

(95% CI) 

£17.2m 

(£2.7m to 

£56.0m) 

£12.3m 

(£1.8m to 

£39.9m) 

£0.2m 

(£0.01m to 

£0.8m) 

£3.0m 

(£0.3m to 

£10.7m) 

£32.7m 

(£4.4m to 

£109.7m) 

Table 3. Equivalent Annual Value of nitrogen impacts on appreciation of biodiversity for non-376 
charismatic species, by country and by habitat, future scenario (95% Confidence Intervals).  377 
 378 

 379 
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Figure 5. Spatial pattern of equivalent annual value (EAV) resulting from projected declines in N 380 

deposition impacts on biodiversity (£ per 5x5km grid cell). 381 

 382 

 383 

 384 

 385 

Figure 6. Marginal cost response curves showing change in value of economic benefit of a 1 kg 386 

N/ha/yr pollutant reduction, depending on initial level of N deposition (£ per ha, per unit change in 387 

N deposition). 388 

 389 

4. Discussion 390 

In this study we developed a spatially-explicit methodology to quantify N impacts on biodiversity, 391 

and a value transfer function to calculate the marginal value of changes in N deposition. We used 392 

this to quantify the economic value of reductions in nitrogen deposition on a cultural ecosystem 393 

service “Appreciation of biodiversity” at national scale, and to calculate the damage cost per tonne 394 

of nitrogen dioxide or ammonia emitted, for use in policy appraisal. 395 

4.1 Economic values and damage costs 396 

This study uses a spatially explicit approach to calculate N impacts on ecosystem services, which is 397 

more robust than previous studies using national figures only (Jones et al., 2014; Smart et al., 2011), 398 

and makes use of new data to calculate dose response functions linking N deposition and species 399 

richness (Field et al., 2014). The value transfer approach provides direct linkage between response 400 

functions for changes in species richness and the WTP values, demonstrating a clear impact 401 

pathway. Spatial context is a key component of ecosystem service assessment where location plays 402 

a part in determining the amount of benefit supplied, or where the spatial location of supply and 403 

beneficiaries differ (Eigenbrod et al., 2010). In this study, the considerable spatial variation in benefit 404 

supply arises from the congruence of the pressure affecting the ecosystem and where the benefits 405 
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are provided. The importance of incorporating spatial context is illustrated by the value calculated 406 

for bogs which, despite covering an area almost half that of heathland, have annualised benefits less 407 

than one fifth that of heathland due to their spatial location in relation to the changes in N 408 

deposition.    409 

This study also calculates primary estimates of damage costs for N impacts on biodiversity. While the 410 

values we calculate (£414 per tonne of ammonia) are somewhat lower than the value of £1,972 411 

(2010 prices) recommended for UK policy appraisal of human health impacts related to the PM2.5 412 

aerosol component of ammonia (Dickens et al., 2013), they represent a previously unquantified 413 

component of air pollution impacts on the environment.  414 

 415 

4.2 Valuation methods 416 

Our analysis utilised WTP value data from Christie and Rayment (2012), which assessed the UK 417 

public’s WTP for changes to non-charismatic species riches at different protected (SSSI) habitats. The 418 

population base for the economic values, the types of habitats valued and the percentage changes in 419 

species richness are consistent between their study and ours. Therefore, we are reasonably 420 

confident that the use of these data for value transfer is acceptable. WTP values may differ spatially 421 

either in terms of (i) the differences in the socio-economic attributes of people living in different 422 

locations or (ii) the accessibility to substitute sites. While robust data on the spatial variation of 423 

values was not available from Christie and Rayment (2012), an earlier study looking at WTP to 424 

protect UK Priority Habitats for conservation (Christie et al., 2011) showed no significant effect of 425 

regional variation in WTP values. Therefore, our analysis assumes that values are spatially 426 

homogenous. The Christie et al. studies only estimated WTP values for England and Wales. Our 427 

extension of these values to Scotland and Northern Ireland carries assumptions that WTP does not 428 

vary by country outside of the original studies. Our analysis incorporated differences in habitat area 429 

in these countries at a fine spatial scale (5x5 km), but did not adjust for potential differences in WTP, 430 

since average levels of household disposable income for Scotland and Northern Ireland are within or 431 

very close to the range of average disposable income in England and Wales.  432 

 433 

Since the valuation focuses on the non-use component of biodiversity in the form of existence value 434 

for non-charismatic species as a final service, it does not capture the contribution of biodiversity to 435 

direct and indirect use values; i.e. the value that is embedded in production of crops, regulating 436 

climate, recreation, etc., nor the ‘value’ that biodiversity can have in terms of resilience and 437 

supporting continuing flows of ecosystem services (Baumgartner, 2007; Kumar and Kumar, 2008). In 438 

this way, we avoid issues of double accounting. However, we are also assuming ‘constant flow’ over 439 

time. This is not problematic so long as current flows are sustainable; i.e. we are assuming the 440 

resilience function of biodiversity is not impaired. If the resilience function is depleted, then 441 

potential thresholds and non-linear effects may come into play and the value could be considered an 442 

underestimate (Baumgartner, 2007).   443 

 444 

4.3 Response functions 445 

The non-linear response function in all habitats except bogs shows that the majority of biological 446 

impact on plant diversity occurs at relatively low levels of N deposition, but that it continues to have 447 

an impact at higher N deposition. This has consequences for valuation in that a unit change in N 448 

deposition will have a greater value at low N deposition than at high N deposition, because the 449 

ecological impact on species richness is greater.  450 



15 
 

The response functions use species richness as a metric to represent biodiversity in common with 451 

many other studies. However, this may mask more complex biological impacts. For example where 452 

species of conservation interest are replaced by other, faster growing, nitrogen-loving species 453 

(Hodgson et al., 2014), this may result in no net change in species richness, despite substantial 454 

changes in species composition. There was no evidence of such changes in the data underpinning 455 

this study (Field et al., 2014). However, other metrics such as difference from a pristine reference 456 

species composition, e.g. Mean Species Abundance (Alkemade et al., 2009) could be used instead. 457 

Using a different biodiversity metric may then require a modified value-transfer approach. 458 

 459 

4.4 Assumptions 460 

A number of assumptions underlie these calculations. Economic theory suggests that values of 461 

biodiversity appreciation may be non-linear: i.e. marginal value per species is likely to decline as 462 

species richness increases or there may be thresholds which result in marked changes in value 463 

(Kumar, 2010). Other non-linearity effects due to scope insensitivity in the WTP study may influence 464 

our scaling assumptions, in which we used a value per habitat based on its coverage within 465 

protected areas and scaled it up to its extent nationally on the assumption that the value would 466 

increase linearly with area. In the absence of more detailed information, we assumed a linear 467 

response in both cases. Alternative approaches to value nitrogen impacts could include restoration 468 

cost (Van Grinsven et al., 2013), the estimated cost of restoring an ecosystem from its degraded 469 

state, or a Regulatory revealed preference cost which assumes that all costs of managing protected 470 

areas, including to manage impacts of drivers such as nitrogen deposition, were built into the 471 

funding model. These techniques also carry major assumptions, for example the restoration cost 472 

approach assumes that the cost of replacing an ecosystem or its services is an estimate of the value 473 

of the ecosystem or its services (Ott et al., 2006).  474 

From a nitrogen impacts perspective, the calculations assume that biological response to a change in 475 

N deposition occurs within a year. In reality, there are lags in the response of plant communities to 476 

changes in N deposition due to species persistence effects and continued cycling of stored N in the 477 

soil (Rowe et al., 2017). The complexity and varying timescales of these interactions make it difficult 478 

to incorporate them in this sort of economic appraisal currently.  479 

The majority of species with clear response functions for N impacts can be classed as non-480 

charismatic species. However, there is emerging evidence of impacts on more charismatic species 481 

such as butterflies (Wallis de Vries and Van Swaay, 2006) and on birds via impacts on prey items 482 

(Nijssen et al., 2001). WTP values for charismatic species are far greater than for non-charismatic 483 

species (Christie and Rayment, 2012; Loomis and White, 1996a, b). However, at present it is not 484 

possible to model impacts of air pollution on these species due to a lack of dose response functions. 485 

This remains an important evidence gap that requires further research.  486 

 487 

5. Conclusions 488 

In conclusion, we demonstrate the potential for spatially-explicit calculation of pollutant impacts, by 489 

combining dose-response functions for nitrogen impacts on plant species with a well-aligned WTP 490 

study, and that it is possible to then value pollutant impacts on biodiversity, albeit with large 491 

uncertainty bounds. This demonstrates an approach that can be applied with other services and in 492 

other contexts, particularly as new relevant WTP studies emerge in the literature. 493 
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This study provides clear potential for an economic benefit to biodiversity from policies which 494 

reduce N deposition. The spatial pattern of the supply of benefit varies considerably and accounting 495 

for this spatial variation is essential to correctly quantify those impacts. The response itself is non-496 

linear, and the greatest benefit comes from reducing nitrogen pollution in areas which are still 497 

relatively un-impacted.  498 

From a policy perspective there are two messages. Avoiding damage to habitats which are still 499 

relatively un-impacted will have the greatest economic value. However, there is also continued 500 

economic benefit to reducing N deposition to habitats which already receive high levels of N 501 

deposition. The study also provides an indicative estimate of the potential damage costs due to 502 

adverse effects on non-charismatic species, which can be considered in the context of existing health 503 

damage costs. Understanding the spatial context to those impacts can help design intervention 504 

measures to alleviate pollutant pressures in particular locations or regions. 505 

 506 
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 671 

Table S1. Change in emissions of NO2 and NH3 used to calculate damage costs for the future 672 
scenario. Emissions are scaled linearly between start and end years of the scenario. 673 

  NOx as NO2 NH3 

Year 

NO2 

Emissions 

(kt) 

Change 

from 

baseline 

NH3 

Emissions 

(kt) 

Change 

from 

baseline 

2007 1403.0 0.0 289.6 0.0 

2008 1363.1 -39.9 288.2 -1.4 

2009 1323.1 -79.9 286.9 -2.7 

2010 1283.2 -119.8 285.5 -4.1 

2011 1243.3 -159.7 284.2 -5.5 

2012 1203.3 -199.7 282.8 -6.8 

2013 1163.4 -239.6 281.4 -8.2 

2014 1123.5 -279.5 280.1 -9.5 

2015 1083.5 -319.5 278.7 -10.9 

2016 1043.6 -359.4 277.3 -12.3 

2017 1003.7 -399.3 276.0 -13.6 

2018 963.8 -439.2 274.6 -15.0 

2019 923.8 -479.2 273.2 -16.4 

2020 883.9 -519.1 271.9 -17.7 

Average 

change (kt)1   -279.5   -9.5 

1 Not including Reference Year. 674 

675 

http://nora.nerc.ac.uk/id/eprint/520580/
http://nora.nerc.ac.uk/id/eprint/520580/
https://doi.org/10.1016/j.ecolecon.2018.06.010
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 676 

Table S2. Assumptions and parameterisation used in the uncertainty analysis 677 

Variable  Assumptions and parameterisation 

Spatially variable 
N deposition 

Uncertainty for each predicted value of N deposition was distributed log-
normally with a standard deviation of 25% of the mean (this approximates 95% 

confidence limits of ±50%) (Jones et al. 2016).  We used a log-normal 
distribution because the standard deviation was large, thereby avoiding 
negative values which would result from a normal distribution. Correlation in 
errors between the values in 2007 and 2020 was estimated as 0.99. 

Response function 
(slope of 

 

relationship) 

Based on examination of the data, uncertainty in the model parameters was 
distributed normally with means standard deviations and correlations listed in 
Table S3 below. 
 

Percentage area 
of habitat in 
5x5km square 

Uncertainty in the percentage of each habitat across the UK had a triangular 
distribution with limits ±5% of the mean.  
 

Maintain/Increase 
Funding  

Based on the information in Christie et al. (2012). Willingness To Pay values for 
non-charismatic species were distributed log-normally with standard deviation 
65% of the mean. We used a log-normal distribution because the standard 
deviation was large. The uncertainty in this variable does not account for the 
uncertainties accumulated when aggregating from the price per 1% change in 
unit (£/household/year) as this information was not available.  

 678 
 679 

Table S3. Parameters for response functions in uncertainty analysis. 680 

 Means Standard deviations Correlations 
      

Heaths -11.3 49.67 2.27 6.56 -0.99 
Acid grassland -14.0 65.15 2.72 7.93 -0.99 
Dunes -20.5 98.25 6.15 15.06 -0.99 
Bogs -0.29 27.66 0.11 1.92 -0.94 
 681 

 682 

683 
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 688 
Figure S1. Projected changes in species richness due to declines in nitrogen deposition, for four 689 

habitats: a) heaths, b) acid grassland, c) dune grassland, d) bogs. 690 

 691 


