
Aberystwyth University

On the Effects of Incorporating Memory in GC-AIS for the Set Cover Problem
Joshi, Ayush; Rowe, Jonathan E.; Zarges, Christine

Published in:
MIC 2015: The XI Metaheuristics International Conference

Publication date:
2015

Citation for published version (APA):
Joshi, A., Rowe, J. E., & Zarges, C. (2015). On the Effects of Incorporating Memory in GC-AIS for the Set Cover
Problem. In MIC 2015: The XI Metaheuristics International Conference University of Lille 1.

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

https://pure.aber.ac.uk/portal/en/persons/christine-zarges(140b65a7-99a9-4c4d-bc4e-76c894591b75).html
https://pure.aber.ac.uk/portal/en/publications/on-the-effects-of-incorporating-memory-in-gcais-for-the-set-cover-problem(1c5a3918-1b99-4d0a-a7d6-15322bf15e35).html
https://pure.aber.ac.uk/portal/en/publications/on-the-effects-of-incorporating-memory-in-gcais-for-the-set-cover-problem(1c5a3918-1b99-4d0a-a7d6-15322bf15e35).html

MIC 2015: The XI Metaheuristics International Conference 123–1

On the Effects of Incorporating Memory in GC-AIS
for the Set Cover Problem

Ayush Joshi, Jonathan E. Rowe, Christine Zarges

School of Computer Science

University of Birmingham, Edgbaston, Birmingham, B152TT, UK

{axj006, J.E.Rowe, c.zarges}@cs.bham.ac.uk

Abstract

Learning is an important part of the immune system by which the immune system maintains

a memory of the infections it has encountered to protect against future attacks. In this paper we

incorporate the mechanism of maintaining a memory in the recently proposed GC-AIS algorithm.

GC-AIS has shown good performance on the static set cover problem (SCP) in recent work [13] and

we are interested in investigating the merits of GC-AIS in a dynamic setting. We compare the affect of

GC-AIS with and without a memory approach on the dynamic SCP instances, which are created with

varying degrees of modifications to instances from [2]. Three types of modifications are proposed in

the paper by adding, removing or editing the subsets from the original problem instances. It is shown

that for the case of adding subsets to the original instance using our memory approach is always

beneficial while for the case of removing subsets using our memory approach almost always results

in worse performance than when not utilising memory. Finally in the cases with editing subsets it

is shown that for lower levels of modification using our memory approach gives better results while

when the level of modification is higher our memory based approach is worse than using no memory.

1 Introduction

Many real-world problems have characteristics that change over time in the form of changing objec-

tive functions, the problem instance itself or the constraints [25]. Evolutionary dynamic optimisation

(EDO) deals with solving these time dependent problems called dynamic optimisation problems (DOP)

using evolutionary computation methods. Several techniques have been developed for EDO to tackle

these problems like diversity approaches [20], memory [24] and prediction-based [18] approaches, multi-

populations [11] and self-adaptive approaches [22]. If the DOP under consideration involves multiple

objectives then they are referred to as dynamic multi-objective optimisation problems (DMOP). EDO is

a rapidly growing area of research and a lot of work has been done in this field in recent years, a detailed

survey of EDO techniques can be found in [25].

Artificial immune systems (AIS) are randomised search heuristics developed from taking inspiration

from the immune system of vertebrates. The immune system stands out from other biological systems

due to the presence of several desirable properties combined together. It is due to these properties like

memory, anomaly detection and robustness that AIS have been applied to very different applications like

machine learning, robotics and optimisation. De Castro and Timmis [7] provide a detailed survey of

applications. Some work in the field of dynamic optimisation using AIS can be found in [12, 10, 17, 21].

During its lifetime an organism may encounter an infection multiple times. To overcome these in-

fections in the future the immune system maintains a repertoire of cells called memory cells. When an

infection occurs for the first time, the immune cells which prove to be the most potent are selected to

form memory cells and these are used to fight against subsequent attacks of the same infection. The

number of immune cells in the body is regulated and the immune cell repertoire reflects the infections

faced by the organism over its lifetime [7]. Memory cells are long lived and provide a long lasting pro-

tection against an encountered pathogen. While on one hand multiple exposure to the same pathogen

can lead to the production of better antibodies and therefore faster and efficient future immune response,

on the other hand it is also known that in some cases the antibodies produced in response to a particular

strain of pathogen suppress the creation of new different antibodies in response to a different variant of

the pathogen making a person more susceptible to these mutated variant [8]. Exact mechanisms of how

memory in the immune system works is a topic of ongoing research.

Agadir, June 7-10, 2015

123–2 MIC 2015: The XI Metaheuristics International Conference

The Germinal center artificial immune system (GC-AIS) is a novel AIS introduced by Joshi et

al. [13], which is inspired by recent research on the germinal centre reaction [26]. The motivation to

incorporate memory into GC-AIS comes from the fact that immune memory forms the basis of future

immune responses. Using the memory metaphor from the immune system we extend GC-AIS for dy-

namic environments. Since the effect of memory is not always positive we are interested to study the

memory approach to find cases when including memory is useful and when it is not. This new variant of

GC-AIS is tested on the SCP with a simple dynamic component, as previous work by Joshi et al. [13]

has shown some advantages of using GC-AIS for static SCP and we are interested to study the behaviour

of GC-AIS using an additional memory approach in a dynamic setting. The dynamic component is cre-

ated by altering the instances of the SCP taken from the OR-library [2], by adding, removing or editing

subsets from each instance.

2 Preliminaries

This section details the formal definition of the set cover problem and the dynamic extension of the

problem. This is followed by a brief overview of memory based approaches for EDO and finally the

GC-AIS extended with memory is presented.

As stated in [13], the immune system tries to solve the set cover problem in an abstract way. This acts

as the motivation to study the performance of memory based approaches for the GC-AIS on the SCP.

2.1 Set Cover Problem

The set cover problem can be defined as: Given a universe set U , which consists of m items, and another

set S, which contains n subsets of U and whose union equals U , the problem is to find the smallest subset

of S, which covers U . A more formal definition is as follows:

Definition 1 Let the set of m items U := {u1, ..., um} denote the universe and let S := {s1, ..., sn} such

that si ⊆ U for 1 ≤ i ≤ n and
⋃n

i=1
si = U . The uni-cost set cover problem can be defined as finding a

selection I ⊆ {1, 2, ..., n} such that
⋃

k∈I sk = U with minimum |I| .

SCP is a constrained single objective problem where the objective is to find the smallest subset of

S that covers U with the constraint that the subset covers U . It is a NP hard combinatorial optimisation

problem, which has many practical applications, an important one being scheduling [4]. Caprara et al. [4]

provide a survey of techniques employed to solve the set cover problem.

A multi-objective formulation of the set cover problem can be more efficient in finding the optimal

solution than a single objective formulation [15] as it makes the algorithm behave like Chvatal’s greedy

algorithm [6]. A multi-objective formulation can be obtained by transforming the constraint as a sec-

ondary objective [9]. Let X = x1x2 . . . xn, with xi ∈ {0, 1} for 1 ≤ i ≤ n, denote a solution to the

problem where xi = 1 if set si is in the solution and 0 otherwise. Let N be the number of subsets selected

in X and C be the number of elements left uncovered in U . The fitness function for this multi-objective

formulation of SCP can now be defined as F = 〈C,N〉.

If we visualise a possible pathogen as an instance of the universe set, and the binding of the B cells

as possible solutions, then the immune system tries to solve the problem of finding the best match to the

pathogen, by randomised variations in the solutions. Joshi et al. [13] have investigated the performance

of GC-AIS on the SCP using its multi-objective formulation and compared it with the parallel global

simple evolutionary multi-objective optimiser.

2.1.1 A Simple Dynamic Extension for SCP

Another definition of SCP based on matrices can be stated as follows.

Agadir, June 7-10, 2015

MIC 2015: The XI Metaheuristics International Conference 123–3

Definition 2 ([1]) Let A = (aij)1≤i≤m,1≤j≤n with aij ∈ {0, 1} be a matrix with m rows and n columns

where a column j is said to cover a row i if aij = 1. Let X = x1 . . . xn ∈ {0, 1}n denote a solution

where xj = 1, j = 1, . . . , n, if column j is in the solution and 0 otherwise. Minimise
∑n

j=1
xj subject

to
∑n

j=1
aijxj ≥ for all i = 1, . . . ,m.

The rows in this definition correspond to the universe set U and the columns correspond to S, the

subsets of U from Definition 1. Definition 2 is introduced as the modifications for the dynamic model

in this paper are based on this matrix definition and several existing dynamic SCP models use Defini-

tion 2, e. g. [5]. In order to convert the static SCP to a dynamic problem some form of time dependent

modification must be introduced. By extending Definition 2 a formal definition of dynamic SCP based

on work by Chrissis et al. [5] can be stated as:

Definition 3 ([5]) Let Xt = x1t . . . xnt denote a binary string, which represents a solution at time t, and

nt the number of columns in the matrix At = (aijt)1≤i≤m,1≤j≤nt
at time t. Minimise

∑T
t=0

∑nt

j=1
xjt

subject to
∑n

j=1
aijtxjt ≥ 1 for all i = 1, . . . ,m.

Three different types of modifications are introduced in this paper namely adding, removing or edit-

ing columns in the m × n matrix according to Definition 2 which correspond to changes in the matrix

aijt at different times in Definition 3. According to Definition 1 these changes can be seen as adding

elements to S, removing elements from S or editing elements inside S. For each type of modification

suggested the level of change is varied from low to high and for each such level of change 30 instances

are created. In this paper these new instances are called novel instances and they represent the changed

problem. The algorithm is first run on the original instance which represents the time t = 0 and at time

t = 1 a novel instance is presented to the algorithm. This can be seen as a dynamic SCP formed by a

sequence of static instances joined together and two time states namely t = 0 and t = 1. At t = 0 the

original instance is presented to GC-AIS and the best obtained solution is recorded. At time t = 1 a

novel instance is presented to the two algorithms, the original GC-AIS and GC-AIS with memory, and

the performance of the two is compared.

Some work using dynamic SCP has been done by Chrissis et al. [5] for dynamic facility locations

and Kodani et al. [19] for real time fault diagnosis.

2.2 EDO and Memory-Based Approaches

DOPs are characterised by time-dependent changes to the problem, which are usually in the form of a

sequence of static problems linked by some dynamic rules or having a time dependent parameter in its

expression [25]. The key difference between DOPs and static problems is the requirement of evolutionary

algorithms (EAs) to track changing optima for DOPs rather than simply locating them.

To solve the issues of tracking optima several techniques have been developed in the EDO literature,

memory being one of them. Memory schemes utilise storing good solutions and re-using them at a later

stage. They are useful when changes are recurrent or periodical and old optima may be revisited, see,

e. g., [24].

2.2.1 Memory-Based Techniques for EDO

These approaches are often used when the changes in the DOPs are recurrent or periodic in nature,

therefore an old optimum may be revisited in the future [16, 24]. In such cases it makes sense to save

old solutions as a form of memory and use them when an old optima is encountered again in order to

save computation time. Two main variants of memory approaches exist in literature namely: implicit and

explicit memory [16]. Implicit memory is maintained by encoding the chromosome as multiploid instead

of the more common haploid in EAs for static problems. Explicit memory on the other hand involves

an external storage of information. This information may be a previously known good solutions where

it is called direct memory or associative information where it is called indirect memory. The memory

is periodically updated by replacement and based on the current best information. According to [16]

Agadir, June 7-10, 2015

123–4 MIC 2015: The XI Metaheuristics International Conference

advantages of memory based approaches are their usefulness in periodic environments and maintaining

diversity while disadvantages of memory-based approaches are that they are only useful in cases when

previous optima are revisited. The redundant coding of memory is not useful in cases when number of

fluctuations is high. A review of memory-based approaches can be found in [16]

A small review of memory based approached for DMOP is provided here. Branke [3] used a explicit

memory approach to store individuals in a finite memory, which uses a replacement approach when the

memory becomes full. Yang [23] proposed an associative scheme in where individuals along with a

distribution scheme are stored in the memory. Zhang and Qian [27] introduced the dynamic constrained

multi-objective artificial immune system (DCMOAIS), which consists of three modules: a problem de-

tection module based on T-cells, a solution module based on B-cells and a storage module based on

memory (M-cells).

3 Extended GC-AIS with Memory (m-GC-AIS)

GC-AIS [13] is a new AIS for multi-objective optimisation based on recent understanding of the germinal

centre reaction in the immune system. A germinal centre (GC) is a region in the immune system where

a type of immune cells called B cells are presented with the invading pathogen in order to generate

antibodies (Abs), which fight the infection.

When the body is attacked by a pathogen the number of GCs begin to rise in order to generate Abs

which are capable of eradicating the pathogen. By continuous proliferation mutation and selection of

B cells in the germinal centres their ability to bind with the pathogen increases and this reaction is able

to produce Abs, which can successfully fight the infection. There is periodic communication between

GCs by transmitting Abs. Towards the stage when Abs produced are capable to fight off the infection the

number of GCs starts declining. The GC-AIS is based on a new theory of selection in the GC reaction

proposed by Zhang et al. [26] according to which there is a competition between the mutating B cells and

the Abs and cells, which are unable to compete, die by the process of natural cell death (apoptosis). This

can even lead to whole GCs to disappear if cells within them cannot compete with Abs from neighbours.

The GC-AIS is extended by a simple explicit memory component for the dynamic SCP proposed

above. This memory is a finite store which stores information about the best solution of the original

SCP instance before changes have been applied to it. The size of the memory has been restricted to 1

in this study as GC-AIS starts with 1 individual and for the extended model with memory this initial

individual is replaced by the one from memory. The memory contains all the subsets from S which

have corresponding 1s in the best known solution. This memory is then used to initialise the GC at the

beginning of Algorithm 1. In the following parts of the paper the extended GC-AIS is referred to as

(m-GC-AIS).

Algorithm 1 The GC-AIS WITH MEMORY (M-GC-AIS)

Let Gt denote the population of GCs at generation t and gti the i-th GC in Gt.

Create GC pool G0 = {g01} and initialise g01 from memory. Let t := 0.

loop

for each GC gti in pool Gt in parallel do

Create offspring yi of individual gti by standard bit mutation.

end for

Add all yi to Gt, remove all dominated solutions from Gt and let Gt+1 = Gt.

Let t = t+ 1.

end loop

Save best solution information as memory

Based on Algorithm 1 the steps in the m-GC-AIS can be described as follows: A single GC is

created at the start, which contains one individual that represents a B-cell. This GC is initialised by

an external memory component. By standard bit mutation of B-cells in the GC offspring are created,

Agadir, June 7-10, 2015

MIC 2015: The XI Metaheuristics International Conference 123–5

Problem m× n density Known [14] Obtained (using GC-AIS)

scp41 200 × 1000 2% (0,38) (0,39)

scp63 200 × 1000 5% (0,21) (0,21)

scpa5 300 × 3000 2% (0,38) (0,39)

scpb4 300 × 3000 5% (0,22) (0,23)

scpd2 400 × 4000 5% (0,25) (0,25)

scpnre1 500 × 5000 10% (0,17) (0,17)

Table 1: Best known and obtained solutions for the original problem instances. Density refers to the

percentage of 1s in the m × n matrix. The column known contains solutions obtained by [14] while

column obtained contains solutions obtained using GC-AIS.

where standard bit mutation refers to each bit being flipped with probability 1/n. There is a migration

of fitness values of offspring between GCs at every generation which corresponds to migration of Abs.

After this all dominated solutions are deleted, which can be seen as cell death of B cells which cannot

compete with neighbours and the surviving offspring form new GCs. Thus the model is dynamic in

nature as the number of GCs can change with time. At every generation of the GC-AIS maintains a set

of non-dominating solutions.

4 Experimental Set-up

In this section we describe the experimental set-up used for this study. The m-GC-AIS is compared

with the standard GC-AIS on some dynamic SCP instances. The dynamic SCP instances are created by

modifying 6 static SCP instances selected from the OR-library [2]. The SCP instances in the OR library

are grouped into classes based on the size of the instances and the selected instances each belong to a

different class, namely 4, 6, A, B, D and RE.

4.1 Novel Instance and Memory Generation

Since the global optima of the original 6 instances are not known we select good solutions to these

instances by running GC-AIS and use these as memory for m-GC-AIS. To be more precise, we run GC-

AIS on each of the original 6 instances 30 times each for 20,000 generations. To ensure that the selected

solutions are sufficiently good we compare them with results from [14] as a measure of closeness to their

known best results. This process can be seen as running both GC-AIS and m-GC-AIS on the dynamic

SCP at time step t = 0, i. e. on the original problem as in the case of m-GC-AIS at time t = 0 there is

no previous memory therefore it starts from the all 0s bit string just like GC-AIS. The selected solutions

obtained by GC-AIS are depicted as Obtained in Table 1 along with instance sizes, density and the best

know solutions from [14].

The best obtained individual is converted to memory by mapping the 1s in the solution bit string to

the problem instance and storing the corresponding subsets as memory information. It is not enough to

save the solution bit string as memory as the size of the novel instance to solve may change therefore the

same subsets may not correspond to the same bit positions in the novel instances.

The novel instances are generated by modifying the original instances from [2] by applying 3 types

of changes: adding columns, removing columns and editing columns in the matrix.

• Adding columns: For each of the 6 original instances, novel instances are created by adding

columns to the m × n matrix. In other words subsets are added to S while keeping the den-

sity of the novel instance the same as the original instance. 30 novel instances are created each by

adding k columns where k ∈ {10, 20, 30, . . . , 100} subsets to the original instances, making the

novel instances of size m× (n+ k).

Agadir, June 7-10, 2015

123–6 MIC 2015: The XI Metaheuristics International Conference

10 20 30 40 50 60 70 80 90 100
1.14

1.16

1.18

1.2

1.22

1.24
x 10

−12 Wilcoxon rank−sum test

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5
x 10

−12 Wilcoxon rank−sum test

Columns added (%)

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

Time to reach feasible solution Q
t

10 20 30 40 50 60 70 80 90 100

1.3

1.4

1.5

1.6

Final solution quality Q
s

Columns added (%)

scp41
scp63
scpa5
scpb4
scpd2
scpnre1

Figure 1: Plots for results obtained on novel instances with added columns. Plots for solution quality

shows Qs and time to reach feasible solution shows Qt averaged for 30 novel instances for each value of

k. Plots for the Wilcoxon rank-sum test show the p value for Qs and Qt.

• Removing columns: Removing columns for each of the 6 original instances is performed by utilis-

ing the best solution obtained. Only the columns which correspond to a 1 in the solution bit string

are removed. This ensures that the optimal solution for the original instance is no longer a feasi-

ble solution for the novel instance. 30 novel instances are created each by removing k columns

where k ∈ {0.1c, 0.2c, . . . , 0.9c} and c is the original solution quality, i. e., the number of columns

selected (see column Obtained in Table 1). Thus reducing the novel instance size to m× (n− k).

• Editing columns: Editing column is performed by moving individual items from one subset to

another. Using only the columns which correspond to a 1 in the solution bit string items are

selected randomly from these columns and moved to other randomly selected columns which do

not have these items in them. Let d be the total number of 1s in the matrix corresponding to the

original solution from Obtained. 30 novel instances are created each by moving k items where

k ∈ {0.1d, 0.2d, . . . , 0.8d}, of the items from the solution columns of the original instances. It

should be noted that in this case the size of the novel instances created is the same as the original

instances while the optimal solution for the original is no longer feasible in most cases, except

when the swaps occur for elements which have duplicates in other columns in the solution.

5 Results and Discussion

In order to compare the performance of m-GC-AIS and GC-AIS in a dynamic setting, both these algo-

rithms are run on the created novel instances which can be seen as running the algorithms on the dynamic

SCP at time t = 1 where the problem has changed and the m-GC-AIS has memory available from the

previous runs of GC-AIS at time t = 0. A stopping limit of 1200 generations is set for each algorithm

based on observations from the initial runs for time t = 0, where it was seen that this number is roughly

double the number of generations to reach the feasible solution region. Each algorithm is run for 30

independent runs on each novel instance created and the averages of the sets used and uncovered sets are

recorded. The quotient of average solution qualities (Qs) at the end of the stopping criteria is plotted

Agadir, June 7-10, 2015

MIC 2015: The XI Metaheuristics International Conference 123–7

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1
Wilcoxon rank−sum test

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8
Wilcoxon rank−sum test

Columns removed (%)

10 20 30 40 50 60 70 80 90
0.8

1

1.2

1.4

1.6

Time to reach feasible solution Q
t

10 20 30 40 50 60 70 80 90
0.85

0.9

0.95

1

Final solution quality Q
s

Columns removed (%)

scp41
scp63
scpa5
scpb4
scpd2
scpnre1

Figure 2: Plots for results obtained on novel instances with columns removed shown as % of c on x-axes.

Plots for solution quality shows Qs and time to reach feasible solution shows Qt averaged for 30 novel

instances for each value of k. Plots for the Wilcoxon rank-sum test show the p value for Qs and Qt.

along with the quotient of time taken to reach the feasible region (Qt). Let NGC-AIS denote the sets used

by GC-AIS and Nm-GC-AIS be the sets used by m-GC-AIS we define Qs as NGC-AIS/Nm-GC-AIS. Let

TGC-AIS denote the time taken by GC-AIS to reach feasible region and Tm-GC-AIS be the time taken by

m-GC-AIS we define Qt as TGC-AIS/Tm-GC-AIS. The Wilcoxon rank-sum test is used as a measure to

test the statistical difference between the two algorithms. The test is performed for Qs and Qt for both

the algorithms for the 30 novel instances for each value of k in the respective modification. The p values

obtained from the test are plotted and a value of 0.05 is used a significance level to state the statistical

difference of the algorithms.

5.1 Adding Columns

Adding columns can be seen as the most trivial case out of the three modifications as in some sense

even though the problem size has changed at t = 0 the obtained best solution still remains a feasible

solution. From Figure 1 it can be seen that the plots for Qs is always greater than 1, meaning that the

solution obtained by GC-AIS always has more sets used than solutions obtained by m-GC-AIS. This is

not surprising since m-GC-AIS is able to find the possible best solution from the first generation based

on the solution from memory. The plots for Qt are always ≫ 1 which is clear as the time taken by

m-GC-AIS is always 1 since the memory solution is a feasible solution. The p values from the statistical

test show that in all the test cases the two algorithms are significantly different. Based on these results it

can be said that using memory is clearly the best approach when only the problem size changes but the

old solution remains feasible.

5.2 Removing Columns

The plots for Qs from Figure 2 at the end of the stopping criteria show an increase from values 0.85-0.9

for k = 0.1c to almost 1 for k = 0.9c. This means that for smaller values of k the number of sets

used by GC-AIS is lower than the number of sets used by m-GC-AIS and as k approaches 0.9c Qs is

almost 1. The statistical test show that the two algorithms are significantly different till k = 0.7c. This

Agadir, June 7-10, 2015

123–8 MIC 2015: The XI Metaheuristics International Conference

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8
Wilcoxon rank−sum test

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4
Wilcoxon rank−sum test

Elements swapped (%)

10 20 30 40 50 60 70 80
0.5

1

1.5

2

2.5

Time to reach feasible solution Q
t

10 20 30 40 50 60 70 80

0.7

0.8

0.9

1

1.1

1.2

1.3

Final solution quality Q
s

Elements swapped (%)

scp41
scp63
scpa5
scpb4
scpd2
scpnre1

Figure 3: Plots for results obtained on novel instances with elements swapped from subsets shown as

% of d on the x-axes. Plots for solution quality shows Qs and time to reach feasible solution shows Qt

averaged for 30 novel instances for each value of k. Plots for the Wilcoxon rank-sum test show the p

value for Qs and Qt.

behaviour can be interpreted as starting from the all 0s bit string in the case of GC-AIS is always better

than starting form a memory in m-GC-AIS which in this case behaves like a randomly generated string

since it no longer a feasible solution for the novel instance. The plots for Qt on the other hand do not

reveal a pattern and no conclusive statement can be made on these which is confirmed by the p values

from the statistical tests.

5.3 Editing

Results for editing columns show a more clear pattern of observable behaviour which can be seen in

Figure 3. The plots for Qs show some interesting results, for values of k up to 0.2d the ratios plotted

are > 1 meaning that GC-AIS uses more sets than m-GC-AIS therefore using memory is preferred but

for k > 0.2d the ratio is < 1 meaning that the solution quality of GC-AIS is better than m-GC-AIS.

The plots for the statistical test show that the two algorithm are statistically different when Qs is not

≈ 1. A possible explanation of this behaviour can be made as for smaller editing the memory solution

may require either no addition or very few addition of new sets to make the solution feasible again.

No new solutions may be required for the cases when the moved item from one set could be available

in another subset hence not needing any changes, while a few changes are needed when a moved item

was no longer available in the subsets in the solution and a new subset is required to be added. In the

case of larger changes the memory solution almost behaves as a random solution. These results can be

interpreted as for low values of k using the memory approach is preferred while for larger values of k it

is almost always better to start from the all 0s string rather than have a memory. The plots for Qt shows

a slight decrease from values of 2 for k = 0.1d to 1 for k = 0.8d. This means that GC-AIS takes more

time to find the feasible region than m-GC-AIS initially for lower values of k and as k increases the two

algorithms almost take the same amount of time. This is evident from the p values where for only lower

values of k up to 0.3d to 0.4d the algorithms are statistically different.

Agadir, June 7-10, 2015

MIC 2015: The XI Metaheuristics International Conference 123–9

6 Conclusions

We are interested in finding the usefulness of memory approaches for GC-AIS on the dynamic SCP.

Based on three different modifications to static SCP instances dynamic SCP problems are created and

the performance of GC-AIS and m-GC-AIS was compared. In the case of adding columns based on

Figure 1 it can be seen that using the memory approach is always better than starting from the all 0s
bit string. This is due to the fact that the way the problem is created the obtained best solution for the

original instance remains feasible for the novel instance and the memory is able to exploit this fact from

the beginning of the run. When considering removing columns, based on the solution quality at the

stopping criterion it can be said that using memory gives poor performance when compared with starting

from the all 0s bit string. For the instances with editing based on Figure 3 it is shown from the plots for

the time taken to reach the feasible region that for little to moderate editing the feasible region is reached

faster when using memory while for larger editing both approaches take similar time. Based on the plots

for the solution quality it is shown that using memory gives better results when the level of editing is

lower while for larger editing using memory should be avoided.

We have shown the cases where using memory is suitable and when the use of memory should be

avoided for dynamic SCP, this is interesting to study as the we would like to learn the behaviour of

memory as it seems to be problem size dependant. For future work we would like to investigate further

into the case with removing columns by incorporating more instances and individually considering in-

stances with similar density. We believe that instances with similar density might behave similarly and

differences could potentially be made clear between the instances with different density. At this stage a

very simple model of dynamic SCP is considered and we would like to investigate these findings further

on different dynamic problems like the dynamic knapsack problem. We would also like to consider other

models of memory storage as a future work.

References

[1] J. E. Beasley. An algorithm for set covering problem. European Journal of Operational Research,

31(1):85–93, 1987.

[2] J. E Beasley. OR-library: distributing test problems by electronic mail. Journal of the operational

research society, pages 1069–1072, 1990.

[3] J. Branke. Memory enhanced evolutionary algorithms for changing optimization problems. In

CEC. IEEE, 1999.

[4] A. Caprara, P. Toth, and M. Fischetti. Algorithms for the set covering problem. Annals of Opera-

tions Research, 98(1-4):353–371, 2000.

[5] J. W Chrissis, R. P Davis, and D. M Miller. The dynamic set covering problem. Applied Mathe-

matical Modelling, 6(1):2–6, 1982.

[6] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations research,

4(3):233–235, 1979.

[7] L. Nunes de Castro and J. Timmis. Artificial Immune Systems: A New Computational Intelligence

Approach. Springer, 2002.

[8] M. W Deem and H. Y Lee. Sequence space localization in the immune system response to vacci-

nation and disease. Physical review letters, 91(6):068101, 2003.

[9] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt. Approximating covering prob-

lems by randomized search heuristics using multi-objective models. Evolutionary Computation,

18(4):617–633, 2010.

Agadir, June 7-10, 2015

123–10 MIC 2015: The XI Metaheuristics International Conference

[10] A. Gasper and P. Collard. From GAs to artificial immune systems: improving adaptation in time

dependent optimization. In CEC, volume 3. IEEE, 1999.

[11] C. Goh and K. Chen Tan. A competitive-cooperative coevolutionary paradigm for dynamic multi-

objective optimization. Evolutionary Computation, 13(1):103–127, 2009.

[12] E. Hart and P. Ross. An immune system approach to scheduling in changing environments. In

GECCO, pages 1559–1566. Morgan Kaufmann, 1999.

[13] A. Joshi, J. E. Rowe, and C. Zarges. An immune-inspired algorithm for the set cover problem. In

PPSN XIII, pages 243–251. Springer, 2014.

[14] N. Musliu. Local search algorithm for unicost set covering problem. In Proc. of Advances in

Applied Artificial Intelligence, pages 302–311. Springer, 2006.

[15] F. Neumann and C. Witt. Bioinspired Computation in Combinatorial Optimization: Algorithms

and Their Computational Complexity. Natural Computing Series. Springer, 2010.

[16] T. T Nguyen, S. Yang, J. Branke, and X. Yao. Evolutionary dynamic optimization: Methodologies.

In Evolutionary Computation for Dynamic Optimization Problems, pages 39–64. Springer, 2013.

[17] A. Simões and E. Costa. An immune system-based genetic algorithm to deal with dynamic envi-

ronments: diversity and memory. In Artificial Neural Nets and Genetic Algorithms, pages 168–174.

Springer, 2003.

[18] A. Simões and E. Costa. Improving prediction in evolutionary algorithms for dynamic environ-

ments. In GECCO, pages 875–882. ACM, 2009.

[19] S. Singh, A. Kodali, K. Choi, K. R Pattipati, S. M Namburu, S. C. Sean, D. V Prokhorov, and

L. Qiao. Dynamic multiple fault diagnosis: Mathematical formulations and solution techniques.

Systems, Man and Cybernetics, Part A: Systems and Humans, 39(1):160–176, 2009.

[20] R. Tinós and S. Yang. A self-organizing random immigrants genetic algorithm for dynamic opti-

mization problems. Genetic Programming and Evolvable Machines, 8(3):255–286, 2007.

[21] K. Trojanowski and S. T Wierzchoń. Immune-based algorithms for dynamic optimization. Infor-

mation Sciences, 179(10):1495–1515, 2009.

[22] R. K Ursem. Multinational GAs: Multimodal optimization techniques in dynamic environments.

In GECCO, pages 19–26. ACM, 2000.

[23] S. Yang. Associative memory scheme for genetic algorithms in dynamic environments. In Appli-

cations of evolutionary computing, pages 788–799. Springer, 2006.

[24] S. Yang, H. Cheng, and F. Wang. Genetic algorithms with immigrants and memory schemes for

dynamic shortest path routing problems in mobile ad hoc networks. Systems, Man, and Cybernetics,

Part C: Applications and Reviews, 40(1):52–63, 2010.

[25] S. Yang and X. Yao. Evolutionary Computation for Dynamic Optimization Problems. Springer,

2013.

[26] Yang Z., M. Meyer-Hermann, L. A. George, M. T. Figge, M. Khan, M. Goodall, S. P. Young,

A. Reynolds, F. Falciani, A. Waisman, C. A. Notley, M. R. Ehrenstein, M. Kosco-Vilbois, and

K. Toellner. Germinal center B cells govern their own fate via antibody feedback. The Journal of

Experimental Medicine, 210(3):457–464, 2013.

[27] Z. Zhang and S. Qian. Artificial immune system in dynamic environments solving time-varying

non-linear constrained multi-objective problems. Soft Computing, 15(7):1333–1349, 2011.

Agadir, June 7-10, 2015

