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ACCELERATING FISHES INCREASE PROPULSIVE EFFICIENCY BY 1 

MODULATING VORTEX RING GEOMETRY. 2 
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 2 

Abstract 22 

Swimming animals need to generate propulsive force to overcome drag, regardless of whether 23 

they swim steadily or accelerate forward. While locomotion strategies for steady swimming are 24 

well characterized, far less is known about acceleration. Animals exhibit many different ways to 25 

swim steadily, but we show here that this behavioral diversity collapses into a single swimming 26 

pattern during acceleration regardless of the body size, morphology, and ecology of the animal. 27 

We draw on the fields of biomechanics, fluid dynamics and robotics to demonstrate that there is 28 

a fundamental difference between steady swimming and forward acceleration. We provide 29 

empirical evidence that the tail of accelerating fishes can increase propulsive efficiency by 30 

enhancing thrust through the alteration of vortex ring geometry. Our study provides new insight 31 

into how propulsion can be altered without increasing vortex ring size, and represents a 32 

fundamental departure from our current understanding of the hydrodynamic mechanisms of 33 

acceleration. Our findings reveal a unifying hydrodynamic principle that is likely conserved in 34 

all aquatic, undulatory vertebrates. 35 
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Significance Statement 45 

The ability to move is one of the key evolutionary events that led to the complexity of vertebrate 46 

life. The most speciose group of vertebrates, fishes, displays an enormous variation of movement 47 

patterns during steady swimming. We discovered that this behavioral diversity collapses into one 48 

movement pattern when fishes are challenged to increase their swimming speed, regardless of 49 

their body size, shape and ecology. Using flow visualization and biomimetic models, we 50 

provide the first mechanistic understanding of how this conserved movement pattern allows 51 

fishes to accelerate quickly. 52 

\body 53 

  54 
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Introduction 55 

Over the course of evolutionary time, patterns of animal locomotion have diversified to take 56 

advantage of the physical environment through the interplay of morphology, physiology and 57 

neural control. Yet, two fundamental principles of locomotion in most animals remain the same: 58 

1) Force is generated by transferring momentum to the environment through repetitive motions 59 

such as body undulations and oscillating appendages (legs, fins, or wings), and 2) the locomotor 60 

speed is modulated by controlling the amplitude and frequency of these periodic motions (1, 2). 61 

Previous studies have demonstrated that the degrees of freedom in amplitude and frequency 62 

control are not limitless, but rather constrained by the physical laws imposed by the environment. 63 

For example, flying animals must maintain a high wing-beat frequency to generate enough lift, 64 

controlling speed primarily by altering the wing’s angle of attack(3). In contrast, the morphology 65 

and locomotion strategies of aquatic animals have adapted to moving through a viscous 66 

environment where gravitational forces are negligible. Among these strategies, the ancestral state 67 

of aquatic locomotion is axial undulation, where muscle contractions bend the body into a 68 

mechanical wave that passes from head to tail (4). The interaction of angled body surfaces with 69 

the surrounding fluid propels the animal forward, and the movements of the entire body 70 

contribute to the overall swimming performance (5-10).  71 

Over the past several decades, a number of studies have investigated the kinematics (11-72 

14), muscle activity (15-18) and hydrodynamics (19-21) of tail movements, in particular how tail 73 

beat amplitude and frequency are controlled during steady swimming. Most undulatory 74 

vertebrates such as fishes, alligators, dolphins and manatees control speed by primarily 75 

modulating tail beat frequency while maintaining a relatively low tail beat amplitude (22-25). At 76 

high steady swimming speeds, tail beat amplitude reaches a plateau at around 0.2 body length 77 
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(L). Computational studies (26-29) and experiments with hydrofoils (30, 31) suggest that 78 

swimming animals operate in this range to maintain high swimming efficiency.  79 

How do these mechanisms apply when a steadily-swimming animal accelerates forward, 80 

which is often used to catch prey, avoid predators or save energy during migrations (32, 33)? 81 

One hypothesis is that speed is gained only by further increasing the tail beat frequency (34-37). 82 

Alternatively, an animal can bend its body maximally to accelerate large amounts of fluid, as 83 

seen in Mauthner initiated C-starts (38-41).  Yet emerging studies suggest that forward 84 

acceleration exhibits distinct kinematics (42-46) that defy both hypotheses, indicating that 85 

acceleration may have its own optimization strategy. Although forward acceleration has been a 86 

topic of interest for decades in the field of aquatic locomotion (39, 43), a comprehensive 87 

understanding of its prevalence and underlying mechanisms has remained elusive. Here, we 88 

identify a new undulatory locomotion strategy for forward acceleration by integrating 89 

complementary approaches: biological experiments with live fishes and physical experiments 90 

with bio-mimetic fish models.  91 

 92 

 93 

 94 

  95 
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Results and Discussion 96 

Acceleration kinematics across fish phylogeny  97 

We discovered that in fishes tail beat amplitude is consistently higher during acceleration 98 

than during steady swimming (Fig. 1). This pattern is conserved across 51 species examined, 99 

with representatives from a wide range of phylogenetic positions from chondrichthyes (e.g. 100 

bonnethead shark, Sphyrna tiburo) to tetraodontiformes (e.g. stripped burrfish, Chilomycterus 101 

schoepfi). These species exhibit vastly different body shapes, ecological habitats and swimming 102 

modes (Table S1). Some species use median or pectoral fins during steady swimming (e.g. clown 103 

knifefish, Chitala ornata and sergeant major, Abudefduf saxatilis), but always revert to body 104 

undulation when they accelerate forward from steady swimming. 105 

When we plot tail beat amplitude during acceleration against steady swimming for all 106 

species, we found that the relationship is linear (Fig. S1a). This suggests that the relative increase 107 

in tail beat amplitude during acceleration is constant at 34±4%. However, there is substantial 108 

variation in the absolute amplitude values that depends on body length and shape. For example, 109 

when body length is held constant, elongate fishes such as Florida gar (Lepisosteus platyrhincus) 110 

and Northern barracuda (Sphyraena borealis) accelerate with lower tail beat amplitudes 111 

(0.19±0.01 L) compared to more fusiform fishes such as tarpon and red drum (0.24±0.01 L). We 112 

also found that during acceleration tail beat amplitude decreases with body length (Fig. S1b).  113 

To better understand if there is a common propulsive strategy across fish diversity, we next 114 

performed a more detailed midline analysis of the entire body during steady swimming and 115 

forward acceleration for 9 species. Despite extreme differences in body shape and swimming 116 

mode, we found that all fishes share similar midline acceleration kinematics. These acceleration 117 

bouts are usually brief, typically less than five tail beats. All points along the body show higher 118 



 7 

amplitudes compared to steady swimming, but not as high as seen during C-starts (39, 40) (Fig. 119 

S2-4). Further analyses on the travelling body wave and tail movement suggest efficient force 120 

production during acceleration (Table S2). The average values across 10 species for slip ratio, 121 

Strouhal number (St) and maximum angle of attack (αmax) are 0.80±0.02, 0.41±0.01, and 122 

22.71±0.65˚, respectively. Slip ratios approaching 1 reveal high swimming efficiency, while 123 

experiments with thrust-producing, harmonically oscillating foils show that propulsive efficiency 124 

is maximized when St falls within the range of 0.2 and 0.5 and αmax is between 15˚ and 25˚ (30). 125 

 In addition to the species studied here, similar acceleration kinematics was previously 126 

observed in American eels (44). These elevated amplitudes are most notable around the head and 127 

tail. The onset of acceleration (which can be easily recognized because of strong head yaw and a 128 

faster tail beat) provides a reference point to interpret the phase relationship between head and 129 

tail. By doing so, we found that the motion of the head always precedes the motion of the tail, 130 

indicating that the body wave is initiated by strong head movements in all species, though the 131 

timing between head and tail movements is not constant. To more closely investigate the 132 

kinematics and hydrodynamics of acceleration, we chose a generalized teleost fish, the rainbow 133 

trout (Oncoryhnchus mykiss). The swimming kinematics of this species has been studied in great 134 

detail for steady swimming and other behaviors but not for acceleration (5, 13, 47-54). Like other 135 

species tested in this study, the body amplitudes of trout are higher during acceleration than 136 

during steady swimming (Fig. S5a), and head movements precede the motion of the tail (Fig. 137 

S5b).  138 

We next examined how swimming speed and acceleration depend on tail beat amplitude, 139 

given that a range of amplitudes is evident for each behavior (Fig. S5c). As others have shown 140 

previously (44), we found that in general tail beat frequency, not tail beat amplitude, has the 141 
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most effect during both behaviors (Fig. S5d). Multiple regression analysis revealed that steady 142 

swimming speed increases only with tail beat frequency. This trend is similar during 143 

acceleration, though tail beat amplitude also has a minor effect (Table S3). Our results suggest 144 

that tail beat amplitude does not change during steady swimming or acceleration, but jumps 145 

discretely by ~30% when fish transition from one behavior to another. Thus, trout appear to have 146 

two undulatory gears based on tail beat amplitude; one for steady swimming and another for 147 

acceleration. Our results suggest that this discrete jump in tail beat amplitude during acceleration 148 

is correlated with increased head yaw (Fig. S5e), and these movements are tightly phase-locked, 149 

with the head preceding the tail (Fig. S5f).  150 

 151 

Hydrodynamic effects of increased tail beat amplitude during acceleration  152 

We next investigated how increased tail beat amplitude relates to thrust production and 153 

propulsive efficiency by using a combination of quantitative flow visualization experiments on 154 

live fish and experiments with actuated, soft-bodied robotic models. Results from particle image 155 

velocimetry show that fish can reach a maximum acceleration rate of 20 L s
-2

 from initial 156 

swimming speed of 3 L s
-1

. To accomplish this, fish transfer more axial momentum to the fluid 157 

by generating stronger vortices compared to steadily swimming fish (Fig. 2a). Similar wake 158 

structures were previously observed in zebrafish (55), eel  (44) and carp (45). In addition, fish 159 

entrain more fluid around their posterior body to strengthen shed vortices (Fig. 2b). This occurs 160 

because the posterior body has a greater curvature, which creates a low pressure region in the 161 

concavity (Fig. 2b, t=12.5 ms). The entrained fluid in this low pressure region (blue) follows the 162 

traveling body wave until it reaches the trailing edge of the tail (t=50 ms). At the point when the 163 

tail reverses direction, the fluid starts to roll off the tail and into the wake (t=56.3 ms).  164 
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Concurrently, the body concavity causes flow to build up on the opposite side. This fluid (red) 165 

starts getting released to the wake as the tail increases its velocity (t = 68.8 ms). When the tail 166 

reaches its maximum velocity a vortex is formed (t=81.3 ms), owing to the occurrence of two 167 

bodies of fluid moving in opposite directions. Our results indicate that during acceleration body 168 

undulations of trout are responsible for increased wake velocity and vorticity. This is not 169 

surprising as multiple studies have shown that body-induced flows can enhance vortex shedding 170 

in other species (7, 8, 10, 19, 56, 57). 171 

When fish swim, they generate vortex rings (58-60). We see this in two dimensions as 172 

two counter-rotating vortices (i.e. vortex cores) in the wake after each tail beat (61-63). In recent 173 

years, estimating locomotive forces from wake measurements has garnered much interest with 174 

hopes of better understanding the resultant motion of the animal (41, 56, 64-66). Several 175 

methods have been proposed to estimate locomotive forces (56, 64, 67, 68). The one which we 176 

used in this study is based on the classical vortex ring theory (69). We calculated the impulse 177 

(i.e. the average force) applied to the fluid during each tail beat by measuring the circulation, jet 178 

angle (θ), core diameter (Do) and the spacing between the two vortex cores (D). We found that 179 

an accelerating trout generates an impulse (along the swimming direction) that is at least 4 times 180 

higher than that required for its initial steady swimming speed (Fig. 2c). This higher impulse is 181 

due to 172 ±16% increase in vorticity. In addition, the jet angle is oriented ~30±3% more 182 

downstream, which devotes a greater proportion of the impulse along the swimming direction.  183 

We found that D is reduced by ~25% from 0.33 L to 0.25 L when fish transition from 184 

steady swimming to acceleration. At first glance this may be surprising given that the impulse 185 

and kinetic energy of a ring is proportional to its size. However, impulse and energy also depend 186 

on the geometry of the vortex ring itself. One key parameter of the ring geometry is the ratio 187 
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between minor and major axis diameters (d/D). When d/D approaches one, the ring becomes 188 

more axisymmetric, which is favorable because axisymmetric rings possess the maximum 189 

amount of energy relative to other shapes that maintain the same total impulse (70, 71). Given 190 

that d is always constrained by the span of the tail (7, 58, 59, 62, 72), the axisymmetry of the ring 191 

primarily depends on D. Our results show that during steady swimming trout generate elliptical 192 

rings (d/D=0.66). In contrast, we found that during acceleration the geometry of the vortex rings 193 

become more axisymmetric (d/D=0.88).  194 

The impulse of a vortex ring is also proportional to the ratio of its core diameter to its 195 

ring diameter (Do/D). In addition to having a more axisymmetric shape, we found that the vortex 196 

rings generated by accelerating trout have thicker cores (Do/D=0.37±0.02) than those generated 197 

by trout swimming steadily (Do/D=0.25±0.01). It has been shown that for vortex rings generated 198 

by a piston pushing a cylinder of fluid through a nozzle there is a limit in generating thicker arms 199 

efficiently, because at some point (piston stroke to diameter ratio>3.5) separation occurs and 200 

energy dissipated by a trailing edge of fluid (73-75). For finite-core, axisymmetric vortex rings 201 

which propagate steadily (76), this piston stroke to diameter ratio corresponds to Do/D = 0.42 in 202 

a vortex ring (77, 78). Perhaps not coincidentally, the vortex rings generated by accelerating 203 

trout have Do/D close to 0.42. In order to evaluate whether our fish-generated vortex rings during 204 

acceleration can be compared to nozzle-generated rings, we analyzed their velocity and vorticity 205 

distributions along a center line connecting the two vortex cores, and confirmed that they closely 206 

match the values reported for nozzle-generated rings (73, 79) (Fig. S6a-c). In addition, we 207 

investigated the temporal dynamics of vortex rings once they are shed into the wake, and found 208 

that they translate downstream with a constant velocity while preserving their Do/D ratio (Fig. 209 
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S6d). What this suggests is that the hydrodynamic principles of efficient thrust production in 210 

oscillating fish may be similar to those observed during biological jet propulsion (65, 80-82).  211 

Overall, our findings indicate that accelerating trout generate more thrust, not by 212 

generating larger rings but, by modulating their geometry and orientation. To investigate how 213 

common this phenomenon is, we analyzed d/D, Do/D and θ of four additional species with 214 

different swimming modes and body shapes and found similar results (Table S3). In addition, 215 

flow imaging on a similar sized American eel (L=23 cm) shows that during acceleration 216 

anguilliform swimmers also generate vortex rings with comparable Do/D ratio (~0.4 based on 217 

Fig. 1b in (44)). It remains to be seen, however, how Do/D ratio scales with body size, given that 218 

it is significantly higher (0.6-0.7) for smaller fish such as zebrafish (83) and koi carps (45). Note 219 

that a 2-dimensional geometric analysis of vortex rings provides an initial, albeit qualitative 220 

understanding on how fishes accelerate efficiently. Concatenated, ring-like structures involved in 221 

the wakes of fishes can be highly elongated and 3-dimensional, and may not have the same 222 

properties (e.g. momentum, energy, and stability) as nozzle-generated rings.  223 

 224 

Relationship between tail kinematics and vortex ring geometry We next propose a set of 225 

equations to provide a mechanistic understanding of how the geometry (d/D and Do/D) and angle 226 

(θ) of a vortex ring depend on the tail kinematics. Because the oscillating tail generates each core 227 

of a vortex ring successively, we used trigonometric relations to define           and 228 

         
 

 
   where a and b are the vertical and horizontal spacing between the two cores, 229 

respectively. Based on our wake analysis, the vertical spacing depends on the tail beat amplitude 230 

(i.e. a = half of the tail beat amplitude), and the horizontal spacing depends on the tail beat 231 

frequency and swimming speed (i.e. b = swimming speed multiplied by half tail beat cycle).  To 232 
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validate our approach, we calculated D and   for trout swimming steadily at 3 L s
-1

 and 233 

accelerating from the same initial speed. During acceleration we assumed that the swimming 234 

speed was 4 L s
-1

 (i.e. the average between initial and final swimming speeds). We compared the 235 

predicted D and   to those measured experimentally, and found a good match (Fig. 2D, D=0.31 236 

L and θ=75.07° during steady swimming and D=0.22 L and θ=63.43° during acceleration).  237 

Once we validated our approach, we used it to further investigate the contribution of increased 238 

tail beat amplitude during acceleration. We computationally explored an alternative scenario 239 

where the tail beat amplitude was kept constant at the value observed for steady swimming (0.16 240 

L), and speed was gained by further increasing the tail beat frequency (i.e. hypothetical 241 

acceleration). Given that thrust is proportional to the square of tail beat frequency multiplied by 242 

the square of tail beat amplitude (84, 85), we increased the tail beat frequency from 10 Hz to 243 

12.5 Hz in order to maintain the same effective thrust. We found that this had no effect on the 244 

ring angle (θ=63.43°), but generated a suboptimal D=0.18 L with d/D=1.22 and Do/D=0.56 (we 245 

assumed that d=0.22 L and Do=0.1 L). Therefore, we believe that the increase in tail beat 246 

amplitude observed in trout is the key to geometrically generating the most efficient rings. 247 

 248 

The swimming performance of robotic models increases with tail beat amplitude 249 

While it is favorable to generate more thrust by producing vortex rings with optimal 250 

geometry, this does not reveal the overall swimming efficiency of an accelerating fish because 251 

motions that produce them may be costly. It is not unreasonable to imagine that large lateral 252 

body amplitudes would incur large drag penalties (44, 45). To resolve this tradeoff, we employed 253 

experiments with a biomimetic trout model to systematically explore how different tail beat 254 

amplitudes affect steady swimming and acceleration performance (Fig S7). This level of 255 
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experimental control is impossible to achieve with live fish. We generated undulatory 256 

movements in our flexible fish model from a single actuation point located just posterior to the 257 

head. Therefore, we were able to control tail beat amplitude by modulating the head yaw.  258 

We first measured performance during steady swimming and acceleration at yaw 259 

amplitudes very similar to those of live fish (10° and 20°). We found that during steady 260 

swimming the model performed better when it is actuated with smaller yaw (Fig. S8a). However, 261 

during acceleration this relationship is reversed; swimming performance is consistently higher 262 

with larger yaw (Fig. S8b). This suggests that there is no convergence of optimum head yaw 263 

between steady swimming and acceleration. While steady swimming seeks to preserve 264 

momentum by streamlining motions, during acceleration additional momentum must be 265 

generated despite drag costs. 266 

To determine if there are yaw values that maximize swimming efficiency during 267 

acceleration, we measured efficiency at yaw amplitudes between 0° and 30° at 3° increments. 268 

We found that efficiency increases linearly with yaw amplitudes up to 20°, beyond which values 269 

plateau (Fig. 3). When we map head yaw from live fish onto our model performance curve, we 270 

found that increasing head yaw from steady swimming values to acceleration values can create 271 

an increase in efficiency up to 100%. It is perhaps no accident that the yaw amplitudes chosen by 272 

accelerating fish fall within the range that gives greatly increased propulsive efficiency compared 273 

to steady swimming. We hypothesize that this is due to generating hydrodynamically more 274 

efficient vortex rings, based on our flow measurements in the wake of live fishes. However, 275 

increasing head yaw to accelerate with more optimal vortex rings does not mean that producing 276 

these rings costs less than the rings produced during steady swimming (Figure S9 shows a 50% 277 

increase in mechanical power input for increased head yaw).  278 
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The ability to move is one of the key evolutionary events that led to the diversity and 279 

complexity of vertebrate life. Given that movement through fluids is energetically costly, fishes 280 

have found many ways to minimize drag during normal, steady swimming, such as keeping the 281 

body straight and using median or paired fin locomotion (86-88). While steady swimming is 282 

optimized for endurance by minimizing the energetic investment, acceleration favors 283 

maximizing force production to escape quickly from predators or capture elusive prey. Here, we 284 

show that the enormous behavioral diversity observed during steady swimming collapses into a 285 

single locomotion strategy when fishes transition to forward acceleration. We believe that this 286 

strategy is likely conserved across all undulatory swimmers and not just fishes because it is 287 

hydrodynamically the optimal solution to maximize propulsive efficiency.   288 
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Methods 289 

 290 

All research protocols were approved by the Institutional Animal Care and Use Committee at the 291 

University of Florida. All data analyses were performed in Matlab (Mathworks) and all values 292 

are shown as mean ± standard error of the mean, unless stated otherwise.  293 

 294 

Diversity of swimming kinematics across species Our data set included 51 species of salt and 295 

freshwater fish (105 individuals, from 20 taxonomic orders), which were either obtained from 296 

commercial dealers or wild caught using cast net or hook-and-line. The details about these 297 

species are given in Table S1, and the research protocols are described in Text S1. 298 

 299 

 300 

Swimming hydrodynamics of rainbow trout We used digital particle image velocimetry to 301 

quantify the flow fields around and behind steady swimming and accelerating trout. We 302 

estimated wake forces as described in (66) (see Text S2 for more details on the experimental 303 

procedures and data analysis).  304 

 305 

Experiments with the physical fish model We performed the experiments in the flow tank at 306 

Harvard University which is customized to house a computer-controlled external actuator. We 307 

used this system in the past to evaluate the swimming performance in a number of swimming 308 

mechanical models (5, 89-91). Here, we systematically moved the physical model with different 309 

tail kinematics and measured the total sum of forces acting on the whole body. For these 310 
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measurements, we calculated the propulsive force produced by the model and the corresponding 311 

power output of the actuator as described in (92) (see Text S3 for more details).   312 
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Figure Legends 543 

 544 

Figure 1. Fishes have higher tail beat amplitude during acceleration. (a) This phenomenon was 545 

confirmed across a wide range of fishes from 20 taxonomic orders with different body shapes, 546 

swimming modes and ecologies. Blue and magenta lines indicate the mean tail beat amplitudes 547 

for steady swimming (0.181 ± 0.004 L) and acceleration (0.244 ± 0.006 L), respectively. Mean 548 

tail beat amplitudes for steady swimming and acceleration are statistically different (unpaired T-549 

test, P<0.001). During steady swimming, it was not possible to measure the tail beat amplitude 550 

of few species (black seabass, sergeant major, pipefish, summer flounder and filefish), as they 551 

use primarily median or pectoral fins for propulsion.  Error bars are ± one standard error of the 552 

mean.  553 



 28 

Figure 2. Hydrodynamics of steady swimming versus acceleration. (a) Representative flow fields 554 

behind a rainbow trout (L=32 cm) swimming steadily at 3 L s
-1

 (left) and accelerating (right) 555 

from the same initial speed. The heat map denotes vorticity where negative (magenta) and 556 

positive (red) values indicate clockwise and counter-clockwise rotation, respectively. The length 557 

of the scale bar is 2 cm. (b) Body movements of the same fish during steady swimming (left 558 

column) and acceleration (right column) over one representative tail beat cycle. Yellow arrows 559 

indicate the direction of tail movement. The blue and red denote the magnitude of left and right 560 

flow fields, respectively, in the fish frame of reference. In each video frame, the body of the trout 561 

is visible from the dorsal fin to the tail, which represents the 30% of the total length. The length 562 

of the scale bar is 4.5 cm. (c) Mean impulse, vorticity, angle and diameter of an average vortex 563 

ring for steady swimming and acceleration (10 tail beats from each fish, n=2 fish). * denotes 564 

significant at P<0.01, unpaired T-test. Error bars are ± one standard error. (d) Hypothesized 565 

vortex ring geometry and orientation behind fish swimming steadily (blue) and accelerating 566 

(magenta). Hypothetical acceleration with lower tail beat amplitude is also shown for 567 

comparison (black).  568 
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Figure 3. Fishes adopt acceleration kinematics tuned for high propulsive efficiency. Propulsive 570 

efficiency of the physical model as a function of head yaw at flow speed 1.2 L s
-1 

(left axis, black 571 

points; error bars are ± one standard error); propulsive efficiency increases with increasing head 572 

yaw. A histogram of head yaw (right axis) is shown for live trout during steady swimming (blue) 573 

and acceleration (magenta). Note that the overlapped region between the distributions steady 574 

swimming and acceleration appears darker. The average head yaw for steady swimming and 575 

acceleration is 12.469± 0.370° and 17.805±0.352°, respectively (unpaired T-test, P<0.01).  576 
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