
Aberystwyth University

An asymptotic model for the deformation of a transversely isotropic, transversely
monogeneous biphasic cartilage layer
Vitucci, Gennaro; Argatov, Ivan; Mishuris, Gennady

Published in:
Mathematical Methods in the Applied Sciences

DOI:
10.1002/mma.3895

Publication date:
2017

Citation for published version (APA):
Vitucci, G., Argatov, I., & Mishuris, G. (2017). An asymptotic model for the deformation of a transversely
isotropic, transversely monogeneous biphasic cartilage layer. Mathematical Methods in the Applied Sciences,
40(9), 3333-3347. https://doi.org/10.1002/mma.3895

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326673141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1002/mma.3895
https://pure.aber.ac.uk/portal/en/persons/gennady-mishuris(06aa6945-4ad6-4653-ab4a-c43874c9fc95).html
https://pure.aber.ac.uk/portal/en/publications/an-asymptotic-model-for-the-deformation-of-a-transversely-isotropic-transversely-monogeneous-biphasic-cartilage-layer(78fc8761-d5e6-424a-99ee-c27bd5716dc8).html
https://pure.aber.ac.uk/portal/en/publications/an-asymptotic-model-for-the-deformation-of-a-transversely-isotropic-transversely-monogeneous-biphasic-cartilage-layer(78fc8761-d5e6-424a-99ee-c27bd5716dc8).html
https://doi.org/10.1002/mma.3895


An asymptotic model for the deformation of a transversely

isotropic, transversely homogeneous biphasic cartilage layer

Gennaro Vitucci∗, Ivan Argatov, and Gennady Mishuris

Department of Mathematics, IMPACS, Aberystwyth University, Ceredigion, SY23 3BZ, UK

Abstract

In the present paper, an asymptotic model is constructed for the short-time deformation of an articular
cartilage layer modeled as transversely isotropic, transversely homogeneous (TITH) biphasic material. It
is assumed that the layer thickness is relatively small compared with the characteristic size of the normal
surface load applied to the upper surface of the cartilage layer, while the bottom surface is assumed to be
firmly attached to a rigid impermeable substrate. In view of applications to articular contact problems it is
assumed that the interstitial fluid is not allowed to escape through the articular surface.

1 Introduction

Articular cartilage is a thin tissue which covers the diathrodial joints of the bones. Its structural functions
facilitate the transmission of forces between the bones and minimize the stresses contact peaks as well as
minimize the friction by means of self-pressurized lubrication. A great interest surrounds its understanding
because a correct modeling may lead to correct patient-specific diagnosis for degeneration pathologies and
provide operative tools for repair and replacement engineering (see [12]). A cartilage layer itself is a complex
arrangement of a solid matrix saturated by interstitial fluid, mainly composed of water and mobile ions.
Its collagen fibrils and proteoglycans are considered the cartilage most relevant solid elements and are
heterogeneously distributed along the depth from the subchondral bone to the contact surface. This complex
architecture supplies the anisotropic and inhomogeneous electro-mechanical features of the thin structure
and is the cause for the nonlinear response to external stimuli.

One approach to the analysis consists in considering the solid phase as a fibril-reinforced material and
modeling the full complex layer through a finite element analysis (e.g. [36, 38, 57]). A big concern related
to the use of the latter arises, concerning contact problems, in modeling thin layers as interphases between
structures whose sizes exceed the layers ones of at least one order of magnitude. An extremely fine mesh is
required for both the thin layer and the neighbor bone regions, which can easily give place to ill-conditioning
and numerical instability of the method if not simply to an enormous increase of the computational effort (see
e.g. [22, 26, 58] and relative references). Homogenization procedures are then required in order to provide
mathematically workable mechanical laws and they are often obtained, following a long tradition, via multi-
scale approaches. Not only the pleasant circumstance of the 70th anniversary, but his great contribution
in the field encourage us to mention at least a few works of Professor Federico J. Sabina in the realm of
fiber-reinforced with transversely isotropic constituents [17, 19, 31–33, 49, 50] or laminated [20, 21] materials
subjected to elastic, thermal, electrical, magnetic multi-physics. With a homogenized constitutive law in
hand, analytical methods to tackle the mechanics of thin layers have been developed. Mainly, they consist in
reducing the problem to boundary value problems, thus allowing for the substitution of the finite thickness
layer with a zero-thickness one [16, 18, 34, 41, 42, 54] and sometimes even used to improve and make more
efficient experimental data extrapolations (e.g. [10, 44]). Their applicability must be examined case by case
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since inaccurate assumptions may even lead to non-uniqueness of the solutions which does not derive from
the original mathematical ansatz, as proved by Dalla Riva and Mishuris in [25], however these analytical
models can be eventually suitable to be thereafter implemented for asymptotic finite-element computation.
A very recent work has been published by Cerfontaine et al. [23] about the construction of a zero-thickness
homogeneous element which includes the hydro-mechanical coupling.

The debate on the appropriate constitutive model for articular cartilage, when assumed as a continuum
medium, is wide, but applications basically count two families. The cartilage material can be considered
monophasic and thus its observed delayed response requires a viscoelastic constitutive law [11, 45], or its
phenomenology derives from flow-dependent viscoelasticity. The former finds application, for instance, in
dynamic [3, 53] and impact [30, 52] problems for articular cartilage, the latter leads to the development of
a biphasic tissue model within the settings of the mixture theory [43]. It is noticeable that, in terms of
response for the impacting body, the two models can be mathematically connected and give nearly the same
results [2]. The present work is inscribed within the second framework described above. This approach is for
instance particularly suited for underlining that the fluid, about 80% of the structure volume, is the main
responsible, for load-bearing at early time of deformation and allows to distinguish between the stresses of the
solid structure and the pressure of the interstitial fluid. With the purpose of studying the contact problem
for the diathrodial joint, analytical solutions for biphasic isotropic homogeneous [4–6, 13, 47, 59], elastic and
viscoelastic [1, 7, 15, 27, 39, 46] and transversely isotropic models [10, 48] have been retrieved. Nevertheless,
it has been shown that a depth-dependent variation of the solid matrix stiffness and permeability may play
a crucial role in determining the internal behavior of the layer. For instance it affects the homogeneity of the
stress fields and improves the superficial fluid support in contact solicitation (see [14, 24, 28, 29, 37, 51]).

A recent interest developed in mechanics, which involves the study of inhomogeneous structures in the
second half of the last century for aerospace or geomechanical purposes. The main reason is to be addressed
is the necessity of individuating the response features of composite materials, eventually functionally-graded.
A number of analytical studies of inhomogeneous structures have been provided for special material variation
functions and for arbitrary inhomogeneity in axisymmetric configuration for monophasic layers. An extended
bibliography was examined by Tokovyy and Ma in [55]. To the best of our knowledge, the present work is
the first study which, by means of asymptotic analysis, provides an analytical solution for the deformation
problem of a biphasic transversely isotropic transversely homogeneous (TITH) thin layer.

An infinitely extended thin porous solid matrix is considered to be linear elastic, the interstitial fluid is
inviscid, and the problem is stated within the framework developed by Athesian et al. in [13] for an isotropic
homogeneous layer and by Argatov and Mishuris in [8, 9] for the transversely isotropic case. The fluid flow is
impeded through both the surfaces and the structure is supposed to be firmly attached to a rigid substrate,
thus neglecting the influence of the deformability of the substrate, for which an approach was proposed in
[10]. An arbitrary load is applied to the external surface in absence of friction. Whereas the formulation
remains completely general, a special in-depth exponential variation of the stiffness and permeability is
assumed. The leading terms of the Laplace transform of the displacement field and the fluid pressure are
retrieved. The boundary conditions used in the deformation problem are thought to be applied to contact
problems for which analytical results have been already provided in [9]. In this context, explicit formulae
are given for the dependent variables only along the external surface, which is of the main interest in contact
problem. Numerical benchmarks are studied and compared to the above mentioned existing solutions.

2 TITH Solid Matrix and Biphasic Model

The cartilage layer is modelled as a transversely isotropic, transversely homogeneous (TITH) porous linear
elastic solid matrix, saturated by a fluid with zero-viscosity.

The particular boundary condition problem investigated here describes a thin layer completely con-
strained at the bottom by a flat impermeable surface. A vertical load is applied at its top by a rigid
impermeable punch. No friction arises between the punch and the layer upper surface.

While (x′, y′) are the in-plane coordinates, z′, the vertical one, is directed downward, set to 0 at the top.
The solid matrix equilibrium and constitutive equations, coupled with Terzaghi’s principle are written as
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follows:

∂

∂z′

(
A44

∂v′

∂z′

)
+A13

∂∇y′w′

∂z′
+

∂

∂z′
(A44∇y′w′) +A66∆y′v

′

+(A11 − 2A66 −A12)∇y′∇y′ · v + (A66 +A12)Hy′v′ = ∇y′p,
(1)

∂

∂z′

(
A33

∂w′

∂z′

)
+

∂

∂z′
(A13∇y′ · v′) +A44

∂∇y′ · v′

∂z′
+A44∆y′w

′ =
∂p

∂z′
. (2)

In this notation Hy indicates the Hessian matrix operator whose ij-components are ∂2

∂x′i∂x
′
j
.

The continuity equation for the fluid and Darcy’s law are collected as

∂

∂z′

(
K3

∂p

∂z′

)
− ∂∇y′ · v′

∂t′
− ∂2w′

∂t′∂z′
+K1∆y′p = 0. (3)

If the thickness of the layer is h, the constraint at the bottom surface leads to the boundary conditions

v′|z′=h = 0, (4)

w′|z′=h = 0, (5)

while, the impermeability of both of the bottom and upper surfaces implies

∂p

∂z′

∣∣∣∣
z′=h

= 0, (6)

∂p

∂z′

∣∣∣∣
z′=0

= 0. (7)

The frictionless contact between the rigid punch and the top of the layer allows to state that

∂v′

∂z′
+∇y′w′

∣∣∣∣
z′=0

= 0. (8)

The top surface itself must be also in equilibrium and respect Terzaghi’s principle, that is

A13∇y′ · v′ +A33
∂w′

∂z′
− p
∣∣∣∣
z′=0

= −q. (9)

As for the initial conditions, every variable is set to 0 at t′ = 0.

3 Asymptotic Analysis

The thinness of the layer suggests to make use of perturbation analysis to solve the system of second order
partial differential equations described in Section 2. The thickness h is assumed to be represented as

h = εh∗, (10)

where ε is a small positive parameter and h∗ is a length independent of ε with the the same order of
magnitude as the characteristic in-plane length of the loaded layer. Thus, it becomes useful:

• to introduce the new independent variables

z =
z′

h
, t =

t′

h2
, xi =

x′i
h∗

(i = 1, 2), (11)

so that z ∈ [0, 1];

• to set the new unknowns variables

w =
w′

h
, v =

v′

h
; (12)
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• to express the elastic parameters Ajk and the hydraulic resistivities Kj (j, k = 1, 2, 3) as functions of

the new stretched vertical coordinate z = z′

h = z′

εh∗
.

The asymptotic expansion of the unknowns is written as follows:

v = ε0v0 + ε1v1 + ε2v2...,

w = ε0w0 + ε1w1 + ε2w2...,

p = ε0p0 + ε1p1 + ε2p2... .

(13)

Substituting (11) and (12) into Eqs.(1)–(3) leads to a new set of differential equations governing the problem

∂

∂z

(
A44

∂v

∂z

)
+ ε

(
A13

∂∇yw
∂z

+
∂

∂z
(A44∇yw)−∇yp

)
+ε2 ((A11 − 2A66 −A12)∇y∇y · v + (A66 +A12)Hyv) = 0,

(14)

∂

∂z

(
A33

∂w

∂z

)
− ∂p

∂z
+ ε

(
∂

∂z
(A13∇y · v) +A44

∂∇y · v
∂z

)
+ ε2A44∆yw = 0, (15)

∂

∂z

(
K3

∂p

∂z

)
− ∂2w

∂t∂z
+ ε

(
−∂∇y · v

∂t

)
+ ε2K1∆yp = 0. (16)

In the same way, the boundary conditions take the form

v|z=1 = 0, w|z=1 = 0, (17)

∂p

∂z

∣∣∣∣
z=1

= 0,
∂p

∂z

∣∣∣∣
z=0

= 0, (18)

∂v

∂z
+ ε∇yw

∣∣∣∣
z=0

= 0, (19)

A33
∂w

∂z
− p+ q + ε A13∇y · v|z=0 = 0. (20)

Using the expansions (13) to solve the system (14)–(16) and taking into account the boundary conditions,
it is easy to verify that the trivial terms of the expansions are

v0 = v2 = 0, w0 = w1 = p1 = 0, (21)

p0 = q, (22)

so that

v1 = ∇yq
∫ z

1

z

A44
dz. (23)

The ε2-terms of Eqs. (15) and (16) yield

∂

∂z

(
A33

∂w2

∂z

)
+

∂

∂z
(A13∇y · v1)− ∂p2

∂z
+A44

∂∇y · v1

∂z
= 0, (24)

∂

∂z

(
K3

∂p2

∂z

)
− ∂2w2

∂t∂z
− ∂∇y · v1

∂t
+K1∆yq = 0. (25)

The boundary condition (20) becomes

A33
∂w2

∂z
+A13∇y · v1 − p2

∣∣∣∣
z=0

= 0. (26)

Integrating Eq. (24) once between 0 and z and applying the latter boundary condition leads to the following
equation:

A33
∂w2

∂z
= p2 −∆yq

z2

2
−A13∇y · v1. (27)
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Thanks to Eq. (23) and the equation above, Eq. (25) can be expressed exclusively in terms of p2 as

∂2p2

∂z2 −
1

K3

∂K3

∂z

∂p2

∂z
− 1

K3A33

∂p2

∂t
=

1

K3A33

∂∆yq

∂t

(
(A33 −A13)

∫ z

1

z

A44
dz − z2

2

)
− K1

K3
∆yq,

(28)

where the unknowns are kept on the left-hand side.

4 Laplace transformation in the case of a specific type of inhomo-
geneity

Some assumption on the variation of the five parameters A13, A33, A44, K1, and K1 needs to be done in order
to simplify the continuation. In the present work we consider that they vary exponentially along the z-axis
while the product K3A33 remains constant. The latter feature is validated by experimental observation which
suggests that the axial mechanical stiffness — then A33 — increases with the depth from the surface toward
the bone [35, 51, 56], while the fact that a decreasing porosity causes an overall reduction in permeability
was shown in [29], where, through this hypothesis, the classical results of [40] were fitted and justified. The
exponential depth-dependency used later on is{

A33 = a33e2γz, A44 = a44eαz, A13 = a13eα13z,

K3 = k3e−2γz, K1 = k1e−γ1z,
(29)

where γ > 0 is a specified constant. Certainly the choice of exponential functions is not completely general,
nevertheless, given that we deal with a very thin layer, the opportunity of fitting experimental data does not
appear particularly compromised, at least in the case of monotonic variations of the parameters in exam.
The latter expressions are substituted into Eq. (28) and the time variable t is changed into the dimensionless
one by the formula

τ = K3A33t.

Recalling that any unknown is set to 0 for −∞ < t < 0−, the inverse Laplace transformation is applied to
yield

∂2P

∂z2 − 2γ
∂P

∂z
− sP =

s∆yQ

(
a33e2γz − a13eα13z

a44

∫ z

1

z

eαz
dz − z2

2

)
− k1

k3
e(2γ−γ1)z∆yQ,

(30)

where P (s) and Q(s) are respectively the Laplace transforms of p2(τ) and q(τ), s is the transformation
parameter. For the terms that multiply an exponential function of z we introduce the following abbreviation:

Φ
(M)
i = eMiz(bi1z + bi0) (i = 1, 2, 3, 4), (31)

whose coefficients are resumed in Table 1. It ensues that the latter second order ordinary differential equation
is suitable to be rewritten as

∂2P

∂z2 − 2γ
∂P

∂z
− sP = ∆yQ

6∑
i=1

Υi(s, z). (32)

Here we have introduced the notation

Υi(s, z) = sΦ
(M)
i (z), i = 1, 2, 3, 4,

Υ5(s, z) = −sz
2

2
, Υ6(s, z) = −k1

k3
e(2γ−γ1)z.

(33)
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i Mi bi1α
2a44 bi0α

2a44

1 α13 − α αa13 a13

2 α13 0 −a13(1 + α)e−α

3 2γ − α −αa33 −a33

4 2γ 0 a33(1 + α)e−α

Table 1: Parameters of Φ
(M)
i

i Mi bi1α
2a44 bi0α

2a44

1 −α αa13 a13

2 0 0 −a13(1 + α)e−α

3 −α −αa33 −a33

4 0 0 a33(1 + α)e−α

Table 2: Parameters of Φ
(M)
i for α13 = γ = 0

Posed σ(s) =
√
γ2 + s, the homogeneous solution of Eq. (32) is

Ph = eγz(C1 sinhσz + C2 coshσz), (34)

where the two constants C1(s) and C2(s) must be determined to fulfill the boundary conditions ∂P
∂z = 0 at

z = 0 and z = 1.
Within the Appendices A, B and C, we deal with the solution of Eq. (32) splitting it into three parts (see

Eq. (33)) as follows: one part containing the so-called Φ
(M)
i -terms, corresponding to Υi(s, z), i = 1, 2, 3, 4,

one containing the z2-term, corresponding to Υ5(s, z), and the last one which involves the permeability,

specifically the ratio K1(z)
K2(z) . This term, corresponding to Υ6(s, z), will take the name of k-term.

It is useful to calculate (with the same subdivision) the integral

ξ =

∫ z

1

p2e−2γz dz

which comes out from Eq. (27), if w2 is recovered and the boundary condition w2 = 0 at z = 1 is applied.

w2 =

∫ z

1

e−2γz
(
p2 −∆yq

z2

2 −A13∇y · v1

)
a33

dz. (35)

In particular we are interested in the evaluation of the pressure and the vertical displacement at the load
application surface (z = 0) because those results are especially important for contact problems.

The asymptotic expansion for the fluid pressure at the load application surface (z = 0) results from
Eq. (13) and Eq. (22):

p0 ≈ q(τ) +
h2

h2
∗
p02(τ), (36)

p02 =

4∑
i=1

p
(M)
0i + p

(2)
0 + p

(k)
0 , (37)

where the terms p
(M)
0i , p

(2)
0 and p

(k)
0 must be calculated as derived in the Appendices A, B and C.

Let us assume that both α13 and γ are zero. In this case Table 1 becomes Table 2. For studying the
homogeneous case α must also tend to zero, so that

−
4∑
i=1

bi0∆yq = ∆yq
a33 − a13

a44
lim
α→0

1− (1 + α)e−α

α2
=

1

2

a33 − a13

a44
∆yq, (38)
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4∑
i=1

∞∑
n=0

Res
{

esτΩ
(M)
i (s); sn

}
∗∆yq =

a33 − a13

a44
2

∞∑
n=0

(−1)ne−n
2π2τ ∗∆yq. (39)

The last two equations imply that the homogeneous solution regarding the Φ
(M)
i -terms is written as

4∑
i=1

p
(Mh)
0i =

1

2

a33 − a13

a44
∆yq +

a33 − a13

a44
2

∞∑
n=0

(−1)ne−n
2π2τ ∗∆yq. (40)

Analyzing the same limits for the part of the solution generated by the z2-term, we get

p
(2h)
0 = −2

∞∑
n=0

(−1)ne−n
2π2τ ∗∆yq, (41)

and for the k-term, we obtain

p
(kh)
0 =

k1

k3
∗∆yq. (42)

Collecting the three formulas above and substituting them into Eqs. (36) and (37), the following complete
expression for the ε2-approximation of the fluid pressure at z = 0 can be achieved:

ph0 ≈ q(τ) +
h2

h2
∗
ph02(τ), (43)

ph02 =
1

2

a33 − a13

a44
∆yq(τ)

+
k1

k3

∫ τ

0

∆yq(θ) dθ

+ 2

(
a33 − a13

a44
− 1

) ∞∑
n=0

(−1)n
∫ τ

0

e−n
2π2(τ−θ)∆yq(θ) dθ.

(44)

This is exactly the same expression obtained by Argatov and Mishuris in [9].
Equation (35) shows how to obtain the ε2-term of the asymptotic expansion of the vertical displacement

w2 — which is actually also the only non-zero term of the approximation of w (see Eq. (22)) — starting
from p2 and v1. Sticking to the coordinate z = 0, the mentioned equation can be written as

w0

ε2
≈ w02 =

1

a33

(
4∑
i=1

ξ
(M)
0i + ξ

(2)
0 + ξ

(k)
0

)
+

∆yq

2a33

∫ 1

0

e−2γzz2 dz

+
a13∆yq

a33a44

∫ 1

0

e(α13−2γ)z

(∫ 1

z

e−αz̃ z̃ dz̃

)
dz.

(45)

It is easy to notice, making use of Eq. (68), Table 1, Eqs. (78) and (86), that the only terms which do not
vanish are

w02 =
ξ

(M)
03 + ξ

(M)
04 + ξ

(k)
0 + b11M1(eM1−2γ − 1)eA2τ ∗∆yq(τ)

a33

=
e−α(α2 + 2α+ 2)− 2

α3a44
∆yq

+
a13(α13 − α)(eα13−α−2γ − 1)

αa33a44
∆yq ∗ e(α13−α)(α13−α−2γ)τ

+ (α− 2γ)
e−α − 1

αa44
∆yq ∗ eα(α−2γ)τ

+
k1

a33k3

e−γ1 − 1

γ1
∗∆yq(τ).

(46)
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When all the exponents defined in Eq. (29) are set to zero, the previous equation takes the form

w02 = − 1

3a44
∆yq(τ)− k1

a33k3

∫ τ

0

∆yq(θ) dθ. (47)

As for Eq. (44), analysing the behavior of a homogeneous transversally isotropic layer, Argatov and Mishuris
[9] gained the same result. Recovering all the original variables from Eqs. (11), (12), and (13), and writing
the load as q = q(x′, y′, t′), we find

w′02 =
e−α(α2 + 2α+ 2)− 2

α3a44
h3∆y′q

+
a13(α13 − α)(eα13−α−2γ − 1)

αa44
hk3

∫ t′

0

e(α13−α)(α13−α−2γ)
a33k3

h2 (t′−θ)∆y′q dθ

+ (α− 2γ)
e−α − 1

αa44
hk3a33

∫ t′

0

eα(α−2γ)
a33k3

h2 (t′−θ)∆y′q dθ

+
e−γ1 − 1

γ1
hk1

∫ t′

0

∆y′q(θ) dθ.

(48)

5 Numerical examples

In this Section, we present some numerical examples with the main purpose to underline the effect of the
inhomogeneity to the response of the cartilage layer to an applied load. For this reason we compare every
benchmark to the results obtained considering the solution by Argatov and Mishuris [9] for a transversely
isotropic homogeneous (TIH) model with the same average permeability and mechanical stiffness.

The thickness of the layer is taken to be h = 10mm (for the sake of easiness of scaling). The applied
distributed load q = qt′qr is axisymmetric with respect to the radial coordinate r, though this symmetry (not
necessary from the assumptions) represents a lack of generality only for the sake of clarity in this section. It
results from the product of two factors: qt′ = qt′(t

′) assigns the behavior in time, while qr = qr(x
′, y′) = qr(r)

contributes to the spacial distribution.
A total force F = 125N is distributed according to the law

qr(r) = e−( 1.73r
10h )

2
(

10h

1.73

)2
F

π
, (49)

so that 100N are loaded within a radius of about 10h.
A homogeneous and isotropic Poisson’s ratio ν = 0 is considered, thus the stiffness parameters (see

Eq. (29)) result as follows: 
A33 = HA3(z′) = a33e2γz′/h,

A13 =
ν

1− ν
HA1(z′) = a13eα13z

′/h,

A44 =
1− 2ν

2(1− ν)
HA1(z′) = a44eαz

′/h,

(50)

where HA1 and HA3 are respectively the planar and the vertical aggregate moduli. For the fixed ν, the
behavior of A33 and A13 must be the same and only due to the variation of Ha1, so that α13 = α.

The examples show a cartilage layer which is in average isotropic both in aggregate modulus and perme-
ability. Using the operator 〈·〉 to express average along the depth:

〈HA1〉 = 〈HA3〉 = 〈HA〉 = 0.5MPa,

〈K1〉 = 〈K3〉 = 〈K〉 = 2 · 10−15 m2

Pa s
.

(51)

The parameter that is used both to describe the inhomogeneity of the permeability K3 to the one of the
stiffness A33 is γ. Anyway one can use a more intuitive quantity (called the ratio of inhomogeneity) RI ,
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Figure 1: Permeability and aggregate modulus versus the isotropic homogeneous ones plotted along the
depth z′/h for an inhomogeneity ratio RI = 3 in a) and c) following the settings of Eq. (51), (52) and (53);
Plots b) and d) illustrate the descending anisotropy as ratios between those quantities and the equivalent
inhomogeneous isotropic ones.

which says how much A33 grows from the articular surface to the bone (i.e., e2γ) and at the same time the
ratio of K3 at z′ = 0 and at z′ = h. Thus, we put

γ = 0.5 logRI . (52)

In order to study the effects of the inhomogeneity, we set the remaining parameters as functions of the same
RI as follows: {

γ1 = 2 logRI ,

α = α13 = 0.7 logRI .
(53)

As shown by Federico and Herzog in [29] via a micromechanical approach, the anisotropy of permeability
can be explained through the fact that the collagen fibers, whose statistical orientation varies with the
depth, are impermeable. Consequently, being the fibers nearly parallel to the surface and perpendicular
to the tidemark, K1 > K3 for small z′ and vice versa. Since the same fibers are known to be responsible
also for the mechanical properties, and particularly for the anisotropy and inhomogeneity of the cartilage
stiffness [28], it is expected that HA1 > HA3 in the upper part of the layer, conversely in the lower one. The
achievement of these features are the reason of the choice of the parameters above. For instance, the effect
of this characterization is visualized in Fig. 1 for RI = 3, where K iso and H iso

A (see Fig. 1.b and Fig. 1.d)
are the equivalent inhomogeneous isotropic aggregate modulus and permeability defined as

K iso(z′) =
2

3
K1 +

1

3
K3,

H iso
A (z′) =

2

3
HA1 +

1

3
HA3.

(54)

According to Eq. (48), in the first place we show the behavior of the present cartilage model for a constant
load (qt′ = 1) applied for 1200s, smaller than the characteristic time t′ = h2/(a33k3) for which the solution
is valid. Both from Fig. 2.a and Fig. 2.b it is observable that RI strongly influences the response of the
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Figure 2: Vertical displacement of the TITH layer surface under a constant load and comparison with an IH
layer behavior: a) is the evolution in time at r = 0; b) shows the deformation profile along the radius for
different times.

Figure 3: a) Lateral displacement of a TITH layer with RI = 3 under constant load at t′ = 0; b) Difference
of lateral displacement between a TITH layer with RI = 3 and an IH one under constant load at t′ = 0.

structure. In particular, while in the case of a homogeneous isotropic layer the deformation increases for
a constant load, above a certain value of RI , which depends on the parameters settings, a phenomenon of
swelling appears during the initial phase. It derives (see the second and third addends in Eq. (48)) from the
contribution of K3, effect that vanishes in the IH case. Fig. 2.b draws attention to the profile of deformation
of the contact surface. The obtained asymptotic solution provides that w′ depends only on ∆y′q, so that,
since for our loading condition its zeroes remain fixed (see Eq. (49)), every benchmark calculated in this
section implies a homothetic deformation profile.

Through Eq. (23) the lateral displacements are achieved. In Fig. 3.a, the axisymmetric v′ is plotted
under a constant load from r = 0 to r = 20h at t′ = 0s. The highest displacement is obtained at the load
surface at r ≈ 4h with a value of v′ ≈ 0.33h while the base is constrained (see Eq. (5)). In Fig. 3.b, the
difference between the solution for a TITH layer with RI = 3 and the one for a IH layer is measured. The
maximum difference appears at the same r ≈ 4h but z′ ≈ 0.5h, and is about 0.034h, so that, in terms of
lateral displacements, the TITH structure with RI = 3 shows to deform less than the equivalent IH one. In
Fig. 3, the instantaneous response is calculated, and one can notice how (although the surface displacements
can appear qualitatively similar at the load surface (Fig. 2.b) and the same fittings are eventually possible
both through a homogeneous and inhomogeneous model calibrating the material parameters) remarkable
differences are returned between the two if light needs to be shed inside the layer.
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The second case that we consider deals with a load which reaches its peak at t′ = tP . Successively it
decreases to 0 asymptotically following the law:

qt′ =
t′e
−( t′

tP
+1)

tP
. (55)

The displacement of the point r = 0 is depicted in Fig. 4 for three different values of tP for the first 200s.
The peaks of the displacement are the same in the three cases and happen approximately at the respective
tP . As in the case of a constant load, the deformation at r = 0 becomes smaller for inhomogeneities with
RI > 1. The difference between the IH model and the TITH (RI = 3) model consists mainly in the behavior
at large t′. While the transversely homogeneous layer returns to the undeformed configuration after the load
removal, the homogeneous solution presents a residual deformation that depends on tP , that is on the rate
with which the load is applied.

Finally, in Fig. 5 the effect on w′|r=0 of a sinusoidal load is plotted. The frequency applied is considered to
be 1Hz, similar to the one that can occur to a knee articular cartilage due to walking. As expected, since the
period of 1s is small in comparison to the characteristic time, the short term difference between differently
inhomogeneous layers is exclusively in terms of amplitude and no residual displacements are accumulated for
next cycles. The structure deforms as a monophasic elastic one; yet again a positive RI produces a stiffer
response, while a negative one vice versa.

6 Discussion and conclusions

An analytical approach is provided for solution of the deformation problem of a TITH biphasic thin layer.
The mathematical analysis is conducted by use of Laplace transformation and asymptotic analysis. The
leading terms of the displacement and fluid pressure fields are retrieved through the solution of ordinary
differential equations. Such equations are made particularly simple thanks to the assumption of exponential
in-depth variation of the solid matrix elastic stiffness and permeability with the only restriction of keeping
the product k3A33 constant along the layer transverse direction. This particular setting appears reasonable
since experimental investigations on articular cartilage show that the aggregate modulus, contrarily to the
permeability, decreases toward the subchondral bone (see [40, 56]). The scope of the present work is pre-
senting an explicit form for the deformation of the external cartilage surface which can be straightforwardly
applied for solving contact problems. It is reached through the formula in Eq. (48). In addition to the
contribution of A33, A44, k1 and k3 found by Argatov and Mishuris in [9], the one of A13 is shown, other
than the effects of the variation parameters αij and γi (see their definitions in Eq. (29)). As discussed
in Section 1, the role of inhomogeneity and anisotropy in affecting the internal state of the cartilage layer
during loading encouraged many authors to develop fully 3D models for its mechanical analysis. However
their applicability for the study of contact problems, due to the large difference in scales between the thin
tissue and the bones interacting along the articular joint may result arduously suitable because of the deriv-
ing numerical problems, possibly obligating to use homogeneous elements as interphases. The simplicity of
Eq. (48), on the opposite, suggests that the same constitutive equations can be used both for an insight into
the layer (see Fig. 3), for instance for experimental investigations, and for a large scale contact problems.
The full-thickness layer can finally be substituted by a zero-thickness one through transmission conditions.
Eventually an asymptotic-based finite element can be implemented for assessing patient-specific problems for
real diathrodial joints and complex geometries, once the material parameters are experimentally estimated.
Only in sight of a future application to contact problems the results are presented extensively on the contact
surface, while, for the reader who desired to obtain the full-depth solution, it would be enough to remove
the restriction on the z-coordinate for the Laplace inversion shown in the Appendices.
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A Solution to Eq. (32) for the right-hand sides Υi(s, z), i = 1, 2, 3, 4

Let us consider the equation

∂2P

∂z2 − 2γ
∂P

∂z
− sP = s∆yQeMz(b1z + b0), (56)

with the boundary conditions ∂P
∂z = 0 at z = 0 and z = 1. Its general solution, obtained through Eq. (34)

and the method of undetermined coefficients, is given by

P = eγz(C1 sinhσz + C2 coshσz) + eMz

(
b1

A− s
z +

b0
A− s

− 2b1(M − γ)

(A− s)2

)
s∆yQ, (57)

where A = M(M − 2γ). The coefficients C1(s) and C2(s) are set in order to respect the two boundary
conditions mentioned above, and then arise from a linear system of two equations, so that

P

∆yQ
=

eγz

sinhσ

{(
Mbo + b1
A− s

− 2b1M(M − γ)

(A− s)2

)[
coshσz(γ sinhσ + σ coshσ − eM−γσ)

+ sinhσz(γeM−γ − γ coshσ − σ sinhσ)
]

+
Mb1
A− s

eM−γ(γ sinhσz − σ coshσz)

}
+ eMz

(
b1

A− s
z +

b0
A− s

− 2b1(M − γ)

(A− s)2

)
s.

(58)

At this point, only for the sake of brevity, we restrict our solution to the load application surface situated
at z = 0. We define P0 = P |z=0 and obtain

P0

∆yQ
=

1

sinhσ

{(
Mbo + b1
A− s

− 2b1M(M − γ)

(A− s)2

)(
γ sinhσ + σ coshσ − σeM−γ

)
− Mb1
A− s

σeM−γ
}

+
sb0
A− s

− 2b1(M − γ)s

(A− s)2
.

(59)
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The inverse Laplace transformation needs to be conducted on P0(s) in order to find p0(τ). For this purpose
we invert the ratio P0

∆yQ
and at the end, exploiting the convolution theorem, convolve the result with ∆yq(τ).

While the inversion of the terms outside the curly brackets is trivial, the ones inside divided by sinhσ can
be inverted making use of the residue theorem1. The poles of such functions are in s = A and where sinhσ
vanishes. This occurs when σ = nπi, namely in s = sn = −(γ2 + n2π2) (n = 0, 1, ...,+∞), so that

L−1

{
P0

∆yQ

}
= Res {esτΩ(s); s = A}+

∞∑
n=0

Res {esτΩ(s); s = sn}

− b0
(
AeAτ + δ(τ)

)
− 2b1(M − γ)eAτ (1 +Aτ),

(62)

where δ(t) is Dirac’s delta function and

Ω(s) =
1

sinhσ

{(
Mbo + b1
A− s

− 2b1M(M − γ)

(A− s)2

)(
γ sinhσ + σ coshσ − σeM−γ

)
− Mb1
A− s

σeM−γ
}
.

(63)

It results that
Res {esτΩ(s); s = A} = eAτAb0 + 2b1(M − γ)eAτ (1 +Aτ). (64)

If Ln is defined as Ln = ((M − γ)2 + n2π2), the residue in sn is written as

Res {esτΩ(s); s = sn} =

{[
Mbo + b1

Ln
− 2b1M(M − γ)

L2
n

] (
(−1)neM−γ − 1

)
+
Mb1
Ln

(−1)neM−γ
}

2n2π2e−(γ2+n2π2)τ ,

(65)

which vanishes at s = 0 (n = 0). Making use of the convolution theorem and collecting the expressions (64)
and (65), Eq. (62) gives

p
(M)
0i (τ) = −b0i∆yq(τ) +

∞∑
n=1

Res
{

esτΩ
(M)
i (s); sn

}
∗∆yq(τ), (66)

where the index i and the superscript (M) have the same meaning as in Eq. (32). Now we proceed to

evaluate Ξ0 = L−1 {ξ} |z=0 = −
∫ 1

0
P e−2γz dz, where P is defined in Eq. (58). In this way, we obtain

Ξ0

∆yQ
= −eM−2γ

(
Mb0 + (M + 1)b1

s−A
+

2b1M(M − γ)

(s−A)2

)
+

(
Mb0 + b1
s−A

+
2b1M(M − γ)

(s−A)2

)
+

s

s−A
b1

M − 2γ
eM−2γ

+
eM−2γ − 1

M − 2γ

[
s

s−A
b0 +

2sb1(M − γ)

(s−A)2
− sb1

(M − 2γ)(s−A)

]
.

(67)

1The Laplace inversion of f(s) can be done via contour integration as follows:

L−1 {f(s)} =
1

2πi

∫ c+i∞

c−i∞
f(s)esτ ds (60)

with c ∈ R greater than the real part of every singularity of f(s). If the integral converges for |s| → ∞ in the half-plane
Re(s) < c and the singularities lie on the real axis, then it can be reduced to

L−1 {f(s)} = −
1

2πi

∫ c

−∞
f(s+)es

+τ ds+ −
1

2πi

∫ c

−∞
f(s−)es

−τ ds− +

N∑
j=1

Res {f(s)esτ ; sj}, (61)

in which N is the number of the singularities located at sj , s
+ means that the path of integration is taken above the real axis,

s− vice versa. It is the case of Ω(s) (see Eq. (63)), for which it is also easy to show the two integrals on the right-hand side
eliminate each other, so that the inverse Laplace transform results simply the sum of the residues.
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Passing to inverse Laplace transforms and convolving by ∆yq(τ), each i-th term of ξ
(M)
0 =

∑4
i=1 ξ

(M)
0i results

to be

ξ
(M)
0i (τ) =

[
b0i

eMi−2γ − 1

Mi − 2γ
+ b1i

eMi−2γ(Mi − 2γ − 1) + 1

(Mi − 2γ)2

]
∆yq(τ)

+ b1iMi(e
Mi−2γ − 1)eAiτ ∗∆yq(τ).

(68)

B Solution to Eq. (32) for the right-hand sides Υ5(s, z)

The equation, coupled with the usual boundary conditions on the derivative of P, is

∂2P

∂z2 − 2γ
∂P

∂z
− sP = −z

2

2
s∆yQ, (69)

and its solution is given by

P = eγz(C1(s) sinhσz + C2(s) coshσz) +

(
z2

2
− 2γz

s
+

1

s
+

4γ2

s2

)
∆yQ, (70)

where

C1(s) =
2γ
s (γ coshσ + σ sinhσ − γe−γ) + γe−γ

s sinhσ
∆yQ, (71)

C2(s) =
2γ
s (σe−γ − γ sinhσ − σ coshσ)− σe−γ

s sinhσ
∆yQ. (72)

Complying exclusively with the search for P0 = P |z=0, the next function must be inverted to give

P0

∆yQ
=

2γ
s (σe−γ − γ sinhσ − σ coshσ)− σe−γ

s sinhσ
+

1

s
+

4γ2

s2

= Ω(s) +
1

s
+

4γ2

s2
,

(73)

with the self-evident definition of Ω(s). The latter has non-zero residues at s = 0 and at s = sn. Similarly
to what explained in the previous paragraph, the inverse Lalace transform of Ω(s) can be executed only in
terms of residues

L−1

{
P0

∆yQ

}
= Res {Ω(s)esτ ; 0}+

∞∑
n=0

Res {Ω(s); sn}+ 1 + 4γ2τ. (74)

On the other hand, it occurs that Res {Ω(s); 0} = −1− 4γ2t. It remains to compute the residue at s = sn:

Res {esτΩ(s); sn} =

[
2γ

1− (−1)ne−γ

(γ2 + n2π2)2
− (−1)ne−γ

γ2 + n2π2

]
2n2π2e−(γ2+n2π2)τ . (75)

Substituting this results into Eq. (74) and taking advantage from the convolution theorem, it follows that

p
(2)
0 (τ) =

∞∑
n=1

Res
{

Ω(2)(s)esτ ; sn

}
∗∆yq(τ), (76)

where we use the superscript (2) to signify z2-term. With respect to Ξ0, the integration of Eq. (70) along
the layer depth yields

Ξ0

∆yQ
= −C1(s)

∆yQ

∫ 1

0

e−γz sinhσz dz − C2(s)

∆yQ

∫ 1

0

e−γz coshσz dz

−
∫ 1

0

(
z2

2
− 2γz

s
+

1

s
+

4γ2

s2

)
dz.

(77)

The latter, after substituting the costants of Eq. (72) leads simply to

ξ
(2)
0 (τ) = −∆yq(τ)

∫ 1

0

e−2γz z
2

2
dz. (78)
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C Solution to Eq. (32) for the right-hand sides Υ5(s, z)

The function P , regarding the k-term in Eq. (32), can be directly recovered from the solution of Eq. (57),
setting b1 to zero, b0 = − 1

s
k1
k3

, M = 2γ − γ1 and A = −γ1(2γ − γ1). Thus, we will have

P

∆yQ
=

eγzMb0
(A− s) sinhσ

{
coshσz(γ sinhσ + σ coshσ − σeM−γ)

+ sinhσz(γeM−γ − γ coshσ − σ sinhσ)
}

+ eγz
b0

A− s
.

(79)

On the load application surface, we have

P0

∆yQ
=

M k1
k3

s(s−A) sinhσ
(γ sinhσ + σ coshσ − γeM−γ) +

k1

k3

1

s−A

= Ω(s) +
k1

k3

1

s−A
,

(80)

where, again, the meaning of Ω(s) is clear. The inverse Laplace transform of Ω(s) is calculated via residue
theorem as the sum of the residues of Ω(s)est at the singularities, which are situated at 0, A and sn.

Res
{

Ω(s)est; 0
}

=
γ k1k3

(M − 2γ) sinh γ
(eM−γ − eγ), (81)

Res {Ω(s)esτ ;A} = −k1

k3
eAτ , (82)

Res {Ω(s)esτ ; sn} =
M(1− (−1)neM−γ)

((M − γ)2 + n2π2) (γ2 + n2π2)
2n2π2e−(γ2+n2π2)τ . (83)

Connoting with (k) the elements arising from the k-terms, the complete inverse Laplace transform gives

p0(τ) =
γ k1k3 eγ

γ1 sinh γ
(1− e−γ1) ∗∆yq(τ) +

∞∑
n=1

Res
{

esτΩ(k)(s); sn

}
∗∆yq(τ). (84)

The function Ξ0(s) is (using the same substitution as explained for the pressure) simply recovered from
Eq. (67) and is

Ξ0(s)

∆yQ
=
k1

k3

(
e−γ1 − 1

) [ 2γ − γ1

s(s−A)
+

1

γ1(s−A)

]
. (85)

Inverting the latter Laplace transform and using the convolution theorem, finally we obtain

ξ
(k)
0 (τ) =

k1

k3

e−γ1 − 1

γ1
∗∆yq(τ). (86)
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