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Abstract
The dendritic cell algorithm (DCA) is a classification algorithm based on the behavior of
natural dendritic cells (DCs). In literature, DCA has given good classification results. How-
ever, DCA was known to be sensitive to the order of the instance classes. To solve this
limitation, a fuzzy DCA version was developed stating that the cause of such sensitivity is
related to the DCA crisp classification task (hypothesis 1). In this paper, we hypothesize
that there is a second possible cause of such DCA sensitivity which is related to the possible
existence of noisy instances presented in the DCA signal data set (hypothesis 2). Thus, we
aim, first of all, to test the trueness of the latter hypothesis, and second, we aim to develop an
overall hybrid DCA taking both hypotheses into consideration. Based on hypothesis 1, our
new DCA focuses on smoothing the crisp classification task using fuzzy set theory. Based
on hypothesis 2, a data set cleaning technique is used to guarantee the quality of the DCA
signal data set. Results show that our proposed hybrid fuzzy maintained algorithm succeeds
in obtaining results of interest.

Keywords Evolutionary computing · Fuzzy set theory · Maintenance · Classification

1 Introduction

Evolutionary computing forms a family of algorithms inspired by the theory of biological
evolution that solve various problems (Cui and Xiao 2014; Kaur et al. 2015). One recent
addendum to the evolutionary class of algorithms is the dendritic cell algorithm (DCA)
(Greensmith and Aickelin 2005). As the name suggests, DCA is based on the behavior
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of natural dendritic cells (DCs). The DCA aims to perform a binary classification task by
correlating a series of informative signals, termed either danger or safe, inducing a signal
data set with a sequence of repeating abstract identifiers: termed “antigens.” Based on the
induced DCA signal data set, the binary algorithm classifies in a crisp manner each antigen
as being either anomalous, mapped as the DC mature context, or normal, mapped as the DC
semi-mature context. The DCA uses this metaphor to decide if items within a presented set
are members of class 1 or class 2.

Despite being successfully applied to a diverse range of binary classification problems
(Greensmith and Aickelin 2006, 2007), it was noticed that the DCA performance is only
observed when the algorithm is applied to ordered training data sets, where all class 1 exam-
ples are followed by all class 2 examples. This leads the DCA to be sensitive to the input
class data order (Greensmith and Aickelin 2008). This critical point was partially handled in
our first work, named the fuzzy dendritic cell method (FDCM) (Chelly and Elouedi 2010)
by hybridizing the DCA with fuzzy set theory (Zadeh 1965). A main limitation with FDCM
was that its input parameters had to be automatically generated instead of being introduced
by an ordinary user. Thus, in Chelly and Elouedi (2015), we have developed an overall auto-
mated fuzzy DCA version based on generating automatically the parameters of the system,
using a fuzzy clustering technique, to avoid false and uncertain values given by the ordinary
user. The developed algorithm was non-sensitive to the input class data order. In Chelly
and Elouedi (2015), we have hypothesized that one of the causes of the DCA’s mentioned
sensitivity is the non-clear separation between the already mentioned DC mature context
and the DCA semi-mature context (first hypothesis). By adopting the fuzzy set component
and a fuzzy clustering technique, the sensitivity problem was solved and, hence, the first
hypothesis was confirmed.

Yet, we believe that there can be a second possible cause leading the DCA to be sensi-
tive to the input class data order. Actually, as the DCA classification task depends on the
induced signal data set, we hypothesize that the quality of this signal base can influence the
classification task of the DCA that we will refer to as its behavior (second hypothesis). In
fact, the DCA signal data set may contain misleading objects such as noisy, incoherent or
redundant instances. Such a non-maintained and not-cleaned base may influence the DCA
behavior leading the algorithm to be sensitive to the input class data order. Therefore, in
this paper, we propose first of all to test the trueness of our second hypothesis, then, we
will propose an overall hybrid fuzzy maintained DCA based on the two mentioned possible
hypotheses in order to develop a more robust binary classifier.

This paper unfolds as follows: In Section 2, we present more details about the motivation
of this work and its aims and scope; and in Section 3 we introduce the dendritic cell algo-
rithm. The cleaning data set policies are presented in Section 4. In Section 5, we describe
our fuzzy maintained dendritic cell method in detail. The experimental methodology is pre-
sented in Section 6 and the discussion and results carried out on binary data sets from the
U.C.I. repository are given in Section 7. Finally, Section 8 presents the application of our
proposed fuzzy maintained DCA to intrusion detection.

2 Aims and Scope

As already stated, in this paper, we aim first of all to test the trueness of our second men-
tioned hypothesis. Once confirmed and as we have already confirmed the trueness of our
first hypothesis in Chelly and Elouedi (2015), we aim to develop a fuzzy maintained DCA
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solution which is based on both hypotheses. Our solution, named clustering, outliers and
internal cases detection (COID)-fuzzy dendritic cell method (COID-FDCM), is presented
as a two-leveled hybrid fuzzy DCA classifier. COID-FDCM can be seen as an extension of
our work presented previously in Chelly and Elouedi (2015).

Based on our second hypothesis, cleaning the DCA signal data set as a primary step
becomes essential. Hence, in the top level of COID-FDCM, we use a cleaning policy to
guarantee the quality of the DCA signal data set. Actually, several data set cleaning policies
have been proposed in literature (Dasu and Johnson 2003). Most of these methods can offer
an acceptable data set size reduction and satisfy classification accuracy; however, some of
them are expensive to run and neglect the importance of the noisy instances elimination.
For our proposed method, in order to clean the signal data set, we choose to apply the
method named COID (Smiti and Elouedi 2010). COID seems appropriate to DCA since it
is characterized by its capability of removing noisy and redundant instances as well as its
ability to improve the classification accuracy and to offer a reasonable execution time. In
fact, the choice of this policy is based on a rigorous analysis and a comparative study of
different data set cleaning policies which will be later presented in our experimental setup
section.

Based on our first hypothesis, our new method should be able to smooth the crisp clas-
sification task performed by the DCA. This will be handled by the use of fuzzy set theory
(Zadeh 1965) in the second level of COID-FDCM. In fact, fuzzy set theory—applied to
solve several problems in various real word problems—permits with linguistic terms a sim-
ple and natural description of problems which have to be settled rather than in terms of
relationships between definite numerical values. Furthermore, our new model adopts a fuzzy
clustering approach in order to generate automatically the extents and midpoints of the
membership functions which describe the variables of COID-FDCM fuzzy part. Hence, we
can avoid negative influence on the results when an ordinary user introduces such param-
eters. In Chelly and Elouedi (2015), we have made a comparative study of several fuzzy
clustering techniques and selected the Gustafson–Kessel (GK) algorithm (Gustafson and
Kessel 1979) as it has shown promising results in comparison to the rest of the compared
techniques. Thus, COID-FDCM adopts GK to generate automatically the parameters of the
fuzzy part of the algorithm. Indeed, we aim to compare the classification performance of
our COID-FDCM proposed solution with a set of state-of-the-art classifiers, mainly with
the standard DCA, as it has been recently introduced among the evolutionary class of binary
algorithms, neural networks (Zhang 2000), decision trees (Gu et al. 2010), and support vec-
tor machines (Cortes and Vapnik 1995). It is, also, important to note that DCA has been
subject to several modifications since its commencement. Works such as Chelly and Elouedi
(2012a, b) focused on various algorithmic aspects of the DCA trying to make it a better clas-
sifier. Furthermore, other works such as Amaral (2011a, b) proposed fuzzy DCA versions
based on some fuzzy inference systems able to combine the DCA set of signals or to reduce
the amount of time taken to sample antigens from the antigen vector. Most importantly, we
have to clarify that all these DCA modified versions have been applied to ordered data sets
only and have not tackled the problem of the DCA as it is sensitive to the input class data
order. Therefore, a comparison to these modified crisp and fuzzy versions, which are also
sensitive to the input class data order, is not possible and, thus, we will focus our compar-
ison on the mentioned state-of-the-art classifiers. Finally, we aim to show the promising
classification results obtained by our proposed COID-FDCM through a concrete applica-
tion example which is the intrusion detection problem and more precisely the application to
the KDD 99 data set.
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3 Overview of the Dendritic Cell Algorithm

Before describing the functioning of the algorithm, we give a general overview of the
biological principles used by the DCA.

3.1 Biological Dendritic Cells

Dendritic cells are types of antigen-presenting cells. They can sense various signals that may
be present in the tissue through receptors expressed on the cells surface. These receptors are
sensitive to the concentration of signals received from their neighborhood. There are three
main types of signals which are the pathogenic associated molecular patterns (PAMPs), the
danger signals (DS) and the safe signals (SS). The relative proportions and potency of the
different signals received lead either to a partial maturation state or to a full maturation
state changing the behavior of the immature DCs (iDCs). iDC are the initial maturation
state of a DC. Under the reception of safe signals, iDCs migrate to the semi-mature state
(smDCs) and they cause antigen tolerance. iDCs migrate to the mature state (mDCs) if they
are more exposed to danger signals and to PAMPs than to safe signals. They present the
collected antigens in a dangerous context (Lutz and Schuler 2002). Swapping from one state
to another is dependent upon the receipt of different signals throughout the iDC state:

• PAMPs: PAMPs are proteins expressed exclusively by bacteria, which can be detected
by DCs and result in immune activation. The presence of PAMPs indicates definitely
an anomalous situation.

• Safe signals: Signals produced via the process of normal cell death, namely, apoptosis.
They are indicators of normality which means that the antigen collected by the DC was
found in a normal context. Hence, tolerance is generated to that antigen.

• Danger signals: DS are indicators of abnormality but with a lower value of confidence
than the PAMP signals.

3.2 Formalization of the Dendritic Cell Algorithm

By Algorithm 1, we present a generic form of the DCA based on DC biology. DCA has two
types of input data which are signals from all categories and antigens. Signals are repre-
sented as vectors of real-valued numbers while antigens are the data item IDs. The DCA, as
a binary classifier, has to classify each antigen either as normal (referred to as a semi-mature
cell context) or as anomalous (referred to as a mature cell context). Thus, the algorithm out-
put is the antigen context which is represented by the binary value 0 to mean that the antigen
is likely to be normal, or 1 meaning that the antigen is likely to be anomalous. Formally and
through the initialization phase, DCA performs data pre-processing where feature selection
and signal categorization are achieved. DCA selects the most important features/attributes
from the input training data set and assigns each selected attribute to its specific signal cat-
egory (either as SS, as DS, or as PAMP). In other words, each attribute is mapped as a
signal category based on the immunological definitions stated in Section 3.1. For instance,
an attribute reflecting the number of error messages generated per second by a failed net-
work connection can be categorized as a PAMP signal. This is because this feature, like a
PAMP signal, is seen as a signature of abnormal behavior, e.g., an error message. For the
DCA data pre-processing phase, either experts may be involved for feature selection and
signal categorization or dimensionality reduction and statistical inference techniques may
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be used. Formally, to perform data pre-processing, the standard DCA applies the principal
component analysis (PCA). This task is achieved via the initialize-DC() function.

After that, and throughout the detection phase, DCA has to generate a signal database by
combining the input signals with the antigens. This combination is achieved via the use of
both get-antigens() and get-signals() functions. The induced signal database rows represent
the antigens to classify and the attributes represent SS, PAMP, and DS. The attribute values,
for each antigen, are calculated based on specific equations that are detailed in Greensmith
et al. (2010). Formally, this combination is achieved through using a population of artifi-
cial DCs. Using multiple DCs means that multiple antigens are sampled multiple times.
Based on the induced signal database, the algorithm processes its input signals to get three
cumulative output signal values known as the costimulatory molecule signal value (CSM),
the semi-mature signal value (smDC), and the mature signal value (mDC). This task is
performed through the use of the calculate-inter() function where these cumulative output
signal values are calculated using a signal processing equation detailed in Greensmith et al.
(2010) and a set of weights. These three DC output signals perform two roles which are,
first, to determine if an antigen type is anomalous and, second, to limit the time spent sam-
pling data. In fact, each DC in the population is assigned a migration threshold value (mt)

upon its creation. So, if the value of CSM exceeds mt then the DC stops sampling antigens
and signals, else the algorithm continues sampling and, also, keeps calculating and updating
the values of CSM , smDC, and mDC via the update-cumul() function.

Now, through the context assessment phase, the DC forms a cell context that is used to
perform antigen classification. In fact, the cumulative output signals of both smDC and
mDC are assessed and the one that has a greater/higher output signal is the one that becomes
the cell context, either 1 or 0. This information is ultimately used in the generation of an
anomaly coefficient which will be dealt with in the final step: the classification phase. More
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precisely, the derived value for the cell context is used to derive the nature of the response by
measuring the number of DCs that are fully mature. This generated number is represented
by the mature context antigen value (MCAV ). The MCAV is calculated by dividing the
number of times an antigen appears in the mature context, Nb-mature, by the total number
of presentation of that antigen, Nb-antigen. Once the MCAV is calculated for each antigen,
the algorithm can perform its classification task. This is done by comparing the MCAV of
each antigen to an anomalous threshold. More precisely, those antigens whose MCAV s are
greater than the anomalous threshold are classified into the anomalous category while the
others are classified into the normal one.

To have further details about the DCA, its strengths and limitations, how it can be applied
to a sample training data set, its development pathway, and its application domains, we
kindly invite the reader to refer to Chelly and Elouedi (2015, 2016).

4 Overview of the Data Set Cleaning Policies

The quality of the training data set is very important to generate accurate results and to
have the possibility to learn models from the presented data. To achieve this, the misleading
instances—especially noisy and redundant instances which affect negatively the quality of
the results—have to be handled. To address this situation, data cleaning is a feasible way.
The goal of the data set cleaning methods is to select the most representative information
from the used training data set. This information can increase the model capabilities and
generalization properties. In fact, many works dealing with data sets cleaning have been
proposed in literature (Dasu and Johnson 2003). Most of them are based on updating a
training data set by adding or deleting instances to optimize and reduce the initial base
(Dasu and Johnson 2003). The data set cleaning policies include different operations such
as redundant or inconsistent instances may be deleted, groups of instances may be merged
to eliminate redundancy and improve reasoning power, instances may be re-described to
repair incoherencies, signs of corruptions in the training data set have to be checked, and any
abnormalities in the training data set which might signal a problem have to be controlled.
A training data set which is not cleaned can give inaccurate data, and with these, users
will make uninformed decisions. The quality of the cleaned new training data sets will be
tested using a classification algorithm, such as k-NN. Among the data set cleaning policies
proposed in literature, we can cite the following:

One type of cleaning methods is the selective reduction approach. This type starts with
an empty set, selects a subset of instances from the original training data set, and adds it into
the new data set, initially empty. We can mention among the most efficient selective reduc-
tion data methods shown in Dasu and Johnson (2003) the condensed nearest neighbor rule
(CNN) proposed in Chou et al. (2006). CNN is a redundancy technique that incrementally
builds an edited training data set from scratch. Formally, instances which are misclassified
by the algorithm, k-NN for example and where k > 1, are removed from the original train-
ing data set while the remaining instances which are correctly classified are added to a new
data set, initially empty. However, CNN suffers from some shortcomings as it is sensitive
to noise. CNN can view the noisy instances as important exceptions and give an unsatisfy-
ing result. Another selective reduction method is the reduced nearest neighbor (RNN) rule
(Gates 1972) which starts using the whole training set, S, as the initial reduced set, T . In
other words, it starts with S = T and removes each instance from S if such a removal does
not cause any other instances in T to be misclassified by the instances remaining in S. The
process is repeated until no further reduction can be achieved. Nevertheless, the iterative
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process is very time-consuming if the original training set is large and it is computationally
more expensive than the CNN method. The edited nearest neighbor rules (ENN) (Wilson
1972) is, also, a selective reduction method which removes all the misclassified instances
from the training set. ENN keeps all the internal instances but deletes the border instances
as well as the noisy instances, unlike the CNN algorithm. These methods are among the
most efficient methods due to their balanced behavior in diversity and convergency.

Another type of data set cleaning methods is the deletion reduction method which
addressed the problem of optimization. In fact, from a given training data set, these strate-
gies are able to suppress “useless” instances from the initial training data set and bring the
base to a specific number of instances. Hence, this type of reduction methods works on the
same initial training data set without the use or the construction of a new data set where the
correctly classified instances will be added. Some researchers advocate a random deletion
or addition policy (Markovich and Scott 1988). In this policy, a random instance is removed
from the training data set once the base size exceeds a threshold that should be defined a
priori by the user. The random deletion method presents a limitation as, sometimes, the key
instances may be deleted. Substantial performance improvements of this policy, in terms of
the quality of the cleaned training data set, were presented in Markovitch and Scott (1993)
by incorporating filtering processes. In Racine and Yang (1996, 1997), other deletion meth-
ods based on eliminating any kind of redundancy and inconsistency from the training data
set were described. To clean the training data set, additional methods reducing the size of the
training data set by focusing on its density were presented in Smyth and McKenna (1998).
We can, also, mention the COID deletion method proposed in Smiti and Elouedi (2010). It
uses the clustering technique to partition the initial training data set into multiple clusters
in order to clean each cluster apart. It is believed that it is easier to clean each cluster apart
instead of using the whole initial training data set. Then, COID applies outliers and internal
instances detection methods, for each cluster, to reduce the size. This method aims at select-
ing instances which influence the quality of the data set. For each cluster, the instances of
type outliers and the instances which are the nearest to the center of each cluster are kept
and the rest of the instances are removed.

We believe that cleaning the training data set by removing instances may not necessarily
lead to a degradation of the results. In fact, we have observed experimentally that a little
number of instances can have performances comparable to those of the whole sample, and
sometimes higher. To explain such an observation, some noise or repetitions in data could
be deleted by removing instances. Based on a comparison of different data set cleaning
policies, we have noticed that the COID method is an interesting technique among the other
methods in terms of its capability of removing noisy and redundant instances as well as its
ability to improve the classification accuracy and to offer a reasonable execution time. Thus,
our proposed COID-fuzzy dendritic cell method will be based on the COID method for the
signal data set cleaning process.

5 COID-FDCM: the FuzzyMaintained Dendritic Cell Method

In this section, we describe our fuzzy hybrid model named COID-fuzzy dendritic cell
method (COID-FDCM). A global view of the COID-FDCM architecture is presented in
Fig. 1.

More precisely, COID-FDCM which is based on the two previously mentioned hypothe-
ses has the same DCA steps except for the DCA detection phase and the DCA context
assessment phase. The standard DCA detection phase is modified to be a COID-FDCM
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Fig. 1 The COID-FDCM architecture

detection phase where the COID technique is added to clean the signal data set. The DCA
context assessment phase is replaced by a fuzzy procedure composed of five main steps:

1. Defining the inputs and the output of the system;
2. Defining the linguistic variables;
3. Constructing the membership functions;
4. Creating the rule base;
5. Assessing the fuzzy context.

We will mainly discuss the COID-FDCM detection phase and the fuzzy process as the
rest of the algorithm steps, including the initialization phase and the classification phase,
are performed the same as DCA and as described previously in Section 3.2.

5.1 COID-FDCMDetection Phase

5.1.1 COID-FDCM Detection Phase Basic Concepts

Once data pre-processing is achieved and through the detection phase, COID-FDCM has to
generate the signal data set and to clean it. As previously stated, the signal data set may con-
tain misleading objects especially noisy and redundant instances, in the sense that it affects
negatively the quality of the algorithm classification results. To guarantee the algorithm per-
formance, the process of cleaning the signal data set becomes essential. Thus, we apply the
COID method as a first step in our new COID-FDCM algorithm. In fact, applying COID to
the signal data set aims at eliminating its noisy and redundant instances. As a result, a new
smaller signal base is constructed to represent the original one. To achieve this, COID per-
forms two main steps—seen as two substeps of the COID-FDCM detection phase—which
are:

• Partitioning the signal base into small groups.
• For each cluster, deleting antigens which are not outliers or internal cases.

As stated above, COID defines two important types of instances which should not be deleted
from the original signal data set. These types of objects are described in Fig. 2.
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Fig. 2 Instance categories

• Outlier is an isolated instance. No other instance can replace an outlier or be similar
to it. By eliminating outliers, the competence of the system will be negatively affected
since there will not be any other instances that can solve the deleted outliers.

• Internal instance is one instance from a group of similar instances. Each instance from
this group provides similar coverage to the other instances of the same group. Deleting
any member of this group has no effect on the system’s performance since the remain-
ing instances offer the same value. However, deleting the entire group is tantamount
to deleting an outlier instance as competence is reduced. Thus, we have to keep one
instance from each group of similar instances.

Based on this idea, the COID method reduces the original signal data set by keeping only
these two types of instances and eliminating the rest. For that, it uses a clustering method
to create groups of similar instances. Then, for each cluster, it applies specific methods to
detect outliers and others to select the internal instances which are defined as the nearest
instances to the center of each cluster. For the signal base cleaning, COID processes as
follows:

• For the clustering method, COID adopts the density-based spatial clustering of appli-
cations with noise (DBSCAN) method (Ester et al. 1996) since it offers minimal
requirements of domain knowledge to determine the input parameters. Moreover, it can
detect the noisy instances. Hence, the improvement of classification accuracy could
be achieved. COID adopts DBSCAN to partition the initial input signal data set into
multiple clusters to handle each cluster apart.

• For the selection of the internal instances, from each created cluster, COID calculates
the Euclidean distance between the cluster’s center, defined via the mean of the clus-
ter instances, and each instance from the same cluster. Based on the calculated smallest
distance, COID selects from each cluster a single instance which has the smallest dis-
tance with the center of its cluster. Hence, from each cluster, one internal instance is
kept and the rest are deleted.

• For the outliers detection, COID applies two outliers detection methods to announce the
univariate outliers and the multivariate outliers. For univariate outliers detection, COID
uses the interquartile range (IQR) (Bussian and Härdle 1984) as it is a robust statistical
method, e.g., beyond the 25th and 75th percentile values of the variable are considered
outliers. For multivariate outliers detection, the Mahalanobis distance is used. Maha-
lanobis distance takes into account the covariance among the variables in calculating
distances. Specifically, the Mahalanobis distances are calculated for all observations
using the trimmed mean and the trimmed covariance matrix, which are (more) robust
to the effect of extreme observations. With these measures, the problems of scale and
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correlation are no longer an issue (Filzmoser et al. 2005). COID keeps these two types
of outliers, from each cluster, as they are seen as specific instances where no other
instances from the same cluster can replace them or be similar to them.

Consequently, the result of this phase is a new reduced and cleaned signal data set lacking
noisy and redundant instances.

5.1.2 The Signal Base Maintenance Process

In this section, we provide a detailed description of how to maintain the signal data set. The
relative workflow is, thus, illustrated in Fig. 3. First of all, throughout the COID-FDCM
detection phase, the algorithm has to generate groups of similar antigens (Fig. 3b). This step
is handled by the use of the DBSCAN clustering method. Once the DBSCAN detects noisy
objects and partitions the signal base, COID-FDCM removes the detected noisy instances
(Fig. 3c). The result of this process is a set of independent small signal databases (Fig. 3d).

Fig. 3 Overview of the COID-FDCM maintenance process
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The second step of the COID-FDCM detection phase is to select antigens which are
close to the center of each cluster (Fig. 3e). After the detection of the internal antigens,
COID-FDCM applies outliers detection methods to announce outliers (Fig. 3f). Finally, all
unselected antigens, which are not outliers or internal cases, are deleted from the signal data
set. Based on these steps, we obtain a reduced signal data set (Fig. 3g).

5.2 Fuzzy Process

5.2.1 Fuzzy System Inputs–Output Variables

Once the signal data set is cleaned using the COID policy, COID-FDCM processes the sig-
nal values to get the semi-mature and the mature values, defined previously as smDC and
mDC (Section 3.2). This process is performed the same as the standard DCA (Greensmith
and Aickelin 2005). In order to describe each of these two contexts, linguistic variables are
used. Two inputs and one output are defined. The semi-mature context, smDC, is denoted
by Cs . The mature context, mDC, is denoted by Cm. Cs and Cm represent the input vari-
ables. The output variable of our algorithm reflects the final state “maturity” of a DC and is
denoted by Smat . Formally, the variables are defined as follows:

Cs = {μCs (csj )/csj ∈ XCs } (1)

Cm = {μCm(cmj
)/cmj

∈ XCm} (2)

Smat = {Smat (smatj )/smatj ∈ XSmat } (3)

where csj , cmj
, and smatj are, respectively, the elements of the discrete universe of discourse

XCs , XCm , and XSmat . μCs , μCm , and μSmat are, respectively, the corresponding membership
functions.

5.2.2 Linguistic Variables

The term set, T (Smat ), interpreting Smat , is defined as:

T (Smat ) = {Semi − mature, Mature} (4)

Each term in T (Smat ) is characterized by a fuzzy subset in a universe of discourse XSmat .
Semi-mature might be interpreted as an object (data instance) collected under safe circum-
stances, reflecting a normal behavior, and Mature as an object collected under dangerous
circumstances, reflecting an anomalous behavior. Similarly, the input variables Cs and Cm

are interpreted as linguistic variables with:

T (Q) = {Low,Medium, High} (5)

where Q = Cs and Cm respectively.

5.2.3 Membership Function Construction

In order to specify the range of each linguistic variable, we have run the algorithm and we
have recorded both semi-mature and mature values which reflect the (smDC) and (mDC)

outputs generated by the DCA. Then, we picked up the minimum and maximum values of
each of the two generated values to fix the borders of the range which are determined as
follows:

min(range(Smat )) = min(min(range[Cm]), min(range[Cs ])) (6)

max(range(Smat )) = max(max(range[Cm]),max(range[Cs ])) (7)
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Now, it seems important to fix the extents and midpoints of each membership function.
We aim at generating automatically these parameters to avoid any negative influence on the
results if they will be given by any ordinary user. In Chelly and Elouedi (2015), we have
made a comparative study of several fuzzy clustering techniques and selected the Gustafson-
Kessel algorithm (GK) as it has shown promise when hybridized with the fuzzy DCA
version. Thus, we will use GK to generate automatically the parameters of the COID-FDCM
fuzzy part.

To the recorded list of (mDC) and (smDC) values, we apply GK. It helps to build
a fuzzy inference system by creating membership functions to represent the fuzzy qual-
ities of each cluster. The output of this COID-FDCM third phase is a list of cluster
centers and several membership grades generated by GK. Thus, the extents and mid-
points of the membership functions which describe the system’s variables are automatically
determined.

5.2.4 The Rule Base Construction

A knowledge base, comprising rules, is built to support the fuzzy inference. The different
rules of the fuzzy system are extracted from the information, listed below, reflecting the
effect of each input signal on the state of a DC.

• Safe signals: an increase in value is a probable indicator of normality. High values of
SSs can cancel out the effects of both PAMPs and DS.

• Danger signals: an increase in value is a probable indicator of damage, but there is less
certainty than with a PAMP signal.

• PAMPs: an increase in value is a definite indicator of anomaly.

From the list above, we can generate the set of rules presented in Table 1 where all the men-
tioned signals are taken into account implicitly in the fuzzy system. Let us consider Rule(2)
as an example: if the Cm input is set to the “Low” membership function and the second
input Cs is set to the “Medium” membership function, then the “Semi-mature” context of
the output Smat is assigned. This could be explained by the effect of the high values of SSs
(which lead to the semi-mature context) that cancel out the effects of both PAMPs and DSs
(which both lead to the mature context). The same reasoning is affected to the rest of the
rules.

Table 1 The fuzzy rule base

Rule number Description

Rule(1): If (Cm is Low) and (Cs is Low) then (Smat is Mature)

Rule(2): If (Cm is Low) and (Cs is Medium) then (Smat is Semi-mature)

Rule(3): If (Cm is Low) and (Cs is High) then (Smat is Semi-mature)

Rule(4): If (Cm is Medium) and (Cs is Low) then (Smat is Mature)

Rule(5): If (Cm is Medium) and (Cs is Medium) then (Smat is Semi-mature)

Rule(6): If (Cm is Medium) and (Cs is High) then (Smat is Semi-mature)

Rule(7): If (Cm is High) and (Cs is Low) then (Smat is Mature)

Rule(8): If (Cm is High) and (Cs is Medium) then (Smat is Mature)

Rule(9): If (Cm is High) and (Cs is High) then (Smat is Mature)
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5.2.5 The Fuzzy Context Assessment

Our COID-FDCM is based, first, on the max–min composition method which is also known
as the “Mamdani” method and, second, on the centroid method as a defuzzification mech-
anism. Once the inputs are fuzzified and the output (centroid value) is generated, the cell
context has to be fixed by comparing the generated output value (issued from the fuzzifi-
cation step) to the middle of the Smat range, e.g., the min and max range of Smat . In fact,
if the centroid value generated is greater than the middle of the output range, then the final
context of the data instance is “Mature” (set to 1), indicating that the collected antigen may
be anomalous, otherwise the antigen collected is likely to be normal (set to 0).

Once the context is fixed for all data item IDs (antigens), the classification phase has to
be performed. Same as DCA, the derived values for the cell contexts (1 or 0) are used to
derive the nature of the response by measuring the number of DCs that are fully mature and
are represented by the MCAVs. To perform classification, a threshold which is generated
automatically from the data must be applied to the MCAVs. In this case and as we are focus-
ing on binary classification problems, the distribution of data between class 1 (anomalous
data items) and class 2 (normal data items) is used and reflects the threshold rate to define.
The threshold (at) can be defined as at = an/tn, where an is the number of anomalous
data items and tn is the total number of data items.

6 Experimental Methodology

6.1 Experimental Hypotheses

As previously stated, the DCA suffers from being sensitive to the input class data order. In
this section, we try to investigate the reasons of such a limitation. The list below presents
the hypotheses of the causes of the DCA sensitivity to the input class data order.

• H1: The DCA sensitivity is related to the crisp separation between the normal con-
text (referred as the semi-mature context) and anomaly context (referred as the mature
context).

• H2: The DCA sensitivity is related to the quality of the signal data set which contains
misleading objects such as noisy or redundant instances.

We have divided our experimental analysis and results section into four main parts.

1. First of all, we will show that the selected COID method that is hybridized with our pro-
posed COID-FDCM version is an interesting technique among other data set cleaning
techniques proposed in literature.

2. Secondly, we will test the trueness of H2 as H1 was confirmed in Chelly and Elouedi
(2015) and as it led to the development of the FCDCMGK algorithm. Let us recall
that FCDCMGK (Chelly and Elouedi 2015) is the fuzzy DCA version based only on
H1 and which uses the GK algorithm. In this part, we will compare the classification
results of DCA when it is applied to the original signal data set with the results obtained
from the DCA when it uses the cleaned reduced signal data set, case we dub COID-
DCA. COID-DCA is a modified DCA version based only on H2. We will also analyze
the behavior of our new COID-DCA to show that the algorithm does depend neither on
such transitions nor on ordered data sets contrary to the DCA. Thus, we can conclude
that H2 is true and that by cleaning the signal base using COID, the problem related
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to the sensitivity to the input class data order is solved. To achieve this, three different
data orders are used. Experiment 1 uses a one-step data order. Here, data are ordered
continuously, i.e., all class 1 data items are processed followed by all class 2 data items.
In experiment 2, data are partitioned into three sections resulting in a two-step data
order. The data comprising class 1 is split into two sections and the class 2 data is
embedded between the class 1 partitions. Experiment 3 consists of data randomized
between class 1 and class 2.

3. Third and once H2 is confirmed, we will show the performance of our proposed COID-
FDCM which takes into account both H1 and H2. We will compare the results obtained
from FCDCMGK (Chelly and Elouedi 2015) and COID-DCA with the COID-FDCM
generated results. This is to show that if we take both hypotheses into consideration we
can generate a more robust binary classifier.

4. Finally, we will show that our COID-FDCM model outperforms not only the standard
DCA but also other well-known state-of-the-art classifiers.

6.2 Parameter Description and Evaluating Criteria

We are focusing on binary classification problems, and to test the performance of the algo-
rithms, different experiments are performed using two-class data sets from the UCI machine
learning repository (Asuncion and Newman 2007) which is a collection of benchmark data
sets for regression and classification tasks. The used training data sets are described in
Table 2.

For data pre-processing and for DCA, FCDCMGK , COID-DCA, and COID-FDCM, the
standard deviation of each attribute, for each training data set, is calculated. More precisely,
for the feature selection sub-step, the attributes with the highest standard deviations are used
as this allows for an exploration of the properties of the algorithm through having more
variable data. For the signal categorization sub-step, the attribute having the lowest standard
deviation in the selected set of attributes is used to derive the PAMP and safe signals, making
it the “most certain” signal. The rest of the attribute set is used to calculate the DS values.
The signal value derivation process is based on specific equations as shown in Greensmith
(2007). Each data item is mapped as an antigen with the value of the antigen equals to
the data ID of the item. All featured parameters are derived from empirical immunological
data.

Table 2 Description of the
training data sets Database Ref No. of instances No. of attributes

Sonor SN 208 61

Molecular-Bio Bio 106 59

Cylinder Bands CylB 540 40

Chess Ch 3196 37

Ionosphere IONO 351 35

Sick Sck 3772 30

Horse Colic HC 368 23

German-Credit GC 1000 21

Labor Relations LR 57 16

Red-White-Win RWW 6497 13
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A population of 100 cells is used and 10 DCs sample the antigen vector each cycle. The
migration threshold of an individual DC is set to 10 to ensure this DC to survive over multi-
ple iterations. To perform anomaly detection, a threshold which is automatically generated
from the data is applied to the MCAVs. The MCAV threshold is derived from the proportion
of anomalous data instances of the whole data set. Items below the threshold are classified
as class 1 and above as class 2. The resulting classified antigens are compared to the labels
given in the original training data sets. For each experiment, the results presented are based
on mean MCAV values generated across 10 runs. For DBSCAN, the used measure is the
Euclidian distance and the suggested values are MinP ts = 4 and Eps = 0.2. We choose
these DBSCAN parameters as in Ester et al. (1996) it was shown that setting the MinP ts to
4 is a “good” choice while in Yarifard and Yaghmaee (2008) it was shown that when Eps is
between 0.05 and 0.20, better results can be produced. To measure the performance of the
algorithms, we will use the following criteria:

1. The rate of the size reduction (S): denotes the percentage of the number of instances
which are kept among the whole set of instances presented initially in the signal base.

2. Sensitivity, specificity, accuracy: These criteria are defined as:

Sensitivity = T P

T P + FN
(8)

Specif icity = T N

T N + FP
(9)

Accuracy = T P + T N

T P + T N + FN + FP
(10)

where T P , FP , T N , and FN refer respectively to true positive, false positive, true
negative, and false negative.

3. Execution Time (t): This quantifies the amount of time taken by an algorithm to run.
The execution time is measured in seconds (s).

To evaluate the performance of the data set cleaning techniques, including COID, CNN,
RNN, IB2, and IB3, the accuracy is based on the k-nearest neighbor algorithm (k-NN) based
on the use of the Euclidean distance and where k = 1. 1-NN is used to test all the mentioned
data set cleaning policies. All experiments are run on a Sony Vaio G4 2.67 Ghz machine.

7 Experimental Results and Discussion

7.1 Results and Analysis of the Data Set Cleaning Policies

To measure the performance of the COID method and to discover its characteristics, we
compare it to other well-known data set cleaning techniques. The selected algorithms are
among the most efficient ones shown in Dasu and Johnson (2003). The used algorithms are
the condensed nearest neighbor (CNN) algorithm (Chou et al. 2006), the reduced nearest
neighbor (RNN) technique (Gates 1972), and the instance-based learning (IBL) schemes
(IB2 and IB3) (Aha et al. 1991). All these algorithms are run on the previous training data
sets presented in Table 2. The results of this comparison are presented in Table 3.

From Table 3, we can remark that the reduction rate (S%) obtained using the COID
maintenance method is notably better than the one provided by the other maintenance poli-
cies in most data sets. For instance, for the Ch data set, COID keeps about 52.79% of the
data instances and that is a huge difference compared to the initial Ch database with 100%
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Table 3 Comparing data set cleaning schemes

Database Evaluation criteria DCA COID CNN RNN IB2 IB3

S (%) 100 98.00 78.00 65.00 67.00 88.00

SN Accuracy (%) 77.88 76.92 62.50 68.75 69.80 73.00

Execution time (s) 1.36 1.25 1.14 1.30 1.31 1.29

S (%) 100 90.00 71.10 71.70 89.00 89.00

Bio Accuracy (%) 41.50 40.56 37.95 36.32 38.00 38.00

Execution time (s) 0.27 0.24 0.22 0.25 0.26 0.26

S (%) 100 86.52 96.70 96.60 98.00 93.98

CylB Accuracy (%) 92.38 93.51 86.52 76.50 72.95 72.95

Execution time (s) 11.31 10.12 11.04 11.13 11.09 10.66

S (%) 100 52.79 62.79 67.46 77.00 85.07

Ch Accuracy (%) 93.86 94.61 91.52 90.04 89.23 89.59

Execution time (s) 183.96 104.88 168.71 166.08 170.24 166.21

S (%) 100 56.00 64.39 62.08 62.12 61.00

IONO Accuracy (%) 94.58 95.44 87.40 89.19 87.39 88.26

Execution time (s) 7.79 4.06 5.7 5.0 5.3 4.8

S (%) 100 68.28 79.26 77.50 75.40 71.20

Sck Accuracy (%) 94.11 94.83 81.29 81.66 89.00 83.21

Execution time (s) 256.98 162.08 246.34 229.12 208.62 198.77

S (%) 100 67.20 68.04 79.62 67.00 76.00

HC Accuracy (%) 83.96 87.77 84.97 83.74 86.66 84.54

Execution time (s) 10.04 7.14 7.66 8.89 7.08 8.03

S (%) 100 90.40 98.00 96.00 94.40 91.20

GC Accuracy (%) 87.00 88.10 73.68 63.16 73.26 68.42

Execution time (s) 61.32 43.15 45.24 45.23 48.97 45.07

S (%) 100 87.00 67.00 77.04 73.70 72.96

LR Accuracy (%) 84.21 82.45 61.02 60.24 79.78 78.09

Execution time (s) 0.50 0.33 0.25 0.19 0.12 0.18

S (%) 100 76.92 77.38 77.80 89.00 86.79

RWW Accuracy (%) 97.87 97.90 97.40 96.26 97.29 97.45

Execution time (s) 513.97 326.75 394.66 409.52 460.03 448.21

antigens. Comparing the COID reduction rate to the rest of the maintenance policies rates,
on the same database, the rates are 62.79%, 67.46%, 77.00%, and 85.07% for CNN, RNN,
IB2, and IB3, respectively.

We can, also, notice that in some data sets the reduction rate of COID is less than the rates
of the other techniques. While focusing on these data sets, we can notice that there are few
antigens, and consequently, we can conclude that if we apply a maintenance technique to
a small size signal base then the classification accuracy of the algorithm will be negatively
affected and that is seen from the results displayed in Table 3. For example, when applying
the COID technique to the LR database (57 antigens), the accuracy of the COID-DCA
algorithm is set to 82.45%. However, when applying DCA using the whole signal base, the
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accuracy of DCA is set to 84.21%. Same remark is noticed when applying the rest of the
maintenance policies to the DCA signal data set where we will obtain less classification
results in comparison to the initial whole set of the signal database.

Conversely, for the rest of the databases, we notice that the classification accuracy of
COID-DCA is even better than the DCA initial results when using 100% of the signal base.
For instance, when applying the COID-DCA to the HC base, the classification accuracy of
the algorithm is set to 87.77% which is more important than the classification accuracy of
the DCA which is set to 83.96%. Now, regarding the execution time of the hybrid algo-
rithms, we can notice that in most data sets COID takes less time to process in comparison
to the rest of the DCA hybrid maintenance policies.

From the obtained results, we have shown that the COID method is an interesting main-
tenance technique among others proposed in literature. We focused on its efficiency in
terms of shrinking the size of databases by removing their “useless” instances, its reason-
able and acceptable execution time, and its ability to generate satisfactory classification
results among the other studied techniques. These important characteristics are the base for
choosing COID as an appropriate technique to use in our proposed method, COID-FDCM,
in order to maintain the DCA signal database.

7.2 Results and Discussion About H2: Comparing DCA and COID-DCA

Let us remind that previous examinations with DCA, in Greensmith and Aickelin (2005),
show that the misclassifications occur exclusively at the transition boundaries. Hence, DCA
makes more mistakes when the context changes multiple times in a quick succession (2-
Step and Random experiments) which is not the case when data are ordered between the
classes (1-Step experiment). We hypothesize that this shortcoming is related to the quality
of the DCA signal data set. Thus, we apply the COID method to clean it.

From Table 4, we can notice that by maintaining the DCA signal database using the
COID technique, the percentage of classification accuracy is nearly stable between the three
data orders, i.e., 1-Step, 2-Step, and Random experiments. Thus, the limitation of the algo-
rithm which consists of being sensitive to the input class data order is overcome. From this
observation, we can affirm that the standard DCA drawback is related to the quality of the
DCA signal database, and by maintaining it using the COID method, the problem is solved.
Consequently, our second hypothesis (H2) is confirmed.

More precisely, from Table 4, it is clearly noticed that the classification accuracy of the
COID-DCA algorithm is nearly stable through the three realized experiments with compar-
ison to the accuracies of the standard DCA results which are decreasing from the ordered
contexts (1-Step experiment) to the disordered contexts (2-Step and Random experiments).
This phenomenon could be explained by the fact that the original signal database contains
noisy and redundant instances which affect negatively the performance of the algorithm.
Thus, by using an appropriate maintenance policy, the COID method, we can guarantee the
quality of the database leading to a stable DCA classifier.

For instance, when applying the COID-DCA method to the SN database, the accuracy of
the algorithm is around 76.92% and 76.44%. Nevertheless, when applying the DCA to the
same database, the accuracy of the algorithm decreases from 77.88 to 69.71%. This high
value of the DCA accuracy (77.88%) in case of an ordered database is explained by the
appropriate use of this algorithm only in an ordered case. From the 2-Step experiment to the
Random one, the DCA accuracy decreases from 74.51 to 69.71%. This behavior shows that
the DCA is sensitive to the input class data order which confirms the results obtained from
literature. However, this problem is solved when using the COID-DCA since we notice a
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Table 4 Experimental measures: accuracy (%)

Database DCA COID-DCA

1-Step 2-Step Random 1-Step 2-Step Random

SN 77.88 74.51 69.71 76.44 76.92 76.92

Bio 41.50 40.56 39.62 40.56 40.56 40.56

CylB 92.38 90.55 87.03 93.51 93.51 93.51

Ch 93.86 93.05 90.73 94.58 94.61 94.61

IONO 94.58 78.63 66.09 95.44 95.15 95.44

Sck 94.11 92.78 91.99 94.83 94.83 94.83

HC 83.96 81.52 80.16 87.77 87.77 87.77

GC 87.00 86.80 86.50 88.10 87.90 87.10

LR 84.21 82.45 78.94 82.45 82.45 82.45

RWW 97.87 96.96 95.42 97.90 97.90 97.90

stability in the algorithm classification results through the different experiments realized.
Another example can be the RWW database where the accuracy of the algorithm is stable
and set to 97.90%.

To sum up, we could approve that the second cause of the DCA sensitivity to the input
class data order is related to the quality of its signal database. We have developed COID-
DCA which is seen as a stable DCA classifier generating stable classification results through
the variation of the input class data orders. From the obtained results, we can confirm the
trueness of H2.

7.3 Results and Discussion About COID-FDCM

Based on the previous COID-DCA results and the results obtained from our first work
FCDCMGK (Chelly and Elouedi 2015), we have confirmed both H1 and H2. Thus, we
have developed the COID-FDCM algorithm which is based on both hypotheses. In this
section, we try to show that if we take into consideration both H1 and H2, the performance of
our proposed COID-FDCM algorithm can be improved in comparison to FCDCMGK and
COID-DCA which are based on only one hypothesis, H1 and H2 respectively. We approach
this by the development of an overall fuzzy maintained algorithm, COID-FDCM, which
applies a cleaning data set policy, COID, to guarantee the quality of the DCA signal data set,
smoothes the crisp separation between the DC contexts using fuzzy set theory, and generates
automatically the parameters of the system using the GK clustering technique. Since we
have shown that the previously developed FCDCMGK and COID-DCA algorithms are
no more sensitive to the input class data order, in this section, we have run the algorithms
to unordered data sets to test their classification performance in comparison with COID-
FDCM. We will compare the three algorithms in terms of specificity, sensitivity, accuracy,
and execution time. From Tables 5 and 6, and in most databases, it is clearly noticed that our
COID-FDCM has given good results in terms of the mentioned comparison criteria while
outperforming both FCDCMGK and COID-DCA. Thus, we can conclude that it is more
appropriate and reasonable to take into consideration both hypotheses rather than only one.

Based on the results presented in Tables 5 and 6, we can notice that COID-FDCM
generates better classification results in comparison to COID-DCA and FCDCMGK . For
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Table 5 Experimental measures: sensitivity and specificity

Database Sensitivity (%) Specificity (%)

FCDCMGK COID-DCA COID-FDCM FCDCMGK COID-DCA COID-FDCM

SN 85.58 79.27 83.78 79.38 74.22 78.35

Bio 50.94 36.84 47.36 49.05 44.89 48.97

CylB 92.50 93.42 94.73 94.55 93.58 94.87

Ch 94.66 94.36 95.20 94.95 94.89 95.28

IONO 97.77 96.82 98.41 95.23 94.66 96.88

Sck 96.53 96.10 98.26 95.08 94.74 95.98

HC 92.59 91.66 93.98 85.52 82.23 86.18

GC 84.67 83.94 92.33 90.63 89.66 91.73

LR 70.00 80.00 65.00 78.37 83.78 75.67

RWW 98.18 98.04 98.50 98.74 97.56 98.99

instance, by applying our COID-FDCM to the HC database, the accuracy of our algorithm is
set to 90.76%. However, when applying the COID-DCA to the same database, the accuracy
of the algorithm is set to 87.77%. From these results, we can conclude that COID-FDCM
produces better classification results than COID-DCA which is only based on H2. Indeed,
by applying FCDCMGK to the same database, the accuracy of the algorithm is set to
89.67%. Again, we can remark that COID-FDCM generates better results than those of the
FCDCMGK which is only based on H1. Same remark is noticed for the specificity and
the sensitivity criteria. These results confirm that our COID-FDCM, which is based on H1
and H2, outperforms the results generated by both COID-DCA and FCDCMGK which are
based on only one hypothesis, either H1 or H2.

From Table 6, we can also notice that our proposed COID-FDCM algorithm is character-
ized by its lightweight in terms of running time. In fact, COID-FDCM is characterized by
its short time of process in comparison to FCDCMGK , but it needs more time to process
than COID-DCA. More precisely, the fact of reducing the size of the original DCA signal

Table 6 Comparison in terms of execution time (s) and accuracy

Database Time (s) Accuracy (%)

FCDCMGK COID-DCA COID-FDCM FCDCMGK COID-DCA COID-FDCM

SN 4.01 1.25 3.11 82.69 76.92 81.25

Bio 3.06 0.24 2.51 50.00 40.56 48.11

CylB 13.02 10.12 11.49 93.75 93.51 94.81

Ch 188.65 104.88 120.72 94.80 94.61 95.24

IONO 14.91 4.06 8.54 96.86 95.44 97.43

Sck 277.23 162.08 231.19 95.17 94.83 96.12

HC 12.98 7.14 8.69 89.67 87.77 90.76

GC 63.88 43.15 49.31 89.00 88.10 91.90

LR 0.63 0.33 0.37 75.43 82.45 71.92

RWW 521.32 326.75 441.08 98.32 97.90 98.63
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database decreases the execution time of our COID-FDCM comparing it to the FCDCMGK

one as this latter algorithm is applied to the entire non-maintained database. Nevertheless,
COID-FDCM needs more time to process than COID-DCA since it uses two extra com-
ponents which are the fuzzy set concept and the GK clustering algorithm. For instance,
applying the algorithms to the IONO database the amount of time taken by COID-FDCM
to process is set to 8.54 s which is less than the time taken by FCDCMGK which is set to
14.91 s. Nevertheless, COID-FDCM processes a bit longer than COID-DCA which takes
4.06 s to process.

From these results, we can say that COID-FDCM can be seen as an interesting binary
classifier capable of generating satisfactory classification results. We will, also, show that
COID-FDCM outperforms other well-known classifiers in terms of classification accuracy.
This will be discussed in what follows.

7.4 Comparison with State-of-the-Art Recent Methods

In this section, we will compare the classification results of our proposed COID-FDCM with
well-known classifiers which are the support vector machine (LibSVM), multilayer percep-
tron (MLP), the decision tree (C4.5), FCDCMGK (Chelly and Elouedi 2015), COID-DCA,
FDCM (Chelly and Elouedi 2010), RC-DCA (Chelly and Elouedi 2012a), and RST-DCA
(Chelly and Elouedi 2012b). FDCM is the standard fuzzy DCA version which is applied to
non-ordered data sets. RC-DCA is the crisp DCA version based on rough set theory for data
pre-processing and is based on the use of different signals for signal categorization. RST-
DCA is, also, a crisp DCA version based on rough set theory for data pre-processing but
based on the idea of using the same feature to represent both SS and DS and a combination
of features to represent the PAMP signal.

All comparisons are made in terms of the mean average of accuracies on the used training
data sets, presented previously in Table 2. The parameters of LibSVM, MLP, and C4.5
are set to the most adequate parameters to these algorithms using the Weka-3-8-1 software
and a 10 cross-validation approach is applied. We will, also, add the classical DCA to the
comparison in order to show its performance when it is applied to ordered training data sets
and when it is applied to non-ordered data sets. To do so, we have ordered the label classes
of the used training data sets in order to get all class 1 data items followed by all class 2 data
items, and then we have applied the DCA. We have named this case DCAO . Secondly, we
have applied DCA to non-ordered data sets, case named DCANO . On these non-ordered
data sets, we have applied the rest of the classifiers: except for RST-DCA and RC-DCA as
they should be applied to ordered class data sets. This comparison is presented in Fig. 4.

Figure 4 shows that the standard DCA when applied to ordered training data sets,
DCAO , outperforms SVM, ANN, and DT in terms of overall classification accuracy. This
is an interesting point which is, unfortunately, not seen when the algorithm is applied to non-
ordered data sets, DCANO . This confirms the results shown in literature about the DCA
sensitivity to the input class data order. However, if we look to the DCA classifier when
applied to ordered data sets, we confirm that it is capable of producing high and satisfactory
classification results in comparison to the state-of-the-art mentioned classifiers. Secondly,
we can notice that RC-DCA outperforms both RST-DCA and DCAO confirming the results
obtained in Chelly and Elouedi (2013). This is because, first, RC-DCA is based on rough set
theory of data pre-processing unlike DCAO which is based on PCA and, second, because
it is based on the concept of using different features for different signals in the signal cate-
gorization step, unlike both DCAO and RST-DCA. Indeed, from Fig. 4, we can notice that
both COID-DCA and FDCM have similar performance confirming the effect of fuzzy set
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Fig. 4 Comparison of classifiers’ mean average accuracies on the used binary data sets

theory and the database cleaning technique on the classification results of the algorithm.
Yet, FCDCMGK outperforms these two algorithms as it includes the GK algorithm for
parametrization as well as fuzzy set theory. Most importantly, from Fig. 4, we can notice that
our developed COID-FDCM fuzzy maintained DCA version outperforms the mentioned
classifiers including the classical DCA when applied to ordered bases, DCAO , RC-DCA,
RST-DCA, FDCM, COID-DCA, SVM, ANN, and DT in terms of overall accuracy.

Consequently, we have obtained a novel immune-inspired fuzzy maintained model
making the standard DCA a better classifier by generating pertinent and more reliable
classification results.

8 Application of the Proposed Solution to Intrusion Detection

As an immune-inspired algorithm, the dendritic cell algorithm produces promising perfor-
mance in several application domains and specifically in the field of anomaly detection. Just
like the DCA, our proposed COID-FDCM binary classifier can be applied to any of these
applications. In this section, we illustrate the application of our newly proposed COID-
FDCM algorithm to a real-world intrusion detection domain, the KDD Cup 1999 data set
(Asuncion and Newman 2007). As COID-FDCM is seen as an extension of our previous
work FCDCMGK (Chelly and Elouedi 2015), we will use the same data set as an applica-
tion domain for comparison as well as the same experimental details in Chelly and Elouedi
(2015).

In the realized experiment, the size of the DC population is set to 100 and it remains
constant as the system runs. The migration threshold of an individual DC is a random value
between 100 and 300, and this is to ensure that this DC survives over multiple iterations. The
MCAV of an antigen type is calculated based on the labels of the original data set: normal
is equivalent to context value 0 and anomalous is equivalent to context value 1. The MCAV
threshold is derived from the proportion of anomalous data instances of the data set. The
classification results of our COID-FDCM proposed algorithm, which is applied to the non-
ordered KDD 99 data set, are compared with the results obtained from the standard DCA
version applied to the ordered data set and to FCDCMGK (Chelly and Elouedi 2015). We
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Fig. 5 The performance of the algorithms on the KDD 99 data set

have also compared the performance of COID-FDCM to seven widely used machine learn-
ing techniques namely J48 decision tree learning (J48) (Quinlan 1993), naive Bayes (NB)
(John and Langley 1995), NBTree (NBT) (Kohavi 1996), random forest (RF) (Breiman
2001), random tree (RT) (Aldous 1991), multilayer perceptron (MLP) (Ruck et al. 1990),
and support vector machine (SVM) (Chang and Lin 2001). For the experiments, we applied
Weka’s default values as the input parameters of these methods. For each single experiment,
10 runs are performed and the final result is the average of the 10 runs. The comparison of
these algorithms, which is in terms of classification accuracy, is presented in Fig. 5.

From Fig. 5, we can notice that the classification performance of the standard DCA is
comparable to J48 decision trees. We can also remark that DCA outperforms the rest of
the classifiers in terms of classification accuracy. We, also, highlight the fact that the “best”
classification performance is rendered by our proposed COID-FDCM. It is also important
to mention that the classification accuracy given by COID-FDCM is slightly better than
the one given by FCDCMGK . These COID-FDCM promising results are explained by the
appropriate application of our COID-FDCM and FCDCMGK algorithms in the intrusion
detection field. Indeed, the interesting characteristics of COID-FDCM are supported by the
algorithm capability to clean the data first, and second to classify the items appropriately.

9 Conclusion and FutureWorks

In this paper, we have presented an investigation on the causes of the standard DCA limi-
tation as it is sensitive to the input class data order. We proposed two possible hypotheses
for this investigation and both H1 and H2 were confirmed. Based on these hypotheses, we
have developed a new fuzzy hybrid evolutionary algorithm named COID-fuzzy dendritic
cell method (COID-FDCM). COID-FDCM has been tested on machine learning data sets.
Experimental results have demonstrated the effectiveness of our proposed approach by pro-
ducing more accurate and better classification results in comparison to the DCA versions as
well as to recent and well-known state-of-the-art classifiers.

A number of future directions can be proposed for the COID-FDCM. Future works will
include the application of the type-2 fuzzy set theory to smooth more the algorithm crisp
separation between the two contexts. We can, also, be interested in the introduction of
variable weights for the COID policy and to study its effectiveness in our new model.
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