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Abstract 17 
Reference Evapotranspiration (ETo) and soil moisture deficit (SMD) are vital for understanding 18 
the hydrological processes. Precise estimation of ETo and SMD are required for developing 19 
appropriate forecasting system and hydrological modelling. In this study, the surface temperature 20 
downscaled from Weather Research and Forecasting (WRF) model is used to estimate ETo using 21 
the boundary conditions provided by the European Center for Medium Range Weather Forecast 22 
(ECMWF). In order to understand the performance, the Hamon method is employed to estimate 23 
the ETo using the temperature from meteorological station and WRF derived variables. After 24 
estimating the ETo, a range of linear and non-linear models are utilized to retrieve SMD. The 25 
performance statistics such as RMSE, %Bias, and Nash Sutcliffe Efficiency indicates that the 26 
simplistic linear model is efficient for SMD estimation in comparison to other complex models. 27 
Findings of this study also showed that the technique is performing better during the growing 28 
season than the non-growing season for SMD. 29 
 30 

Keywords: Evapotranspiration; soil moisture deficit; WRF; Noah Land Surface model; 31 
Seasonality 32 

 33 

1. Introduction 34 

Local, regional or global scale monitoring of Evapotranspiration (or ET) is vital for assessing 35 
climate and human-induced affects on natural and agricultural ecosystems [1,2]. There are 36 
numerous methods available for assessment of ET based on different conditions of soil, water, 37 
plants and land cover [3-7]. Allen et al. in 1998, provided a standard method for ET estimation 38 



using the standardised FAO‐56 Penman‐Monteith model [8] for grasses and given the term 39 
reference ETo. ETo can be represented as the sum of water that can be evaporated from the soil 40 
surface and transpired from vegetation when the soil water is sufficient to meet the atmospheric 41 
demand [8]. Many studies already conducted have documented that ETo fluxes at various scales 42 
have direct effect on water balance and hydrological cycle [9]. The regional variations in ETo 43 
also influences the soil water content and irrigation water demand [10]. Therefore, accurate 44 
estimation of ETo are needed for an improved monitoring of climate, water resources, drought 45 
and flood [11,12].  46 

There are many methods to estimate ETo, among them the most simplest one is proposed by 47 
Hamon [13].  Hamon method requires temperature data for calculation of ETo, which can be 48 
downscaled using the advanced numerical weather prediction (NWP) model such as Weather 49 
Research and Forecasting (WRF) model. WRF model is well tested by a number of users with 50 
satisfactory performance and hence used in this study also for dynamical downscaling of surface 51 
temperature [14-16]. 52 

In real conditions, the soil water content usually varies because of changing meteorological 53 
conditions, crop suction and evaporation losses from the soil surface. The amount of water 54 
content required to bring back the soil moisture to field capacity can be described by using the 55 
term Soil Moisture Deficit (SMD) [17,18]. The prolonged deficiency of soil moisture SMD leads 56 
to drought conditions, while very low SMD may cause flooding problem during extreme rain 57 
events. Moreover, monitoring of SMD is an alternative method for irrigation scheduling and 58 
represents the usage of an optimal amount of water at appropriate time to avoid any agricultural 59 
losses [19]. The relationship between the SMD, ETo, rainfall etc are well documented in the 60 
previous studies by [19,20]. Therefore, ETo can be used for estimation of SMD using 61 
appropriate models.  62 

In purview of the above, this work is focused on the following objectives: 1) to perform a 63 
performance evaluation of the WRF downscaled temperature for ETo estimation 2) to derive 64 
SMD using the WRF and observed ETo through several linear and non-linear models, and 3) to 65 
evaluate the impression of seasonality on SMD retrieval with special reference to growing and 66 
non-growing season. This article is divided into following sub-sections. After introduction, 67 
Section 2 provides a description of the study area and datasets, theoretical backgrounds of WRF-68 
Noah LSM model, probability distributed model, Hamon's method and the statistical indices 69 
computed to evaluate the method. Section 3 delivers the results and discussion followed by 70 
conclusions in Section 4. 71 

 72 

2. Materials and Methodology 73 
2.1 Study area and datasets 74 
 The Brue catchment (135.5 Km2) is used as a study area, having an elevation of 105 m 75 
above mean sea level, positioned in the south-west of England (51.11 °N and 2.47 °W) (Figure 76 
1). All the measured dataset were provided by the Natural Environment Research Council and 77 



the British Atmospheric Data Centre, United Kingdom. For benchmark SMD, a probability 78 
distributed model or PDM is employed using the locally measured flow, rainfall and 79 
Evapotranspiration. PDM is used in UK for both operational and design purposes and 80 
successfully employed in other parts of the world [21,22]. The calibration of the model involves 81 
two years of hourly data from 1st February 2009 to 31st January 2011 is used, while for validation 82 
one year of data is taken into account for the period 1st February 2011 to 31st January 2012. The 83 
SMD obtained during the validation is considered for all the models development. The overall 84 
analysis of PDM indicated a satisfactory performance with NSE value of 0.84 and 0.81 during 85 
the calibration and validation respectively. The detailed information on PDM calibration, 86 
validation, sensitivity and uncertainty analysis over Brue is reported in [20]. The flowchart of the 87 
methodology used in present study is depicted through Figure 2. 88 
 89 
 90 

Figure 1 Geographical location of the study area with WRF domains  91 
Figure 2 Flowchart of the methodology used in this study 92 

 93 
 94 
2.2 WRF-Noah LSM downscaling of surface temperature 95 

The WRF-Noah Land Surface Model (LSM) based on eta-coordinate modeling system is used 96 
for downscaling surface temperature from ERA interim global reanalysis dataset. In total 28 97 
terrain following the eta levels in the vertical direction from surface are used following a two-98 
way nesting scheme [23,24]. The WRF physical scheme is shown through Table.1. The WRF-99 
Noah LSM includes an explicit canopy resistance design given by Jacquemin and Noilhan in 100 
1990 [25] and a surface runoff scheme provided by [26]. A more comprehensive explanation of 101 
the WRF-Noah LSM can be found in [27]. The WRF-Noah LSM model is used with three nested 102 
provinces having horizontal grid resolutions of 81 km (D1), 27 km (D2) and 9 km (D3). The D1, 103 
D2 and D3 consist of 18×18, 19×19, and 22×22 horizontal grids respectively. The area with 9 104 
km resolution is used because generally WRF dynamical downscaling improves domain 105 
performances [28-30].  106 

Table.1 WRF physical schemes employed in this study 107 

2.3 Probability Distributed Model and Soil Moisture Deficit  108 

The Probability Distributed Model (PDM) comes under the category of lumped model for 109 
depicting rainfall runoff relationship developed by the Centre of Ecology and Hydrology (CEH) 110 
Wallingford. It is employed in this study for SMD simulation using the ground based inputs of 111 
rainfall and reference evapotranspiration (ETo) [22]. It has a better representation of soil 112 
moisture computation and equipped with appropriate time steps for hydrological modelling. 113 
Through this model, the SMD can be estimated using the relationship below [31]: 114 
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is the ratio of actual ET to potential ET; and ( ))(max tSS −  is Soil Moisture Deficit; be is 116 

an exponent in the actual evaporation function; maxS  is the total available storage and )(tS is 117 
storage at a particular time t. The model structure of PDM is further discussed in [31]. Sensitivity 118 
analysis (SA) and uncertainty analysis (UA) are considered important to explore the high 119 
dimensional parameter spaces, structural uncertainty and also to understand the sources of 120 
uncertainty [32,33].  121 

After a rigorous and careful calibration of the PDM following the Generalized Likelihood 122 
Uncertainty Estimation (GLUE), the SMD is extracted. The model parameters for PDM 123 
calibration are provided in the study conducted by Srivastava et al., in [22]. 124 

2.4 Reference Evapotranspiration or ETo 125 

 Many studies have confirmed that Hamon provides a stable and reasonable output as 126 
compared to the Thornthwaite, Hargreaves and Samani methods [34,35], therefore it is also used 127 
in the current study to estimate the ETo,. Hamon [13] proposed an equation to calculate ETo by 128 
providing day length and mean air temperature [36]. It shows the relationships among potential 129 
evapotranspiration, saturation vapor pressure, and the possible incoming radiant energy by 130 
means of the prevailing air temperature. The  hours  of  sunlight  can be  used  as  an index  for  131 
the  maximum  possible  incoming  radiant  energy,  while the absolute humidity  at saturation  is 132 
used for the estimating the moisture-holding capacity of air. It uses the mean daily 133 
temperatureand sunshine hours for ETo calculation. The saturation vapor pressure, es is then 134 
determined directly from the mean air temperature.  One atypical feature of this method is that 135 
when mean air temperature is lesser than 0°C, the ETo does not drop up to zero; instead, it  136 
provides effectively the same as annual total of the Thornthwaite method [4]. In the Hamon 137 
technique, ETo (mm/day) is estimated as follows: 138 

        (2) 139 

 140 
where: T = Temperature (degree centigrade); =dayL   Day time length (Unitless); se  Saturation 141 

Vapor Pressure (mb) at given T can be computed using: 142 
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2.5 Performance analysis 146 

In present study, SMD assessed from the WRF and observed ETo are validated with PDM SMD. 147 
The performance statistics Nash Sutcliffe Efficiency (NSE)[37], Root Mean Square Error 148 
(RMSE), %Bias and Correlation (r) are used to understand the model performances. The %Bias, 149 
NSE and RMSE can be calculated using Eq.4-6. 150 
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where n is the number of observations; x is the perceived variable and  y is the simulated 154 
variable. 155 

 156 

3. Results and Discussion 157 

3.1 Evaluation of hydro-meteorological variables 158 

The WRF-Noah LSM downscaled temperature data is evaluated by utilising the observed 159 
temperature measured at the meteorological station. The trends in the WRF and observed 160 
temperature are represented through Figure 3a, while the association between the SMD and 161 
rainfall are indicated in Figure 3b. Both the plots are used to understand the relationship 162 
between the SMD behavior and the hydro-meteorological parameters (rainfall and temperature). 163 
A direct appraisal of the temperatures from WRF with the other hydro-meteorological variables 164 
showed that these results are comparable to those obtained in the past and with the other data sets 165 
collected in this catchment. In spite of some mismatch in the data, the plot indicates a general 166 
covenant between the temporal trend of the WRF and observed temperatures with seasons and 167 
the declining trend of the rainfall throughout the observation period. A significant optimistic 168 
relationship between the SMD and temperature are also evident in the Figure 3a-b. All the plots 169 
exhibit a close match with the seasonal changes from winter to autumn. There is a gradual rise in 170 
temperature observed, when progressing from the winter to spring and summer seasons, followed 171 
by gradual decrease in temperature on arrival of the autumn season. Similar behavior can be seen 172 
in the SMD pattern also, as rise in temperature cause an increase in SMD values. Some spikes in 173 
the temporal plots can be attributed to some sporadic rainfall or storm events. These short 174 



duration storms cause a change in SMD and create spiky fluctuations in temperature. It is also 175 
evident from the figure that after a rainfall event, there is some lag time for SMD changes for 176 
nearly ~1-2 days. Therefore, in overall, there is significant relationships exist between the 177 
temperature and the SMD in the Brue catchment.  178 
 179 

Figure 3 Temporal relationships between hydro-meteorological variables a) WRF and 180 
Observed temperature b) Precipitation and SMD 181 

The ETo calculated by using the temperature data from WRF and ground based observations are 182 
shown using the correlation matrix plots along with the SMD in Figure 4. Hydro-meteorological 183 
variables used for ETo estimation are temperature, sunshine hour and saturation vapor pressure 184 
following the Hamon method. The Hamon model is grounded on coefficient derived from an 185 
empirically determined model. The time series of both the observed and WRF ETo are ranges 186 
from 0.0005 mm/day to 0.0040 mm/day. There is a no major difference found between the WRF 187 
and observed dataset when plotted against SMD. The r and rs correlations indicates a value of 188 
0.75 for both WRF and observed ETo, which indicates that the WRF downscaled surface 189 
temperature when used with Hamon method can provide an accurate estimates of ETo for 190 
various applications. Some lower performances in correlation can be attributed to the high 191 
precipitation in the Brue catchment and the influence of temperate maritime climate. Further, 192 
slight overestimation of ETo over wet areas indicates that a correction factor is needed in the 193 
Hamon model. 194 

Figure 4 Correlation matrix plot between SMD, observed and WRF downscaled 195 
temperature based ETo 196 

3.2 Comparison of SMD estimated using different ETo products 197 

For utilization of dataset for hydrological applications, relationship between PDM and ETo 198 
based SMD is examined using various linear and nonlinear algorithms. To segregate the data for 199 
calibration and validation, the dataset is distributed into two third and one-third parts. The first 200 
two third parts are considered for model calibrations while the remaining part is for the models 201 
validation. This method has its own significance as it represent the data for all seasons. In total 202 
five linear and non-linear models are employed to estimate the relationships for SMD assessment 203 
using the perceived and WRF ETo viz linear, second and third order  polynomial, exponential 204 
and logarithmic algorithms (Figure 5 and 6). In Table 2, the performances of the diverse models 205 
in terms of R2are indicated by using the ETo derived from WRF and Observed dataset. The 206 
model results indicate that the observed ETo and SMD indicate a higher performance in 207 
comparison to WRF ETo. Among all the techniques 0.749 is the best NSE obtained with 3rd 208 
order polynomial regression technique, implies that the relationship between PDM SMD and 209 
observed ETo can be best represented by third order polynomial. Other than this logarithmic and 210 
second order polynomial models are also produced satisfactory R2 values of 0.689 and 0.722 211 
respectively. On the other hand, the linear and exponential model does not provide good results 212 



as compared to other techniques. The performance statistics between WRF ETo and PDM SMD 213 
indicates a marginally lower performance in contrast to the observed ETo (table. 2). As expected, 214 
in case of WRF, the R2 for different regression techniques gives the similar values as observed 215 
ones with the highest in case of 3rd order polynomial (0.739) followed by 2nd order polynomial 216 
(0.731), logarithmic (0.689), exponential (0.549) and linear (0.616) during the calibration. It 217 
isevident from the R2 statistics that WRF simulated surface temperature data could be used for 218 
SMD in absence of ground-based observations. However, an exact accuracy of the dataset is 219 
needed for operational applications. The validations of linear and non-linear models for SMD 220 
estimation are presented with their performance statistics. The statistical indices such as NSE, 221 
RMSE and %Bias test are used to understand the model performance during validation (Table 222 
3), while the behavior of the dataset can be pictured through Figure 7. Different algorithms 223 
provide different NSE values, which ranges from 0.013 to 0.448. From the results, it is evident 224 
that linear regression technique has good NSE (0.448) as compare to all the other models. 225 
Herein, the high performance of linear model can be revealed by analyzing the Pearson’s and 226 
Spearman’s correlation statistics between PDM SMD, observed and WRF ETo. From the 227 
Spearman’s correlation statistics, it is clear that that there is no strong non-linearity exists 228 
between the dataset and therefore, the proposed linear model could be used for SMD estimation, 229 
because of its simplicity. 230 

Figure 5 Calibration of different models-a) Linear b) Polynomial 2 c) Polynomial 3 d) 231 
Logarithmic e) Exponential using WRF ETo 232 

Figure 6 Calibration of different models -a) Linear b) Polynomial 2 c) Polynomial 3 d) 233 
Logarithmic e) Exponential using Observed ETo 234 

Figure 7SMD simulated using WRF and Observed ETo during validation from the models 235 
-a) Linear b) Polynomial 2 c) Polynomial 3 d) Logarithmic e) Exponential 236 

Table 2 Different models used for SMD estimation using WRF and Observed ETo 237 

Table 3 Performance of models during validation 238 

 239 

3.3 Performance with growing and non-growing seasons  240 

Many studies indicated that vegetation plays an important role in the differences of soil water 241 
content. Authors have reported that the transformation in seasons specially growing and non-242 
growing season have significant impact on SMD. In earlier study, it has been found that growing 243 
and non-growing seasons behave differently, so for proper assessment and understanding of 244 
SMD inclusion of growing and non-growing seasons are important. During growing season, 245 
crops hamper the exact valuation of ETo as they do not have proper correction factor to 246 
differentiate the growing and non-growing seasons (Srivastava et al., 2013). For understanding 247 



the data in efficient way, the dataset is divided conferring to the growing and non-growing 248 
seasons. As per the UK met office, temperature is an important parameter for deciding the 249 
growing and non-growing seasons. When the temperature of five consecutive days exceeds 5 °C, 250 
there will be onset of growing season, while it ends when the temperatures fall below 5 °C for 251 
five consecutive days. The 1971 to 2000 average season length was 280 days (~ 9.3 months) 252 
(Source: http://www.metoffice.gov.uk/climate/uk/averages/ukmapavge.html). Therefore, in 253 
current study the entire season of winter (December-February) is taken as non-growing (average 254 
temperature <5°C), while March-November are chosen as growing season (average temperature 255 
>5°C).  256 

Box plots are used to understand the variations in SMD values during the growing and non-257 
growing seasons as shown in Figure 8. In non-growing season, the SMD from WRF ETo is 258 
showing good match with benchmark SMD in terms of distribution as it is capturing good 259 
variations. The results of WRF ETo based SMD is found comparable with the observed ETo 260 
based SMD. The upper and lower minima of WRF and observed dataset based SMD are found 261 
on the same levels. Growing season is also providing the similar types of results, which indicates 262 
a comparable performance between the WRF and observed dataset based SMD. In non-growing 263 
season during December, January and February the range of SMD lies in between 0.017 to 264 
0.038m. This is likely to be because of lower temperature, low evaporation and lesser solar 265 
radiation that leads to high soil moisture in the non-growing season and hence low SMD. During 266 
the growing season from March to November, there is a steady rise in SMD observed with 267 
recorded highest value of 0.10 m in the month of June.  268 

Figure 8 Box and whisker plots for SMD distribution during growing and non- 269 
growing season 270 

Figure 9 is showing seasonality in the PDM, WRF and observed ETo. For pastoral landscape, 271 
the demand of water is mostly depends on the exposure of the land and thickness of the grass 272 
type. The vegetation covers over the surface of soil reduces the loss of the moisture from the 273 
soils because of reduced exposure to the sunlight. The extent of non-growing period is lesser 274 
than that of the growing season and the accessibility of environmental variable such as soil 275 
moisture is mainly depends on the climate, soil (texture) and vegetation. For the non-growing 276 
period (mostly a bare soil or snow covered), the SMD from WRF ETo is slightly overestimated 277 
in comparison to PDM SMD. In the growing season, it might be because of the roughness of the 278 
soil and high soil moisture variability, there is an overestimation recorded in the months of late 279 
February to mid May, whereas an underestimation is found all through the months of mid May to 280 
August tailed by the November month (Figure 9). The SMD from WRF ETo matches closely to 281 
PDM SMD throughout the year except for the last week of July where it is showing an 282 
underestimation when compared with the SMD using the Obs ETo. Further, during the June, 283 
although both WRF and observed ETo based SMD follows a close pattern but there is some 284 
sharp drops occurred that might be due to some short duration storms in the area.  285 



The three evaluation statistics are used to assess the influence of growing and non-growing 286 
seasons on SMD (Table 4). The performance statistics indicates that during the growing season, 287 
the SMD estimated using the WRF ETo (RMSE = 0.025, r = 0.245) has lower performance than 288 
the SMD using the observed ETo (RMSE = 0.024, r = 0.281). However, during the non-growing 289 
season some lower performances are detected  in terms of %Bias and r in the datasets as related 290 
to the growing season. On the other hand, a better performance is found during the non-growing 291 
season as compared to the growing season with lower value of RMSE in former case than the 292 
latter. The performance statistics during the non-growing season reveals a slight lower efficiency 293 
of the linear model in case of WRF ETo based SMD (RMSE = 0.012, r = 0.161)as compared to 294 
observed ETo based SMD (RMSE = 0.011, r = 0.244). The PDM and simulated SMD during the 295 
growing and non-growing seasons with 1:1 equiline are shown in Figure 10. By looking over the 296 
%Bias of the model, both the growing and non-growing seasons indicates a similar performance. 297 
A high bias is recorded in the dataset from the SMD simulated using the WRF ETo during the 298 
non-growing season. Similarly during the growing season an underestimation is recorded in the 299 
both the dataset. Even though there is some mismatch between the model performances during 300 
the two seasons, by comparing the %Bias the datasets indicates a satisfactory performance. 301 
Therefore, the ETo derived from the WRF temperature can be utilised for SMD estimation in 302 
absence of ground based information. The analysis reveals that there is profound effect of 303 
growing and non-growing season on the SMD simulation.  Therefore, separate algorithms are 304 
needed to represent the responses of both the seasons.  305 

Figure 9 Temporal behavior of simulated and PDM SMD during growing and non-growing 306 
season 307 

Figure 10 Performance during growing and non-growing seasons 308 

Table 4 Performance statistics during growing and non-growing season 309 

 310 

4. Conclusions 311 

The mesoscale model-WRF-Noah LSM is a sophisticated model for the numerical weather 312 
prediction that can be used for downscaling of global hydro- rological variables into finer spatio-313 
temporal resolutions and thus can be used for ETo estimation. In this work, the Hamon method 314 
has been employed to calculate ETo from WRF downscaled surface temperature data and station 315 
observations. The trend indicates marginal differences in the WRF and station based ETo when 316 
plotted against SMD. Similar results are also reported by correlation statistics between the station 317 
and WRF derived ETo for SMD prediction. Among many linear and non-linear techniques used 318 
in this study, the best performance is reported by linear model for SMD estimation during the 319 
validation.  320 



The changes in ETo are dependent on the climatic and geographical factors, which affects the 321 
spatial distribution of ETo. Therefore, more analysis is needed in this direction for different 322 
geographical areas to estimate the changes in ETo in terms of spatial and temporal distributions 323 
of temperature, precipitation, location and the elevation. This study indicates a reliable 324 
relationship between the temporal variability of ETo flux and SMD in the region influenced by 325 
temperate maritime climate. The ETo derive in this study can be further improved by providing 326 
the physical characteristics of locations (e.g. climate, topography, etc.), so that a modified 327 
Hamon model for ETo would be available for different applications. Therefore, future work will 328 
focus on providing a correction factor in the Hamon method, which is expected to result to a 329 
more accurate ETo estimation suited particularly for hydrological applications.  330 
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