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ABSTRACT: A major purpose of exploratory metabolic
profiling is for the identification of molecular species that are
statistically associated with specific biological or medical
outcomes; unfortunately, the structure elucidation process of
unknowns is often a major bottleneck in this process. We
present here new holistic strategies that combine different
statistical spectroscopic and analytical techniques to improve
and simplify the process of metabolite identification. We
exemplify these strategies using study data collected as part
of a dietary intervention to improve health and which elicits a
relatively subtle suite of changes from complex molecular
profiles. We identify three new dietary biomarkers related to
the consumption of peas (N-methyl nicotinic acid), apples
(rhamnitol), and onions (N-acetyl-S-(1Z)-propenyl-cysteine-
sulfoxide) that can be used to enhance dietary assessment and assess adherence to diet. As part of the strategy, we introduce a
new probabilistic statistical spectroscopy tool, RED-STORM (Resolution EnhanceD SubseT Optimization by Reference
Matching), that uses 2D J-resolved 1H NMR spectra for enhanced information recovery using the Bayesian paradigm to extract a
subset of spectra with similar spectral signatures to a reference. RED-STORM provided new information for subsequent
experiments (e.g., 2D-NMR spectroscopy, solid-phase extraction, liquid chromatography prefaced mass spectrometry) used to
ultimately identify an unknown compound. In summary, we illustrate the benefit of acquiring J-resolved experiments alongside
conventional 1D 1H NMR as part of routine metabolic profiling in large data sets and show that application of complementary
statistical and analytical techniques for the identification of unknown metabolites can be used to save valuable time and resources.

Dietary interventions (DIs) are a cornerstone in the
management of reducing the risk of noncommunicable

diseases1−3 and promoting healthy aging.4 However, under-
standing the response to dietary change is compromised by poor
compliance to dietary recommendations and the inherently
inaccurate self-reporting dietary recording tools available, with
prevalence of misreporting estimated at 30−88%,5,6 lowering the
value of such studies and data
It has been demonstrated that dietary biomarkers can reflect

consumption of specific foods and enhance dietary intake assess-
ment at individual and population levels.7−17 Dietary biomarkers

are based on the concept that food intake is highly correlated
with excretion levels of food-related compounds over a given
period of time. These “biomarkers” can be compounds that are
excreted unchanged10,17 or that have undergone metabolic con-
version, for example, by gut bacteria.8,11,13,14 Metabolic profiling
of biofluids using spectroscopic technologies18 can detect
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thousands of compounds simultaneously, generating a profile
that can be related to specific states of health or disease. Some of
the compounds in these spectral profiles are potential biomarkers
of dietary intake. However, finding associations between self-
reported dietary intakes and excreted metabolites19,20 in order to
discover potential food biomarkers is plagued by inaccuracies
of self-reporting. Thus, confirmation of a candidate biomarker is
best achieved by using a controlled food challenge with sub-
sequent validation in a larger population or study cohort.17

The complementarity of the main workhorses of metabolic
profiling, one-dimensional proton nuclear magnetic resonance
(1H NMR) spectroscopy and hyphenated chromatograpic-mass
spectrometry (MS) techniques, has been extensively demon-
strated in the past decade.21−23 However, chemical character-
ization of molecular species associated with an outcome still
is a limiting factor for exploratory metabolic profiling. NMR
spectroscopy provides an atom-centered spectroscopic tool
for structure elucidation that can be enhanced by statistical
spectroscopic methods24,25 or by physical hyphenation with
chromatographic methods such as solid-phase extraction
(SPE),26 liquid chromatography (LC)21 or LC-NMR-MS21,27

to achieve a better chemical characterization of endogenous and
exogenous metabolites.
Metabolite identification in 1H NMR spectroscopy is aided by

the intrinsic correlation of peaks from the same metabolite.
Statistical TOtal Correlation SpectroscopY (STOCSY)28 makes
use of this property by calculating the correlation between one
spectral variable (driver) and all other variables to uncover
structural associations. In cases where there are sufficient spectra,
identification of 1H NMR peaks using statistical methods is
an efficient strategy that utilizes existing spectral data without
requiring additional spectroscopic experiments a priori, which
has obvious advantages in usage of volume-limited samples and is
cost-efficient.23 Since the STOCSYmethod was published, many
derivations have aimed to improve specific properties such as
differentiation between structural and pathway correlations by
clustering, subset selection, or stoichiometric relationships.24

Statistical correlation can be undermined by overlapped signals
unrelated to the metabolite of interest in a 1D-NMR spectrum,
and 2D-NMR experiments are still required for unambiguous
structure elucidation.29 In addition, the structural information
obtained using statistical algorithms is dependent on criteria such
as correlation thresholds28,30 or correlation-distance cut-offs.31

SubseT Optimization by Reference Matching (STORM)32 is a
derivation of STOCSY that aims to separate out confounding
spectra that do not match a supplied reference spectrum of a
potential biomarker signal, thereby showing clearer spectral
correlations between variables for both low and high intensity
signals. The reference spectrum is a single spectrum that contains
the signal of interest. The peak segment is correlated with the
same region of all samples, and a high correlation indicates the
samples contain the same signal and are likely “informative”,
whereas samples with a low correlation do not have this signal and
are uninformative. Subsets of spectra and variable correlations
are found by carefully correcting for multiple testing in both
phases and using statistical shrinkage. Here, we describe a holistic
strategy for the identification of unknown metabolites that
combines the strengths of statistical spectroscopy, NMR, multiple
separation techniques, and MS, and apply the strategy to identify
three novel dietary biomarkers. In addition, we demonstrate an
extension of STORM to 2D-NMR spectra to uncover the identity
of unknown metabolites.

■ EXPERIMENTAL SECTION

Food Challenges (FCs). For the discovery of urinary
biomarkers of peas, apples, and onions, three FCs were
designed. A total of nine healthy participants (4 women, 5 men;
nonsmokers; age 22−32 years; BMI 21.2−25.3 kg/m2) were
recruited and assigned to one of the three FCs. Participants were
provided with the assigned foods as part of a standardized dinner
(including 125 g of chicken breast as a protein source).
Incremental amounts of the designated food were consumed
over three consecutive days: 60/120/180 g for (boiled) peas,
40/80/160 g for (raw) apples, and 20/40/60 g for (fried) onions.
For 24 h preceding the FC, and throughout the FC, participants
were asked to consume their habitual diet and avoid consump-
tion of coffee/tea/cocoa and any additional amounts of assigned
foods. Cumulative urine samples were collected into sterilized
single-use urine containers (International Scientific Supplies Ltd.,
Bradford, U.K.) from dinner up to and including the first morning
void. Urine samples were stored at −80 °C until analysis.

Controlled Clinical Trial (CCT). There were 19 healthy
participants (9 women, 10 men; nonsmokers; age 25−60 years;
BMI 21.1−33.3 kg/m2) who attended the NIHR/Wellcome
Trust Imperial Clinical Research Facility for four 3-day inpatient
periods, separated by a period of >4 days, with food and drink
intake tightly controlled (alcohol/coffee/tea/cocoa were not
provided). In random order, participants followed all four DIs
representing 100% (diet 1), 75% (diet 2), 50% (diet 3), and 25%
(diet 4) of WHO healthy eating guidelines1 with respect to
carbohydrates, fats, fiber, fruits, salt, sugar, and vegetables. Full
details of the clinical trial design have been described
previously.33 Foods consumed relevant to the present study are
tabulated in Supporting Information.
Each participant collected cumulative urine samples (CS) on

each day of each DI from after breakfast to before lunch (CS1),
after lunch to before dinner (CS2), and after dinner to before
breakfast the following day (CS3). The 24 h urine samples were
obtained by pooling the cumulative samples. Aliquots of urine
were transferred into Eppendorf tubes and stored at−80 °C until
analysis. All participants provided informed, written consent
prior to the CCT (Registration No. ISRCTN-43087333), which
was approved by the London Brent Research Ethics Committee
(13/LO/0078). All studies were carried out in accordance with
the Declaration of Helsinki.

1H NMR Analysis. Aliquots of 600 μL of urine samples were
centrifuged at 16 000 × g at 4 °C for 5 min. All available samples
(nFC = 27, nCCT = 906, for missing CCT data see Supporting
Information) were prepared for 1HNMR spectroscopy following
the protocol described in ref 34 mixing 540 μL of supernatant
with 60 μL of pH 7.4 phosphate buffer containing trimethylsilyl-
[2,2,3,3,-2H4]-propionate as an internal reference standard
(“NMR buffer”). Water-suppressed 1H NMR spectroscopy
was performed at 300 K on a Bruker 600 MHz spectrometer
(Bruker Biospin, Karlsruhe, Germany) using a standard 1D pulse
sequence (RD−gz,1−90°−t−90°−tm−gz,2−90°−ACQ) with sat-
uration of the water resonance.7 The following abbreviations
apply: RD is the relaxation delay, t is a short delay (4 μs),
90° represents a radio frequency (RF) pulse that tips the
magnetization by 90°, tm is the mixing time (10 ms), gz,1 and gz,2
are magnetic field z-gradients both applied for 1 ms, and ACQ
is the data acquisition period of 2.73 s. 1H NMR spectra were
acquired using 4 dummy scans and 32 scans, and 64K time
domain points, with a spectral window of 20 ppm. Prior to
Fourier transformation, free induction decays were multiplied by
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an exponential function corresponding to a line broadening of
0.3 Hz. 1H NMR spectra were normalized to the total urine
volume to correct for differences in dilution.

1H−1H 2D J-resolved experiments7 were acquired using a pulse
sequence to detect the J-couplings in the second dimension, with
suppression of the water resonance (RD−90°−t1− 180°−t1−
ACQ), where t1 is an incremented time period, RD is 2 s,
180° represents a 180° RF pulse, and ACQ is 0.41 s. J-resolved
spectra were acquired using 16 dummy scans and 2 scans, 8K
points with spectral window of 16.7 ppm for f2 and 40 increments
with spectral windowof 78Hz for f1. Continuous wave irradiation
was applied at the water resonance frequency using a 25 Hz RF
during the RD. A sine-bell apodization function was applied to f2
and a squared sine-bell to f1 of the J-resolved data, followed by
Fourier transformation, tilting by 45°, and symmetrization along
f1 before data analysis.
A suite of 2D-NMR experiments including 1H−1H TOtal

Correlation SpectroscopY (TOCSY), 1H−1H COrrelation
SpectroscopY (COSY), 1H−13C Heteronuclear Single Quantum
Coherence (HSQC), and 1H−13CHeteronuclear Multiple-Bond
Correlation (HMBC) spectroscopy were used for identification
purposes.25,29

SPE-NMR. Apple extracts were homogenized using a
Kenwood KMix Blender for 5 min. The puree obtained was
filtered using a stainless steel filter and centrifuged for 10 min
at 16 000 × g. A 2 mL portion of each sample (urine/apple) was
lyophilized overnight. Freeze-dried (FD) urine/apple samples
were dissolved in 1 mL of 50 mM sodium phosphate pH 8.5
and briefly sonicated prior to being loaded onto a 100 mg/mL
Bond Elut phenylboronic acid (PBA) SPE-cartridge (Agilent
Technologies, Stockport, U.K.). The SPE-cartridge was con-
ditioned with 1 mL of 70:30 v/v H2O/ACN, and 0.1 M HCl,
followed by 1 mL of 50 mM sodium phosphate pH 10. After
conditioning, the sample was loaded onto the SPE-cartridge.
The loaded sample was washed with 2 mL of 50:50 v/v ACN/
sodium phosphate (10 mM) pH 8.5. The sample was eluted
using 1 mL of acidified solutions (0.1 M HCl) of 100% H2O,
90:10 v/v H2O/ACN, and 70:30 v/v H2O/ACN and sub-
sequently lyophilized until dry. The dried eluent fractions were
reconstituted in 540 μL of H2O and 60 μL of NMR buffer,
vortexed, and centrifuged prior to NMR analysis.
LC-NMR-MS.27 A 5 mL portion of urine collected over-

night after consumption of onion was lyophilized overnight,
reconstituted in 500 μL of the original urine sample, and
vortexed, sonicated and centrifuged (20 min at 16 000 × g). The
supernatant was repeatedly injected (7 × 2 μL) onto a reversed-
phase HPLC column (Waters Atlantis-T3, 3 μm, 4.6 mm ×
150 mm at 30 °C) in a Waters Acquity UPLC comprising a
binary solvent manager and photodiode array detector with a
Waters CTC autosampler with 100 μL sampling needle, and
eluted at 0.8 mL/min using the following gradient: 0.0−60.0 min
(99.9:0.1% H2O/formic acid), 60.01−65.0 min (99.9:0.1%
methanol/formic acid), 65.01−127.5 min (99.9:0.1% H2O/
formic acid). The chromatographic separation of the sample was
fractionated using a Waters Fraction Collector III. A total of
120 fractions were collected, one every 29 s (starting at t = 5 min,
finishing at t = 63 min), and dried under a stream of nitrogen.
Each fraction was redissolved in 540 μL of H2O and 60 μL of
NMR buffer and analyzed by 1H NMR. A volume of 50 μL of
the fraction containing the unknown metabolite was analyzed
by reversed-phase LC-MS, Waters Acquity Ultra Performance
LC system coupled to Xevo G2 Q-TOF mass spectrometer
(Waters, Milford, MA), following an established metabolic

profiling method.35 The optimized capillary voltage, cone voltage,
and collision energy were 3 kV/20 V/4 V for ESI+ and 1.5 kV/
30 V/6 V for ESI−, using a source temperature of 120 °C and
desolvation temperature of 600 °C. Desolvation was 1000L/h for
both, and cone gas flows were 50 L/h (ESI+) and 150 L/h
(ESI−). Leucine enkephalin was used as the reference lock mass
at 556.2771 ([M + H]+) and 554.2615 ([M − H]−).

RED-STORM Algorithm. Here, STORM was extended in a
probabilistic framework and modified for applicability to 2D
data to provide a clearer signature of structural correlations in the
data, and the extended algorithm was named Resolution
EnhanceD SubseT Optimization by Reference Matching (RED-
STORM).
High correlations in the data are of interest between samples

and a reference spectrum of a signal of interest (for subset
optimization) and between a driver and all other variables
(for assessing variable importance). However, high correlations
are not normally distributed because of the upper bound on the
correlation ([−1, 1]); this results in their distributions being
negatively skewed. Therefore, the correlation (ρ) is transformed
to a Fisher z-score, which results in approximately normally
distributed data that can be analyzed using parametric
methods:

ρ
ρ

= +
−

⎛
⎝⎜

⎞
⎠⎟z

1
2

ln
1
1 (1)

Next, the distribution of all z-scores is modeled using a Gaussian
mixture model (GMM). AGMM is a weighted sum of kGaussian
clusters and is defined as

∑μ σ π π φ μ σ| =−

=

p z( , , ) ( , )
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k

j j j
2
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2
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Here, z has n data points. μ are the kmeans and σ2 the k variances.
π is the mixture weights for each of k Gaussians (∑ j = 1

k πj = 1),
and φ0,1 is a normalized Gaussian distribution with specified μ
and σ. In order to obtain clusters of variables from the Fisher
z-transformed correlations, a parameter-free GMM is used.36

The model automatically learns the optimal number of clusters
from the data. For completeness, a description of the method in
brief follows; for mathematical proofs, see ref 36.
Each cluster mean (μj) and precision (σj

−2) from eq 2 are given
Gaussian (p(μj|λ, r) ∼ φ0,1(λ, r

−1)) and Gamma (p(σj
−2|γ, β) ∼

Γ(γ, β−1)) priors, respectively. Here, λ and r are hyperparameters
for the means of all clusters. Similarly, γ (shape) and β (scale) are
hyperparameters for the cluster precisions. The hyperparameters
themselves are initialized from the observation mean (μz)
and variance (σz

2) as vague priors (p(λ) ∼ φ0,1(μz, σz
2); p(r) ∼

Γ(1, σz2); p(γ−1) ∼ Γ(1, 1); p(β) ∼ Γ(1, σz−2)). The posterior
distributions of the cluster means are obtained from
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where zj̃ is the sum of observations from cluster j, mj the number
of observations with highest probability for cluster j, ci the cluster
with highest probability for observation i, and δci,j a Kronecker
delta product. Similarly, the posterior distributions of the cluster
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and makes use of the fact that p(ln(γ)|σ−2, β) is log-concave:36
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Each ci is directly related to π and can be written in terms
of k and mj with concentration hyperparameter α
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. The

“doubling and shrinkage”Markov-chain Monte Carlo (MCMC)
slice sampler37 is used to generate independent samples from the
nonstandard distributions for γ and α.
The posterior of observation i given class j is
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The same goes for a potential new cluster (k + 1), where the
mean and precision are sampled from Gaussian and Gamma
distributions using the posteriors from global hyperparameters λ,
r, γ, and β (p(μk+1|λ, r) ∼ φ0,1(λ, r

−1),p(σk+1
−2|γ, β) ∼ Γ(γ, β−1))

and the posterior is as above (class j is now k + 1).
The cumulative sum of the cluster probabilities (Cj) for ci are

calculated (Cj = ∑i = 1
j p(ci = j|j ≤ k + 1)), and a new cluster is

added if and only if none of the previous k clusters pass an
arbitrary threshold of the cumulative sum of the new cluster

Figure 1. FC and CCT spectra identify NMNA as a urinary biomarker of peas. (A−C) 1H NMR spectra of a volunteer after pea FC zoomed in on
NMNA signals (A, δ 9.13(s); B, δ 8.84(t); C, δ 4.44(s)). (D−F) 1H NMR spectra of different samples of one CCT volunteer zoomed in on the same
regions.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.6b03324
Anal. Chem. 2017, 89, 3300−3309

3303

http://dx.doi.org/10.1021/acs.analchem.6b03324


( = ≥ +c C Cmin (0, 1)i j j k 1); otherwise, ci becomes the first

cluster to pass the threshold. At any stage when anymj = 0, cluster
j is removed.
This process is repeated for a set number of (burn-in)

iterations (typically >100) to achieve some stability in finding a
suitable k, depending on the data, before continuing with the
remainder of (post burn-in) iterations of the Markov-chain.
The final predictive distribution is a weighted average over the post
burn-in iteration clusters. The order (for i of z) is randomized in
each iteration to avoid bias.
For subset selection, the variables that make up the reference

segment of interest are correlated with the same variables from all
spectra (STORM); the correlations are z-transformed, and
the distribution is fitted using the procedure described above.
The final predictive distribution is converted to a cumulative
distribution function (cdf), and for each sample the probability
of it resembling the reference is calculated. The subset contains
all spectra that satisfy p(zi|cdf) ≥ ts, where ts is a user-defined
threshold for the samples. The reference spectrum is updated
by using a weighted average of the spectra in the subset. Using
only the spectra in the subset, the correlations of all driver
variables (reference segment of interest) with all other spectral
variables are calculated. To alleviate the computational load of
the algorithm, for 2D J-resolved NMR, and other 2D-spectra, the
algorithm is run on the variables that make up the peaks of the
reference spectrum rather than all variables. The median ρ across
all driver variables is calculated for each variable and
z-transformed, and the same procedure as for subset selection
is performed for the variables. MATLAB code can be obtained by
contacting the authors.

■ RESULTS AND DISCUSSION

Identification of a Urinary Biomarker for Pea (Pisum
sativum) Consumption.On comparison of the urinary spectra
obtained pre- and postpea intake, the urinary concentration of
N-methylnicotinic acid (NMNA, trigonelline), although present
in the baseline samples, showed a dose dependent increment
after increasing the consumption of peas (Figure 1A−C) during
the FC, suggesting it as a candidate biomarker. However, the
presence of NMNA in the baseline samples indicated that peas
were not the sole source of NMNA. The CCT data showed a
similar pattern (Figure 1D−F) with low levels for diet 1 (no peas
provided) and incrementally higher levels for diets 2−4 (peas
provided). Interestingly, NMNA appears in highest concen-
trations in CS3 and 24 h samples from diet 2, whereas peas
were provided only during dinner in increasing amounts (0/20/
40/60 g for diets 1−4). However, chocolate was provided as an
afternoon snack in diets 1−3, and baked beans were provided as
part of dinner in diet 2 (see Supporting Information Table S1)
which may be alternative sources of NMNA.
It has been long known that several plant materials (including

coffee, tea, and cocoa) are rich in niacin (vitamin B3) and some of
its major metabolic products,38 including NMNA. In addition,
NMNA has been proposed as urinary biomarker of coffee con-
sumption.11 Thus, although it is a poor biomarker of pea intake in
the sense of specificity, NMNA could still be used to detect pea
intake in urine after controlling for other sources.
With nonspecific dietary biomarkers, biomarker patterns, rather

than a single biomarker, can be used to differentiate between
different food sources.17 For instance, 2-furoylglycine, another
marker of coffee consumption,16 can be used to cross-check for
coffee consumption and as secondary marker to adjust the

Figure 2. FC, CCT spectra, and analytical experiments identify rhamnitol as a biomarker of apple consumption. (A) 1H NMR spectrum of a volunteer
after pea FC, spectral expansion of a putative singlet. (B) Same section of 1H NMR spectra of different samples from one volunteer in the CCT.
(C) STORM analysis of the tentative singlet reveals potential overlap of signal with 3-hydroxyisovalerate (δ 1.275(s)). (D) Tilted J-resolved NMR
experiment confirms that the putative signal is a doublet which overlaps with 3-hydroxyisovalerate. (E) 1HNMR spectrum of a freeze-dried urine sample
of an apple consumer after PBA-SPE. (F) 1H NMR spectrum of apple puree after freeze-drying and PBA-SPE. (G) 1H NMR spectrum of freeze-dried
urine sample of a pear consumer and PBA-SPE confirms rhamnitol is specific for apple intake. (H) Spike-in of rhamnitol confirms identity of metabolite.
2D-NMR experiments can be found in Supporting Information.
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concentration of NMNA. Broader knowledge of dietary bio-
markers will contribute to solving this specificity issue.
Identification of Urinary Biomarker of Apple (Malus

domestica) Consumption. After consumption of increased
amounts of apple, a spectral signal at δ 1.285 was found to be
increased (Figure 2A). This same signal was found in incrementally
higher levels in the urine of participants who consumed increasing
amounts of apple during the CCT (Figure 2B); diets 2−4
contained 50/100/150 g of apple, respectively, as a midmorning
snack. The absence of this signal in urine samples from participants
on diet 1 is consistent with there being no apple intake in diet 1.
STORM analysis (Figure 2C) revealed high correlations of the
driver (δ 1.285) with a shoulder of the 3-hydroxyisovalerate peak
at δ 1.275(s), suggesting the singlet may in fact be a doublet. This
was confirmed using J-resolved spectroscopy (Figure 2D). To
confirm the identity of the molecule giving rise to the doublet,
we performed SPE using a PBA-cartridge on both the urine
(Figure 2E) and apple puree (Figure 2F) samples to isolate the
signal in one of the fractions for identification purposes, which was
subsequently confirmed by NMR analysis. To assess the specificity
of this doublet to apple consumption, we performed PBA-SPE on
urine samples post-pear-consumption (using the same protocol as
for apple) and did not find the metabolite peak in the urine or in
any fraction (Figure 2G). 2D-NMR experiments were performed
on fraction 1 (Supporting Information) suggesting rhamnitol as
potential biomarker; a chemical spike-in experiment (Figure 2H)
confirmed the identity. Rhamnitol is a component in different
varieties of apples,39 and taken together, these results confirm
rhamnitol as specific biomarker for apple consumption. The
suitability of rhamnitol for quantification of apple intake will be
investigated in a follow-up study.
Proof-of-Concept of RED-STORM. The identification of

rhamnitol as urinary biomarker of apple consumption has shown
how overlap in 1D spectra cannot be resolved using STORM as
the signals overlap with those of 3-hydroxyisovalerate, commonly
found in urine samples, which reduces the power of the statistical

correlation method. J-resolved NMR spectra are able to
“untangle” overlap using the J-coupling as the second dimension.
In large metabolic profiling studies, both standard one-dimen-
sional 1H NMR and J-resolved experiments are commonly run
together, since the J-resolved acquisition only adds 5 min to the
total acquisition time. While standard 1D 1H NMR spectra are
commonly used for data analysis, the corresponding J-resolved
spectra can be used for identification purposes.
Here, we illustrate the benefit of using RED-STORM (see

Experimental Section for algorithm) over STORM using a
well-known dietary biomarker as example. N-Acetyl-S-methyl-
cysteine-sulfoxide (NAcSMCSO) is the major urinary metab-
olite after consumption of cruciferous and other vegetables.14

Edmands et al. have shown that the methyl-sulfoxide signal
correlates mostly with the intake of its substrate, and component
of cruciferous vegetables, SMCSO, and two other metabolic
products, but intramolecular correlations driven from the δ 2.78
peak of NAcSMCSO were weaker than those observed between
the methyl-sulfoxide signals of other related molecules. This can
also been seen in our data (Figure 3A,B). Our data comes from a
diverse set of samples, of which only some contain metabolic
products of broccoli consumption. Here STORM was not able
to uncover the structural correlations, possibly due to overlap
with more intense signals and the overall high variability of
samples compared with the study by Edmands et al. (high/low
consumers of cruciferous vegetables). The application of
RED-STORM to two-dimensional J-resolved spectra of the
same individuals, however, clearly showed some intramolecular
structural correlations, which were stronger than correla-
tions between NAcSMCSO and other SMCSO-metabolites
(Figure 3C). The chemical shifts identified (δ 4.38 (m) and δ
3.10 (m), with probability >0.99) indeed come from the same
metabolite;14 however, δ 3.30 (m) was not observed as its
signals are heavily overlapped with other multiplets (such as
methylhistidines) in the same region.

Figure 3. Proof-of-concept of the RED-STORM algorithm: application to N-acetyl-S-methyl-cysteine-sulfoxide (NAc-SMCSO), the major biomarker
of cruciferous vegetable consumption.14 (A) STORM analysis of the δ 2.78 (s) of NAc-SMCSO shows correlation to three other singlets of related
compounds.14 (B) Expansion of δ 2.75−2.85 region. (C) RED-STORM on J-resolved NMR spectra reveals correlations with other nonoverlapped
multiplets (δ 4.37 (dd) and δ 3.10 (ABX)) in the CCT data with the peak at δ 2.78.
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Complementarity of Statistical and Analytical Plat-
forms for Identification of a Urinary Biomarker of Onion
(Allium cepa) Consumption. Previously, dimethylsulfone
(δ 3.16 (s)) had been proposed as biomarker of onion con-
sumption.9 However, it has two major disadvantages; first, it is
only a singlet, and thus assignment can be ambiguous, but second,
andmore importantly, the chemical shift of dimethylsulfone is in a
region of the NMR spectrum where there are many other di- and
trimethyl signals that may confound this metabolite identification.
Through an FC we have identified a tentative novel biomarker of
onion consumption, which is a multiplet signal at δ 1.97 (dd)
(Figure 4A). The presence of this onion-related signal was
confirmed using the CCT samples (Figure 4B). STORM analysis
using the peak at δ 1.97 as the driver (Figure 3C) clearly shows
3 other correlated signals (δ 2.03 (s), δ 6.50 (m), and δ 6.65 (m)).
Due to the clear multiplet structure, we applied RED-STORM
on the J-resolved spectra and discovered additional signals
(δ 3.44 (m) and δ 4.44 (m)) with a high probability of being
intramolecular (>0.97) (Figure 4E).
To illustrate how the process for subset selection works,

we show the distribution fitting procedure of RED-STORM
on the z-transformed correlations of all J-resolved spectra
(n = 906) with the reference spectrum of the metabolite of

interest (Supporting Information Figure S8). There appear to be
two main clusters of sample−reference correlations that follow
different Gaussian distributions. After completion, the samples
with p(zi|cdf) ≥ 0.5 were included in the subset (n = 320).
Inspection of the relation between p(zi|cdf) and the percentage
of samples from each unique type of urine sample (collection
time, diet) that pass a certain threshold (Figure 4D) gives a very
clear indication that the metabolite is found mostly in CS3 and
24 h samples of diets 3 and 4. Small amounts of onions (20 g and
40 g for diets 3 and 4, respectively) were consumed with dinner
(matching the presence of the unknown metabolite in CS3) in
both of these diets. While no onion was provided in diets 1 and 2,
it is interesting to see that the CS2 sample from diet 2 also
appeared to contain low levels of this metabolite. On further
inspection of the dietary composition, onion traces were found to
be present in the sausage casserole that was provided to the CCT
volunteers (in diet 2) for lunch.
Using the subset with the highest signal-to-noise of the

unknown compound (n = 320), the reference is updated. The
z-transformed correlations of the driver peak (δ 1.97 (dd)) with
all spectral peaks were calculated, and the resulting distribution
was fitted (Supporting Information Figure S9); here, most of the
z-scores tend to follow a Gaussian distribution around 0, and

Figure 4. Application of RED-STORM for identification of NMR signals tentatively associated with onion consumption. (A) Section of 600 MHz
1H NMR spectra from one volunteer after the onion FC shows a characteristic multiplet. (B) Same section of 600 MHz 1H NMR spectra of different
samples of one volunteer in the CCT. (C) STORM analysis shows 3 spectral peaks related to tentative multiplet. (D) Probability of samples resembling
the reference signal (x-axis) versus the percentage (y-axis) of samples from each type of urine collection in the CCT. It reveals that specific samples of
certain diets (CS3 and 24 h urine samples of the two healthiest diets and a minor amount in CS2 of diet 3) contain the unknown metabolite. (E) RED-
STORM identifies two more multiplets compared to STORM (C) visualized in the J-resolved pseudospectrum.
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only a few have higher z-scores. It is these z-transformed
correlations that are likely structural or otherwise closely related
to the multiplet of interest; the resulting cdf then gives the result
as shown in Figure 4E.

STORM found 4 peaks associated with the driver; the
J-coupling constants of the three multiplet signals indicated
these were adjacent. RED-STORM identified an additional
2 multiplets which were in regions with overlap in the 1H NMR

Figure 5. Analytical experiments confirm the identity of N-acetyl-S-(1Z)-propenyl-cysteine-sulfoxide (NAcSPCSO) as a urinary biomarker of onion
intake. (A) LC-NMR is used to identify an LC-fraction that contains the metabolite for further analysis. (B) 1H NMR spectrum of the fraction with
highest concentration of the unknown metabolite, with multiplets assigned and integrals calculated. (C) LC-MS (positive mode) chromatogram and
corresponding total ion chromatogram of the fraction reveals C8H13NO4S as likely elemental composition. (D) Identification table of NMR signals and
chemical shifts. 2D-NMR and LC-MS negative mode figures can be found in Supporting Information. (E) Structure of onion biomarker.
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spectrum; however, measurement of the J-couplings (δ 4.44 (m):
9.78, 8.20, and 4.21Hz; δ 3.44 (m), 13.38, and 4.21Hz) indicated
at least one undiscovered peak. In order to uncover the complete
structure, we then employed analytical methods for further
structure elucidation. First, we used a urine sample, taken after a
volunteer ate 90 g (dry weight) of (fried) onions over dinner,
to obtain a concentrated amount of the unknown metabolite and
performed LC coupled to 1H NMR to isolate the compound in
an LC-fraction (Figure 5A). The full 1H NMR spectrum of
the fraction (Figure 5B) was able to uncover two more signals
(δ 3.28 (dd); δ 8.30 with a weak doublet-like splitting) matching
with previously measured J-couplings. Analysis of the fraction
using LC-MS (ESI+) provided a likely chemical formula of
the unknown metabolite of interest, C8H13NO4S (Figure 5C).
Using additional 2D-NMR experiments the signals could
now be properly assigned (Figure 5D) which resulted in
the identification of the complete structure (Figure 5E) of the
onion biomarker: N-acetyl-S-(1Z)-propenyl-cysteine-sulfoxide
(NAcSPCSO).
To the best of our knowledge, this metabolite has not been

reported before. On the basis of its structure, we assume that it is
a direct metabolite of S-propenyl-cysteine-sulfoxide (SPCSO).
SPCSO is the major flavor precursor in Allium cepa40 and
precursor to the main lachrymatory factor (Z)-propanethial-
sulfoxide.41 However, NAcSPCSO does not appear to be the
product of any of the known (degradation) pathways in the
genus Allium,42 and we hypothesize that it is produced by means
of an N-acetyltransferase acetyl-CoA conjugation mechanism,
analogous to the production of NAcSMCSO.14 However,
SMCSO is not specific for cruciferous vegetables, and can also
be found in certain Allium species (including onion). However,
SPCSO is specific for A. ascalonicum (shallot), A. cepa, A. nutans
(chives), and A. schoenoprasum (chives).40,42

The integrated analytical and statistical two-dimensional
spectroscopy strategy for metabolite identification outperforms
existing strategies, such as STOCSY and STORM, by utilizing
the full resolution J-resolved spectra including the J-coupling
constants to allow detection of extra signals attributed to intra-
molecular correlations. Further clarity on structural assignment
is provided by the differentiation of intra- and intermolecular
connectivities, not easily differentiated by the basic statistical
spectroscopy methods. Thus, identification of NAcSPCSO was
only possible through the use of the novel structural elucidation
pathway presented here combining statistical and analytical
techniques.

■ CONCLUSIONS
Successful structure elucidation of unknown metabolites relies
on a combination of the most suitable statistical and analytical
strategies and is dependent on metabolite concentration and
excretion kinetics, overlap of spectral peaks, and chemical
characteristics of the compound. The newly introduced
statistical spectroscopy tool, RED-STORM, is able to extract
information about potential biomarkers that STORM and other
statistical spectroscopy methods cannot provide from 1D-NMR
data. Moreover, RED-STORM does not rely on arbitrary
correlation-type thresholds28,30,31 or multiple testing adjusted
P-values,32 but learns probabilities from the distribution of
these data and is therefore less affected by sample size,43 and the
effects of normalization and scaling,44 than frequentist methods
can be. RED-STORM highlights the added benefit of acquiring
J-resolved experiments alongside conventional 1H NMR
data as part of metabolic profiling analytical routines.34

Statistical spectroscopy tools can help narrow down the number
of analytical experiments that need to be performed (saving time
and money). However, for biomarker identification purposes
they should not be used by themselves as we have shown that
analytical experiments on selected samples can provide
information that cannot be gathered using statistical means
alone. These analytical experiments are ideally limited to
performing a chemical spike-in experiment, but often traditional
analytical tools (freeze-drying, SPE-NMR,26 LC-fractionation27)
are required in order to isolate the unknown metabolite for
further study and confirmation by 2D-NMR and MS. As a result
of performing three FCs and combining a suite of statistical and
analytical tools, we were able to identify new dietary biomarkers
for pea, apple, and onion. These were subsequently validated in
an in-patient randomized CCT33 where all food and drink was
fully controlled. Specific dietary biomarkers, such as rhamnitol
(apple) and N-acetyl-S-(1Z)-propenyl-cysteine-sulfoxide
(onion), can be used to assess adherence to diet and/or to
increase the accuracy of self-reported dietary records that suffer
from misreporting issues.
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