
Aberystwyth University

The importance of phenotypic plasticity and local adaptation in driving
intraspecific variability in thermal niches of marine macrophytes
King, Nathan; McKeown, Niall; Smale, Daniel; Moore, Philippa

Published in:
Ecography

DOI:
10.1111/ecog.03186

Publication date:
2017

Citation for published version (APA):
King, N., McKeown, N., Smale, D., & Moore, P. (2017). The importance of phenotypic plasticity and local
adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography, 41(9), 1469-
1484. https://doi.org/10.1111/ecog.03186

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326673084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1111/ecog.03186
https://pure.aber.ac.uk/portal/en/persons/niall-mckeown(ef798719-42bc-4bf8-9712-6fddf45dd7ab).html
https://pure.aber.ac.uk/portal/en/publications/the-importance-of-phenotypic-plasticity-and-local-adaptation-in-driving-intraspecific-variability-in-thermal-niches-of-marine-macrophytes(e140d299-af69-4eac-99f7-f3a6743438d5).html
https://pure.aber.ac.uk/portal/en/publications/the-importance-of-phenotypic-plasticity-and-local-adaptation-in-driving-intraspecific-variability-in-thermal-niches-of-marine-macrophytes(e140d299-af69-4eac-99f7-f3a6743438d5).html
https://doi.org/10.1111/ecog.03186


A
cc

ep
te

d
 A

rt
ic

le

‘This article is protected by copyright. All rights reserved.’ 

The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in 

thermal niches of marine macrophytes 

Nathan G King
1
, Niall J McKeown

1
, Dan A Smale

2
, Pippa J Moore

1,3
 

1
Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 

3DA, UK 

2
Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 

2PB, UK 

3
Centre for Marine Ecosystems Research, School of Natural Sciences, Edith Cowan University, 

Joondalup 6027, Western Australia, Australia 

Corresponding author: Nathan G King, Institute of Biological, Environmental and Rural Sciences, 

Aberystwyth University, Aberystwyth, SY23 3DA, UK. Email: nak14@aber.ac.uk 

Decision date: 29-Sep-2017 

 

This article has been accepted for publication and undergone full peer review but has 

not been through the copyediting, typesetting, pagination and proofreading process, 

which may lead to differences between this version and the Version of Record. Please 

cite this article as doi: [10.1111/ecog.03186]. 

  



A
cc

ep
te

d
 A

rt
ic

le

‘This article is protected by copyright. All rights reserved.’ 

ABSTRACT 

Climate change is driving the redistribution of species at a global scale and documenting and predicting 

species’ responses to warming is a principal focus of contemporary ecology. When interpreting and 

predicting their responses to warming, species are generally treated as single homogenous physiological 

units. However, local adaptation and phenotypic plasticity can result in intraspecific differences in 

thermal niche. Therefore, population loss may also not only occur from trailing edges. In species with low 

dispersal capacity this will have profound impacts for the species as a whole, as local population loss will 

not be offset by immigration of warm tolerant individuals. Recent evidence from terrestrial forests has 

shown that incorporation of intraspecific variation in thermal niche is vital to accurately predicting 

species responses to warming. However, marine macrophytes (i.e. seagrasses and seaweeds) that form 

some of the world’s most productive and diverse ecosystems have not been examined in the same context. 

We conducted a literature review to determine how common intraspecific variation in thermal physiology 

is in marine macrophytes. We find that 90% of studies identified (n = 42) found clear differences in 

thermal niche between geographically separated populations. Therefore, non-trailing edge populations 

may also be vulnerable to future warming trends and given their limited dispersal capacity, such 

population loss may not be offset by immigration. We also explore how Next Generation Sequencing 

(NGS) is allowing unprecedented mechanistic insight into plasticity and adaptation. We conclude that in 

the ‘genomic era’ it may be possible to link understanding of plasticity and adaptation at the genetic level 

through to changes in populations providing novel insights on the redistribution of populations under 

future climate change.  

KEY WORDS: Local adaptation, phenotypic plasticity, population differentiation, macroalgae, seagrass, 

Next Generation Sequencing. 
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Introduction 

Anthropogenic climate change has driven increases in both mean temperatures and 

the intensity and frequency of temperature extremes (heat waves) (Christidis et al., 

2005; Coumou and Rahmstorf, 2012; Lima and Wethey, 2012). Together, acute and 

chronic warming are resulting in the redistribution of species across the globe 

(Parmesan and Yohe, 2003; Burrows et al., 2012; Poloczanska et al., 2013), with major 

consequences for the structure and functioning of entire ecosystems (Walther et al., 

2002; Parmesan, 2006; Wernberg et al., 2016a; Pecl et al., 2017). Therefore, 

understanding when, where and how redistributions will occur has become a primary 

goal of contemporary macroecology. 

When interpreting responses to warming, species are generally treated as single 

homogenous physiological units (Reed et al., 2011). This assumes populations have 

similar thermal tolerances irrespective of their latitudinal position and that any 

population can exist anywhere within its range. Therefore, range shifts at trailing edges 

are predicted to follow simple linear contractions from marginal populations persisting 

under warm distributional limits, as it is here where absolute temperature rises are 

most likely to fall outside of a species ‘thermal niche’ (Walher et al., 2002; Parmesan & 

Yohe, 2003; Burrows et al., 2012; Sunday et al., 2012, Poloczanska et al., 2013). 

However, this approach fails to incorporate intraspecific differences in thermal niche 

from phenotypic plasticity and local adaptation (Box 1) as well as the dispersal capacity 

of a species. These factors are critical considerations as they can result in central 

populations also being vulnerable to warming trends (e.g. Atkins and Travis, 2010; 

Valladares et al., 2014). 

Changes in thermal niche from both plasticity and adaptation can render central 

populations vulnerable to heatwaves as temperature rises may be too rapid for either 

acclimation or adaptation. When considering decadal-scale warming, adaptation will 

not be possible as contemporary warming out paces the rate of natural selection (Davis 

and Shaw, 2001; Jump and Penuelas, 2005; Quintero and Wiens, 2013). Therefore, 

range centre ecotypes may also experience temperatures that exceed their local 

thermal niche (Davis and Shaw, 2001; Etterson, 2004a,b; Jump and Penuelas, 2005). 

However, if differences are plastic, central populations will simply acclimate to range 

edge conditions (Sanford and Kelly, 2011). As such, disentangling the relative 

importance of these two mechanisms is crucial for understanding species’ responses to 

warming. The dispersal capacity of a species is also a key consideration for assessing 

the vulnerability of central populations as it dictates which mechanism is favoured and 
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provides insight into the persistence of any population loss. For low dispersal species, 

local adaptation may be more prominent as natural selection is not homogenised by 

gene flow from populations under different selection pressures (Kirkpatrick and Barton, 

1997). The unprecedented rate of contemporary climate change may also mean that 

such species are unable to track suitable extant habitat (Molinos et al., 2017). 

Therefore, any central population loss may not be offset by immigration from warm 

tolerant populations (Figure 1) (Davis and Shaw, 2001; Harte et al., 2004; Atkins and  

Travis, 2010; Sanford and Kelly, 2011; Valladares et al., 2014; Bennett et al., 2015). 

There are multiple strategies for understanding local adaptation and plasticity but they 

are largely separated into two disparate fields (Table 1). Researchers either focus on 

ecological pattern associated with phenotypes of ‘wild populations’ or the underlying 

molecular process using model organisms in laboratory settings. There is rarely a 

crossover between disciplines as model organisms generally lack ecological 

importance while wild populations have historically lacked the necessary genomic 

resources. The advent of Next Generation Sequencing (NGS) is changing this 

dichotomy. It is now possible to gain mechanistic insight in ‘wild populations’ even 

where there is limited genomic knowledge of the species (Van Straalen et al., 2012; 

Alvarez et al., 2015). Given the strong drive in contemporary macroecology to 

understand both ecological pattern and the underling processes (Beck et al., 2012; 

Keith et al., 2012) we argue that merging these two fields provides an exciting 

opportunity to understand how different thermal physiologies may affect species 

responses to warming.  

 

In comparison to terrestrial systems, marine taxa have been underrepresented in 

attempts to understand the implications of thermal plasticity and adaptation. Marine 

macrophytes (seaweeds and seagrasses) in particular exhibit a number of traits to 

suggest that these mechanisms may be prevalent. Unlike many marine species that 

have large dispersal capacities, marine macrophytes generally exhibit restrictive 

dispersal with seaweed spores settling within a few metres of the parent alga (Dayton 

1985, Schiel and Foster 1986, Santelices 1990; Kendrick and Walker, 1991; Norton 

1992; Kendrick and Walker, 1995) and seagrass pollen and seed dispersal often 

limited to the meadow in which the adult plant inhabits (Zipperle et al., 2011, Kendrick 

et al., 2012). This often results in highly structured distributions (Valero et al., 2011; 

Assis et al., 2015; Nicastro et al., 2013; Robuchon et al., 2014; Neiva et al., 2015) and 
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means local ecotypes may be a common characteristic (e.g. Gerard and Dubois, 1987) 

in marine macrophytes, with any associated population decline unable to be 

ameliorated by migration (Bennett et al., 2015; Assis et al., 2017; Molinos et al., 2017). 

However, it should be noted that even within this group some species exhibit larger 

scale dispersal capacities that can result in a closer tracking of habitat as niches shift 

(Duarte et al., 2013). Marine macrophytes are also underrepresented in molecular 

studies investigating mechanisms underlying thermal physiology. Historically they have 

been poor genomic models due to a lack of sequence data and difficulties with rearing 

species with complex life cycles in laboratory settings (Waahland et al., 2004; Pearson 

et al., 2010). However, the recent availability of reference genomes (red algae; Collen 

et al., 2014; brown algae; Ye et al., 2015; seagrass; Olsen et al., 2016) and the 

unprecedented mechanistic insights that can be gained using NGS provide the 

opportunity to signficiantly advance current understanding. In many ways marine 

macrophytes are ideally suited to understanding how temperature drives changes in 

phenotype. Unlike many terrestial taxa they have very narrow linear range distributions 

(length >1000’s km; breadth < 0.5 km) and so gradients are not confounded by 

covarying factors. Moreover, gradients are often replicated across multiple coasts (e.g. 

kelps across both sides of the Atlantic). 

Warming mediated range shifts have been observed for marine macrophytes across 

the world (Marba and Duarte, 2010; Wernberg et al., 2011; Smale and Wernberg, 

2013; Wernberg et al.,2013; Thomson et al., 2015; Wernberg et al., 2016;  Krumhansl 

et  al.,2017) and are predicted to continue as warming progresses (e.g. Martinez et al., 

2012; Jueterbock et al., 2013). Perhaps the most notable is a ~ 1,250 km range 

contraction of the intertidal fucoid, Fucus vesiculosus, from Morocco polewards to the 

mid Iberian Peninsula over a 30 year period (Nicastro et al., 2013).  Many marine 

macrophytes are foundation species that provide habitat and resources for other 

species and structure entire communities and ecosystems (Steneck et al., 2002; 

Teagle et al., 2017). Therefore, the ecological implications of macrophyte population 

losses are far-reaching. Where seaweeds and seagrasses form forests and meadows 

they rank amongst the world’s most diverse and productive ecosystems (Duarte and 

Chiscano, 1999; Steneck et al., 2002; Smale et al., 2013) rivalling that of terrestrial 

rainforests (Mann, 1973). Moreover, coastal vegetated habitats are of considerable 

socioeconomic importance to human populations through the provision of ecosystem 

goods and services (e.g. commercial fisheries, nutrient cycling, direct harvesting, 

biogenic coastal defence) which can be worth billions of dollars annually (Beaumont et 

al., 2008; Bennett et al., 2016). Thus, gaining an understanding of whether central 
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populations may also be vulnerable to warming is of great ecological and 

socioeconomic concern. 

We synthesized existing literature examining intraspecific differences in thermal 

physiology across large geographic scales in marine macrophytes to ascertain (a) the 

extent to which marine macrophytes exhibit intraspecific variability in thermal niche and 

(b) the relative importance of plasticity and adaptation in underpinning these patterns. 

We also examined the current state of molecular understanding of thermal plasticity 

and adaptation in marine macrophytes, and coastal marine ecosystems more 

generally, with particular emphasis on the use of NGS platforms in elucidating these 

mechanisms. 

Literature Survey 

Marine macrophytes comprise thousands of species with diverse evolutionary histories 

spanning four phyla; Rhodophyta (red algae), Chlorophyta (green algae), Ochrophyta 

(Phaeophyceae/brown algae) and marine angiosperms (seagrasses, mangroves and salt 

marsh plants). In the context of this review, we focussed on macroalgae (hereafter 

‘seaweeds’) and seagrasses, which are ‘fully marine’ and predominantly influenced by sea 

water temperature, and excluded salt marsh and mangrove species which are primarily 

influenced by aerial temperatures. 

We conducted a systematic review of the published literature using ISI Web of Science and 

Google Scholar. Search terms used were: Thermal ecotypes, local adaptation, phenotypic 

plasticity, thermal divergence, macrophytes, tolerance limits, thermal phenotype, niche 

partitioning, latitude, seagrass, kelp, fucoids, and seaweed. Combinations of search terms 

were used along with reference lists of identified articles. We limited the scope of our review 

to studies that explicitly measured a response to an experimental temperature treatment, 

specifically through common garden or transplant experiments from at least two populations 

occupying different thermal regimes. By doing this, intrinsic variation between sites was 

eliminated and the response being measured was directly attributable to measurable 

temperature differences. Consequently, our dataset did not include in situ field observations 

of differential performance, morphology, phenology or other life history traits (e.g. Araújo et 

al., 2011, 2014; Andrews et al., 2014). We also omit studies dealing with two cryptic species 

(Oppliger et al., 2012) or those that were confounded by other covarying environmental 

gradients. Therefore, studies from the Baltic Sea (e.g. Tatarenkov et al., 2005; Lago-Leston 

et al., 2010) were not included due to the confounding salinity gradient that can invoke other 
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distinct physiological ecotypes (Karsten, 2012). Where studies examined more than one 

species, all species that met the suitability criteria were included to ensure that the broadest 

range of species could be explored. For dependent variables we included whole organism 

responses such as growth and survival and also proxies including photosynthesis, 

respiration and gene expression. As seaweeds have a heteromorphic life cycle with a 

macroscopic sporophyte stage and microscopic gametophyte stage and plasticity and 

adaptation can affect both, we included both stages. In total we identified 42 studies that met 

the suitability criteria. The complete paper was then scrutinized to identify whether 

intraspecific variation between populations was observed and whether the underlying cause 

of variability was deemed to be plasticity or adaptation (based on the author’s conclusions). 

We determined the spatial scale between tested populations by calculating minimum 

distance by sea in Google Earth.   

General Patterns 

From the 42 studies, 29 species spanning the four macrophyte groups (i.e. brown, red, 

green algae and seagrasses) were examined encompassing the majority of the worlds 

temperate systems (Figure 2). Intraspecific differences in thermal physiology were found in 

90% of the identified studies. Brown macroalgae were overwhelmingly the most studied 

group (Figure 3a) (77% of total studies) with representative examples from the majority of 

the world’s temperate systems (E and W Atlantic; E and W Pacific; Indian Ocean). African 

examples were lacking both from the West African region and South Africa. Other seaweed 

groups were far less represented, with only two studies focusing on green and one on red 

macroalgae. Six studies focussed on seagrass but were limited to European populations (but 

see Jueterbock et al., 2016 for Europe vs. N American comparison) rather than populations 

within regions of greatest diversity such as the Indo-Pacific (Green and Short, 2003), and 

studies focused solely on the genus Zostera.  

The overwhelming number of studies investigated differences between only two study 

regions (Figure 3b). The geographic scale of investigated studies varied from 350 to 6000 

km (Figure 3c). In seaweeds it was most frequently 500 – 1499 km while the isolated nature 

of investigated seagrass meadows (Mediterranean vs North Sea) meant that sites were over 

> 4500 km apart. A common garden approach was by far the most frequently employed 

experimental design while only five studies utilised a transplant approach (Figure 3d) of 

which one was reciprocal, two were warm-to-cool and two cool-to-warm. Performance was 

directly assessed measuring growth or survivability in 53% of studies with the remainder 
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using proxies such as photosynthesis, metabolic rate or gene expression (Figure 3e). In 

common garden studies, treatments were either applied in a chronic or acute fashion which 

was generally reflective of the vertical position of the study species/population, either in the 

intertidal or subtidal. Chronic studies varied in their duration but were generally in the order 

of days and weeks, which are considerably shorter than typical durations of experiments on 

terrestrial plants, which are in the order of months and years (Franks et al., 2014).  

Across the studies there was a clear disparity between those investigating discrete warming 

events (i.e. marine heatwaves, for definition see Hobday et al., 2016) and those investigating 

gradual warming. Almost all seaweed studies (but see Bennett et al., 2015) were concerned 

with gradual warming or characterising the relationship between temperature and growth, or 

in intertidal species, investigating the capacity to tolerate acute temperature shocks 

mimicking the harsh conditions experienced during low tide emersion (e.g. Gerard and 

Dubois, 1988; Pearson et al., 2009). In contrast, seagrass studies almost solely dealt with 

the differential ability to tolerate discrete heatwave events (Figure 2f) (e.g. Gu et al., 2012). It 

is unlikely that this disparity in focus between the two groups is a product of differential 

resilience to either type of warming per se, as heatwave events are known to affect 

seaweeds (Dayton, 1985; Smale and Wernberg, 2013; Wernberg et al., 2013) and gradual 

decadal scale warming also affects seagrasses (Marba and Duarte, 2010). It is more likely 

due to the more conspicuous impacts of summer heatwaves on seagrass populations, which 

often exceed physiological tipping points (Orth et al., 2006; Waycott et al., 2009) and may 

interact with a range of climate and non-climate anthropogenic stressors. Seagrass-

dominated habitats are critically threatened in many regions and in ‘global crisis’ (Orth et al., 

2006), so understanding how different species and populations respond to heatwaves has 

attracted considerable research focus in recent years. 

Temperature variability influences macrophytes across all stages of their life cycle 

(Novaczek., 1984; Matson and Edwards, 2007). Therefore, differentiation in thermal 

physiology in seaweeds can occur at the macro and microscopic stages. While the vast 

majority of studies in our dataset focused on adult sporophytes, six also examined 

differential thermal physiology of microscopic stages. These studies reported both 

pronounced variability and little-to-no variability between populations. For example, Ecklonia 

radiata populations in Australia and New Zealand were found to have optimal performances 

reflective of those experienced by the environment in which they persist (Novaczek, 1984; 

Mohring et al., 2007) whereas no intraspecific variability in the gametophyte stage was 

reported for four kelp species in the northeast Atlantic (Bolton and Luning., 1982). Whether 
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such differences will be important in the context of species redistributions will depend on the 

comparative vulnerability of the life stages. If, for example, the sporophyte stage is most 

sensitive to warming then intraspecific variation in the microscopic stage will likely be less 

important in driving changes at the population level. However, vulnerability assessments 

across life stages are still lacking for most species (Novaczek., 1984; Matson and Edwards, 

2007). 

Disentangling Plasticity from Adaptation 

While the vast majority of studies observed clear differences in the thermal physiology, in 

most cases the underlying mechanism for such differences was assumed to be adaptation 

despite the experimental design (usually common garden with short acclimation times) often 

not allowing for definitive inferences to be made. In most cases the potential for intraspecific 

variation to be underpinned by plasticity was not considered. Transplants are seen as the 

most direct and effective method to determine adaptive variation (Kawecki and Ebert, 2004). 

When such approaches were employed variation in thermal phenotype was still observed. In 

range centre to range edge transplants (cool to warm conditions), which simulate warming 

scenarios, studies either found that central populations could not tolerate range edge 

conditions (e.g. Gerard and Dubois, 1987, Bennett et al., 2015) or performed poorer than 

local individuals (e.g. Saada et al., 2016).  

Despite often imposing acclimation periods under common conditions in order to eliminate 

artefacts of the thermal history experienced by each population, it is still difficult to 

unequivocally conclude a genetic origin for any observed differences because plasticity can 

be permanent or passed on to subsequent generations (Herman and Sultan, 2011).  Such 

‘transgenerational plasticity’ can mimic or obscure patterns of adaptation (Santon and Galen, 

1997; Agrawal, 1999). Even when common acclimation conditions are utilised over the entire 

life of an individual, transgenerational plasticity, from maternal effects or ‘epigenetics’, can 

be remarkably persistent (Zamer and Mangum, 1979; Schmitz and Ecker, 2012). This 

shortcoming can be overcome by rearing offspring from each population over several 

generations, under the same rearing conditions, and then perform transplant experiments or 

common garden experiments on F2/3 offspring (e.g. Kuo and Sanford, 2009). 

Two studies investigated differences in thermal tolerance on progeny of the target 

populations reared in common conditions which can conclusively disentangle plasticity from 

adaption. Gao et al. (2013) performed a warm to cool transplant between southern and 
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northern Japan on the commercially exploited kelp Undaria pinnatifida to determine if warm 

ecotypes could be used in farmed areas that have been affected by recent warming. The 

transplanted kelps were self-crossed with one another over three generations and common 

garden experiments were performed on the F3 offspring. They found the warm-cool 

transplants maintained their respective thermal physiological characteristics both in terms of 

higher survival at higher temperatures and higher growth. Similarly, Bolton (1983), took 

advantage of Ectocarpus siliculosus cultures taken throughout its range and held in common 

culture conditions for a number of years and found that despite long term incubation, warmer 

populations maintained a greater thermal tolerance and optimal growth at higher 

temperatures. 

Significance and Limitation of Findings 

The high proportion of studies that reported marked differences in thermal physiology 

between populations suggests that this pattern is widespread in marine macrophytes. Such 

differences combined with low dispersal could indicate that central populations may be 

vulnerable to future warming trends. While most studies do not effectively disentangle the 

underlying mechanisms, it is plausible to assume that adaptation plays an influential role. 

The fine scale genetic structuring observed for many species (e.g Valero et al., 2011; 

Robuchon et al., 2014) suggests that adaptation may be favoured, while experimental 

evidence also indicates that developmental plasticity and carry over effects do not drive 

differences in thermal phenotype along environmental gradients in seaweeds (Hays, 2007). 

Thus, central populations may be vulnerable to both gradual and acute warming trends. 

Even if intraspecific variability is a consequence of plasticity, the susceptibility of range 

centre populations to extreme temperatures experienced during heatwaves is still a cause 

for concern. Indeed, recent studies have directly highlighted central population vulnerability 

in marine macrophytes. For example, Bennett et al., (2015) showed that range centre and 

trailing edge populations of the fucoid, Scytothalia dorycarpa, in Western Australia share a 

thermal safety margin of 2.5 °C. Locations where this threshold was exceeded during the 

Ningaloo Niño heatwave in 2011 (Feng et al., 2013) experienced widespread population loss 

and shifts in community structure (Smale and Wernberg, 2013). Similarly, Saada et al., 

(2016) concluded that intraspecific differences in thermal tolerances of the intertidal fucoid, 

Fucus vesiculosus, may render central populations along the Iberian Peninsula vulnerable to 

warming. 
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In terrestrial systems researchers are beginning to directly incorporate intraspecific variation 

in thermal niche in predicting future species distributions (e0.g. O’Neil et al., 2008; Wang et 

al., 2010; Valledres et al., 2014; Martinez et al., 2015). By serendipitously using historic 

provenance data (Matyas, 1996) these studies find that incorporation of such variation is 

vital to accurately predict habitat suitability, with both more pessimistic (O’Neil et al., 2008) 

and optimistic (Pearman et al., 2010; Oney et al., 2013) predictions found. However, these 

efforts are currently restricted to terrestrial forests as outside of the large historic forestry 

provenance datasets the necessary information from transplants, provenances tests and 

common garden studies are lacking. In order for species response to warming to be more 

accurately predicted fine scale regional data are urgently needed.  

Whilst central population vulnerability is still poorly understood there is increasing debate 

relating to the feasibility of potential mitigation strategies. ‘Assisted migration’, whereby 

preadapted individuals are introduced to vulnerable populations from warmer parts of a 

species distribution, is gaining traction (Aitken et al., 2008). By introducing adaptive alleles to 

recipient populations, or simply increasing their frequency, it is anticipated that local thermal 

tolerances will be boosted preventing adaptive failure. Indeed, framework policies are 

already being developed in terrestrial forests (McLachlan et al., 2007; Aitken & Whitlock, 

2013; Williams & Dumroese, 2013). With regards to marine macrophytes, the concept of 

assisted migration is not new. Reforestation of seagrass meadows, which are experiencing 

widespread global habitat loss from a multitude of stressors (Orth et al., 2006), has been 

attempted many times, although only ~37% of restorations have been successful (Katwijk et 

al., 2016). Examples from seaweeds are distinctly lacking which may be due to the inherent 

logistical challenges associated with transplanting and maintaining seaweeds on rocky reefs, 

often in highly dynamic environments. However, recent reintroduction of the locally extinct 

fucoid, Phyllospora comosa, into the metropolitan waters of Sydney, Australia (Campbell et 

al., 2014) show that while more difficult than simple reseeding in terrestrial forests, 

restoration of marine macrophytes may be feasible. Assisted migration may also be a 

commercial consideration for marine macrophytes. In East Asia kelps are intensively farmed, 

while in Europe they are predominantly exploited from wild populations, although small scale 

commercial European kelp aquaculture is becoming increasingly common. As temperatures 

rise and yields fall, identifying warm tolerant strains may also be an effective management 

solution. Indeed, Asian Sacharina japonica farms are currently developing this approach in 

light of recent warming-induced crop failures (Pang et al., 2007; Liu & Pang, 2010; Gao et al. 

2013).  
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Molecular Mechanisms for Plasticity and Adaptation 

We identified a number of studies using gene expression to measure thermal tolerance. In 

seaweeds these studies investigated the differential upregulation of a handful of Heat Shock 

Proteins (Hsps) in response to common garden temperature stress. Studies reported clear 

differences in thermal set points in the expression profiles of Hsps depending on geographic 

location (Henkel et al., 2009; King et al., in review) which is indicative of local adaptation 

(Barua and Hackathon, 2004). For example, Henkel and Hofmann, (2008) observed greater 

temperatures of maximal expression and shutdown of Hsp70 to common garden 

temperature stress in the kelp, Egregia menziesii, along the west coast of N America. 

However, outside of these relatively simplistic approaches based on Hsp gene expression, 

mechanistic studies are lacking. There have been efforts to understand the transcriptomic 

responses to low tide emersion stress but these studies have been from a single location 

and used non NGS approaches such as cDNA microarrays and expressed sequence tag 

(Table 1) (Collen et al., 2007; Pearson et al., 2010). To date, no studies have employed 

RNAseq, which allows for quantification of the entire transcriptome, to determine how gene 

expression modulates differences in thermal tolerance, either in single populations or across 

regions. 

A more comprehensive understanding of how transcriptome-wide gene expression 

modulates thermal tolerance has been developed for seagrasses. Franssen et al (2011) 

subjected North Sea and Mediterranean populations of Z. marina to a similar heatwave 

scenario and measured transcriptomic response and recovery with RNAseq. They found 

gene expression profiles in response to heatwave stress were similar between populations, 

dominated by classic Hsps, but responses differed considerably during a recovery period. 

The transcriptomic response of warmer populations returned to control conditions almost 

immediately. Conversely, northern populations failed to recover and expressed genes 

involved in protein degradation, indicating that proteins were damaged irreversibly and 

needed to be removed from cells. Franssen et al (2011) coined the term ‘transcriptomic 

resilience’ to describe the ability to return gene expression to control levels. This pattern of 

transcriptomic resilience was subsequently reported for northern and southern populations of 

Z. marina along the US Eastern Seaboard (Jueterbock et al., 2016) and similar patterns can 

explain differential bleaching in coral (Seneca and Palumbi, 2015). As RNAseq becomes 

more commonly used in ecological genomics, transcriptomic resilience may emerge as an 

important driver of thermal divergence across other systems and taxa. 
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Marine macrophytes have received considerable attention from a phylogeographic and 

population genetic perspective where studies try to understand patterns of gene flow and the 

distribution of genetic diversity (e.g. Provan et al., 2005; Olsen et al., 2011; Coyer et al., 

2011; Diekmann and Serrao, 2011; Maneiro et al., 2011; Assis et al., 2013; Provan et al., 

2013; Neiva et al., 2016). There have also been efforts to understand how hybridisation can 

facilitate adaptation to challenging habitats (e.g. Coyer et al., 2006). However, these studies 

have utilised neutral markers in their approach and the functional basis for local adaptation 

have been rare. Despite coastal systems being earmarked as ideal candidates to “find the 

genes that matter in ecology” (Schmidt et al., 2008) our knowledge of the molecular 

processes underpinning thermal adaptation is distinctly lacking in marine macrophytes. We 

found no studies utilising NGS genome scans to identify candidate loci under selection in 

relation to temperature, or indeed any other environmental gradient. This is surprising as 

macrophytes are known to form a number of different environmental ecotypes (Eggert, 2012; 

Karsten, 2012) and searches for adaptive signatures have been conducted in both seagrass 

and seaweed research. For example, loci attributed to osmoregulation and desiccation have 

been identified as candidate genes under selection using pre NGS genome scans along 

depth and salinity gradients (Oetjen and Reusch, 2007; Coyer et al., 2011). Despite the 

potential for NGS genome scans to determine how adaptive variation is distributed 

throughout marine macrophyte ranges being previously voiced (Provan et al., 2013) the 

benefits in identifying signatures of selection that are afforded by such platforms are not 

being felt in general marine botanical research.  

No studies were conducted on DNA methylation (Box 1) most likely due to research on the 

epigenome being in its real infancy. However, some insight was found in the sequencing of 

the brown algae, Ectocarpus siliculosus that revealed an absence of detectable levels of 

cytosine methylation in its genome (Cock et al., 2010). Therefore, transgenerational 

epigenetics mediated through DNA methylation may not be an important mechanism in this 

group, although this requires confirmation. 

What can be learnt from other marine taxa? 

In lieu of relevant examples in marine macrophytes we draw upon evidence from other 

coastal marine taxa and ecosystems to examine the mechanisms known to influence 

thermal physiology.  
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Insights into how gene expression mediates thermal tolerance are emerging from other 

marine systems, aside from seagrasses. ‘Frontloading’ of Hsps and proteins involved in 

apoptosis regulation, tumour suppression, immune response and cell adhesion has been 

found to raise intraspecific thermal tolerance in corals and intertidal gastropods (Barshis et 

al., 2013; Gleason and Burton, 2015). The acclimation capacity of the transcriptomic 

response can also change between populations. Transplanting corals from stable to variable 

habitats causes a reduction in performance as patterns of gene expression cannot match 

resident populations. Conversely, in variable to stable transplants no reduction in 

performance is observed as full transcriptomic acclimation is achieved (Palumbi et al., 2014; 

Kenkel and Matz, 2016). To date, transplants have been based on variable and stable rock 

pools and along coastal depth gradients. However, if future studies are conducted on range 

edge and range centre populations the molecular basis for regional scale differences in 

thermal tolerance limits may be revealed.  

Recent genome scans have identified candidate genes under selection related to energy 

metabolism in red abalone, Haliotis rufescens, (Wit and Palumbi, 2013) and the bivalve, 

Macoma balthica (Pante et al., 2013), and heat shock proteins in the red band trout, 

Oncorhynchus mykiss (Narum et al., 2013a) in warmer environments. However, genome 

scans alone only identify genes of large effect. Identifying such genes is often not 

representative of the subtler changes in allele frequencies associated with local adaptation 

and also requires a priori knowledge of the selection pressure to imply any causation 

(Rellstab et al., 2015). Landscape and seascape genomics are emerging fields, derived from 

landscape (Manel et al., 2003) and seascape genetics (Galindo et al., 2006), that seek to 

address this by directly correlating allele frequencies with environmental variables that may 

be important drivers of patterns of local adaptation. For example, allele frequencies of the β-

galactosidase gene, which is known to play an important role in cold tolerance, in 

populations of American lobster, Homarus americanus, along the Atlantic coast of North 

America, were correlated with sea surface temperature (Benestan et al., 2016). The fields of 

landscape and seascape genomics are still in their infancy compared to independent 

genome scans but hold great promise in identifying which landscape variables influence the 

structuring of genetic variation (Meirmans, 2015; Riginos et al 2016). Moreover, they are 

only likely to become more frequently utilised not only due to NGS making greater numbers 

of markers available but also with great improvements in environmental datasets and their 

accessibility (Riginos et al., 2016). 

Towards a better Understanding of Plasticity and Adaptation 
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Ecological and genomic approaches both increase our understanding of adaptation and 

plasticity but from different perspectives. Genomic approaches seek to investigate the 

underlying process while ecological approaches seek to describe higher level patterns. In 

order to develop a holistic understanding of plasticity and adaptation, from the level of the 

genes through to population-level responses, the two approaches must be effectively 

combined. To achieve this, phenotypically rich data gathered from ecological studies and 

genotypically rich data from NGS genome scans should be integrated into an emerging field 

of quantitative genetics, which links genotype and phenotype in a meaningful way (Figure 4). 

In model organisms, this link could be made by crossing inbred pedigree lines of known 

genotype and phenotype. By scoring the phenotypes of F1 and F2 generations and 

associating this to genetic variation it is possible to identify Quantitative Trait Loci (QTL) 

responsible for phenotypic traits (Shrimpton and Robertson 1988; Mackay 1995, Erickson et 

al., 2004). However, pedigree crossing is a timely process and many species do not lend 

themselves to being bred over multiple generations in a laboratory environment (but see 

Everett and Seeb, 2014). Moreover, such studies do not reveal how traits respond to 

selection in the wild. More recently, the high density of markers provided by NGS has 

allowed Genome Wide Association studies (GWAS)  to be performed in wild populations (i.e. 

no pedigree information), of ecologically-important taxa. GWAS are similar to pedigree 

crosses in that they statistically associate genetic variation to scored phenotypic traits 

(Hayes and Goddard, 2010) and allow the polygenic basis underlying phenotype to be 

determined by analysing the joint effects of different allele frequency combinations (Berg and 

Coop, 2014). GWAS therefore provide an effective method to link phenotype to genotypic 

variation in ‘wild populations’ without the lengthy and iterative process of pedigree crosses 

(Stinchcombe and Hoekstra, 2008; Slate et al., 2010). For example, GWAs in wild 

populations of salmon, Salmo salar, have been used to effectively identify areas of the 

genome responsible for age of maturation (Barson et al., 2015) and age at which they return 

to freshwater to spawn (Johnston et al., 2014). However, wild GWA studies are still subject 

to the confounding effects of phenotypic plasticity, as determining whether the phenotype 

being scored is due to plasticity or adaption remains challenging. This leads to issues with 

identifying thermal phenotypes (along a latitudinal gradient for instance) and may be a 

reason why, to date, no study has linked thermal phenotype to genotype in this way (Porcelli 

et al., 2015).  

Plastic traits can be disentangled from adaptation using common garden and transplant 

studies (Table 1). Therefore, there is real scope to not only use ecological genomics and 
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common garden/transplant experiments to yield insights into adaptation, but to directly link 

phenotypic traits with the underlying genomic variation (de Villemereuil et al., 2016). By 

using the phenotypically rich data provided by ecological methods (e.g. thermal tolerance) 

and the large number of markers provided by genome scans it is possible to conduct 

effective GWA studies without the confounding effects of plasticity seen in wild populations 

(de Villemereuil et al., 2016). A single experiment would yield not only two lines of evidence 

(phenotypic and genotypic) to infer adaptation but allow both genotype and phenotype to be 

effectively linked together (Figure 4), which has been rarely achieved outside of model 

systems.  

Common garden experiments and genome scans can also be combined to investigate the 

epigenome, the basis of transgenerational plasticity. By using methylation sensitive enzymes 

the methylation state of the genome can be assessed. If this is conducted before and after a 

stimulus to a parental generation and methylation state of the genome is tracked in 

subsequent generations, it is possible to determine cause and effect relationships between 

loci methylation and change in phenotype. Schield et al., (2016) successfully used this 

‘EpiRADseq’ approach to identify shifts in the epigenome of the water flea, Daphnia 

ambigua, in response to fish predator cues. In the context of thermal physiology, 

transgenerational plasticity is particularly relevant for heatwaves. If a parental generation is 

subjected to a heatwave, epigenetic changes may make this population more resilient to 

future similar events. This increased resilience could then be inherited by subsequent 

generations (Salinas and Munch, 2012). Thus, such heritable plasticity could be a 

mechanism by which populations can rapidly acclimate to future warming. Seagrasses 

therefore present themselves as an ideal model group to test this owing to their asexual 

growth strategy and the current research interest surrounding their vulnerability to 

heatwaves. Asexual clonal shoots are genetically identical and so by using them in 

experimental and control groups any confounding effects that genotypic variation may have 

on interpretations are negated.    

As the potential for NGS is realised, novel integrations and approaches utilising this 

technology will also become apparent. For example, there has been recent discussion 

regarding using transcriptome profiling to measure thermal safety margins in situ (Evans and 

Hofman, 2012). While Hsp upregulation can be used to quantify thermal stress it is often 

reversible. Once temperatures cause irreversible damage to proteins, genes related to 

proteolysis and cell cycle regulation will be up upregulated (Kultz, 2003, 2005; Hofmann, 

2005). The identification of such transcripts may be used by managers to predict when 
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populations are at their upper tolerance limits and has recently been suggested as a strategy 

to predict bleaching events in corals (Evans and Hofmann, 2012). By using such an 

approach in populations during peak summer temperatures or during specific heatwave 

events it may be possible to determine how close populations are to their thermal limit, in 

situ, before major differences in physiology are apparent and population-level responses 

ensue.  

Conclusions  

We have shown that intraspecific variation in thermal niche is widespread in marine 

macrophytes. In order to directly assess what this means for central population vulnerability, 

targeted studies are required that effectively link these differences against future warming 

scenarios. Insight in this regard is being gained in terrestrial forests where large historic 

provenance datasets are facilitating the calibration of Environmental Niche Models (ENMs) 

(e.g. Aitken et al., 2008; O’Neil et al., 2008; Valladeras et al, 2014). However, similar 

advances in other systems are impeded by a lack of fine scale data. Therefore, a first step 

should be to test concepts across systems and collect relevant empirical data to allow for 

extrapolation from local to regional and global scales. In this way generalisations may be 

made that can be applied across phylogenies. It should also be stressed that this will still 

only be a first step in accurately assessing species responses as accurate predictions may 

also be further clouded by potential interacting effects of other anthropogenic factors (Crain 

et al., 2008). For example, the greater availability of CO2
- ions from ocean acidification may, 

to some degree, ameliorate negative effects of warming (Koch et al., 2013) and may give 

macrophytes a competitive edge over other species (Diaz-Pulido et al., 2011).  

We have also shown that NGS platforms have not yet been utilised in the study of marine 

macrophytes and, as a result, a mechanistic understanding of plasticity and adaptation 

remains elusive in these systems despite recent advances in coastal fauna. Given the 

literature indicates that variability in thermal physiology is seemingly commonplace in this 

group, and considering that forest-forming marine macrophytes are of considerable 

ecological and socioeconomic importance, they present themselves as excellent candidates 

to determine the molecular basis for thermal plasticity and adaptation. We also highlight that 

ecological and genomic techniques are often complementary to one another and by 

integrating these fields resources can be maximised and maximum insight gained. Such 

interdisciplinary experiments will elucidate patterns and processes across all levels of 
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biological organisation which will result in a more complete and holistic understanding of 

adaption and plasticity, bridging the gap between macroecology and ecological genomics. 
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FIGURE LEGENDS 

FIGURE 1: Predicted responses of low and high dispersing species to increases in temperature, at both the 

trailing edge and range-centre of their biogeographic distributions. Each oval represents a changing thermal 

niche at the trailing edge or range centre as warming progresses. Low dispersing sessile species (e.g. marine 

macrophytes, pictured) that exhibit intraspecific differentiation in thermal niche will not be able to disperse into 

future suitable niches and will become locally extirpated as warming progresses. This could see local extinctions 

at species trailing edge and range centre. In high dispersal or highly mobile species (e.g. fish, pictured) local 

extinctions at species trailing edges will occur but warm-tolerant climate migrants should be able to track 

suitable extant habitat by migrating or dispersing to different parts of their range resulting in species persistence 

at the range centre.
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FIGURE 2: Distribution of sampling sites of 42 studies (identified in this review) investigating differences in 

thermal phenotype of geographically separated macrophyte populations. Numbers in main map refer to specific 

geographic areas shown in greater detail below. Each data point represents an individual sampling site. Different 

colour data points indicate different taxonomic families. * Indicates images from authors. + Indicates images 

from Frances Bunker.
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FIGURE 3: Characteristics of experimental studies of intraspecific variation in thermal physiology of 

geographically separated macrophyte populations (n = 42 papers). CG = common garden experiment 

171x121mm (300 x 300 DPI).
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FIGURE 4: A) Current approach to measuring plasticity and adaptation. B) Potential for combination of 

ecological genomics and macroecology. C) Definitions of mechanistic understanding that can be gained using 

molecular tools and ecological techniques with examples or potential future uses. Coloured lines between 

ecological techniques and molecular tools indicates where combining approaches can lead to greater 

understanding. Rec trans = Reciprocal transplant, CGS = Common garden study.
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Table 1. Approaches to Measuring Plasticity and Adaptation 

Study Type Summary Advantage Disadvantage 

Measuring Ecological Pattern 

Common 
Garden 
Studies 
(CGS) 

Expose individuals to the 
same experimental 
manipulations in a 
common setting. 

 Can identify single 
variables as drivers for 
differences. 

 Comparatively cheap 
and simple. 

 May neglect potential 
effects from other 
environmental 
differences experienced 
between the tested 
populations. 

Transplant Relocate individuals or 
seeds from one 
population directly to the 
area of another 

 Incorporates all 
environmental variation 
between sites. 

 Difficult to disentangle 
co varying 
environmental factors. 

 Manpower, cost and 
logistical challenges. 

 Concerns regarding 
genetic contamination 

Multi-
generation 

Rear offspring from 
different populations 
over multiple 
generations. Conduct 
CGS or transplants on 
F2 or F3 offspring.  

 Can eliminate 
transgenerational 
plasticity. 

 Difficulties rearing 
marine species through 
their life cycle in aquaria. 
Requires long term 
(years) studies. 

Measuring Molecular Mechanism 

Gene Expression 

qPCR Uses number of PCR 
cycles to quantify mRNA 
against control. 

 Low cost 

 Least biased results 

 Limited to small number 
of genes (~30) 

cDNA 
Microarrays 

DNA probes printed onto 
‘chips’. Fluorescently 
tagged samples are 
allowed to bind to chip. 
Intensity of florescence 
used as proxy for 
expression. 

 Allows many genes to 
be quantified 

 Requires prior 
knowledge of sequence 

 Cannot discover new 
genes 

RNAseq NGS used to sequence 
the entire transcriptome. 

 Transcriptome wide 
quantification 

 Identifies transcripts 
with no prior knowledge 
of sequence 

 High cost 

 Requires high 
computing power 

 Expert bioinformatics 
required 

DNA sequences  

Genome 
scans 

Genotyping large 
numbers of Single 
Nucleotide 
Polymorphisms (SNPs) 
permits identification of 
SNP’s under selection. 

 In some cases outlier 

loci can be annotated to 

reveal potential 

ecological function. 

 Ecological association 

tests may permit 

identification of 

environmental drivers of 

selection 

 Only identifies genes of 

large effect and provides 

little insight into 

architecture of polygenic 

adaptation. 

 May confound multiple 

types of selection 

 Difficult to link 

signatures of selection 

to specific phenotypes. 
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Box 1. What are Adaptation and Plasticity? 

Adaptation occurs due to changes in allele frequencies, through natural 

selection, that results in a shift towards a local optimum for respective 

populations. This can act on pre-existing standing variation within each population 

or on new mutations (Hermisson and Penning, 2005). Alternatively, the structure 

of regulatory proteins can change resulting in new patterns of gene expression. 

This can result in certain genes being ‘switched’ on or off as well as altering the 

magnitude of expression, both of which can alter phenotype (McDonald et al., 

1977; Carroll, 2000).  

Phenotypic plasticity is the ability of a single genotype to modify its phenotype in 

response to changing conditions and can be modulated through changes in gene 

expression. ‘Epigenetic’ mechanisms such as histone modification, chromatin 

remodelling, small interfering RNA’s, and DNA methylation can change gene 

expression profiles, while not altering the underlying DNA sequence (Bossdorf et 

al., 2008; Kelly et al., 2012). Not all of these are reset in the next generation and 

can form the basis of transgenerational plasticity. The mechanisms underlying this 

non-DNA based inheritance are poorly understood but DNA methylation is 

emerging as a key route.  


