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Abstract 

The regulation of metabolic networks has been shown to be distributed and shared 

through the action of metabolic cycles. Biochemical cycles play important roles in 

maintaining flux and substrate availability for multiple pathways to supply cellular energy 

and contribute to dynamic stability. By understanding the cyclic and acyclic flows of 

matter through a network, we are closer to understanding how complex dynamic systems 

distribute flux along interconnected pathways. In this work, we have applied a cycle 

decomposition algorithm to a genome-scale metabolic model of Chlamydomonas 

reinhardtii to analyse how acetate supply affects the distribution of fluxes that sustain 

mailto:jean-marc.schwartz@manchester.ac.uk
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cellular activity. We examined the role of metabolic cycles which explain the down 

regulation of photosynthesis that is observed when cells are grown in the presence of 

acetate. Our results suggest that acetate modulates changes in global metabolism, with 

the pentose phosphate pathway, the Calvin-Benson cycle and mitochondrial respiration 

activity being affected whilst reducing photosynthesis. These results show how the 

decomposition of metabolic flux into cyclic and acyclic components helps to understand 

the impact of metabolic cycling on organismal behaviour at the genome scale. 

 

Keywords: glycolysis, mixotrophic growth, metabolic model, photosynthesis, green algae, 

flux balance analysis, acetate metabolism, cyclic electron flow. 
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Introduction 

It has been widely documented that cyclic structures play a central role in the 

homeostasis of biological systems (Qian & Beard, 2006; Cornish-Bowden & Cárdenas, 

2008). For example, the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle, is 

one of the most fundamental cycles for many species. The TCA cycle can be thought of 

as starting with the reaction of acetyl-CoA with oxaloacetate (OAA) producing citrate. 

With every turn of the cycle, the substrate OAA, a 4-carbon compound, is recycled and 

can therefore be used again for subsequent cycles. As with the TCA cycle, cycles play a 

pivotal role of retaining substrate matter and maintaining flux availability for multiple 

pathways to supply the cell with energy. In addition, cycles help maintain the 

organisational characteristics of a system, contributing to dynamic stability (Reznik & 

Segrè, 2010). 

 

There are several ways to define “cycles” in networks or graphs, depending on the 

representation used. In metabolic network analysis, “substrate cycles” are generally 

defined as combinations of catabolic and anabolic reactions that interconvert one or 

more substrates into each other, resulting in no net production of substrate but 

potentially in the conversion of cofactors (Leiser & Blum, 1987). They can be enumerated 

in metabolic networks by techniques based on stoichiometric representations such as 

elementary mode and extreme pathways analysis (Schuster et al., 2000; Price et al., 2002; 

Gebauer et al., 2012). Kritz et al. (2010) introduced a way of analysing the cycling of 

matter in metabolic networks by adapting a pre-existing algorithm used to inspect cycles 

in ecological food webs (Ulanowicz, 1983). The adapted algorithm represents the 

metabolic network as a bipartite graph of metabolites and reactions; it first enumerates 

all graph-theoretical cycles in the network, then uses flux values associated to arcs to 
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iteratively extract the cycles from the graph, leaving a residual acyclic graph in the case 

of an open network. Kritz et al. (2010) were able to observe the metabolic changes that 

occur with gene knockout experiments, unveiling novel hypotheses on how organismal 

growth can be optimised. 

 

Chlamydomonas reinhardtii is a unicellular green algae which has been a model organism 

for the study of photosynthesis and cellular function for the past 50 years (Harris, 2001). 

Recent concerns over fossil fuel depletion have led to research into the use of micro-

algae such as C. reinhardtii to produce sustainable biofuels (Hannon et al., 2010). The 

cells of this alga fix carbon from the atmosphere via the Calvin-Benson cycle, the 

products of which can be channelled into tri-acyl glyceride lipid bodies, providing the 

building blocks for biofuel (Merchant et al., 2012). The high energy requirement of this 

process is met by light capture in the photosynthetic reactions. Photosynthesis is a highly 

tuned system and is one of the most regulated processes in nature. To improve biofuel 

yields from micro-algae, we need to fully understand the connections between 

photosynthesis and metabolism. 

 

Here, we apply the abovementioned cycle decomposition methodology to investigate the 

cyclic flux distribution in C. reinhardtii, using a published and validated genome-scale 

metabolic model (GEM) of the organism, iRC1080 (Chang et al., 2011), in an attempt to 

present a comprehensive description of cyclic and acyclic metabolic fluxes for the 

organism. Using this methodology, we derive novel hypotheses that explain the down-

regulation of photosynthesis, which has been widely observed when cells experience a 

change from phototrophic to mixotrophic growth (Johnson et al., 2014b). We show that 

acetate addition results in the modulation of key glycolytic and mitochondrial reactions, 
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tipping the requirement of reducing power and ATP that feeds back on the 

photosynthetic reactions. 

 

Methods 

The procedure used for the decomposition of metabolic fluxes into cyclic and acyclic 

components consists of two distinct steps. The first is the extraction of a mass-consistent 

subset of the iRC1080 model, whilst the second is the enumeration of cycles and 

decomposition of flux. 

 

The metabolic network is represented by a directed bipartite graph in which metabolites 

and reactions are represented by distinct nodes, belonging to two disjoint sets that are 

connected by arcs between nodes of each set. An arc from a metabolite node to a 

reaction node indicates that the metabolite is a substrate for that reaction. In contrast, an 

arc from a reaction node to a metabolite node indicates that the metabolite is a product 

of that reaction. Each reaction may therefore have one or multiple associated substrates 

and products, and each metabolite may be associated with multiple reactions. The 

bipartite graph representation contains the same information about the metabolic 

network as a hypergraph (Klamt et al., 2009). This is similar to the representation used by 

Petri nets, which have been frequently applied to metabolic networks (Koch et al., 2005; 

Rohr et al., 2010; Zevedai-Oancea & Schuster, 2011). 

 

A mass flux is then associated to each arc of the bipartite graph. The mass flux takes into 

account the mass, stoichiometric coefficient and molar fluxes (e.g. obtained from Flux 

Balance Analysis) for each species involved in the reaction. The main reason for using 

mass fluxes rather than molar fluxes is that the cycle decomposition algorithm requires 
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quantities that are conserved at nodes, whereas molar fluxes are not conserved. For 

example, when fructose 1,6-biphosphate is broken down into glyceraldehyde 3-

phosphate and dihydroxyacetone phosphate, 1 mole is transformed into 2 moles, thus 

the number of moles is not conserved; nevertheless the sum of masses of glyceraldehyde 

3-phosphate and dihydroxyacetone phosphate is equal to the mass of fructose 1,6-

biphosphate. 

 

In order to assign a mass flux to every arc in the metabolic network, certain reactions had 

to be modified in the representation. Generic compounds such as glycogen and starch 

are composed of a core structure associated with a varying number of branched repeats, 

hence it is impossible to attribute a definite mass value for such generic compounds – 

they can have distinct masses in distinct occurrences. In addition to generic compounds, 

proteins and protein complexes described in biochemical reactions can create apparent 

mass imbalances, despite not being part of the metabolic network. Similarly, transfer 

(tRNA)-amino-acid complexes, present in GEMs, can introduce apparent mass 

inconsistencies. In addition, smaller imbalances can appear when the chemical description 

of substrates and products are associated with different pH levels, resulting in an 

inconsistency in the number of hydrogen atoms. 

 

Mass imbalances originating from the apparent imbalances described above were solved 

locally, i.e. by correcting the mass of the species to eliminate the apparent mass 

imbalance, as described in Kritz et al. (2010). Moreover, the most ubiquitous cofactors 

were left out from our representation and replaced by gateways (Supplementary file 1, 

Table S1), except in the thykaloid lumen where reactions were left unchanged. Gateways 

are model artefacts and can be understood as channels for exchanging matter with the 
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environment. The presence of cofactors has the potential to create spurious network 

connections, as cofactors are involved in multiple reactions that are not necessarily co-

located in space and time. In each occurrence of a cofactor molecule (water, for instance) 

in the model, it was replaced by a gateway specific to the corresponding reaction. This 

procedure eliminates the spurious connections between the water species and all 

reactions in which it appears. 

 

Parsimonious Flux Balance Analysis (pFBA) was used to calculate the molar flux in each 

reaction, which was then converted into a mass flux. pFBA finds a flux distribution that 

optimises the objective function and at the same time minimises the total sum of fluxes 

(Lewis et al., 2010). This implies that reactions that aren’t needed to contribute to the 

optimal objective have a flux of zero, and that the flux in internal loops is minimised. This 

technique is widely used to avoid the degeneracy of standard FBA solutions and was 

shown to offer highly reliable results when compared to experimentally determined fluxes 

(Machado & Herrgård, 2014). pFBA was performed using the COBRA toolbox (Becker et 

al., 2007) in conditions of phototrophic growth (growth using only light as an energy 

source) and mixotrophic growth (growth using both light and acetate, an organic carbon 

source). To ensure the set of fluxes for each condition were representative of 

physiological traits, further constraints were applied to mimic experimental conditions 

with regards to biomass, known carbon metabolism pathways and experimentally 

determined photosynthetic rates. The scripts used to calculate the flux distributions were 

published in the supplementary material of Chapman et al. (2015), where the exact 

constraints applied to mimic experimental conditions can be found. 
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Tarjan’s algorithm (Tarjan, 1973) was used to enumerate all cycles in the bipartite graph. 

The algorithm seeks to enumerate cycles by traversing the network along an elementary 

path. An elementary path can be described as a path in which there is no repetition of 

any node. Following identification, the cycle is enumerated and the algorithm continues 

by backtracking to the previous node, following another arc to traverse. The process is 

repeated until all cycles have been enumerated. Tarjan’s algorithm provides the most 

suitable method for cycle enumeration with regards to computational efficiency, due to 

pruning methods that avoid searching in already traversed paths that would return no 

new cycles, reducing the search space and increasing algorithm efficiency. Antiporter 

reactions were split into two separate transport reactions before running Tarjan’s 

algorithm in order to prevent connections between compounds located in the same 

compartment where no actual transfer of mass occurs (Supplementary file 1, Table S2). 

 

The final phase was the cyclic decomposition of the flux. The complete algorithm was 

described in Kritz et al. (2010) and is here summarised briefly. First, a critical arc is 

identified in the network, defined as the arc bearing a minimal mass flux among all 

cycles. The set of all cycles sharing this critical arc is then found and defined as its nexus. 

Next, the probability of mass flux entering any of the nexus cycles via any node adjacent 

to the critical arc is calculated, and the mass flux is distributed among the nexus cycles in 

proportion to their respective circuit probability. Then each cycle belonging to the nexus 

is removed by subtracting its flux from the network. The algorithm then reiterates by 

searching for the next critical arc and repeats the process until the resulting network is 

void of cycles. 

 

Results 
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Correction of mass inconsistencies 

The metabolic model iRC1080 representing the model organism C. reinhardtii was used 

for this work (Chang et al., 2011). The molecular mass of each compound was calculated 

from their chemical formula published in the supplementary material of the original 

iRC1080 paper (Chang et al., 2011). Some species are attached to side chains 

(represented by an 'R' in the formula) of unknown masses, allowing us to adjust, if 

needed, the overall species mass, to balance a specific reaction. 

Some specific examples of correction methodology are described below. 

 

Example 1: Mass inconsistency due to an unknown protein mass.  

Consider R_CEF: this reaction is an important photosynthetic regulatory mechanism in 

which electrons are re-directed about photosystem I, resulting in increased ATP 

production. 

R_CEF: fdxrd[u] + (2) h[h] + (2) pccu2p[u] --> fdxox[u] + (4) h[u] + (2) pccu1p[u] 

This reaction was imbalanced by 412.56 g/mol, attributed to a substrate. Upon closer 

inspection of the reaction, it was apparent that one of the substrates, plastocyanin 

(pccu2p[u]), a protein present in the reactions of photosynthesis, was without a formula 

and without a mass (while the mass of ferredoxin was properly accounted for). We have 

attributed to plastocyanin the mass necessary to balance the corresponding reaction. 

 

Example 2. Mass inconsistency due to generic compounds. 

Consider R_3HAD60: this reaction is 3-hydroxyacyl-[acyl-carrier-protein] dehydratase, 

located in the chloroplast catalysing the following fatty acid biosynthesis reaction. 

R_3HAD60: 3hhexACP <==> thex2eACP + h2o 
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3hhexACP[h] is 3-Hydroxyhexanoyl-[acyl-carrier protein] (species formula = C6H11O2SR); 

thex2eACP is trans-Hex-2-enoyl-[acyl-carrier protein] (species formula = C6H9OSR). 

Both formulae for the reactant and species contain an ‘R’ indicating a side chain that 

corresponds to an unknown number of repeating units associated to each residue 

molecule, therefore the mass of this generic species can not be accurately specified. We 

have attributed to generic compounds the specific mass values needed to balance the 

reactions in which they occur. 

 

Example 3. Correction due to missing protons. 

Consider R_CCP2m, a cytochrome c peroxidase mitochondrial reaction. 

R_CCP2m: 2 M_focytc_m + M_h2o2_m <==> 2 M_ficytc_m + 2 M_h2o_m 

where M_focytc_m is ferrocytochrome c, mass 908.82 g/mol; M_h2o2_m is hydrogen 

peroxide, mass 34.01 g/mol; M_ficytc_m is ferricytochrome c, mass 908.82 g/mol; 

M_h2o_m is water, mass 18.01 g/mol. We needed to add a small gateway to the left side, 

to achieve mass balance. This small gateway corresponds to the mass of two missing 

protons in the substrates. Small gateways, in general, are needed to adjust the masses of 

missing protons, due to reaction description in distinct protonation states.  

 

Enumeration of cycles 

We first applied parsimonious Flux Balance Analysis to the iRC1080 model in order to 

obtain the molar fluxes (mmol/gDW/h) under mixotrophic and phototrophic conditions. 

Then, we calculated mass fluxes (mg/gDW/h) and applied the decomposition algorithm 

to the non-zero flux sub-networks under these growth conditions. We have considered in 

our calculations only mass fluxes ≥ 0.0001 to filter out numerical noise. The first step of 

cycle decomposition corresponds to cycle enumeration, and we performed this analysis 
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only to four sub-models of interest because of their importance in housing reactions 

belonging to central carbon metabolism: the thylakoid lumen, chloroplast, mitochondria, 

and a sub-model composed by reactions and substrates in all three. The restriction to 

sub-models is operationally important because the number of cycles become too large 

and not manageable for the complete network. The numbers of cycles obtained in these 

sub-models under the two growth conditions of interest are shown in Table 1 and the 

full lists of cycles are found in Supplementary files 2 and 3. 

 

Cycle decomposition reveals acetate modulates changes in TCA flux and mitochondrial 

respiration 

The lists of cycles and their associated flux after decomposition following Kritz et al.’s 

(2010) algorithm are found in Supplementary files 4 and 5. We first consider cycles 

appearing in the mitochondrion due to its importance in metabolism. The mitochondrion 

is the location of the TCA cycle and the respiratory electron transport chain providing a 

major source of ATP to fuel metabolism. We observe 3 cycles in the mitochondrion being 

common to both phototrophic and mixotrophic conditions, 3 cycles unique to 

phototrophic growth and 2 unique mixotrophic cycles. The unique cycle attributable to 

phototrophic metabolism which carries the largest mass flux involve pyruvate and lactate 

metabolism (mass_flux 239) (Figure 1a). The other two cycles unique to phototrophic 

conditions involve the cycling of glutamate and 2-oxoglutarate (mass_flux 1) (Figure 1b) 

and a cycle involving pyruvate and 2-oxoglutarate metabolism (mass_flux 2) (Figure 1c). 

In mixotrophic conditions the unique cycle carrying the greatest mass flux involves the 

mitochondrial respiratory electron transport chain (mass_flux 1244). This cycle involves the 

continued recycling of ubiquinone (M_q8) and ubiquinol (M_q8h2), the two key 

components involved in facilitating the electron transport between protein complexes, to 
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generate ATP (Figure 2). Associated to this cycle are the reactions of ubiquinone 

oxidoreductase Complex I (R_NADHOR) and ubiquinol-cytochrome c oxidoreductase 

Complex III (R_CYOR(q8)). This quinone pool accepts and donates electrons and protons 

(H+) to appropriate acceptor molecules. Coupled to the flux of electrons, protons are 

pumped out of the mitochondrion, resulting in the generation of a proton-motive force 

to drive ATP synthesis (Chaban et al., 2014). 

 

 

Inspections of the residual acyclic graphs for mixotrophic growth suggest that acetate is 

directly transported into the mitochondrion, and ultimately branched towards the 

reactions of gluconeogenesis replacing the need of pyruvate. In this scenario, pyruvate 

was channelled into other pathways such as valine, formate and fatty acid metabolism 

(Supplementary file 1, Table S3). 

The unveiled cycles can feed-forward to enhance other cycles downstream in metabolism. 

Phototrophic cycles have shown that increased flux through pyruvate metabolism and its 

entry into the TCA cycle allows for the production of TCA cycle intermediates in excess, 

which was otherwise redundant in the mixotrophic case. Instead, cycling components of 

the mitochondrial electron transport chain, which are active under mixotrophic growth, 

are otherwise redundant in phototrophic metabolism and it is only with cyclic 

decomposition that these perturbations can be analysed. 

 

Cycles within the thylakoid lumen reveal an increased cycling of ascorbate and increased 

flux carried through the photosystem II reaction associated with phototrophic growth 

Our next analysis considered the cycles within the thylakoid lumen. This sub-

compartment of the chloroplast houses the light driven electron transport reactions of 
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photosynthesis. We found no unique cycle associated with the mixotrophic condition but 

16 cycles were unique to phototrophic growth and 4 cycles were common to both 

conditions. The highest scoring unique phototrophic cycle (mass_flux 0.019) involved 

ascorbate metabolism, consisting of the cycling of ascorbate (M_ascb) by the 

violaxanthin:ascorbate reductase reaction (R_VIOXANOR), resulting in the re-oxidation of 

ascorbate (M_dhdascb) (Figure 3a). This cycle describes part of the xanthophyll cycle, a 

well-known photo-protective cycle for plants and green algae to adapt and maintain 

efficient photosynthesis under fluctuating light conditions (Jahns and Holzwarth, 2012). In 

addition, ascorbate was involved in 9 other cycles carrying a much lower mass flux of 

0.002. The remaining 6 cycles all involved components of the photosynthetic electron 

transport chain associated with carotenoid biosynthesis with the highest mass flux being 

0.0002 as seen in Figure 3b. 

 

 

The 4 cycles common to both conditions all involved cycling of matter through the 

reactions of photosynthetic electron transport involving both photosystems I and II. This 

suggests the importance of both photosystems to support both phototrophic and 

mixotrophic biomass. Furthermore, the finding that flux through part of the xanthophyll 

cycle was observed with phototrophic simulations is a proof of principle that cyclic 

decomposition can be used to unveil important biological cycles otherwise ignored by 

stoichiometric analysis alone.  

 

Acetate metabolism results in activation of the oxidative pentose phosphate pathway 

rather than glycolysis 
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To gain a further understanding of cycles across compartments, we expanded the analysis 

to include the mitochondria, thylakoid lumen and chloroplast compartments together. 

The addition of the chloroplast, the largest organelle in C. reinhardtii, resulted in a vast 

increase in the number of unique cycles for both phototrophic and mixotrophic 

conditions (5099 and 1621 cycles respectively). Only 52 cycles were found to be common 

to both growth regimes.  

For both conditions, the cycle carrying the greatest mass flux included the Calvin-Benson 

cycle (Figure 4a) associated with different glycolytic reactions. The occurrence of the 

Calvin-Benson cycle intermediates (D-ribulose 1,5-bisphosphate, ribulose 5-phosphate) 

was used as an indicator of the importance of the Calvin-Benson cycle for each growth 

regime. Out of these common cycles for phototrophic and mixotrophic conditions, the 

cycles carrying the greatest mass fluxes (10275 and 2958) both involved important 

photosynthetic complexes (Figure 4). 

 

The occurrence of the Calvin-Benson cycle enzyme RuBisCo (ribulose bisphosphate 

carboxylase) was used as an indicator of the importance of the Calvin-Benson cycle for 

each growth regime. Out of the 5099 unique phototrophic cycles, 5079 cycles (99.6 %) 

contained the classic Calvin-Benson cycle enzyme RuBisCo. The cycle to carry the largest 

mass flux (322) was also associated with RuBisCo combined with reactions of 

gluconeogenesis (Figure 5a).  

 

There were 1062 unique mixotrophic cycles that contained RuBisCo, or 20.8% of the 

unique mixotrophic cycles, suggesting a reduced importance of a fully operational Calvin-

Benson cycle under mixotrophic metabolism. It is apparent that cells undergoing 
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mixotrophic growth on acetate and CO2 do exhibit a preference for acetate metabolism 

over CO2 sequestration, but do utilise both carbon sources nevertheless. The fact that we 

were able to observe ~20% cycles involving RuBisCo is of much interest, since FBA 

predicted inactivity of this enzyme under mixotrophic conditions (Chapman et al., 2015), 

even though carbon fixation by RuBisCo is seen experimentally in mixotrophic conditions 

(Johnson et al., 2014; Chapman et al., 2015). This finding highlights the added value of 

cyclic decomposition following FBA. 

 

The cycle to carry the greatest mass flux for mixotrophic metabolism, when the 

mitochondria, thylakoid lumen and chloroplast compartment were considered, consisted 

of the cycling of oxaloacetate, with the involvement with a membrane transporter that 

transports oxaloacetate between the cytosol and mitochondria, in exchange for malate 

(mass flux 354). Mixotrophic analysis suggested a prominent occurrence of the oxidative 

pentose phosphate (OPPP) cycle in carbon metabolism. The OPPP results in the synthesis 

of carbon skeletons for nucleotide synthesis and provides a source of reductant in the 

form of NAPDH for fatty-acid synthesis. Sedoheptulose 7-phosphate (S7P) (M_s7p, Fig. 

5b) is the key metabolite used for nucleotide biosynthesis by the reductive steps of the 

PPP and sugar re-entry into the Calvin-Benson cycle (Kruger & Von Schaewen, 2003) 

(Figure 4b). As seen in Table 2, the proportion of cycles containing S7P was greater for 

mixotrophic growth, 61 % (987 cycles), than for phototrophic growth, 37 % (1894 cycles). 

 

When Figure 5 (a) and (b) are compared, the presence of metabolites resulting from 

glycolysis only appears in the cycle carrying the highest mass flux for phototrophic 

growth, suggesting an important role of glycolysis in mixotrophic metabolism. To further 

investigate the functioning of glycolysis associated with each growth condition, we 
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looked at the reaction R_GAPDH(nadp), which is responsible for the production of triose 

phosphate and NADP from 3-phospho-D-glyceroyl in the chloroplast, as an indicator of 

glycolytic activity. Occurrence of this key glycolytic node shows a 43.1% increase 

associated with phototrophic metabolism (Table 2). These results suggest that acetate has 

the effect of increasing OPPP activity, whilst decreasing reactions associated with the 

glycolytic pathway. 

 

Out of the 52 cycles common to both growth conditions, there were 4 cycles with large 

mass flux differences between the two conditions. Figure 6 (a) and (b) displays cycles that 

increased as a result of mixotrophic growth whilst Figure 6 (c) and (d) displays cycles that 

increased with phototrophic growth. Cycles with the largest absolute difference with 

respect to mixotrophic metabolism involve glutamate (M_glu) and galactose synthesis 

(m_GAL) 1500 % increase), and carbon assimilation into the OPPP to produce the 

intermediate sugars erythrose 4-phosphate (M_e4p), sedoheptulose 7-phosphate (M_s7p) 

and sedoheptulose 1,7-bisphosphate (M_s17bp) (132 % increase). 

Phototrophic metabolism resulted in increasing matter being cycled through reactions 

involving pyruvate metabolism within the mitochondrion and an increased shuttling of 

malate out of the mitochondria antiporter (R_MALOAATm) synchronised with the import 

of oxaloacetate, representing a 433 % and 15 % increase respectively. These results 

collectively suggest that both phototrophic and mixotrophic growth are able to channel 

photosynthate towards the OPPP and to metabolise pyruvate into alternative pathways as 

and when needed. 
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Discussion  

The main objective of this research was to investigate metabolic cycles occurring as a 

result of altering the growth conditions of the model organism C. reinhardtii. The 

decomposition of metabolic flux into cyclic and acyclic components, as introduced by 

Kritz et al. (2010), gives a finer-grained view of the cycles of metabolic matter than more 

traditional stoichiometric analysis methods. We were able to describe the interlocking of 

different cycles and how their structure and activity is affected by changes in the growth 

environment. We showed that the presence of acetate in the growth medium results in a 

fundamental change in the primary routes of carbon metabolism, which feeds back into 

the reactions of photosynthesis.  

 

To understand the effect of acetate assimilation on overall metabolism, it is first 

important to consider the cycles unveiled in phototrophic conditions. Phototrophic 

cultures fix CO2 into triose phosphate. Triose phosphate is incorporated into metabolism 

by the reactions of gluconeogenesis to generate hexose sugars, which can be stored as 

starch reserves. In times of need, these reserves can be degraded by glycolytic pathways 

to release ATP. Glycolysis is compartmentalised in C. reinhardtii with the upper half 

occurring in the chloroplast and the lower half in the cytosol (Kruger and von Schaewen, 

2003). Our analysis revealed a positive feedback loop commencing with the fixation of 

CO2 and culminating with an increased pyruvate cycling (Figure 1a) and oxoglutarate 

cycling (Figure 1b and c). The role of oxogluterate is well characterised in the literature, 

and known for its essential role of incorporating ammonia into amino acids in the 

chloroplast, driven by photosynthesis (Paul and Foyer, 2001). The increased cycling of 

reduced and oxidised plastoquinone (Figure 3b) ensures a constant traffic of electrons 

through the photosynthetic transport chain, specifically though PSII, the photosystem 
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responsible for oxygen evolution. This cycle is therefore closely associated to the cycle 

observed in Figure 4a: the products of photosynthesis, ATP and NADPH are utilised by 

the Calvin-Benson cycle for the fixing of CO2 and incorporation of photosynthate into 

gluconeogenesis. An increased flux of glycolysis would ensure a constant production of 

pyruvate, maintaining substrate material required for continued TCA activity. As a result, 

flux is seen to enhance further cycling of TCA intermediates, malate, citrate and 

oxaloacetate finally resulting in an increased flux of malate out of the mitochondria 

associated with an import of oxaloacetate to continue the TCA cycle, allowing the 

organism to utilise malate elsewhere.  

 

For mixotrophic cultures, perturbations in the environmental conditions by the addition of 

acetate have a profound effect on metabolism, as unveiled by cyclic decomposition. We 

showed that mixotrophic growth results in an increased number of cycles involving the 

OPPP intermediates, ultimately enhancing further cycles involving mitochondrial 

respiration whilst reducing the flux associated with carbon fixation, reducing the 

requirement of NAPDH. The OPPP can be thought of as a carbon sink, channelling 

photosynthate into nucleotide synthesis, which explains associated increases in both 

growth rate and biomass observed with a mixotrophic growth regime. The PPP occurs in 

two steps: a reductive and an oxidative step. The oxidative PPP results in the production 

of NAPDH, without any net gain of ATP (Kruger and von Schaewen, 2003). NAPDH is an 

electron donor that provides a source of electrons in the mitochondrion to sustain 

electron transfer during respiration (Sandmann & Malkin, 1983). The continual cycling of 

reduced and oxidised ubiquinone ensures a faster rate of electron acceptance and proton 

migration to prevent any toxic accumulation of NADPH. Here we see that activation of 

the OPPP occurs as carbon fixation into the Calvin-Benson cycle is reduced, explaining a 
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down-regulation of photosynthesis, and furthermore initiates a tight link with the 

mitochondrial respiratory electron chain. Figure 6b suggests the OPPP is not a unique 

attribute associated with mixotrophic growth, as phototrophic simulations also reveal the 

channelling of material into these pathways, but at reduced rates. 

 

An updated metabolic model of C. reinhardtii (iCre1355) was recently published (Imam et 

al., 2015) which showed a marked improvement when predicting maximum TAG yields in 

comparison to iCR1080. With regards to growth rates, iCre1355 showed no improvement 

over iCR1080 unless nitrogen starvation is considered. Here, iCre1355 focused specifically 

on nitrogen starvation and changes of light regime on growth. As such, iCre1355 

represents a vast improvement over iCR1080 when nitrogen metabolism (depletion) and 

TAG accumulation are considered. Nevertheless the study we present follows on from 

previous work in which we are investigating why acetate represses photosynthesis, a very 

distinct question to one against which iCre1355 was validated. Upon closer comparison of 

iCR1080 and iCre1355, it appears the photosynthetic reactions of iCR1080 and iCre1355 

are identical and both include the CEF reaction. This piece of research follows on from 

published work made with iCR1080, and as such we noted and corrected multiple 

erroneous reactions associated with CEF and the movement of photons from the stroma 

to the lumen that occurs as a result of CEF (Chapman et al. 2015). Since we had already 

corrected for these key reactions, we decided it best to keep with iCr1080, as we had 

already made these necessary adjustments with the reactions of photosynthesis and a 

true representation of these reactions is critical to our study on why acetate represses 

photosynthesis. 
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There are other possible representations of metabolic networks for the enumeration of 

feasible paths or cycles. Arita (2004) linked metabolic compounds by taking into account 

carbon atom paths, in order to avoid spurious connections between metabolites that did 

not share any atomic connections. The same property is achieved in our representation 

by taking into account the mass of compounds: this guarantees that only mass-

conserving paths are allowed, therefore no connection is possible between compounds 

that do no share any atomic connection. Elementary Flux Modes (EFM) are another 

extremely useful representation for metabolic networks. Gebauer et al. (2012) 

demonstrated that it is possible to enumerate all substrate cycles in a genome-scale 

network using EFMs, but an additional algorithm is needed to quantify their flux level. We 

previously published an algorithm towards that aim (Schwartz et al., 2006), however that 

algorithm did not scale up well in large networks and tended not to converge in 

networks containing cycles. Kritz et al.’s (2010) algorithm, on which this current work is 

based, addresses both problems: it works efficiently in genome-scale networks as shown 

by our results, and it is furthermore applicable to graphs containing cycles. It is worth 

noting that substrate cycles allow an overall net conversion of cofactors but no net 

conversion of metabolic substrates (Gebauer et al., 2012), whereas the cycles found by 

the Kritz algorithm are graph-theoretical cycles that can exchange cofactors and 

substrates with other reactions. Due to the combinatorial nature of the network, the 

results can contain highly similar cycles that only differ by a few reactions. The same 

property is observed with EFMs, which led to the development of methods to classify 

EFMs based on common sets of reactions they contain in order to facilitate their 

biological interpretation (Pérès et al. 2011). We envisage that similar methods could be 

developed for cycles in the future. 
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We have unveiled cycles that play fundamental roles in adapting to changes in 

environmental conditions and explain known algal physiology. We were able to show a 

feedback loop existing in the presence of acetate, resulting in a decrease of glycolysis 

and an increase in or activation of the OPPP. These changes in carbon metabolism 

pathways all have implications on levels of ATP and NAPDH in the cell, which ultimately 

feed deeper into the respiratory pathways to ultimately reduce photosynthesis. Using 

cyclic decomposition analysis, we have unveiled novel theoretical cycles that could not be 

otherwise detected. This methodology provides a stronger and more comprehensive 

method to analyse the metabolism of any GEM, as we have shown using C. reinhardtii as 

an example. 
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Figure 1. Cycles unique to phototrophic conditions in the mitochondrion: (a) pyruvate 

regeneration, (b) pyruvate recycling linked to 2-oxogluterate recycling and (c) glutamate 

and 2-oxogluterate cycling. Species starting with ‘R_’ indicate reactions whilst ‘M_’ 

indicate metabolites. Abbreviations: 23dhmb: 2,3-dihydroxy-3-methylbutanoate, 3mob: 3-

methyl-2-oxobutanoate, AAT, alanine aminotransferase, alac_S: 2-acetolactate, BCTA(val): 

branched-chain-amino-acid transaminase (valine forming), akg: 2-oxoglutarate, D-LACDH: 

D-lactate dehydrogenase, DMHL: 2,3-dihydroxy-3-methylbutanoate hydro-lyase, DMOR: 

2,3-dihydroxy-3-methylbutanoate NADP+ oxidoreductase (isomerizing), glu: Glutamate, 

lac-D: lactate; LDH: lactate dehydrogenase; PPATD: pyruvate acetaldehydetransferase 

(decarboxylating) pyr: pyruvate. 
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Figure 2. Mixotrophic cycle carrying the greatest mass flux within the mitochondrion. 

Species starting with ‘R_’ indicate reactions whilst those with  ‘M_’ indicate metabolites. 

Abbreviations: q8: ubiquinone; q8h2: ubiquinol; NADHOR: ubiquinone oxidoreductase 

complex I; CYOR: ubiquinol-cytochrome c oxidoreductase complex III. 
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Figure 3. Phototrophic cycle decomposition revealed two prominent cycles taking place 

within the thylakoid lumen: (a) ascorbate metabolism and (b) recycling of plastoquinone 

associated with proton production (M_h) and activation of photosystem II (R_PSII), 

responsible for oxygen evolution. Species starting with ‘R_’ indicate reactions whilst ‘M_’ 

indicate metabolites. Abbreviations: anxan: antheraxanthin; ANXANASCOR: ascorbate 

oxidoreductase; ascb: ascorbate; ASCBOR: ascorbate:oxygen oxidoreductase; BCRPTXANH: 

beta-cryptoxanthin hydroxylase; CBFC: cytochrome b6/f complex; h: proton; dhdascb: 

dehydroascorbate; pqh2: reduced plastoquinone; VIOXANOR: violaxanthin: ascorbate 

oxidoreductase. 

 



 30 

 

Figure 4. Cycles common to both mixotrophic and phototrophic growth conditions that 

carried the highest mass flux for each condition when the mitochondria, thylakoid lumen 

and chloroplast compartments were analysed together. The number displayed within 

each cycle represents the mass flux obtained for each condition. Species starting with ‘R_’ 

indicate reactions whilst ‘M_’ indicate metabolites. Abbreviations: CBFC: cytochrome b6/f 

complex; fdxox: oxidized ferredoxin; fdxrd: reduced ferredoxin; FNOR: ferredoxin-NADP+ 

reductase; PSI: photosystem I; PSII: photosystem II; pq: oxidized plastoquinone. 
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Figure 5. Unique cycles resulting from the mitochondrion, thylakoid lumen and 

chloroplast. (a) Phototrophic cycles included reactions of the Calvin-Benson cycle (blue 

arrows) and glycolysis (red arrows) whilst (b), mixotrophic growth resulted in the same 

Calvin-Benson cycle reactions (blue arrows) associated with the reactions of the pentose 

phosphate pathway (purple arrows). Species starting with ‘R_’ indicate reactions whilst 

‘M_’ denotes metabolites. Abbreviations: 13dpg: 3-phospho-D-glyceroyl phosphate; 3pg: 

3-phospho glycerate; e4p: erythrose 4-phosphate; FBA3: sedoheptulose 1,7-bisphosphate 

D-glyceraldehyde-3 phosphate lyase; g3p: glyceraldehyde 3-phosphate; GAPDH: 

glyceraldehyde 3 phosphate dehydrogenase; GAPDH(NADP): glyceraldehyde 3 phosphate 

dehydrogenase (NADP+); PGK: phosphoglycerate kinase; PRUK: phosphoribulokinase; r5p: 

ribose 5-phosphate; RBPC: ribulose-bisphosphate carboxylase; rb15bp: ribulose 1,5-

bisphosphate; RPE: ribulose-5-phosphate 3-epimerase; RPI: ribose-5-phosphate 

isomerase; ru5p: ribulose 5-phosphate; s7p: sedoheptulose 1,7-bisphosphate; s17bp: 

sedoheptulose 1,7-bisphosphate; TKT1: transketolase 1; TKT2: transketolase 2; xu5p: 

xylulose 5-phosphate. 
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Figure 6. Common cycles within the mitochondrion, thylakoid lumen and chloroplast 

carrying the largest mass flux. Numbers indicate the fold change of mixotrophic vs 

phototrophic flux in a-b, phototrophic vs mixotrophic flux in c-d. (a) Mixotrophic growth 

results in increased cycling of glutamine and galactose and (b) increased pentose 

phosphate pathway activity. (c) Phototrophic growth resulted in an increase of pyruvate 

metabolism within the mitochondrion and (d) increased cycling of glutathione. Species 

starting with ‘R_’ indicate reactions whilst ‘M_’ denotes metabolites. Abbreviations: 

2ahethmpp: 2-(alpha-hydroxyethyl)thiamine diphosphate; e4p: erythrose 4-phosphate; 

FBA3hi: sedoheptulose 1,7-bisphosphate D-glyceraldehyde-3-phosphate-lyase; GAL: 

glutamate-ammonia ligase; GDR: glutathione-disulfide reductase; gln: glutamine; gthox: 

oxidized glutathione; gthrd: reduced glutathione; GTHPDSOR: glutathione:protein-

disulfide oxidoreductase; glu: glutamate; GLUS(ferr): glutamate synthase (ferredoxin 
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dependent); PDCh: pyruvate decarboxylase; PDHam1hi: pyruvate dehydrogenase; s17bp: 

sedoheptulose 1,7-bisphosphate; s7p: sedoheptulose 7-phosphate; SBP: sedoheptulose-

bisphosphatase; TAh: transaldolase; thmpp: thiamine diphosphate. 
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Tables 

 

Table 1: Cycles resulting from cyclic decomposition for key compartments for 

phototrophic and mixotrophic growth, showing common and unique cycles to both 

conditions. 

Compartment Total 

phototrophic 

cycles 

Total 

mixotrophic 

cycles 

Common 

cycles to 

both 

conditions 

Unique 

phototrophic 

cycles 

Unique 

mixotrophic 

cycles 

Mitochondrion 6 5 3 3 2 

Thylakoid 

lumen 

20 4 4 16 0 

Chloroplast 587 1885 51 536 1834 

Mitochondrion, 

thylakoid 

lumen and 

chloroplast 

5151 1673 52 5099 1621 
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Table 2: Percentage of cycles containing key metabolites of the pentose phosphate 

pathway and glycolysis for phototrophic and mixotrophic growth. 

Pathway Phototrophic (% unique 

cycles) 

Mixotrophic (% unique 

cycles) 

Pentose phosphate pathway 36.9 58.3 

Glycolysis 49.8 34.8 

 

 


