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The Nutrition Society Summer Meeting 2015 held at University of Nottingham, Nottingham on 6–9 July 2015

Conference on ‘The future of animal products in the human diet: health and
environmental concerns’

Symposium 1: Meat, health and sustainability

Can we improve the nutritional quality of meat?

Nigel D. Scollan1*, Eleri M. Price2, Sarah A. Morgan2, Sharon A. Huws2 and
Kevin J. Shingfield2

1Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT95HN, UK
2Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, UK

The nutritional value of meat is an increasingly important factor influencing consumer pre-
ferences for poultry, red meat and processed meat products. Intramuscular fat content and
composition, in addition to high quality protein, trace minerals and vitamins are important
determinants of nutritional value. Fat content of meat at retail has decreased substantially
over the past 40 years through advances in animal genetics, nutrition and management and
changes in processing techniques. Evidence of the association between diet and the incidence
of human non-communicable diseases has driven an interest in developing production sys-
tems for lowering total SFA and trans fatty acid (TFA) content and enrichment of n-3
PUFA concentrations in meat and meat products. Typically, poultry and pork has a
lower fat content, containing higher PUFA and lower TFA concentrations than lamb or
beef. Animal genetics, nutrition and maturity, coupled with their rumen microbiome, are
the main factors influencing tissue lipid content and relative proportions of SFA, MUFA
and PUFA. Altering the fatty acid (FA) profile of lamb and beef is determined to a large
extent by extensive plant and microbial lipolysis and subsequent microbial biohydrogenation
of dietary lipid in the rumen, and one of the major reasons explaining the differences in lipid
composition of meat from monogastrics and ruminants. Nutritional strategies can be used to
align the fat content and FA composition of poultry, pork, lamb and beef with Public
Health Guidelines for lowering the social and economic burden of chronic disease.

Meat lipid composition: Nutrition and genetics: Product quality: Human health: Rumen
lipid metabolism

Data fromclinical trials, controlledmetabolic interventions
and prospective cohort studies indicate that the substitution
of SFA and trans fatty acids (TFA) for PUFA lowers mor-
tality andmarkers ofCVD risk(1–5).Most public health pol-
icies in developed countries recommend population wide
decreases in the consumption of SFA and TFA and an
increase in PUFA intake to lower the incidence of CVD
and metabolic diseases(6–8). Despite the establishment of
nutritional guidelines, dietary surveys indicate that the
intakes of SFA typically exceed recommended levels,
while the consumption of PUFA, specifically n-3 PUFA is
often below the optimal range(9–12). The majority of
PUFA in the human diet originates from plant oils and
vegetable fats containing relatively high proportions of

linoleic acid (18 : 2 n-6) and linolenic acid (18 : 2 n-3),
while intakes of the long chain n-3 PUFA, EPA (20 : 5
n-3) and DHA (22 : 6 n-3) contained in oily fish fall short
of a recommended target of 450 mg/d(13).

In most developed countries, meat and meat products
are a significant source of fat and SFA in the human
diet, but also contribute to 20 : 5 n-3, docosapentaenoic
acid (22 : 5 n-3) and 22 : 6 n-3 consumption(9–13).
Ruminant-derived meat and meat products are also a
source of TFA in the human diet(14–17). Altering the fat
content and fatty acid (FA) composition of meat and
meat products offers the opportunity to realign the con-
sumption of FA in human populations closer to Public
Health guidelines for lowering the incidence of non-
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communicable diseases without requiring substantive
changes in consumer eating habits. Global meat consump-
tion is projected to increase within the next 30 years(18),
highlighting that the potential benefits and impact from
altering the fat content and FA composition of poultry,
pork, beef and lamb will become increasingly important.
The present paper focuses on approaches to improving
the lipid composition of meat. The impact on aspects of
meat quality including colour, shelf life and sensory were
recently reviewed(19) and hence not considered in the pre-
sent manuscript.

Lipid in meat from monogastric and ruminant animals

Lipid content of meat varies depending on muscle and tis-
sue type, animal species and production system that affect
nutritional, sensory and technological properties and over-
all quality(14,20). Furthermore, FA composition determines
the physical and textural properties of adipose and the oxi-
dative stability of muscle, which affects flavour, juiciness,
tenderness, muscle colour and overall liking. Fat in meat
is deposited in intramuscular, intermuscular and subcuta-
neous adipose stores mainly in the form of glycerol esters,
cholesterol, phospholipids and FA esters. Intramuscular
fat (IMF) content of chicken, pork, beef and lamb typically
varies between 10–25, 15–40, 20–50 and 30–80 g/kg,
respectively(14,15,20,21). For chicken, the lipid content of
dark meat and light meat averages 28 and 11 g/kg, respect-
ively(21–26). The IMF of chicken and pork contains
260–350, 290–460 and up to 200 g/100 g, as SFA,
MUFA and PUFA, respectively(21–33). In beef and lamb,
IMF contains 450–480 and 350–450 g/100 g of SFA and
MUFA, respectively and up to 50 g/100 g as PUFA,
respectively (17,18). The ratio of PUFA:SFA in IMF of
beef or lamb is typically low at about 0·1–0·2 except for
very lean animals (<10 g/kg IMF) or animals fed rumen
protected lipid supplements where this ratio can be as
high as 0·5–0·7(14,15). The ratio of n-6:n-3 PUFA in rumin-
ant meat (abundance of α-linolenic acid (18 : 3 n-3), and
to a lesser extent 22 : 5 n-3 and 22 : 6 n-3, relative to 18 : 2
n-6 and arachidonic acid (20 : 4 n-6)) from pasture or diets
based on grass or forage legume silages is generally <3·0,
but this ratio can exceed 5·5 in animals fed high amounts
of cereal grains(14,15).

Lipid in beef, lamb and other ruminant meat products
also contain isomers of conjugated linoleic acid (CLA)
and TFA. Depending on muscle type, production system
and breed the proportions of total CLA and TFA in
retail beef vary between 0·34–0·82 and 2·97–5·63 g/100
g total FA, respectively, corresponding to between 9·8–
98 and 70–586 mg/100 g muscle(34–36). Measurements
for retail lamb are limited, but a recent report indicated
that the proportions of total CLA and TFA accounted
for 0·59–1·44 and 6·41–12·0 g/100 g FA(37).

Nutritional approaches to enhance fatty acid composition

Diet is known to influence the FA composition of meat
and meat products. Numerous investigations have

examined the potential to: (i) lower the relative propor-
tions of SFA, (ii) increase the overall PUFA:SFA ratio
and (iii) enrich n-3 PUFA relative to n-6 PUFA in intra-
muscular lipid. In ruminants, increases in specific FA,
including cis-9, trans-11 CLA have been targeted. Most
studies have focused on including oilseeds, plant oils,
fish oils, marine algae in the diet of pigs(27–33),
poultry(22,23,24–26), cattle(38–41) and sheep(42–45) to alter
meat FA composition and content. In ruminants, the
use of lipid supplements protected from ruminal metab-
olism have also been investigated(14,15,46,47). Both the
processes of digestion and metabolism of absorbed lipid
in the host animal have a major impact on the transfer
efficiency of dietary FA into meat. In monogastric ani-
mals, the small intestine is the major site for the digestion
of dietary lipid. Digestion involves the action of pancre-
atic lipase to hydrolyse TAG into 2-monoacylglycerol
and free acids and the formation of micelles followed
by absorption in the intestinal mucosa and transport of
FA in the peripheral circulation for uptake by body tis-
sues mediated by lipoprotein lipase(48). In pigs and
poultry, dietary lipid remains largely intact before
absorption and incorporation into tissue lipid, and there-
fore changes in dietary FA intake have a largely predict-
able influence on tissue lipid composition. Digestion of
dietary lipid in ruminants is far more complicated due
to the metabolic activity of the microbial community in
the rumen-reticulum. As a result, meat from ruminant
animals, such as beef and lamb, contains a more diverse
range of FA that bear little resemblance to the compos-
ition and amount of FA supplied by the diet(49).
Dietary unsaturated FA, PUFA in particular, have
toxic effects on certain rumen microorganisms(50,51). To
alleviate the inhibitory effects on growth, the rumen
microbiome has evolved to secrete proteins capable of
hydrolysing ester bonds of esterified FA and decreasing
the degree of unsaturation of the free FA released
through reduction, isomerisation or hydration.
Lipolysis and biohydrogenation result in extensive
metabolism of dietary PUFA to saturated end-products
limiting the escape of dietary PUFA from the rumen.
However, biohydrogenation is incomplete, resulting in
the formation of FA intermediates often containing one
or more trans double bonds(16,52), which following
absorption are used as substrates for tissue lipogenesis.
Understanding the mechanisms responsible and micro-
biota and their associated enzymes capable of these reac-
tions is central to future attempts to develop nutritional
strategies for strategic and more predictable changes in
the FA composition of ruminant meat.

Potential for reengineering ruminal lipid metabolism

Understanding of the role of rumen bacteria in biohydro-
genation has traditionally been based on investigations
with bacteria able to be cultured ex vivo. Culturable
Butyrivibrio spp. capable of biohydrogenation have
been the most widely studied. However, development
of new molecular methods have enabled more informed
investigations of rumen microbiome–lipidome
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interactions(52–55) based on experiments involving the use
of dietary lipid supplements to alter ruminal lipid metab-
olism and application of next generation sequencing
technologies to characterise the impact on the metataxo-
nome. Changes in the ruminal bacterial taxa have
highlighted that the communities involved in biohydro-
genation are potentially much more diverse than impli-
cated from historical studies with pure cultures(54–56)

that are now known to include Prevotella,
Lachnospiraceae incertae sedis and unclassified
Bacteroidales, Clostridiales, Succinovibrio, Roseburia
and Ruminococcaceae, species identified as yet uncultur-
able. Such findings highlight the challenges to developing
targeted approaches for altering the biohydrogenation
activity of the rumen microbiota.

Much less is known about the microbiology underpin-
ning lipolysis of esterified lipid in the rumen. Few cultur-
able isolates with known lipolytic activity have been
identified, and historically only bacterial genera, namely
Anaerovibrio lipolyticus and Butyrivibrio spp. have been
shown to have lipolytic capacity, with A. lipolyticus
being specific to TAG and Butyrivibrio being specific
towards phospholipids. Nonetheless, the lipases pos-
sessed by these bacteria and others within the rumen
microbiome have until recently remained relatively
understudied. Recently, the creation of rumen bacterial
fosmid-based metagenomic libraries, enabled twelve lip-
ase/esterase genes and two phospholipases to be isolated,
the sequences of which appear to originate from bacteria
that cannot as yet be cultured ex vivo(55). A draft genome
of A. lipolyticus coupled with annotation and biochem-
ical characterisation also allowed the characterisation
of three identified lipases with activity against TAG(57).
This new knowledge will be invaluable to understanding
the biological potential to alter the extent of lipolysis in
the host ruminant in the future.

Both bacteria and protozoa leaving the rumen are also
an important source of FA available for absorption by
the host animal. Membrane lipids of rumen bacteria con-
tain relatively high proportions of odd-chain and
branched-chain FA. Rumen protozoa are relatively rich
in MUFA, PUFA and isomers of CLA, possibly due
to engulfment of chloroplasts that contain the majority
of 18 : 3 n-3 in structural components of plant thylakoid
membranes(58–60). Intra-protozoal chloroplast lipid
metabolism may also facilitate the direct uptake of
the major FA in chloroplasts (16 : 0, 18 : 2 n-6 and
18 : 3 n-3) into protozoal membranes. Furthermore,
co-localisation of chloroplasts and engulfed bacteria
within food vacuoles may also lead to intra-protozoal lip-
olysis and the biohydrogenation of PUFA in ingested
chloroplasts, assuming that co-localised bacteria exhibit
lipolytic and biohydrogenation activity. Such a mechan-
ism may explain the rather high proportion of CLA iso-
mers in the lipid of rumen protozoa. Nevertheless,
increases in intra-protozoal chloroplast content do not
appear to increase ruminal escape of PUFA(59). Zero
grazing of growing steers was found to elevate intra-
protozoal chloroplast content compared with a semi-
synthetic diet based on straw and concentrates, but the
amount of PUFA reaching the duodenum did not differ

between dietary treatments as the protozoal flow from
the rumen to the duodenum was low following zero graz-
ing. It is hypothesised that perhaps the higher sugar con-
tent of grass and subsequent chemotaxis of protozoa
towards sugars may enhance their likelihood of remain-
ing within the rumen. Future investigations are required
to establish whether it is possible to simultaneously
increase the PUFA content of protozoa and increase
outflow of PUFA-enriched protozoa from the rumen.

Dietary sources of PUFA

While forages are rarely used to support the nutritional
requirements of monogastric animals, these represent
important feed resources for ruminants. It is well estab-
lished that diets based on fresh or conserved forages typ-
ically result in higher n-3 PUFA and lower n-6 PUFA
content of lamb and beef compared with cer-
eals(14,15,61–65). Even though forage has a relatively low
lipid content, varying between 30 and 100 g/kg DM, it
is a rich source of PUFA, particularly 18 : 3 n-3, which
accounts for 50–75% of total forage FA content in
grasses and forage legumes(58,66). Depending on produc-
tion system, forages are often the primary source of FA
in the ruminant diet(58,67), which in addition to being
relatively inexpensive and a sustainable feed resource,
underpins an expanding market for ‘grass-fed’ or
‘grass-finished’ ruminant meat products with a lower
total fat and increased n-3 PUFA content(68–70). Both
environment and genetics influence FA biosynthesis
and forage lipid content(69,71,72), highlighting the poten-
tial to select for grasses with a higher lipid content to
increase PUFA intakes in the host ruminant. Several sec-
ondary metabolites in plants have been suggested to
afford some protection of forage PUFA from lipolysis
and biohydrogenation in the rumen. Many of these com-
pounds are associated with a variety of ‘weed’ species
common in species-rich pasture(69) that include con-
densed tannins(73,74), saponins(75,76), catecholamines(77)

and essential oils(76).
Oilseeds are rich in C18 unsaturated FA, but differ in

relative abundance of oleic acid (cis-9 18 : 1), 18 : 2 n-6
and 18 : 3 n-3, which have been used to alter the FA com-
position of poultry meat and pork. Rapeseed is rich in
cis-9 18 : 1, sunflower and safflower contain high propor-
tions of 18 : 2 n-6, while linseed, flaxseed and camelina
are common sources of 18 : 3 n-3. Use of dietary supple-
ments of linseeds and linseed oil have been the most
widely investigated for enriching n-3 PUFA in meat
from chickens, pigs and ruminants. In addition to elevat-
ing 18 : 3 n-3 concentrations, the abundance of 20 : 5 n-3,
22 : 5 n-3 and 22 : 6 n-3 in intramuscular lipid is often
increased(63,67,78,79) due to the elongation and desatur-
ation of 18 : 3 n-3.

Fish oil and marine algae are the richest available
sources of 20 : 5 n-3, 22 : 5 n-3 and 22 : 6 n-3 and have
been used as dietary supplements to increase the long
chain n-3 PUFA content of meat. In pigs and chickens
the extent of long-chain n-3 PUFA enrichment is deter-
mined by the level of supplementation(22,25,30). Despite
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extensive metabolism of 20 : 5 n-3, 22 : 5 n-3 and 22 : 6
n-3 in the rumen(52,80,81), marine lipid supplements can be
used to increase the long-chain n-3 PUFA content of beef
and lamb(40,42,44,45). However, both fish oil and marine
algae also inhibit the complete biohydrogenation of C16
and C18 unsaturated FA in the rumen causing numerous
trans mono- and polyenoic intermediates to accumulate
and a decrease in 18 : 0 formation(56,80–84), changes
that lead to an increase in the TFA content of beef(40)

or lamb(42,44,45).
Specialised lipid supplements have been developed to

be more resistant to lipolysis and biohydrogenation in
the rumen to increase the amount of PUFA available
for deposition, elongation and desaturation in muscle
and adipose tissue. Protected lipid also minimise the
adverse effects of lipid on ruminal digestion and can be
used to increase the amount of fat in the earlier recom-
mended ruminant diet levels (<60 g/kg diet DM).
Various technologies have been developed in an attempt
to protect plant or marine lipid sources from lipolysis
and biohydrogenation in the rumen, that include encap-
sulating oils with a protein matrix and treating with for-
maldehyde; feeding lipid as calcium soaps or FA amides;
physical processing of oilseeds (heating, grinding, crack-
ing, bruising, rolling, extruding) or whole intact oil-
seeds(19,46,85). However, the potential to increase the
outflow of PUFA from the rumen using these supple-
ments is often rather limited, and known to vary depend-
ing on the method used and source of protected lipid(85).
Inevitably, the use of protected supplements also increase
the cost of ruminant meat production that would need to
be recovered by a premium at retail(19).

Enrichment of PUFA in meat from monogastrics

Two main approaches have been used to increase the n-3
PUFA content of pork and chicken that include dietary
supplements of linseed or flaxseed as a source of 18 : 3
n-3, and the use of fish oil or marine algae as a source
of 20 : 5 n-3 and/or 22 : 6 n-3 and demonstrated the
potential to enrich the n-3 PUFA content of intramuscu-
lar lipid in growing pigs and chickens (Tables 1 and 2,
respectively). Dietary supplements of oilseeds can be
used to increase in the 18 : 3 n-3 content of muscle in
pigs (27–29,31–33). Even though cis-9 18 : 1 is the major
FA in rapeseed and olive oil, these lipid can be used to
elevate 18 : 3 n-3 in pork, but to a much lesser extent
than linseed or flaxseed (Table 1). Enrichment of 18 : 3
n-3 in body tissues of growing pigs is determined by
the amount of flaxseed in the diet(32). Supplements of
flaxseed (50 g/kg diet) resulted in a 5-fold increase in 18
: 3 n-3 content relative to the control diet, while higher
inclusion rates (100 g flaxseed/kg diet) resulted in a
15-fold enrichment of 18 : 3 n-3 than the control.
Dietary supplements of marine algae have also been
shown to result in dose dependent increases in 22 : 6
n-3 content of bacon(30). Enrichment of 20 : 5 n-3, 22 :
5 n-3 and 22 : 6 n-3 was higher for pigs fed diets contain-
ing algae at 16 g/kg compared with 6 g/kg. The potential
of using a mixture of linseeds and fish oil to alter the n-3

PUFA content of pork has also been investigated(28).
Linseed supplementation increased 18 : 3 n-3 content
and enriched 20 : 5 n-3, 22 : 5 n-3 and 22 : 6 n-3 due
to elongation and desaturation of 18 : 3 n-3 in body tis-
sues. Much higher increases in 20 : 5 n-3, 22 : 5 n-3 and
22 : 6 n-3 content were achieved in growing pigs fed diets
containing fish oil with minimal effects on the proportion
of 18 : 3 n-3 in total lipid.

Similar investigations have been made in chickens
(Table 2). Access to pasture or chicory plus a control
basal diet was found to alter the FA content of chicken
breasts compared with a diet containing linseed and
high cis-9 18 : 1 sunflower seed(23). Muscle from chickens
fed the control plus chicory diet contained higher
amounts of n-6 and n-3 PUFA than the control plus pas-
ture diet due to increases in total fat content. Treatments
had no effect on FA other than increasing 20 : 5 n-3
abundance. Substituting the control diet for the diet con-
taining linseed and sunflower seed in growing chickens
offered access to pasture, decreased total n-6 PUFA
and elevated total n-3 PUFA content, including 20 : 5
n-3, 22 : 5 n-3 and 22 : 6 n-3. However, similar changes
in muscle FA composition were not observed when
birds had access to chicory. Enrichment of 18 : 3 n-3,
20 : 5 n-3, 22 : 5 n-3 and 22 : 6 n-3 in breast meat from
chickens fed diets containing flaxseed also increases
with time on diet(26). Long chain n-3 PUFA content of
chicken can also be elevated in birds fed diets containing
fish oil and marine algae up to 210 mg/100 g(24,25).

Enrichment of PUFA in meat from ruminants

Despite extensive lipolysis and biohydrogenation of lipid
in the rumen by the rumen microbiome, diet is the major
environmental factor influencing the FA composition of
ruminant meat. Forage is an important component in
most ruminant diets and can be used to influence the
FA composition of beef and lamb. The IMF content
and FA composition of beef differs between animals
finished on grass or fed concentrates(64,65).
Grass-finished beef typically contains higher amounts
of 18 : 3 n-3 (Table 3). Depending on management sys-
tem, 20 : 5 n-3, 22 : 5 n-3 and 22 : 6 n-3 content is also
elevated due to the elongation and desaturation of 18 :
3 n-3 in body tissues. Even for animals reared on pasture,
feeding concentrates during the finishing period causes
depletion of 18 : 3 n-3 and higher accretion of 18 : 2
n-6(64,65). Similar changes in the FA composition of
IMF also occur in growing lambs (Table 4). Forages
can be used to lower total and saturated fat content
and increase the n-3 PUFA content relative to cereal-
based diets(19,68–70).

Dietary plant and marine lipid supplements can be
used to alter the FA composition of beef (Table 3) and
lamb (Table 4). Flaxseed supplementation of a fresh for-
age basal diet was found to have no effect on n-6 and n-3
PUFA in beef, but the content of trans-11 18 : 1 and
cis-9, trans-11 CLA was higher for animals finished on
fresh forage compared with a diet containing flaxseed(41).
Furthermore, flaxseed supplements also increased
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Table 1. Effect of dietary lipid supplements on the PUFA content of pork (mg/100 g)

Reference Breed Sex Supplement
Inclusion
(g/kg) Time (d) Age (d) Wt. (kg) Muscle

n-6 PUFA n-3 PUFA
Total

18 : 2 20 : 4 18 : 3 20 : 5 22 : 5 22 : 6 FA

Oilseeds
Bertol et al.(31) D/E/M M/F (50:50) Soyabean oil 30 42 173 111 L. dorsi 245·7 43·1 20·5 NR NR NR 1770

Rapeseed oil 30 42 172 112 224·1 44·6 24·2 NR NR NR 1940
Rapeseed oil:
Flaxseed oil (1:1)

30 42 172 113 238·0 39·1 43·9 NR NR NR 2080

Gjerlaug-Enger
et al.(33)

D × [Y × LR] M + F Control* 0 NR NR 83 L. dorsi 224·2 62·1 9·5 8·2 15·8 10·5 1900
Rapeseed expeller
+ rapeseeds

130 + 56 NR NR 82 222·7 51·0 20·6 11·4 17·5 8·2 1700

Guillevic et al.(29) P × [LR × LW] M Palm and sunflower
oil (1:1)

16 NR NR 107 L. dorsi 1,006 53·1 56·6 3·5 10·4 5·2 8700

Extruded linseeds 42 NR NR 108 1,108 59·5 399·4 11·5 25·9 5·8 9600
Nuernberg
et al.(27)

P × German LR M/F (50:50) Olive oil 50 NR NR 106 L. dorsi 139·3 57·4 9·2 2·0 7·3 1·2 1450
Linseed oil 50 NR NR 106 179·5 31·8 126·6 24·4 20·2 0·5 1450

Turner et al.(32) CP × Line C337 M/F (50:50) Control* 0 76 – 124 L. dorsi 422·0 59·8 41·0 5·3 15·4 6·4 6141
Extruded flaxseed 50 76 – 120 498·0 49·5 237·0 20·4 33·2 9·3 5174
Extruded flaxseed 100 76 – 121 653·0 34·3 615·0 31·9 39·6 8·1 5788

Marine
Haak et al.(28) Topigs

40 × P
M+ F Control 0 98–109 – – L. thoracis 154·6 40·0 7·6 3·0 6·5 1·9 1380

Linseed 30 98–109 – – 155·0 35·5 18·5 8·1 11·2 2·7 1490
Fish oil 12 98–109 – – 158·2 29·5 8·4 24·5 14·7 18·3 1790

Meadus et al.(30) D × LW M Marine algae 0·6 25 – 108 Belly 298·6 12·6 57·0 1·4 1·4 4·3 2882
Marine algae 6 25 – 113 306·5 13·0 58·4 1·8 3·6 12·2 3110
Marine algae 16 25 – 112 352·9 14·8 66·6 3·6 9·7 33·9 3325

D, Duroc; E, Embapa; Y, Yorkshire; LR Landrace; P, Pietrain; LW, Large White; CP, Camborough Plus., M, Moura, NR, not reported.
* Control diet contained animal fat that was completely or partially replaced with test lipid supplements.
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Table 2. Effect of diet on the fatty acid (FA) content of chicken breast (mg/100 g)

Reference Breed Sex Diet/supplement Inclusion (g/kg) Time (d) Age (d)

n-6 PUFA n-3 PUFA
Total

18 : 2 20 : 4 18 : 3 20 : 5 22 : 5 22 : 6 FA

Forage
Azcona et al.(23) Camperos ND Control (Confined) – 45 85 185·4 55·3 16·3 1·2 7·5 7·1 950

Control + Pasture – 45 85 181·1 49·1 14·0 2·3 5·5 7·3 840
Linseed + Pasture + SS 55 45 85 167·3 40·1 39·7 5·4 11·2 13·3 920
Control + Chicory − 45 85 248·2 55·6 23·3 5·8 8·0 9·4 1230
Linseed + Chicory + SS 55 45 85 114·5 43·8 16·2 2·9 9·0 9·0 700

Oilseeds
Mirshekar et al.(26) Cobb

500
ND Soyabean oil* (25)/50 (21)/21 42 704·0 18·0 157·0 17·0 NR 15·0 3150

Flaxseed oil 50 7 42 833·0 34·0 201·0 20·0 NR 22·0 3241
Flaxseed oil 50 14 42 874·0 37·0 213·0 33·0 NR 30·0 3233
Flaxseed oil 50 21 42 932·0 67·0 236·0 47·0 NR 45·0 3211
Flaxseed oil* (25)/50 (7)/21 42 1,011·0 66·0 293·0 48·0 NR 48·0 3234
Flaxseed oil* (25)/50 (14)/21 42 1,001·0 75·0 391·0 52·0 NR 52·0 3266
Flaxseed oil* (25)/50 (21)/21 42 811·0 76·0 432·0 58·0 NR 59·0 3260

Marine
Cortinas et al.(22) Ross F Tallow 90 44 199·0 41·0 18·0 3·0 NR 10·0 1885

Tallow:Linseed oil:Fish oil 55/30/5 44 228·0 28·0 189·0 30·0 NR 40·0 1833
Tallow/Linseed oil/Fish oil 35/45/10 44 229·0 23·0 249·0 40·0 NR 42·0 1701
Linseed oil/Fish oil 70/20 44 282·0 22·0 410·0 57·0 NR 48·0 1809

Kalogeropoulos et al.(24) ND ND Control 0 NR 5–554 537·6 85·8 38·4 11·6 22·3 22·8 2510
Microalgae 23 g{ NR 45–55 297·5 65·2 15·1 12·0 19·5 85·0 1710

Rymer et al.(25) Ross
308

ND Control{ – 21 42 335·0 73·0 27·0 4·0 15·0 24·0 1146§
Fish oil 44 21 42 174·0 26·0 11·0 31·0 46·0 129·0 1122§
Encapsulated fish oil 26 21 42 257·0 36·0 20·0 18·0 27·0 122·0 1119§
Marine algae 11 21 42 276·0 51·0 22·0 9·0 19·0 111·0 1146§
Marine algae 22 21 42 325·0 52·0 27·0 6·0 16·0 147·0 1348§
Marine algae 33 21 42 266·0 50·0 20·0 9·0 14·0 187·0 1237§

ND, not determined; NR, not reported; SS, high oleic acid sunflower seeds.
* Values in parenthesis indicate the amount of oil in the starter diet fed until 21 d of age before switching to the grower diet fed for 21 d before slaughter.
{Birds received 23 g/lifetime of dried marine microalgae containing 180 g of 22 : 6 n-3/kg.
{Control diet contained 50 g/kg of blended vegetable fat that was partially replaced with test lipid supplements.
§ Calculated as the sum of all reported fatty acids.
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Table 3. Effect of diet on the fatty acid (FA) composition of beef (mg/100 g)

Reference Breed Sex Diet/supplement Inclusion rate
Age
(m)

Wt
(kg) Muscle

n-6 PUFA n-3 PUFA
Total

18 : 2 20 : 4 18 : 3 20 : 5 22 : 5 22 : 6 FA

Forage
Ponnampalam

et al.(64)
Mixed (SH, HE) – Grass-finished – 18 NR L. dorsi 108·8 59·6 32·4 24·5 36·5 4·2 2120

Grain-finished (80 d) – 118·8 37·6 10·3 11·1 23·6 3·7 1538
Grain-finished (150–200 d) – 167·4 58·5 14·9 13·1 31·6 3·7 3614

Aldai et al.(65) Asturiana de los
Valles

M Pasture – 12 NR L. dorsi 76·5 17·8 18·2 5·6 7·1 0·5 547
Pasture + 1 m Concentrate – 95·3 26·0 16·3 7·5 9·3 0·6 813
Pasture + 2 m Concentrate – 103·3 24·8 12·5 7·7 9·4 0·8 1055

Oilseeds
Pouzo et al.(41) AA M Control (Pasture) – – 487 L. dorsi 72·6 34·0 25·8 14·7 20·6 3·3 3272

Pasture +maize grain – 490 92·2 40·0 24·3 14·6 22·6 3·1 3478
Pasture +maize grain +
Flaxseed

1·25 g/kg LW 494 86·2 32·9 26·9 13·6 20·6 3·2 3168

Pasture +maize grain +
Flaxseed

2·50 g/kg LW 494 75·7 33·3 26·7 14·6 20·1 2·9 2868

Kim et al.(38) CHX M Control – Grass Silage – NR NR L. dorsi 47·1 NR 28·6 16·7 NR 3·3 3179
Echium oil (1·5%) 15 g/kg DM 52·4 NR 31·3 15·5 NR 3·3 4090
Echium oil (3·0%) 30 g/kg DM 54·2 NR 32·1 14·5 NR 2·7 4075
Linseed oil (3·0%) 30 g/kg DM 50·0 NR 30·6 17·0 NR 3·4 3385

Nassu et al.(39) British × Continental F Grass hay – NR NR L. thoracis 147·7 47·7 29·0 13·6 25·0 NR 5680
Grass hay + Flaxseed 141 g/kg 141·0 32·9 71·7 15·9 23·5 NR 5875
Barley silage – 142·2 42·7 21·0 8·8 20·3 NR 6772
Barley silage + Flaxseed 87·1 g/kg 136·0 34·0 68·0 14·7 23·1 NR 6413

Marine
Angulo et al.(40) German Holstein F Control* – NR NR L. dorsi 81·0 32·9 17·5 8·8 17·5 1·3 2191

Linseed oil + Marine algae 27 + 4 g/kg
DM

89·0 24·9 35·6 10·7 14·2 10·7 3558

Sunflower oil + Marine algae 27 + 4 g/kg
DM

112·2 26·4 19·8 9·9 13·2 13·2 3301

Dunne et al.(47) Continental
crossbred

F Control{ NR NR L. thoracis 80·4 NR 13·3 13·0 NR 3·4 2870
Rumen protected fish oil 275 g/d 82·0 NR 27·9 52·3 NR 15·4 3890

NR, not reported; SH, Shorthorn; HE, Hereford; AA, Aberdeen Angus; CHX, Charolais cross.
* Control diet contained 31 g/kg diet DM of saturated fat sources that replaced with test lipid supplements.
{Control diet contained a prilled fat rich in 16 : 0 that was partially replaced with a rumen protected source of fish oil.
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Table 4. Effect of diet on the fatty acid (FA) content of lamb (mg/100 g)

Reference Breed Sex Diet/supplement
Inclusion
rate

Age
(m)

Wt
(kg) Muscle/tissue

n-6 PUFA n-3 PUFA
Total

18 : 2 20 : 4 18 : 3 20 : 5 22 : 5 22 : 6 FA

Forage
Fisher et al.(61) S ×Mule M Grass – – – Topside 119·0 45·0 41·0 24·0 27·0 10·0 1853

Concentrate – 188·0 62·0 14·0 8·4 16·0 5·5 1963
Díaz et al.(62) RA ND Concentrates + Straw (Spain) – – – L. dorsi

(Retail)
154·6 63·2 9·7 5·7 11·1 4·1 1662

S/SCH ×ML Grass + Concentrate
(Germany)

– 152·3 33·9 42·1 14·5 16·2 5·9 2808

British Grass + Concentrate (UK) – 91·4 25·6 39·6 21·9 18·8 5·3 2431
C Grass (Uruguay light) – 94·4 28·1 54·0 18·9 17·0 4·5 1683

Grass (Uruguay heavy) – 158·0 31·2 125·5 32·2 22·2 6·2 3908
Oilseeds
Noci et al.(43) S crossbred M Ca-salts of palm oil distillate* 60 g/kg DM – 57 L. dorsi{ 121·6 21·1 17·6 2·5 7·0 1·4 3524

Camelina oil 60 g/kg DM 57 133·2 15·4 59·2 5·1 9·3 2·3 4659
Linseed oil 60 g/kg DM 57 125·7 12·9 72·7 5·0 8·8 1·3 4177
Protected Camelina seed 60 g/kg DM 57 122·1 14·6 67·3 6·5 8·9 1·6 4056
Protected Linseed 60 g/kg DM 56 120·6 16·7 101·9 11·9 12·7 3·2 3980
Protected Camelina oil 60 g/kg DM 58 138·5 12·1 79·2 5·0 8·3 1·3 4171

Marine
Hopkins et al(44) PD × BL ×M M Silage (Dam) + Control – – – L. dorsi 297·0 104·0 39·0 30·0 38·0 13·0 4989{

Silage (Dam) +Microalgae 19·2 g/kg
DM

305·0 104·0 39·0 48·0 37·0 92·0 4976{

Concentrate (Dam) + Control – – – L. dorsi 290·0 101·0 41·0 29·0 37·0 12·0 5061{
Concentrate (Dam) +
Microalgae

19·2 g/kg
DM

295·0 99·0 37·0 44·0 34·0 71·0 4,859{

Meale et al.(45) CA M +
F

Control – – >45 Skirt 605·0 − 36·5 8·4 29·0 9·0 NR
Microalgae 10 g/kg DM 418·0 − 27·5 9·1 40·1 50·0 NR
Microalgae 20 g/kg DM 398·0 − 24·6 17·9 46·1 58·0 NR
Microalgae 30 g/kg DM 451·0 − 24·9 32·1 61·3 114·0 NR

Annett et al.(42) Mixed
commercial

M Grass – 70 47 L. dorsi 92·4 10·1 38·2 10·5 4·6 8·0 4200
Grass + Concentrate – 68 47 96·9 5·6 45·4 4·6 3·1 5·6 5100
Grass + Concentrate + Fish oil 14 g/d 68 47 175·5 20·8 54·6 11·7 6·5 5·9 6500
Concentrate – 53 44 240·8 3·9 38·1 11·8 8·4 1·7 5600
Concentrate + Fish oil 14 g/d 58 44 188·8 5·3 20·7 24·8 28·9 27·7 5900

ND, not determined; NR, not reported; S, Suffolk; RA, Rasa Aragonesa; SCH, Schwarzkopfe; ML, Merino Landschaf; C, Corriedales; PD, Poll Dorset; BL, Border Leicester; M, Merino; CA, Canadian Arcott.
* Composition of intramuscular lipid.
{ All treatments were fed for 100 d.
{Calculated as the sum of all reported fatty acids.
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subcutaneous fat thickness compared with grazing ani-
mals. The potential of flaxseed supplementation to alter
IMF composition has also been assessed in growing cat-
tle fed a basal diet based on grass-hay or barley-silage(39).
For both diets, flaxseed lowered 18 : 2 n-6 and 20 : 4 n-6
and increased 18 : 3 n-3 content. Flaxseed had minimal
effects on 20 : 5 n-3 and 22 : 5 n-3 content in cattle fed
grass hay, but increased 20 : 5 n-3 content and led to mar-
ginal enrichment of 22 : 5 n-3 on the barley-silage diet.
Further studies have investigated if echium oil, relatively
rich in stearidonic acid (18 : 4 n-3), could be used to
increase endogenous conversion of C18 n-3 PUFA to
long-chain n-3 PUFA(38), since 18 : 3 n-3 serves as a sub-
strate for Δ6 catalysed desaturation to 18 : 4 n-3 that is
considered rate-limiting for the complete desaturation
and elongation of 18 : 3 n-3 to 20 : 5 n-3 and 22 : 6
n-3. Supplementing grass-silage with echium oil or lin-
seed oil had no effect on the n-6 or n-3 PUFA content
of beef muscle, but increased the abundance of trans-11
18 : 1 and cis-9,trans-11 CLA. Inclusion of camelina oil
or linseed oil have proven effective for increasing 18 : 3
n-3 content of IMF in growing sheep, changes that
were also accompanied by marginal enrichment of 20 :
5 n-3 and 22 : 5 n-3 compared with a control diet contain-
ing calcium salts of palm oil distillate(43).

The potential of marine sources of PUFA to alter the
FA composition of beef has also been investigated. Use
of marine algae in combination with either linseed oil or
sunflower oil demonstrated that the former elevated 18 :
3 n-3 and the latter increased 18 : 2 n-6 content(40).
Inclusion of algae with either oilseed increased 22 : 6
n-3 content relative to the control, whereas the abun-
dance of 20 : 5 n-3 and 22 : 5 n-3 were similar among
treatments (Table 3). Dietary algae supplements have
also been used to enhance long chain n-3 PUFA in
lamb. In growing sheep, algae rich in 22 : 6 n-3 resulted
in a marginal decrease in 18 : 3 n-3 and dose dependent
increases in 20 : 5 n-3, 22 : 5 n-3 and 22 : 6 n-3 con-
tent(45). Changes in maternal nutrition as a mechanism
to influence the FA composition of the progeny have
been investigated. Nutrition of the dam at mating was
found to have minimal effects on lamb FA composition,
whereas supplementing the diet of lambs with microal-
gae increased 22 : 6 n-3, and to a lesser extent, 20 : 5
n-3 content of Latissimus dorsi(44). The potential of diet-
ary fish oil supplements to alter the FA composition of
meat from ruminants has also been examined.
Evaluation of different combinations of grass, concen-
trate and fish oil on lamb FA composition indicated
production system (grass or concentrate-based) had a
larger influence on overall FA composition than fish
oil supplementation, but these findings were based on
the feeding of diets with a variable FA content(42).
Concentrate-based diets tended to result in the higher
deposition of 18 : 2 n-6 in IMF, while fish oil only
increased the proportions of 22 : 5 n-3 and 22 : 6 n-3
when included in the high concentrate diet (Table 4).

Most of the research examining the role of nutrition to
alter meat FA composition and content have relied on
oilseeds and marine lipid supplements that have two

major shortcomings, firstly that the amount of supple-
mental lipid should not exceed 60 g/kg diet DM without
affecting performance and secondly that lipid contained
in these supplements is metabolised in the rumen.
Feeding rumen protected lipid supplements can, to a cer-
tain extent, be used to overcome these constraints(46).
Non-protected and rumen protected sources of linseed
and camelina were shown to alter the FA composition
of lamb(43). In unprotected form, camelina oil and linseed
oil increased the 18 : 3 n-3 content of intramuscular fat
with evidence of small increases in 20 : 5 n-3 and 22 : 6
n-3. Supplements of protected camelina seeds and lin-
seeds resulted in a higher enrichment of 18 : 3 n-3 com-
pared with unprotected camelina oil and linseed oil,
with sodium hydroxide-treated linseeds resulting in the
largest increase in 18 : 3 n-3 and long-chain n-3 PUFA
content (Table 4). Further studies using a rumen pro-
tected fish oil supplement indicated 2-fold increase in
18 : 3 n-3 and a 4-fold increase in 20 : 5 n-3 and 22 : 6
n-3 content in L. thoracis of growing cattle(47).

Trans fatty acid content of ruminant meat

High intakes of TFA are associated with increased CVD
risk and development of insulin resistance(86,87) and
increase inflammation(88). Concerns over TFA consump-
tion and human non-communicable diseases, has lead to
nutritional guidelines(6–8), and in some cases legisla-
tion(89), recommending a decrease in the TFA content
of foods. Such recommendations do not, however, con-
sider differences in the relative abundance and distribu-
tion of mono- and polyenoic TFA isomers in ruminant
TFA and industrial fats(90), other than distinguishing
between isomers of CLA containing a trans double
bond from other TFA. Enforced or voluntary changes
in the refining and processing of plant oils and vegetable
fats have decreased the amount of industrial TFA in the
human food chain increasing the relative contribution of
ruminant TFA to total TFA consumption. Even though
there is strong evidence that increases in industrial TFA
consumption being associated with mortality from
CVD(91), there are insufficient data to conclude on the
impact of ruminant TFA intake. Average intake of
total TFA in the UK adult population of 0·7 % food
energy is below a recommended maximum of 2 % of
food energy intake suggesting that present levels of
TFA consumption from ruminant foods is not a major
CVD risk factor(92).

Ruminant meat contains a range of trans 16 : 1 (Δ9–
13), trans 18 : 1 (Δ4–16) and trans 18 : 2 isomers and
trace amounts of 18 : 3 containing one or more trans
double bonds (34–37,93–95). Trans 18 : 1 isomers are quan-
titatively the most important typically accounting for
between 78 and 92 g/100 g total TFA in retail beef and
lamb(34–37). Following absorption, TFA are preferen-
tially deposited in TAG in IMF in contrast to n-3 and
n-6 PUFA that are utilised for the synthesis of phospho-
lipids in muscle membranes(93,95–97). Isomers of TFA in
ruminant meat originate from the rumen formed during
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incomplete conversion of dietary unsaturated FA into
saturated end products. In cattle and sheep fed high for-
age diets trans-11 18 : 1, an intermediate of 18 : 2 n-6 and
18 : 3 n-3 metabolism in the rumen is typically the major
TFA leaving the rumen(98). However, high concentrate
diets(99), starch-rich low fibre rations containing plant
oils(100) or diets supplemented with high amounts of
PUFA(84) are known to increase the susceptibility to
changes in biohydrogenation pathways favouring the
synthesis of trans-10 rather than trans-11 intermediates.
While a low rumen pH and high dietary concentrations
of starch and oil can promote the formation of trans-10
18 : 1 at the expense of trans-11 18 : 1 the underlying
causes are not known(98).

Diet has a major influence on the relative abundance
of trans 18 : 1 isomers in IMF in beef and lamb
(Table 5). In cattle and sheep reared on pasture or fed
high forage diets trans-11 is the major 18 : 1 isomer,
whereas trans-10 18 : 1 can represent the major TFA in
beef or lamb produced on high concentrate
diets(34–37,101–103). Even in animals reared on pasture
and conserved grass or forage legumes, deposition of
trans-10 18 : 1 has been shown to increase during inten-
sive finishing on high concentrate diets (Table 5). Under
commercial conditions, the ratio of trans-10 18 : 1:
trans-11 18 : 1 in beef or lamb can vary from low values
of 0·1 to as much as 20 depending on diet and manage-
ment system(17). Studies in several animal models have
provided evidence to suggest that trans-10 18 : 1 may
have more adverse effects on cardiovascular health com-
pared with trans-11 18 : 1(104). Feeding diets containing
plant oils or oilseeds containing cis-9 18 : 1, 18 : 2 n-6
or 18 : 3 n-3 as the major FA can be expected to cause
specific enrichment of trans-6–8, trans-10–12, and
trans-11–16 in IMF, respectively(90,105,106).

In cattle or sheep fed forages or cereals, total trans 18 :
2 abundance in IMF varies between 0·51 and 0·70 g/100
g total FA, concentrations that can be increased to 3·0 g/
100 g by dietary supplements of oilseeds or plant oils
(39,65,93,107). Appearance of most trans 18:2 in meat ori-
ginate from ruminal biohydrogenation of C18 PUFA,
but a proportion of cis-9, trans-12 18:2 and cis-9,
trans-13 18:2 may also be synthesised endogenously in
ruminant tissues(90).

Following the identification of the anti-mutagenic
properties of CLA isomers in cooked beef(108–110),
numerous studies have investigated the biological activity
of isomers of CLA in cell culture and animal models.
Much of the research has focused on the effects of
cis-9, trans-11 18 : 2 or trans-10, cis-12 18 : 2. In addition
to the inhibition of mutagenesis, specific isomers of CLA
have been demonstrated to modulate energy metabolism,
immunity, inflammation, insulin resistance and bone
metabolism in several animal models, but evidence that
the same physiological effects are also replicated in
human subjects remains inconclusive(111–116).

Isomers of CLA are present in a wide range of foods
including milk, beef and lamb, and in much smaller
amounts (0·1 g/100 g lipid) in pork and poultry(117).
Even though milk and dairy products are the major
source in the human diet, lamb, beef and other ruminant

meat products contribute to 15–32% of average daily
CLA intakes in developed countries(117–119). Ruminant
lipid can contain up to sixteen isomers of CLA with dou-
ble bonds located at 7,9–13,15 depending on diet and
production system. Cis-9, trans-11 is typically the
major isomer due, in the most part, to endogenous syn-
thesis via the action of stearoyl-CoA desaturase on
trans-11 18:1 that accounts for between 45 and 95% of
cis-9, trans-11 18 : 2 deposited in muscle and adipose
of cattle and sheep(98). Recent studies have also provided
evidence that palmitelaidic acid (trans-9 16 : 1) may also
serve as a substrate for endogenous cis-9, trans-11 18 : 2
synthesis in ruminant tissues(120). Most, if not all, of the
trans-7, cis-11 18 : 2 found in ruminant lipid is synthe-
sised endogenously using trans-7 18 : 1 as a substrate(98).
Studies in growing lambs and cattle have shown that
dietary lipid supplements can be used to enrich cis-9,
trans-11 CLA in muscle up to 2·40 g/100 g FA(15,16),
while inclusion of 60 g sunflower oil /kg DM in the
diet of Wagyu cattle with a inherently high IMF content
resulted in muscle containing 134 mg cis-9, trans-11
CLA/100 g muscle(121).

Ruminant meat also contain trace amounts of several
conjugated linolenic acids that contain at least one conju-
gated bond(16). Muscle of growing lambs was reported to
contain negligible amounts of cis-9, trans-11, cis-15 18:3,
while supplementing the diet with linseed oil over a 42 d
finishing period resulting in concentrations of 329 mg/
100 g total FA(93). At finishing muscle in cattle contains
between 50–239 and 105 mg/100 g total fatty acid methyl
esters (FAME) of cis-9, trans-11, cis-15 18:3 and cis-9,
trans-13, cis-15 18:3, respectively, and trace amounts
(20 mg/100 g total FAME) of cis-9, trans-11, trans-15
18 : 3(16) Feeding diets containing ground flaxseed over
a 140 d finishing period was shown to increase conju-
gated 18 : 3 content of muscle in beef cows between 30
and 70 mg/100 g total FAME, with evidence that enrich-
ment of specific conjugated linolenic acid isomers is
dependent on the composition of the basal diet(39).

Potential to alter meat fatty acid content relative to food
labelling claims

Numerous studies have explored the potential to alter
meat FA composition, with specific emphasis on elevat-
ing n-3 PUFA content. It is worth noting altering FA
profile has little impact on other aspects of nutrient
profile such as protein, vitamins and minerals. The mag-
nitude of increases in n-3 PUFA content that can be
achieved can be benchmarked against labelling standards
established by the European Food Safety Authority. The
established standard are based on reference nutrient
intakes and recommended daily intakes for adults of
250 mg 20 : 5 n-3 plus 22 : 6 n-3/d and 2 g 18 : 3 n-3/
d(122). Foods should supply >15% of the reference nutri-
ent intakes per 100 g and 418·4 kJ (100 kcal) to be
labelled as a ‘source of’, and >30% of the reference nutri-
ent intakes to be labelled as ‘high in’. Meat or meat pro-
ducts must contain ≥40 mg/100 g and per 418·4 kJ (100
kcal) of 20 : 5 n-3 plus 22 : 6 n-3 or ≥0·3 g/100 g and per
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Table 5. Effect of diet on the trans 18 : 1 content of beef and lamb (mg/100 g)

Reference Diet/supplement
Inclusion (g/kg
DM)

Wt
(kg)

Muscle/
species

Fat (mg/
100 g)

Trans 18:1 isomer

Δ4 Δ5 Δ6–8 Δ9 Δ10 Δ11 Δ12 Δ13/14 Δ15 Δ16 Total

Dannenberger
et al.(96)

Pasture based – 620 L. dorsi
Bovine

2,300 0·56 0·47 1·94 5·93 6·85 101·7 20·25 37·64 13·94 15·71 205
Concentrate – 620 2,670 0·57 0·53 2·94 7·84 24·05 66·21 24·99 20·04 7·82 8·22 163

Alfaia et al.(103) Pasture – 600 L. lumborum
Bovine

1,303 NR NR 1·17 1·46 1·95 13·18 2·44 NR NR 3·42* 23·6
Pasture + 2 mo
concentrate

– 1,237 NR NR 1·95 2·98 11·2 13·17 2·75 NR NR 3·32* 35·4

Pasture + 4 mo
concentrate

– 1,145 NR NR 1·98 3·22 10·0 13·61 2·97 NR NR 2·85* 34·6

Concentrate – 976 NR NR 2·48 3·39 15·8 11·99 3·00 NR NR 2·48* 39·1
Aldai et al.(65) Pasture – L. thoracis

Bovine
547 0·10 0·08 0·44 0·87 1·71 14·2 0·74 2·12 0·58 0·78 21·6

Pasture + 1 mo
concentrate

– 516 813 0·19 0·22 1·35 1·93 26·2 16·3 1·58 4·04 1·09 1·14 54·0

Pasture + 2 mo
concentrate

– 1,055 0·16 0·18 1·92 3·07 25·4 20·5 1·73 3·93 1·31 1·05 59·3

Juárez et al.(107) Barley – 562 L. thoracis
Bovine

3,520 NR NR 9·15 11·6 61·3 22·5 3·87 9·50 7·39 2·11 127
Ground flaxseed 100{ 578 4,310 NR NR 8·19 10·8 33·2 33·6 16·8 42·7 23·3 13·8 1837

Mapiye et al.(106) Red clover silage – 552 IMF
Bovine

5,480 NR NR 5·48 10·4 11·0 60·8 9·32 20·3 12·1 9·86 139
Rolled flaxseed 150 559 6,590 NR NR 23·7 26·4 33·6 419·8 45·5 92·6 40·2 33·0 712

Bessa et al.(93) Dehydrated Lucerne – NR L. thoracis
Ovine

3,950 0·20 0·40 7·78 8·57 5·81 40·8 8·18 NR NR 8·18* 79·9
Sunflower oil 74 NR 4,500 1·53 2·12 16·6 20·3 24·9 214 29·7 NR NR 29·7* 339
Sunflower oil +
Linseed oil

37 + 37 NR 5,710 1·66 2·63 21·9 24·0 25·7 300 35·2 NR NR 35·2* 446

Linseed oil 74 NR 4,920 1·38 1·82 16·3 18·7 14·8 201 27·3 NR NR 27·3* 309
Meale et al.(45) Barley + Lucerne hay – 43·0 Skirt

Ovine
NR NR NR 31·4 34·3 228 384 NR NR NR NR NR

Marine microalgae 10 46·1 NR NR NR 16·0 23·6 189 496 NR NR NR NR NR
Marine microalgae 20 44·3 NR NR NR 13·4 17·6 156 313 NR NR NR NR NR
Marine microalgae 30 45·0 NR NR NR 17·9 19·4 111 265 NR NR NR NR NR

IMF, intramuscular fat; NR, not reported.
* Elutes with the same retention time as cis-14 18 : 1 during gas-chromatography analysis.
{ Inclusion rate g/kg as fed.
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418·4 kJ (100 kcal) 18 : 3 n-3 to be labelled as a ‘source
of’ n-3 PUFA; or ≥80 mg 20 : 5 n-3 plus 22 : 6 n-3 per
100 g and 418·4 kJ (100 kcal) or ≥0·6 g per 100 g and
per 418·4 kJ (100 kcal) 18 : 3 n-3 to be labelled as ‘high
in’ n-3 PUFA(123). When interpreting data reported in
the literature, n-3 PUFA enrichment is typically reported
on a mg/100 g basis, and often the energy content of
meat or meat products has not been determined.

Based on amounts of FA (mg/100 g) in muscle for pigs
(Table 1) and chickens (Table 2) reared on diets contain-
ing linseed or flaxseed it is possible to enrich 18 : 3 n-3
above 0·3 g/100 g. For pigs fed high amounts of
flaxseed it is possible to increase 18 : 3 n-3 in pork to
615 mg/100 g(32), a concentration that exceeds the thresh-
old for a ‘high in’ n-3 PUFA claim. At the same time, the
increases in muscle total fat content and associated
enrichment of 20 : 5 n-3 plus 22 : 6 n-3 also results in
pork meeting the requirements for a ‘source of ’ long-
chain n-3 PUFA(32). Feeding dietary supplements of
fish oil to pigs has also been shown to increase the 20 :
5 n-3 and 22 : 6 n-3 content of pork to levels required
to meet the ‘source of’ claim(28). Use of fish oil or marine
algae can also be used to increase the combined amount
of 20 : 5 n-3 and 22 : 6 n-3 in chicken to levels above
80 mg/100 g(22,24,25). It is also possible to enrich 20 : 5
n-3 plus 22 : 6 n-3 in muscle to meet the ‘high in long
chain n-3 PUFA’ by feeding broilers diets containing
flaxseed oil for at least 21 d(26)and exploiting endogenous
conversion of 18 : 3 n-3 to 20 : 5 n-3 and 22 : 6 n-3 in
avian muscle.

All the studies outlined in Tables 3 and 4 relating to beef
and lamb fail tomeet the required≥0·3 g of α-linolenic acid
to even be classed as a ‘source of’ n-3 PUFA.Moreover, the
highest 18 : 3 n-3 content for beef was 71·7 mg/100 g in the
study by Nassu et al.(39) when feeding grass hay and
flaxseed. For lamb, the highest 18 : 3 n-3 content was
125·5 mg/100 g with Uruguayan grass-finished heavy
lambs(62). Nevertheless, some studies did achieve adequate
levels of EPA plus DHA to meet ‘a source of’ and
‘high in’ claims. Feeding 275 g/d of protected fish oil
resulted in 67·7 mg/100 g of EPA plus DHA in beef, sat-
isfying ‘a source of’ n-3 PUFA’ claim(122). Equally,
Annett et al(42) achieved 52·5 mg/100 g EPA plus DHA
in lamb fed a fish oil enriched concentrate. Microalgae
supplementation of lamb has also been successful in suffi-
ciently increasing EPA plus DHA levels to allow n-3
PUFA health claims. Supplementing diets with 1 and
2% DM microalgae achieved ‘a source of’ levels of
EPA plus DHA (59·1 mg/100 g and 75·9 mg/100 g,
respectively), while 3% DM supplementation achieved
146·1 mg/100 g EPA plus DHA, which is sufficient to
claim ‘high in’ n-3 PUFA(45). Both control treatments
in the study by Hopkins et al(44) attained ‘a source of’
levels of EPA plus DHA while supplementing these
diets with microalgae increase EPA plus DHA levels to
above ‘high in’ levels.

While it is helpful to be able to compare relative to
labelling standards of European Food Safety Authority,
it would be much more useful to assess the relative nutri-
tional value through human intervention studies. There is
a distinct lack of this approach in the literature.

Conclusions

Meat provides a range of macro and micronutrients for
man. The nutritional value of meat is an important fac-
tor influencing consumer preferences for various white
and red meats. Substantial progress has been made on
reducing the fat content of meat and much effort has
focused on approaches for improving FA profile with
much emphasis on n-3. Pork and chicken may be
enriched with long-chain n-3 by inclusion of fish oil or
microalgae in the diet. Enrichment of beef and lamb is
more challenging due to the extensive lipolysis and bio-
hydrogenation of dietary lipids by the rumen micro-
biome. However, some studies have achieved high
levels of long-chain n-3 in lamb, sufficient to be noted
as high-in n-3 FA according to the guidelines by the
European Food Safety Authority. Despite all the efforts
to improve lipid profile of meat there is a distinct lack of
studies examining the impact through human interven-
tion studies. This essentially helps to make better judg-
ments on the impact of nutritional value on human
health and well-being.
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