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Change detection in multi-temporal SAR images using dual-channel
convolutional neural network
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Abstract. This paper proposes a novel model of dual-channel convolutional neural network (CNN) that is designed
for change detection in SAR images, in an effort to acquire higher detection accuracy and lower misclassification
rate. This network model contains two parallel CNN channels, which can extract deep features from two multi-
temporal SAR images. For comparison and validation, the proposed method is tested along with other change
detection algorithms on both simulated SAR images and real-world SAR images captured by different sensors.
Experimental results demonstrate that the presented method outperforms the state-of-the-art techniques by a
considerable margin.
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1 Introduction

Change detection is a process to identify any changes that have occurred between two images of

the same scene taken at different times. It has played an ever increasingly important role in both

civil and military applications. Change detection in synthetic aperture radar (SAR) images has

been widely used, including deforestation detecting1, disasters monitoring2, damage assessment3,

urban expansion4, and environmental studies5. Generally, the goal of change detection is to

divide samples into changed areas and unchanged areas. Most change detection methods can be

grouped into three categories: pixel-based change detection (PBCD), object-based change

detection (OBCD), and hybrid change detection6 (HCD). Although many existing methods have

helped boost the performance of change detection, there are still challenging tasks in automatic

detection of changes in SAR images. Most conventional change detection methods are
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commonly based on handcrafted features, relying heavily on specific domain knowledge.

However, the design of handcrafted features can be tedious and is typically suboptimal7.

Deep neural networks (DNNs) are designed to simulate the human’s nervous system8,9.

Generally speaking, there are five major types of DNN, including deep belief networks (DBN) 10,

recurrent neural networks (RNN) 11, stacked auto-encoders (SAE) 12, sparse coding 13,14, and

convolutional neural networks (CNN) 15,16. A number of approaches to developing deep neural

networks have recently been widely applied with improved performance in problem-solving17,18,

but CNNs have not yet been applied on change detection in SAR images since the original

proposal19. A CNN is a trainable multilayer architecture composed of multiple feature-extraction

stages. Each stage consists of two different layers: convolution layer and pooling layer. A typical

CNN contains several such layers, followed by one or more traditional, fully connected layers

and a final classification layer. The mechanism of CNNs can be explained as an application of

the receptive field20. In a convolution layer, the input data is convolved with 2D kernels, which

then go through the activation function to form the output data (features). Pooling can be used to:

reduce the dimensionality of the features, offer invariance and increase the range of receptive

field. Two main types of pooling operation are max-pooling and averaging-pooling, aiming to

obtain the maximal value or the averaged value from a 2D image patch, respectively. Compared

with fully-connected neural networks, one of the outstanding advantages of CNNs is that much

less parameters are required to be trained in developing an applied CNN.

In this paper, CNNs are introduced to explore a new approach for change detection in SAR

images with higher accuracy. A model made up with two parallel channels of a CNN (which is

named: dual-channel convolutional neural network, DC-CNN) is proposed. It is experimentally
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proven to be able to produce improved performance over state-of-the-art change detection

methods.

The rest of this paper is organized as follows: In Section 2, the proposed method will be

introduced, including the architecture of the new network model and its input and output, the

data flowing path, and the training process associated with the model. We will describe the

datasets and experimental setup and discuss the experimental results in Section 3, empirically

comparing the proposed method with other approaches. In Section 4, we will summarize the

work and discuss future work.

The specific contributions of this paper are listed below:

(1) A novel network model based on dual-channel convolutional neural network is designed

as feature-extractor and classifier.

(2) The proposed model can be used in change detection, achieving promising results on both

simulated SAR images and real-world SAR images.

(3) The proposed approach is more efficient than the state-of-the-art techniques, e.g.,

compared with traditional PBCD, the proposed approach does not require any pre-processing;

and compared with traditional OBCD, this approach does not require pre-segmentation.

(4) A change detection map is computed as the output from two original images, without the

procedure of any kind of pre-processing or post-processing21; this differs from most of the

existing methods which are either a direct hybrid of certain existing techniques or an

improvement on part of a certain algorithm.

2 Proposed Method

Two important challenges in designing an effective change detection model using a CNN are: 1)

It needs to be sufficiently flexible to identify the underlying features in manifold forms hidden in
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the images; 2) It needs to be sufficiently effective to determine the changes between two SAR

images with a high accuracy. In the final detection outcome, the coincidence range between the

detected result and actually changed area is of particular significance. To address these

challenges the following approach is proposed.

2.1 Dual-Channel CNN (DC-CNN) for Change Detection

A DC-CNN detection model can be illustrated by the architecture shown in Fig. 1. As far as

the applicable range is concerned, this model is specifically designed for change detection

between two SAR images that have been geometrically rectified and registered. Registration is a

process to match precisely two pictures taken at different times. A CNN model with two

channels is designed to meet the corresponding pixels within the given image-pair.

As mentioned above, a classical CNN generally has two types of layer: convolution layers

and pooling layers, which are arranged in an alternative order. In the proposed DC-CNN, the

CNN in each channel consists of four convolution layers and two pooling layers as shown in Fig.

2. In particular, a max-pooling layer and an averaging-pooling layer work after the first and the

fourth convolution layer, respectively. A large number of image-pair to be examined for change

detection will be divided into many image-patch-pairs before being processed by a recognition

model. After the two image patches of one image-patch-pair are fed to the two channels of DC-

CNN simultaneously, both of them are convolved with learnt kernels and put through an

activation function in sequence for feeding to the subsequent layer.

Note that the network adopted in our work consists of two channels, each of which is a

convolutional network, as shown in Fig 2. The kernels used in the corresponding positions of the

two channels are the same in size, but not the same in weights. The activation function adopted

in this model is the Rectified Linear Units (ReLU) 22 owing to its popularity. The feature maps
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generated from the final averaging-pooling layer of each channel are concatenated to construct a

required feature vector.

In order to extract features from an original image-pair, a window sliding through each image

selects a pixel patch that will be used as the input into one of the two channels. While the sliding

window is moving from left-top to right-bottom, all the pixels belonging to each image will be

selected one by one. To enable a reasonably accurate comparison between the corresponding

pixels of two original images, in an effort to determine where the changes may have occurred,

the size of each pixel patch should not be too large. Otherwise(where the pixel patch is large), a

sizeable image area would be involved, leadings to the introduction of irrelevant information,

thereby causing less accurate change detection. As shown in Fig. 2, a sliding window with the

size of 55 is used in the following experimental studies. That is, a 55 pixel patch from each

image is chosen to form an input image-patch pair at a time. After features are extracted by the

use of the convolutional layer, the dimensionality of features is always high. This makes the

computing of features rather expensive, and may lead to overfitting. Thus, it is a standard choice

to use pooling to reduce feature dimensionality. In devising the pooling process, the average or

the maximum of an image region that is of a size of mn is used to replace the features of that

region on the input feature map, thereby greatly reducing the dimensionality of the feature maps.

In addition, this operator helps ensure that the same deep feature can be extracted, even if image

involve small translation or rotation.
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Fig. 1. Framework of dual-channel CNN model

Fig. 2. Structure of the CNN in each dual-channel

As shown in Fig. 1, channel 1 takes the patch cut from the SAR image acquired at time T1,

and channel 2 takes the corresponding patch with the same size at time T2. The sliding windows

and the input patches will move from left-top to right-bottom throughout the two images

synchronously. The CNN in each of the two channels consists of several layers, as shown in

Fig.2 (given the size of an input image patch being 55). In particular, seven layers are involved

in this work: four 33 convolution layers (C1-C4 as shown in Fig 2), two 22 pooling layer (P1-

P2), and one flatten layer (F1) which will concatenate the feature maps resulting from P2 into

one feature vector. (We use “33 convolution layer” to note a convolution layer whose kernel

size is 33, use “22 pooling layer” to note a pooing layer whose kernel size is 22.)
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After one pair of image-patches have been passed through the two CNN channels, two

feature vectors are produced, which will be concatenated into one single feature vector and fed to

a fully-connected layer (i.e.,F2), as shown in Fig 1. The output layer (F3) is a softmax layer with

two neurons that are fully-connected to the F2 layer, where the probabilities given by the two

neurons are utilised to determine whether the pixel which is in the centre of this input image

patch changes or not. The change detection map is finally achieved by sliding the windows from

left-top to right-bottom over the two images to obtain the required result over each image pixel.

2.2 Training of DC-CNN

As each pixel in an image has a neighborhood except the pixels located in image edges, an

image-pair can lead to many “patch-pairs” if every neighborhood is regarded as one patch. Since

the DC-CNN can be seen as a supervised model, it also needs certain image-pairs with ground

truth for training. To constitute a training set, a certain part of the patch-pairs are randomly

selected from the image-pairs which are extracted from the original images. Another part of the

patch-pairs are randomly selected from the remainder to form a validation set. Usually, the

proportion of the pixels in a training set is 0.5%-1% among the total pixels of these images, and

the proportion of a validation set is about 1%. At the test stage, all samples are fed into the

learned DC-CNN, and the final change detection results are then computed.

During training stage, firstly we feed one image patch (e.g., with a size of 55) of a labeled

patch-pair to the first channel of DC-CNN, and the other image patch of the same patch-pair to

the second channel synchronously. Secondly, after the output from the DC-CNN is achieved, we

compare it with the central pixel’s label of the patch-pair. Based on the result of comparison, the

weights, biases, and other model parameters are revised by back-propagation algorithm23. The
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DC-CNN will have to be trained for many epochs before it converges and remains stable. In

order to improve the accuracy of change detection, a local response normalisation(LRN)

procedure is employed during the training of DC-CNN. LRN aims to achieve topoinhibition by

the use of lateral inhibition, and it works effectively when ReLU is adopted as the activation

function. Then the stage of training is regarded complete.

3 Experiments and Results

3.1 Data Sets

To assess the capability of DC-CNN, a pair of synthetic images are produced to act as the

simulated dataset, and two real SAR image data sets acquired by distinct sensors are chosen for

the experiments.

We firstly use a pair of artificially synthesized images. The method of producing the images

is similar to what is used in experiments described in 6. The ground truth image (500500 pixels)

is shown in Fig. 3(c), and the two different backscatter intensities are chosen to generate two

multi-temporal flood images (shown in Fig. 3(a) and Fig. 3(b)), one of which is relatively bright

(i.e., -10dB) for the background and the other relatively dark (i.e., -22dB) for the six round flood

objects. Before being used in the experiments, the background image and the flood image are

degraded by speckle noise of a gamma distribution to derive the simulated image pairs (ENL =

5): Fig. 3(a) is used as the first-time noisy image (the background image) and Fig. 3(b) as the

second-time noisy image (the flood image).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Detection targets and their ground-truths used in the experiments

In our experiments, real multi-temporal SAR Data Sets are also used. Fig. 3(d) and (e) show

a pair of SAR images (290350 pixels) with C-band and HH polarization. They were acquired

by Radarsat-1 satellite SAR sensor over the lakes near Ottawa, Canada, in July and August 1997,

with the ENL being 12.5 and 12.6, respectively. Fig. 3(f) shows the ground truth obtained by

integrating prior information with photograph interpretation. Fig. 3(g) and (h) show another SAR

image-pair consisting of two C-band SAR images (301301 pixels) acquired by the satellite of

ERS-2 before and after floods over Berne, Switzerland, on April and May, 1999, respectively.
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The ENL of the first image is 10.89 and that of the second is 9.26 6. Fig. 3(i) shows the ground

truth of the change detection map that is manually created with a visual interpretation6.

To facilitate comparison, by using notations in accordance with what is used in 6, we adopt

the following abbreviations to present certain evaluation indexes hereafter: UP stands for the

number of under-detected pixels; OP for the number of over-detected pixels; and OE for the

number of overall error pixels.

3.2 Experimental Results

To illustrate the performance of DC-CNN, state-of-the-art algorithms are used in our

experiments for comparison, including: the supervised manual trial-and-error procedure24

(MTEP), the change detection threshold selection method based on the histogram ratio (named as

“Xiong algorithm”24), the fully automated and time efficient extraction algorithm that can deal

with non-bimodal histograms (named “M3 method”25), and the unsupervised algorithm-level

fusion scheme of hybrid change detection (UAFS-HCD6). As mentioned above, Data sets used in

the experiments include both simulated Data Sets and real SAR Data Sets acquired by various

sensors. Each image-pair in the data sets include two multi-temporal SAR images, which are

obtained in times T1 and T2, respectively.

3.2.1 Simulated images

We compare the proposed method quantitatively with other algorithms when dealing with the

same simulated images given in Fig. 4(b) and (c) that are under Gamma noise. The results

obtained from the various methods are listed in Table 1 and their change detection maps are

shown respectively in Fig. 4(d), (e), (f), (g), and (h).



11

Fig. 4. Simulated images and results: (a) Ground truth. (b) Background image in Gamma noise. (c) Flood image in
Gamma noise. (d) Change detection map with MTEP24. (e) Change detection map with Xiong algorithm24. (f)
Change detection map with M325. (g) Change detection map with UAFS-HCD6. (h) Change detection map with DC-
CNN

Table 1 Experimental results on simulated SAR images.
Method OP UP OE
MTEP24 185 220 405

Xiong algorithm24 46 898 944
M325 3066 814 3880

UAFS-HCD6 24 696 720
DC-CNN 42 333 375

Fig. 4(h) visually shows that the proposed method DC-CNN achieves accurate detection results,

which is also confirmed by the results of Table 1. The DC-CNN method is characterized by 42

over-detected pixels and 333 under-detected pixels, which is generally satisfactory, only having

one incorrect detection overall more than the least error performer among all the methods

compared.

3.2.2 Radarsat-1 SAR Images

In dealing with the real-world SAR images as given in Fig. 5(b) and (c) that were obtained from

Radarsat-1, the results of applying the various methods are listed in Table 2 and their change

detection maps are shown respectively in Fig. 5(d), (e), (f), (g), and (h).
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Fig. 5. Radarsat-1 SAR images and results: (a) Flood image. (b) Reference image. (c) Ground truth (the black pixels
show the detected floods). (d) Change detection map with MTEP24. (e) Change detection map with Xiong
algorithm24. (f) Change detection map with M325. (g) Change detection map with UAFS-HCD6. (h) Change
detection map with DC-CNN.

Table 2 Experimental results on Ottawa.

Method OP UP OE
MTEP24 1222 1912 3134

Xiong algorithm24 665 3292 3957
M325 1793 2847 4640

UAFS-HCD6 797 2726 3523
DC-CNN 518 1081 1599

From Fig 5(h) we can see that the difference map produced by DC-CNN is obviously

clearer and more recognizable than other difference maps. Quantitative results of the changes

detected using different methods are listed in Table 2, from which we can also see that the

proposed method obtains the best result with the lowest under-detected pixels: 1081, the lowest

over-detected pixels:518,and the lowest overall error pixels: 1599. Compared with the result of

MTEP which has the second best performance: 1912 under-detected pixels and 3134 overall
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error pixels, DC-CNN’s error rate is only about half of them. This demonstrates that the

proposed model offers a substantially improved performance.

3.2.3 ERS-2 SAR Images

We also carried out further experiments on the real-world SAR images given in Fig. 6(b) and (c)

that were obtained from ERS-2. The results of using the various methods are listed in Table 3

and their change detection maps are shown respectively in Fig. 6(d), (e), (f), (g), and (h).

Fig. 6. ERS-2 SAR Images and results (the black pixels show the detected floods): (a) Reference image. (b) Flood
image. (c) Ground truth. (d) Change detection map with MTEP24. (e) Change detection map with Xiong algorithm24.
(f) Change detection map with M325. (g) Change detection map with UAFS-HCD6 (h) Change detection map with
DC-CNN.

Table 3 Experimental results on Berne image.

Method OP UP OE
MTEP24 140 272 412

Xiong algorithm24 111 317 428
M325 464 155 619

UAFS-HCD6 64 322 386
DC-CNN 226 102 328
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Fig 6(h) shows the prominent result obtained by the proposed DC-CNN. We can even recognize

by naked eyes that the change detection map obtained by DC-CNN is by far better than other

difference maps. This conclusion is also based on the evidence given by Table 3, from which we

can see that the proposed method obtains the lowest under-detected pixels: 102, and the lowest

overall error pixels: 328. In other words, the proposed approach outperforms the state-of-the-art

techniques in real-world change detection.

Together, the above experiments have jointly demonstrated that the proposed method offers

superior performance over many state-of-the-art algorithms, in the detection of changes in both

simulated and real-world SAR images.

3.3 Influence of Parameters

3.3.1 Size of input patch

A comparative study is performed here on the effects of using a different size of the input patch.

The patch size of 5  5 is empirically used in the proposed DC-CNN model to deal with the

change detection. This is based on the results of relevant experimental investigations, where 7

alternative patch sizes are selected for conducting the comparison, which are 33, 77, 99,

11  11, 13  13, 15  15, 17  17, respectively. Accordingly, the DC-CNN model needs to be

modified to work compatibly with this change of the input size. In particular, when the image

patch size is 3  3, all of the four convolution layers (i.e., C1-C4) execute the convolution

manipulation with padding, resulting in no change of the size of image patch after the

convolution. The size of image patch will only be reduced after going through the two pooling

layers (i.e., max-pooling of P1 and averaging-pooling of P2). The convolution manipulation in
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convolution layers is slightly different as the size of image patch becoming larger. Convolution

layers C1 and C2 work with padding of size 77, while C3 and C4 perform the convolution

manipulations without padding. In size 99, only convolution layer C1 conducts convolution

manipulation with padding while the remaining three do the opposite ones. As the size of image

patch reaching 1111, all of the four convolution layers do the convolution without padding,

which is just in the opposite side of that with the image patch size of 33 at the beginning. Up to

now, the size of feature map produced by the averaging-pooling (P2) is 11 when the size of

image patch is increasing from 33 to 1111. The CNN remains the same structure when the size

is 1313 as that of 1111, but generates the feature map in the size of 33. As the size of image

patch goes up to 1515 or larger, the corresponding modification for the CNNs is implemented

by setting the stride of the convolution layers and pooling layers. Fig.7 shows the results of this

experiment with various image-patch sizes.

Fig. 7. Overall error obtained by varying the size of image patch on three different datasets
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Table 4 presents the results of this experimental investigation by varying the size of image-

patch on three different datasets, with the figures are plotted in Fig. 7. As can be seen, the

relative better performance has been achieved when the size of image patch is 55 and 1111 on

the simulated dataset. This is also verified by the use of the SAR image obtained from Radarsat-

1. The overall error collected using SAR image from ERS-2 indicates the best performance can

be achieved when the size is 55. Moreover, the accuracy of change detection deteriorates as the

size of image patch goes higher than 11 on all of the three datasets.

Table 4 Overall errors with respect to different image-patch sizes.

Method 33 55 77 99 1111 1313 1515 1717
Simulated Image 849 375 408 474 357 410 441 846
Ottawa Image 1889 1599 1786 1907 1648 1896 2274 2331
Berne Image 388 328 344 350 363 437 457 474

This makes logical sense because if the image-patch size is too large, the samples would

contain too much unrelated information, thereby weakening the representation power to the

central pixels. In the pixel-wise sampling procedure, a larger window would cause higher

repetition rate between the two adjacent pixels, which will lead to more similar change

information between them, therefore generating worse results with blurry boundary. Thus, the

size of image patch will be set as 55 in the following experiments.

3.3.2 Number of neurons in the Fully-connected Layer

When designing a DC-CNN model, we use the powerful feature mapping ability contained in

convolution layers to extract features. However, after many convolution layers and pooling layer

have been used and many abstract features obtained, how to merge them together becomes a

significant issue that requires careful consideration. One efficient method is to fuse these features

with a fully-connected layer, so we examine the effects of using a different number (say 5,10,
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50,100, 150, or 200) of neurons in a fully-connected layer. Fig. 8 and Table 5 show the

corresponding experimental results.

Fig. 8. Experimental results of change detection vs. different numbers of neurons in the fully-connected layer (a)
Simulated images with 5 neurons. (b) Simulated images with 10 neurons. (c) Simulated images with 50 neurons. (d)
Simulated images with 100 neurons. (e) Simulated images with 150 neurons. (f) Simulated images with 200 neurons.
(g) Radarsat-1 SAR images with 5 neurons. (h) Radarsat-1 SAR images with 10 neurons. (i) Radarsat-1 SAR images
with 50 neurons. (j) Radarsat-1 SAR images with 100 neurons. (k) Radarsat-1 SAR images with 150 neurons. (l)
Radarsat-1 SAR images with 200 neurons. (m) ERS-2 SAR images with 5 neurons. (n) ERS-2 SAR images with 10
neurons. (o) ERS-2 SAR images with 50 neurons. (p) ERS-2 SAR images with 100 neurons. (q) ERS-2 SAR images
with 150 neurons. (r) ERS-2 SAR images with 200 neurons.

Table 5 Overall errors with respect to different numbers of neurons in the fully-connected layer

number of neurons 5 10 50 100 150 200
simulated images 597 375 435 520 696 710

Radarsat-1 SAR Image 1799 1599 1686 1793 1754 1868
ERS-2 SAR image 330 328 307 316 325 311

The results showed in Fig. 8 and table 5 are acquired under the prerequisite that the two

channels of the DC-CNN both have the same structure with the neuron numbers being “5-10-20-

40”. This means that each channel has 4 convolution layers, with the first convolution layer of



18

each channel having 5 neurons leading to 5 feature maps, max-pooling and avg-pooling make no

difference for the number of features maps. The second convolution layer having 10 neurons

leading to 10 feature maps, and so on. The fully-connected layer may be viewed as implementing

a dimensionality transformation from one dimensionality to another; the use of an appropriate

number of its neurons can preserve useful information embedded in the input feature maps. As

can be seen in Table 5, the best performance is achieved when the number of neurons is 10,

regarding simulated images and Radarsat-1 SAR images. The overall error increases as the

number of neurons becomes larger than 10. Although the overall error is lowest when the

number of neurons is 50 regarding the ERS-2 SAR image, there is no significant changing of the

performance overall.

3.3.3 Number of Feature Maps

We have discussed the impact of the neuron numbers in the fully-connected layer on the

effectiveness of a DC-CNN model. The number of feature maps in every convolution layer may

also have an impact upon the change detection results of DC-CNN. The two images or image-

patches processed in each DC-CNN channel have a high similarity between each other, so the

features to be extracted from both images may also possess certain correspondence. Based on

this observation, we enforce the two DC-CNN channels to be of the identical size and shape (but

not the same parameter values). In our experiment, we compare four types of typical model

structure, namely “gradually-decrease”, “stagger”, “spindle”, and “gradually-increase”

arrangements. The feature map numbers in each of these types are configured in the following

manner: “gradually-decrease” 50-40-30-20, “stagger” 5-10-20-10, “spindle” 20-30-30-20, and

“gradually-increase” 5-10-20-30. For example, the model structure of “gradually-decrease”

arrangement has the structure of “50-40-30-20”, meaning that this DC-CNN model has 4
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convolution layers in either of the two channels, where the number “50” in the notation “50-40-

30-20” means that the first convolution layer produces 50 feature maps, the second convolution

layer produces 40 feature maps, etc. The experimental results are shown in Fig. 9 and Table 6.

Fig. 9. Results of change detection vs. different numbers of feature maps in every convolution layer (a) Simulated
images with a “gradually-decrease” arrangement. (b) Simulated images with a “stagger” arrangement. (c) Simulated
images with a “spindle” arrangement. (d) Simulated images with a “gradually-increase” arrangement. (e) Radarsat-1
SAR images with a “gradually-decrease” arrangement. (f) Radarsat-1 SAR images with a “stagger” arrangement. (g)
Radarsat-1 SAR images with a “spindle” arrangement. (h) Radarsat-1 SAR images with a “gradually-increase”
arrangement. (i) ERS-2 SAR images with a “gradually-decrease” arrangement. (j) ERS-2 SAR images with a
“stagger” arrangement. (k) ERS-2 SAR images with a “spindle” arrangement. (l) ERS-2 SAR images with a
“gradually-increase” arrangement.

Table 6 Overall errors with respect to different numbers of feature maps in every convolution layer

Net Structure gradually-decrease stagger spindle gradually-increase
simulated images 767 581 541 375

Radarsat-1 SAR Image 2022 1934 1746 1599
ERS-2 SAR image 350 330 318 328
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From Fig. 9 and Table 6 we can see that the DC-CNNs with different structural specifications

all produce relatively good performance. The model with a “gradually-increase” arrangement

structure gives the best outcome, while the model with a “gradually-decrease” arrangement

structure has the worst effect. Such a phenomenon reflects an internal mechanism of CNNs that

the features obtained from the first several layers are relatively concrete to represent the details

of an input image, while the features achieved from the subsequent layers are usually more

abstract in representing the essential characteristics of the given image.

4 Conclusion

This paper has presented a novel change detection model based on a dual-channel convolutional

neural network. The new model is composed of two paralleled CNN channels followed by a full-

connection layer and softmax layer, which can concatenate the output of the two channels before

producing the final detection results. In order to demonstrate the potential of this work, in

addressing the challenges of change detection in SAR images, we have trained the model with

both synthesized images and real-world SAR images, and conducted a series of experimental

studies using the trained model. The experimental investigations have been carried out in

comparison with state-of-the-art approaches. The results of such a systematic comparison have

collectively shown that the new model of DC-CNN offers a promising performance with high

accuracy. In the future, we will apply this proposed method for change detection in images that

come from different remote sensors, over scenes that are of practical, and public, interests in

environmental protection.
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Fig. 9. Results of change detection vs. different numbers of feature maps in every convolution

layer (a) Simulated images with a “gradually-decrease” arrangement. (b) Simulated images with

a “stagger” arrangement. (c) Simulated images with a “spindle” arrangement. (d) Simulated

images with a “gradually-increase” arrangement. (e) Radarsat-1 SAR images with a “gradually-

decrease” arrangement. (f) Radarsat-1 SAR images with a “stagger” arrangement. (g) Radarsat-1

SAR images with a “spindle” arrangement. (h) Radarsat-1 SAR images with a “gradually-

increase” arrangement. (i) ERS-2 SAR images with a “gradually-decrease” arrangement. (j)
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arrangement. (l) ERS-2 SAR images with a “gradually-increase” arrangement.
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