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Two-parameter homogenization for a nonlinear periodic Robin

problem for the Poisson equation. A functional analytic approach∗

Massimo Lanza de Cristoforis † , Paolo Musolino‡

Abstract: We consider a nonlinear Robin problem for the Poisson equation in an unbounded periodically
perforated domain. The domain has a periodic structure, and the size of each cell is determined by a positive
parameter δ. The relative size of each periodic perforation is instead determined by a positive parameter ε.
We prove the existence of a family of solutions which depends on ε and δ and we analyze the behavior of such
a family as (ε, δ) tends to (0, 0) by an approach which is alternative to that of asymptotic expansions and of
classical homogenization theory.

Keywords: Nonlinear Robin problem; singularly perturbed domain; Poisson equation; periodically perforated
domain; homogenization; real analytic continuation in Banach space

2010 Mathematics Subject Classification: 35J25; 31B10; 45A05; 47H30

1 Introduction

In this paper, we consider a nonlinear Robin problem for the Poisson equation in a periodically perforated
domain with small holes. We fix once for all

n ∈ N \ {0, 1} , and (q11, . . . , qnn) ∈]0,+∞[n ,

and we introduce a periodicity cell
Q ≡ Πn

j=1]0, qjj [ .

Then we denote by q the diagonal matrix

q ≡


q11 0 . . . 0
0 q22 . . . 0
. . . . . . . . . . . .
0 0 . . . qnn


and by mn(Q) the n dimensional measure of the fundamental cell Q. Clearly, qZn ≡ {qz : z ∈ Zn} is the set
of vertices of a periodic subdivision of Rn corresponding to the fundamental cell Q.

Then we consider m ∈ N \ {0} and α ∈]0, 1[ and a subset Ω of Rn satisfying the following assumption.

Let Ω be a bounded open connected subset of Rn of class Cm,α.

Let Rn \ clΩ be connected. Let 0 ∈ Ω . (1.1)

Next we fix p ∈ Q. Then there exists ε0 ∈]0,+∞[ such that

p+ εclΩ ⊆ Q ∀ε ∈]− ε0, ε0[ , (1.2)

where cl denotes the closure. To shorten our notation, we set

Ωp,ε ≡ p+ εΩ ∀ε ∈ R .
∗The authors acknowledge the support of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni

(GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). M. Lanza de Cristoforis acknowledges the support of the
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Then we introduce the periodic domains

S[Ωp,ε] ≡
⋃
z∈Zn

(qz + Ωp,ε) , S[Ωp,ε]
− ≡ Rn \ clS[Ωp,ε] ,

for all ε ∈]−ε0, ε0[. Then a function u defined either on clS[Ωp,ε] or on clS[Ωp,ε]
− is q-periodic if u(x+qhheh) =

u(x) for all x in the domain of u and for all h ∈ {1, . . . , n}. Here {e1,. . . , en} denotes the canonical basis of
Rn. Next we introduce a dilation of the periodic domain S[Ωp,ε]

− by setting

S(ε, δ)− ≡ δS[Ωp,ε]
− ∀(ε, δ) ∈]0, ε0[×]0,+∞[ .

The parameter δ determines the size of the periodic cells of S(ε, δ)−. Next we turn to introduce the data of our
problem. To do so, we fix ρ ∈]0,+∞[ and we consider the Roumieu function space C0

q,ω,ρ(Rn) of q-periodic
real analytic functions from Rn to R (see (2.2)), and we assume that

{fε}ε∈]−ε0,ε0[ is a real analytic family in C0
q,ω,ρ(Rn) , (1.3)

i.e., that the map from ]− ε0, ε0[ to C0
q,ω,ρ(Rn) which takes ε to fε is real analytic, and we assign a (nonlinear)

continuous real valued function
G ∈ C0(∂Ω× R)

satisfying certain regularity assumptions which we specify later (cf. (3.4), (4.7).) Then we consider the
following periodic nonlinear problem for the Poisson equation for each (ε, δ) ∈]0, ε0[×]0,+∞[

∆u(x) = fε(δ
−1x) ∀x ∈ S(ε, δ)− ,

u is δq − periodic in S(ε, δ)− ,
∂

∂νδΩp,ε
u(x) +G(δ−1ε−1(x− δp), u(x)) = 0 ∀x ∈ δ∂Ωp,ε ,

(1.4)

where νδΩp,ε is the outward unit normal to δΩp,ε on δ∂Ωp,ε.
Our first goal is to identify a family of solutions of problem (1.4) for ε and δ close to 0. Our second goal is

to analyze what happens to the family of solutions when ε and δ tend to the degenerate value 0.
We distinguish two cases which depend on the behavior of

´
Q
fε dy as ε is close to zero.

If
´
Q
fε dy is not identically zero in ε ∈] − ε0, ε0[, our assumption (1.3) implies that there exist a unique

nf ∈ N and a unique analytic function F from ]− ε0, ε0[ to R such that

ˆ
Q

fε dy = εnfF (ε) ∀ε ∈]− ε0, ε0[ , F (0) 6= 0 . (1.5)

If instead
´
Q
fε dy is identically zero, we set by definition nf ≡ +∞. Then we consider separately case

nf ≥ n− 1 and case nf < n− 1.
In case nf ≥ n− 1, we look for a family of solutions u(ε, δ, ·) such that

(�) lim(ε,δ)→(0,0) u(ε, δ, δ·) exists in the Cm,α-norm on the compact subsets of Rn \ (p+ qZn).

(��) lim(ε,δ)→(0,0) u(ε, δ, δ(p+ ε·)) exists in the Cm,α-norm on the compact subsets of Rn \ Ω.

Now by a result of [15, Prop. 4.4 (ii)], one can prove that if such a family exists, then the limit of the rescaled
family of (�) must necessarily be a constant. Thus in order to show the existence of such a family, we assume
that there exists c� ∈ R such that

ˆ
∂Ω

G(t, c�) dσt = 0 ,

ˆ
∂Ω

Gu(t, c�) dσt 6= 0 , Gu(t, c�) ≥ 0 ∀t ∈ ∂Ω , (1.6)

where Gu denotes the partial derivative of G with respect to the second argument, and we prove that for ε
and δ small, problem (1.4) has a solution

u(ε, δ, ·) ∈ Cm,α(clS(ε, δ)−) ,

where the symbol Cm,α(clS(ε, δ)−) denotes the Schauder space of functions of class Cm(clS(ε, δ)−) with α-
Hölder continuous derivatives of order m (see Definition 4.12.) The constant c� plays the role of the limiting
value of the rescaled solutions of (�).
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In case nf < n − 1, our problem displays a higher degree of singularity and we cannot readily identify a
limiting problem as (ε, δ) tends to (0, 0), but instead we can do so if we take the limit as (ε, δ) tends to (0, 0)
in a restricted way (see discussion after (3.12).) So for each γ0 ∈ [0,+∞[ and for each function ε̂(·) such that

ε̂(·) is a function from ]0,+∞[ to ]0, ε0[ , (1.7)

lim
δ→0

ε̂(δ) = 0 , lim
δ→0

δ

ε̂(δ)(n−1)−nf
= γ0 ,

we look for a family of solutions u(δ, ·) defined on clS(ε, δ)− with ε = ε̂(δ) such that

(∗) limδ→0 u(δ, δ·) exists in the Cm,α-norm on the compact subsets of Rn \ (p+ qZn).

(∗∗) limδ→0 u(δ, δ(p+ ε̂(δ)·)) exists in the Cm,α-norm on the compact subsets of Rn \ Ω.

Then again by [15, Prop. 4.4 (ii)], one can prove that if such a family exists, then the limit of the rescaled
family of (∗) must necessarily be a constant. Thus in order to show the existence of such a family, we assume
that there exist c∗ ∈ R and γ0 ∈ [0,+∞[ such thatˆ

∂Ω

G(t, c∗) dσt − F (0)γ0 = 0 ,

ˆ
∂Ω

Gu(t, c∗) dσt 6= 0 , Gu(t, c∗) ≥ 0 ∀t ∈ ∂Ω , (1.8)

and we prove that for all functions ε̂(·) as in (1.7) and for δ small, problem (1.4) with ε = ε̂(δ) has a solution

u(δ, ·) ∈ Cm,α(clS(ε̂(δ), δ)−) ,

(see Definition 5.7.) The constant c∗ plays the role of the limiting value of the rescaled solutions of (∗).
The goal of our paper is to investigate the behavior of u(ε, δ, ·) and of u(δ, ·) as (ε, δ) and δ tend to (0, 0)

and to 0, respectively. In particular, we pose the following question.

(†) What can we say on the function (ε, δ) 7→ u(ε, δ, ·) as (ε, δ) is close to (0, 0) in ]0, ε0[×]0,+∞[, and what
can we say on the function δ 7→ u(δ, ·) as δ is close to 0 in ]0,+∞[?

The asymptotic behavior of solutions of problems in periodically perforated domains has long been investigated
in the frame of Homogenization Theory. It is perhaps difficult to provide a complete list of contributions, and
here we mention, e.g., Khruslov [23], Marčenko and Khruslov [38], Cioranescu and Murat [9, 10], and for
nonlinear Robin problems the work of Cabarrubias and Donato [7]. We also mention Maz’ya and Movchan
[39], where the assumption of periodicity of the array of inclusions has been released.

More generally, problems in singularly perturbed domains have been largely studied with the methods of
asymptotic expansions. Here, we mention, e.g., Ammari and Kang [1], Ammari, Kang, and Lee [2], Bonnaillie-
Noël, Dambrine, and Lacave [4], Bonnaillie-Noël, Dambrine, Tordeux, and Vial [5], Dauge, Tordeux, and
Vial [17], Kozlov, Maz’ya, and Movchan [25], Maz’ya, Movchan, and Nieves [40], Maz’ya, Nazarov, and
Plamenewskij [41], Novotny and Soko lowski [45], Ozawa [46], Ward and Keller [49].

Here instead, we wish to represent the functions in question (†) in terms of real analytic maps of (ε, δ)
and in terms of possibly singular at (0, 0), but known functions of (ε, δ) in case nf ≥ (n− 1) and in terms of
real analytic maps of (ε̂(δ), δ/ε̂(δ)(n−1)−nf ) and in terms of possibly singular at (0, γ0), but known functions
of (ε̂(δ), δ/ε̂(δ)(n−1)−nf ) in case nf < (n− 1).

One of the main advantages of our approach is that it allows to justify the possibility to expand the
solutions or related functionals in terms of convergent power series and of known functions of the singular
perturbation parameters. Indeed, for example, if we know that a certain functional associated to u(ε, δ, ·) can
be expressed in terms of real analytic functions and known functions of (ε, δ), then we can expand the real
analytic functions into power series and thus we can deduce representation formulas consisting of convergent
power series and explicitly known maps (so as for example for the expressions of Theorem 8.5 (i), (ii), and of
[34, Thm. 3, Cor. 1] for the energy integral of the solutions of a linear Dirichlet problem.)

Moreover, the coefficients of the power series expansions can be computed by solving some explicit systems
of integral equations. The expression of such systems for the case of a Dirichlet problem in a bounded domain
with a small hole has been obtained in [16].

This paper is a first step in the analysis of nonlinear homogenization problems by exploiting a method which
has already been developed for singular perturbation problems in domains with small holes (cf. e.g., [27].) Such
a method has been exploited for singularly perturbed boundary value problems for the Laplace equation in
[28, 29, 30], for linearized elastostatics in [13, 14] and for the Stokes equations in [11, 12]. Concerning problems
in periodic domains we refer to [32, 43, 44], and in particular to [36] where the analysis of a two-parameter
anisotropic homogenization problem for a Dirichlet problem for the Poisson equation is carried out.

We also observe that boundary value problems in domains with periodic inclusions can be analyzed, at
least for the two dimensional case, with the method of functional equations. Here we mention, e.g., Castro,
Pesetskaya, and Rogosin [8], Drygas and Mityushev [19], and Kapanadze, Mishuris, and Pesetskaya [24].
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2 Preliminaries and notation

We denote the norm on a normed space X by ‖ · ‖X . Let X and Y be normed spaces. We endow the space
X ×Y with the norm defined by ‖(x, y)‖X×Y ≡ ‖x‖X +‖y‖Y for all (x, y) ∈ X ×Y, while we use the Euclidean
norm for Rn. The symbol N denotes the set of natural numbers including 0. Let A be a matrix. Then Aij
denotes the (i, j)-entry of A. If A is invertible, At and A−1 denote the transpose and the inverse matrix of A,
respectively. Let D ⊆ Rn. Then clD denotes the closure of D and ∂D denotes the boundary of D. We also set

D− ≡ Rn \ clD .

For all R > 0, x ∈ Rn, xj denotes the j-th coordinate of x, |x| denotes the Euclidean modulus of x in Rn,
and Bn(x,R) denotes the ball {y ∈ Rn : |x− y| < R}. Let Ω be an open subset of Rn. The space of m times
continuously differentiable real-valued functions on Ω is denoted by Cm(Ω,R), or more simply by Cm(Ω).

Let r ∈ N \ {0}. Let f ∈ (Cm(Ω))
r
. The s-th component of f is denoted fs, and Df denotes the Jacobian

matrix
(
∂fs
∂xl

)
s=1,...,r,
l=1,...,n

. Let η ≡ (η1, . . . , ηn) ∈ Nn, |η| ≡ η1 + · · · + ηn. Then Dηf denotes ∂|η|f
∂x
η1
1 ...∂xηnn

. The

subspace of Cm(Ω) of those functions f whose derivatives Dηf of order |η| ≤ m can be extended with continuity
to clΩ is denoted Cm(clΩ). The subspace of Cm(clΩ) whose functions have m-th order derivatives that are
Hölder continuous with exponent α ∈]0, 1] is denoted Cm,α(clΩ) (cf. e.g., Gilbarg and Trudinger [21].) The
subspace of Cm(clΩ) of those functions f such that f|cl(Ω∩Bn(0,R)) ∈ Cm,α(cl(Ω∩Bn(0, R))) for all R ∈]0,+∞[
is denoted Cm,αloc (clΩ). Let D ⊆ Rr. Then Cm,α(clΩ,D) denotes {f ∈ (Cm,α(clΩ))

r
: f(clΩ) ⊆ D}.

We say that a bounded open subset Ω of Rn is of class Cm or of class Cm,α, if clΩ is a manifold with
boundary imbedded in Rn of class Cm or Cm,α, respectively (cf. e.g., Gilbarg and Trudinger [21, §6.2].) We
denote by νΩ the outward unit normal to ∂Ω. For standard properties of functions in Schauder spaces, we
refer the reader to Gilbarg and Trudinger [21] (see also [26, §2, Lem. 3.1, 4.26, Thm. 4.28], [37, §2].)

If M is a manifold imbedded in Rn of class Cm,α, with m ≥ 1, α ∈]0, 1[, one can define the Schauder spaces
also on M by exploiting the local parametrizations. In particular, one can consider the space Ck,α(∂Ω) on ∂Ω
for 0 ≤ k ≤ m with Ω a bounded open set of class Cm,α, and the trace operator from Ck,α(clΩ) to Ck,α(∂Ω)
is linear and continuous. We denote by dσ the area element of a manifold M imbedded in Rn. We retain the
standard notation for the Lebesgue space Lp(M) of p-summable functions. Also, if X is a vector subspace of
L1(M), we find convenient to set

X0 ≡
{
f ∈ X :

ˆ
M

f dσ = 0

}
. (2.1)

We note that throughout the paper ‘analytic’ means always ‘real analytic’. For the definition and properties
of analytic operators, we refer to Deimling [18, §15].

We set δi,j = 1 if i = j, δi,j = 0 if i 6= j for all i, j = 1, . . . , n.
If Ω is an arbitrary open subset of Rn, k ∈ N, β ∈]0, 1], we set

Ckb (clΩ) ≡ {u ∈ Ck(clΩ) : Dγu is bounded ∀γ ∈ Nn such that |γ| ≤ k} ,

and we endow Ckb (clΩ) with its usual norm

‖u‖Ckb (clΩ) ≡
∑
|γ|≤k

sup
x∈clΩ

|Dγu(x)| ∀u ∈ Ckb (clΩ) .

Then we set
Ck,βb (clΩ) ≡ {u ∈ Ck,β(clΩ) : Dγu is bounded ∀γ ∈ Nn such that |γ| ≤ k} ,

and we endow Ck,βb (clΩ) with its usual norm

‖u‖Ck,βb (clΩ) ≡
∑
|γ|≤k

sup
x∈clΩ

|Dγu(x)|+
∑
|γ|=k

|Dγu : clΩ|β ∀u ∈ Ck,βb (clΩ) ,

where |Dγu : clΩ|β denotes the β-Hölder constant of Dγu.
Next, we turn to introduce the Roumieu classes. For all bounded open subsets Ω of Rn and ρ > 0, we set

C0
ω,ρ(clΩ) ≡

{
u ∈ C∞(clΩ) : sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clΩ) < +∞

}
,

and

‖u‖C0
ω,ρ(clΩ) ≡ sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clΩ) ∀u ∈ C0

ω,ρ(clΩ) ,

4



where |β| ≡ β1+· · ·+βn for all β ≡ (β1, . . . , βn) ∈ Nn. As is well known, the Roumieu class
(
C0
ω,ρ(clΩ), ‖ · ‖C0

ω,ρ(clΩ)

)
is a Banach space.

Next we turn to periodic domains. If Ω is an arbitrary subset of Rn such that clΩ ⊆ Q, then we set

S[Ω] ≡
⋃
z∈Zn

(qz + Ω) = qZn + Ω , S[Ω]− ≡ Rn \ clS[Ω] .

If k ∈ N, β ∈]0, 1], then we set

Ckq (clS[Ω]) ≡
{
u ∈ Ckb (clS[Ω]) : u is q − periodic

}
,

which we regard as a Banach subspace of Ckb (clS[Ω]), and

Ck,βq (clS[Ω]) ≡
{
u ∈ Ck,βb (clS[Ω]) : u is q − periodic

}
,

which we regard as a Banach subspace of Ck,βb (clS[Ω]). Then Ckq (clS[Ω]−) and Ck,βq (clS[Ω]−) can be defined
similarly. If ρ ∈]0,+∞[, then we set

C0
q,ω,ρ(Rn) ≡

{
u ∈ C∞q (Rn) : sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clQ) < +∞

}
, (2.2)

where C∞q (Rn) denotes the set of q-periodic functions of C∞(Rn), and

‖u‖C0
q,ω,ρ(Rn) ≡ sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clQ) ∀u ∈ C0

q,ω,ρ(Rn) .

The Roumieu class
(
C0
q,ω,ρ(Rn), ‖ · ‖C0

q,ω,ρ(Rn)

)
is a Banach space. As is well known, if f is a q-periodic real

analytic function from Rn to R, then there exists ρ ∈]0,+∞[ such that

f ∈ C0
q,ω,ρ(Rn) .

As is well known, there exists a q-periodic tempered distribution Sq,n such that

∆Sq,n =
∑
z∈Zn

δqz −
1

mn(Q)
,

where δqz denotes the Dirac measure with mass in qz (cf. e.g., [31, p. 84].) The distribution Sq,n is determined
up to an additive constant, and we can take

Sq,n(x) = −
∑

z∈Zn\{0}

1

mn(Q)4π2|q−1z|2
e2πi(q−1z)·x ,

in the sense of distributions in Rn. Moreover, Sq,n is even, and real analytic in Rn \qZn, and locally integrable
in Rn (cf. e.g., Ammari and Kang [1, p. 53], [31, §3].)

Let Sn be the function from Rn \ {0} to R defined by

Sn(x) ≡
{ 1

sn
log |x| ∀x ∈ Rn \ {0}, if n = 2 ,
1

(2−n)sn
|x|2−n ∀x ∈ Rn \ {0}, if n > 2 ,

where sn denotes the (n − 1) dimensional measure of ∂Bn. Sn is well-known to be the fundamental solution
of the Laplace operator.

Then the function Sq,n − Sn admits an analytic extension to (Rn \ qZn)∪ {0} (cf. e.g., Ammari and Kang
[1, Lemma 2.39, p. 54].) We find convenient to set

Rq,n ≡ Sq,n − Sn in (Rn \ qZn) ∪ {0} .

Obviously, Rq,n is not a q-periodic function. We note that the following elementary equality holds

Sq,n(εx) = ε2−nSn(x) +
1

2π
(δ2,n log ε) +Rq,n(εx) , (2.3)
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for all x ∈ Rn \ ε−1qZn and ε ∈]0,+∞[.
If Ω is a bounded open subset of Rn and f ∈ L∞(Ω), then we set

Pn[Ω, f ](x) ≡
ˆ

Ω

Sn(x− y)f(y) dy ∀x ∈ Rn .

If we further assume that Ω ⊆ Q, then we set

Pq,n[Ω, f ](x) ≡
ˆ

Ω

Sq,n(x− y)f(y) dy ∀x ∈ Rn .

Let Ω be a bounded open subset of Rn of class C1,α for some α ∈]0, 1[. If H is any of the functions Sq,n,
Rq,n and clΩ ⊆ Q or if H equals Sn, we set

v[∂Ω, H, µ](x) ≡
ˆ
∂Ω

H(x− y)µ(y) dσy ∀x ∈ Rn ,

w[∂Ω, H, µ](x) ≡
ˆ
∂Ω

∂

∂νΩ(y)
H(x− y)µ(y) dσy

= −
ˆ
∂Ω

νΩ(y) ·DH(x− y)µ(y) dσy ∀x ∈ Rn ,

w∗[∂Ω, H, µ](x) ≡
ˆ
∂Ω

∂

∂νΩ(x)
H(x− y)µ(y) dσy

=

ˆ
∂Ω

νΩ(x) ·DH(x− y)µ(y) dσy ∀x ∈ ∂Ω ,

for all µ ∈ L2(∂Ω), where DH is the Jacobian matrix of H. As is well known, if µ ∈ C0(∂Ω), then v[∂Ω, Sq,n, µ]
and v[∂Ω, Sn, µ] are continuous in Rn, and we set

v+[∂Ω, Sq,n, µ] ≡ v[∂Ω, Sq,n, µ]|clS[Ω] v−[∂Ω, Sq,n, µ] ≡ v[∂Ω, Sq,n, µ]|clS[Ω]−

v+[∂Ω, Sn, µ] ≡ v[∂Ω, Sn, µ]|clΩ v−[∂Ω, Sn, µ] ≡ v[∂Ω, Sn, µ]|clΩ− .

Also, if µ is continuous, then w[∂Ω, Sq,n, µ]|S[Ω] admits a continuous extension to clS[Ω], which we denote
by w+[∂Ω, Sq,n, µ] and w[∂Ω, Sq,n, µ]|S[Ω]− admits a continuous extension to clS[Ω]−, which we denote by
w−[∂Ω, Sq,n, µ] (cf. e.g., [31, §3].)

Similarly, w[∂Ω, Sn, µ]|Ω admits a continuous extension to clΩ, which we denote by w+[∂Ω, Sn, µ] and
w[∂Ω, Sn, µ]|Ω− admits a continuous extension to clΩ−, which we denote by w−[∂Ω, Sn, µ] (cf. e.g., Mi-
randa [42], [37, Thm. 3.1].)

In the specific case in which H equals Sn, we omit Sn and we simply write v[∂Ω, µ], w[∂Ω, µ], w∗[∂Ω, µ]
instead of v[∂Ω, Sn, µ], w[∂Ω, Sn, µ], w∗[∂Ω, Sn, µ], respectively. Similarly, in case H equals Sq,n, we omit
Sq,n and we write vq[∂Ω, µ], wq[∂Ω, µ], wq,∗[∂Ω, µ] instead of v[∂Ω, Sq,n, µ], w[∂Ω, Sq,n, µ], w∗[∂Ω, Sq,n, µ],
respectively.

3 Formulation of problem (1.4) in terms of integral equations

As a first step, we transform our problem so as to remove the parameter δ from the domain of problem (1.4).
We do so by exploiting the rule of change of variables.

We observe that a function u ∈ Cm,α(clS(ε, δ)−) satisfies problem (1.4) if and only if the function

u](·) = u(δ·) ∈ Cm,α(clS(ε, 1)−) ,

satisfies the following auxiliary boundary value problem
∆u](x) = δ2fε(x) ∀x ∈ S(ε, 1)− ,
u] is q − periodic in S(ε, 1)− ,

∂
∂νΩp,ε

u](x) + δG(ε−1(x− p), u](x)) = 0 ∀x ∈ ∂Ωp,ε .
(3.1)

In order to convert problem (3.1) into an integral equation, we need some notation. If G ∈ C0(∂Ω × R),
we denote by TG the (nonlinear nonautonomous) composition operator from C0(∂Ω) to itself which maps
v ∈ C0(∂Ω) to the function TG[v] defined by

TG[v](t) ≡ G(t, v(t)) ∀t ∈ ∂Ω .

We also need the following Lemma. For a proof we refer to [32, Lem. 3.2].
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Proposition 3.2. Let m ∈ N \ {0}, α ∈]0, 1[. Let I be a bounded open connected subset of Rn of class Cm,α

such that Rn \ clI is connected and such that clI ⊆ Q. Then the map M [·, ·] from Cm−1,α(∂I)0×R to Cm,α(∂I)
defined by

M [µ, ξ](x) ≡ vq[∂I, µ](x) + ξ ∀x ∈ ∂I ,

for all (µ, ξ) ∈ Cm,α(∂I)0 × R is a linear homeomorphism from Cm−1,α(∂I)0 × R onto Cm,α(∂I) (see (2.1).)

We now transform problem (3.1) into a problem for integral equations by means of the following.

Theorem 3.3. Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let G ∈ C0(∂Ω× R) be such that

TG maps Cm−1,α(∂Ω) to itself . (3.4)

Let (ε, δ) ∈]0, ε0[×]0,+∞[. Then the map u][ε, δ, ·, ·] from the set of pairs (θ, c) ∈ Cm−1,α(∂Ω)0 ×R that solve
the equation

1

2
θ(t) +

ˆ
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs (3.5)

+εn−1

ˆ
∂Ω

νΩ(t)DRq,n(ε(t− s))θ(s) dσs

+G

(
t, δε

ˆ
∂Ω

Sn(t− s)θ(s) dσs + δεn−1

ˆ
∂Ω

Rq,n(ε(t− s))θ(s) dσs + c

+δ2

[
Pq,n[Q, fε](p+ tε)−

ˆ
Q

fε dyRq,n(εt)

]
− δ2ε2−n

ˆ
Q

fε dySn(t)

)
+δνΩ(t)

[
DPq,n[Q, fε](p+ εt)−

ˆ
Q

fεdyDRq,n(εt)

]
−δε1−n

ˆ
Q

fεdyνΩ(t)DSn(t) = 0 ∀t ∈ ∂Ω ,

to the set of u] ∈ Cm,α(clS[Ωp,ε]
−) which solve the auxiliary problem (3.1) and which takes (θ, c) to the function

u][ε, δ, θ, c] ≡ ω][ε, δ, θ, c] (3.6)

+δ2

[ˆ
Q

Sq,n(· − y)fε(y) dy −
ˆ
Q

fε dySq,n(· − p)
]

where

ω][ε, δ, θ, c] ≡ v[∂Ωp,ε, Sq,n, δθ(ε
−1(· − p))] + c+ δ2,nδ

2

ˆ
Q

fε dy
log ε

2π
, (3.7)

is a bijection.

Proof. By classical properties of volume potentials (cf. e.g., [35, Prop. A1]) and by the rule of change of
variables, a function u] ∈ Cm,αq (clS(ε, 1)−) solves problem (3.1) if and only if the function

ω] ≡ u] − δ2

[ˆ
Q

Sq,n(· − y)fε(y) dy −
ˆ
Q

fε dySq,n(· − p)
]
,

satisfies the following boundary value problem

∆ω](x) = 0 ∀x ∈ S(ε, 1)− ,
ω] is q − periodic in S(ε, 1)− ,

∂
∂νΩp,ε

ω](x) = −δG
(
ε−1(x− p), ω](x)

+δ2
[´
Q
Sq,n(x− y)fε(y) dy −

´
Q
fε dySq,n(x− p)

])
−δ2 ∂

∂νΩp,ε (x)

[´
Q
Sq,n(x− y)fε(y) dy −

´
Q
fε dySq,n(x− p)

]
∀x ∈ ∂Ωp,ε .

(3.8)

If u] ∈ Cm,αq (clS(ε, 1)−) solves problem (3.1), then Proposition 3.2 implies that there exists a unique pair
(θ, c) ∈ Cm,α(∂Ω)× R such that ˆ

∂Ωp,ε

δθ(ε−1(y − p)) dσy = 0 , (3.9)
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and such that

ω](x) = v−q [∂Ωp,ε, δθ(ε
−1(· − p))](x) + c+ δ2,nδ

2

ˆ
Q

fε dy
log ε

2π
x ∈ clS(ε, 1)− .

By the rule of change of variables, we can rewrite (3.9) as

ˆ
∂Ω

θ dσ = 0 . (3.10)

Then the third equation of (3.8) and classical jump properties of single layer potentials imply that

1

2
δθ(ε−1(x− p)) + wq,∗[∂Ωp,ε, δθ(ε

−1(· − p))](x)

= −δG
(
ε−1(x− p), vq[∂Ωp,ε, δθ(ε

−1(· − p))](x) + c

+δ2

[ˆ
Q

Sq,n(x− y)fε(y) dy −
ˆ
Q

fε dySq,n(x− p) +

ˆ
Q

fε dy
δ2,n log ε

2π

])
−δ2 ∂

∂νΩp,ε(x)

[ˆ
Q

Sq,n(x− y)fε(y) dy −
ˆ
Q

fε dySq,n(x− p)
]
,

for all x ∈ ∂Ωp,ε, which we rewrite as

1

2
θ(t) +

ˆ
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs + εn−1

ˆ
∂Ω

νΩ(t)DRq,n(ε(t− s))θ(s) dσs

= −G
(
t, εδ

ˆ
∂Ω

Sn(t− s)θ(s) dσs + δ2,nδ
(ε log ε)

2π

ˆ
∂Ω

θ dσ

+εn−1δ

ˆ
∂Ω

Rq,n(ε(t− s))θ(s) dσs + c

+δ2

[
Pq,n[Q, fε](p+ εt)−

ˆ
Q

fεdy

(
ε2−nSn(t)

+
1

2π
δ2,n(log ε) +Rq,n(εt)

)
+

ˆ
Q

fε dy
δ2,n log ε

2π

])
−δνΩ(t)

[
DPq,n[Q, fε](p+ εt)−

ˆ
Q

fεdy(ε1−nDSn(t) +DRq,n(εt))

]
= −G

(
t, εδ

ˆ
∂Ω

Sn(t− s)θ(s) dσs + εn−1δ

ˆ
∂Ω

Rq,n(ε(t− s))θ(s) dσs + c

+δ2

[
Pq,n[Q, fε](p+ εt)−

ˆ
Q

fεdy(ε2−nSn(t) +Rq,n(εt))

])
−δνΩ(t)

[
DPq,n[Q, fε](p+ εt)−

ˆ
Q

fεdy(ε1−nDSn(t) +DRq,n(εt))

]
∀t ∈ ∂Ω ,

(see (3.10).) Hence, (θ, c) belongs to Cm−1,α(∂Ω)0×R and satisfies equation (3.5). Conversely, if (θ, c) belongs
to Cm−1,α(∂Ω)0 × R and satisfies equation (3.5), then by reading backward the above computations, we see
that the function u][ε, δ, θ, c] delivered by (3.6), (3.7) satisfies problem (3.1).

On the other hand, if (θ1, c1), (θ2, c2) ∈ Cm−1,α(∂Ω)0 × R and if

u][ε, δ, θ1, c1] = u][ε, δ, θ2, c2] ,

then
ω][ε, δ, θ1, c1] = ω][ε, δ, θ2, c2] ,

and thus the uniqueness of Proposition 3.2 implies that θ1 = θ2, c1 = c2, and thus the proof is complete. �

Next we observe that the left hand side of equation (3.5) contains only two terms which may not converge
as (ε, δ) tends to (0, 0). Namely,

δ2ε2−n
ˆ
Q

fε dy and δε1−n
ˆ
Q

fεdy . (3.11)
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If nf = +∞, i.e., if
´
Q
fεdy = 0 for all ε ∈] − ε0, ε0[, then the above terms are identically equal to zero. If

instead nf < +∞, the above terms can be rewritten as

δ2εnf+2−nF (ε) and δεnf+1−nF (ε) , (3.12)

(cf. (1.5)).
Now we distinguish two cases. If nf ≥ (n− 1), then the above terms in (3.11) have limit as (ε, δ) tends to

(0, 0). Thus if nf ≥ (n− 1) we can take the limit as (ε, δ) tends to (0, 0) in equation (3.5) under appropriate
regularity assumptions and obtain an equation which we address to as ‘limiting integral equation’. Namely,

1

2
θ(t) +

ˆ
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs +G(t, c) = 0 ∀t ∈ ∂Ω . (3.13)

If instead nf < n − 1, then the second term in (3.11) (or (3.12)) cannot have a limit as (ε, δ) tends to (0, 0),
and accordingly, we cannot take the limit as (ε, δ) tends to (0, 0) in equation (3.5) and we cannot identify a
‘limiting integral equation’. Hence, case nf < n− 1 requires a different treatment. Here we observe that if we
fix γ0 ∈ [0,+∞[ and if we consider the pairs (ε, δ) of the graph of a function ε̂ from ]0,+∞[ to ]0, ε0[ such that
(1.7) holds, then we can take the limit as δ tends to 0 in the terms of (3.11) (or of (3.12)) with ε = ε̂(δ) and
obtain

lim
δ→0

δ2ε̂(δ)2−n
ˆ
Q

fε̂(δ) dy = 0 and lim
δ→0

δε̂(δ)1−n
ˆ
Q

fε̂(δ)dy = γ0F (0) .

Hence, we can take the limit as δ tends to 0 in equation (3.5) with ε = ε̂(δ) under appropriate regularity
assumptions and obtain an equation which we address to as ‘limiting integral equation associated to γ0’.
Namely,

1

2
θ(t) +

ˆ
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs +G(t, c)− γ0F (0)νΩ(t)DSn(t) = 0 ∀t ∈ ∂Ω . (3.14)

We now turn to analyze equation (3.5) and we do so by treating separately case nf ≥ n−1 and case nf < n−1.

4 Analysis of the integral equation (3.5) in case nf ≥ n− 1.

We first analyze the ‘limiting integral integral equation’ (3.13) by means of the following.

Theorem 4.1. Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let G ∈ C0(∂Ω×R) be such that
(3.4) holds. Let c� ∈ R be such that ˆ

∂Ω

G(t, c�) dσt = 0 . (4.2)

Then the following statements hold.

(i) The limiting integral equation (3.13) with c = c� has a unique solution θ� ∈ Cm−1,α(∂Ω)0 (see (2.1).)

(ii) The ‘limiting boundary value problem’
∆u = 0 in Rn \ clΩ ,
∂u
∂νΩ

(x) +G(x, c�) = 0 ∀x ∈ ∂Ω ,

limx→∞ u(x) = 0 ,

(4.3)

has one and only one solution u]� ∈ Cm,αloc (Rn \ Ω) and

u]� = v−[∂Ω, θ�] . (4.4)

Proof. By classical the classical Fredholm Theory and by Schauder regularity results, equation (3.13) has
a unique solution θ� in Cm−1,α(∂Ω). Then assumption (4.2) and equality w[∂Ω, 1]|∂Ω = 1/2 imply that´
∂Ω
θ� dσ = 0 (cf. e.g., Folland [20, Props. 3.11, 3.37 ] and [28, Thm. 5.1(i)].) We now consider statement (ii).

By classical jump relations of the normal derivative of a single layer potential and by equation (3.13) with

c = c�, the function u]� = v−[∂Ω, θ�] satisfies the boundary condition of the limiting boundary value problem

(4.3). Since
´
∂Ω
θ� dσ = 0, the function u]� ≡ v−[∂Ω, θ�] satisfies the limiting condition of (4.3). Since Rn \ clΩ

is connected, the uniqueness of solutions for problem (4.3) follows by classical results on the exterior Neumann
problem for harmonic functions (cf. e.g., Folland [20, Thm. 3.40].) �
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We are now ready to analyze equation (3.5) around the degenerate case in which (ε, δ) = (0, 0) and under
the assumption that nf ≥ (n − 1). In order treat both case nf < +∞ and case nf = +∞ at the same time,
we find convenient to set

ñf ≡ nf if nf < +∞ , ñf ≡ n− 1 if nf = +∞ ,

and to set F (ε) ≡ 0 for all ε ∈]− ε0, ε0[ in case nf = +∞. Indeed, if so we have

ˆ
Q

fε dy = εñfF (ε) ∀ε ∈]− ε0, ε0[ , (4.5)

both in case nf < +∞ and case nf = +∞, and

F (0) 6= 0 if nf < +∞ , F (0) = 0 if nf = +∞ .

Then we are ready to introduce the following.

Theorem 4.6. Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let nf ≥ n− 1. Let G ∈ C0(∂Ω× R) be such that

TG is real analytic in Cm−1,α(∂Ω) . (4.7)

Let c� ∈ R be such that (1.6) holds. Let Λ� be the map from ]− ε0, ε0[×R×Cm−1,α(∂Ω)0 ×R to Cm−1,α(∂Ω)
defined by

Λ�[ε, δ, θ, c](t) ≡
1

2
θ(t) +

ˆ
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs

+εn−1

ˆ
∂Ω

νΩ(t)DRq,n(ε(t− s))θ(s) dσs

+G

(
t, δε

ˆ
∂Ω

Sn(t− s)θ(s) dσs + δεn−1

ˆ
∂Ω

Rq,n(ε(t− s))θ(s) dσs + c

+δ2
[
Pq,n[Q, fε](p+ tε)− εñfF (ε)Rq,n(εt)

]
− δ2ε2−nεñfF (ε)Sn(t)

)
+δνΩ(t)

[
DPq,n[Q, fε](p+ εt)− εñfF (ε)DRq,n(εt)

]
−δε1−nεñfF (ε)νΩ(t)DSn(t) ∀t ∈ ∂Ω ,

for all (ε, δ, θ, c) ∈]− ε0, ε0[×R× Cm−1,α(∂Ω)0 × R. Then the following statements hold.

(i) Equation Λ�[0, 0, θ, c�] = 0 is equivalent to the limiting integral equation (3.13) with c = c� and has one
and only one solution θ� ∈ Cm−1,α(∂Ω)0 (see (2.1).)

(ii) If (ε, δ) ∈]0, ε0[×]0,+∞[, then equation Λ�[ε, δ, θ, c] = 0 is equivalent to equation (3.5) in the unknown
(θ, c) ∈ Cm−1,α(∂Ω)0 × R.

(iii) There exist (ε′, δ′) ∈]0, ε0[×]0,+∞[ and an open neighborhood U of (θ�, c�) in Cm−1,α(∂Ω)0 × R, and
a real analytic map (Θ�, C�) from ] − ε′, ε′[×] − δ′, δ′[ to U such that the set of zeros of the map Λ� in
]− ε′, ε′[×]− δ′, δ′[×U coincides with the graph of (Θ�, C�). In particular,

(Θ�[0, 0], C�[0, 0]) = (θ�, c�) .

Proof. Statement (i) and (ii) are an immediate consequence of Theorem 4.1 and of the definition of Λ�. We
now turn to show that Λ� is analytic in a neighborhood of (0, 0, θ�, c�). We first note that the maps from
]− ε0, ε0[×L1(∂Ω) to Cm−1,α(∂Ω), which take (ε, θ) to the functions

´
∂Ω
Rq,n(ε(t− s))θ(s) dσs ∀t ∈ ∂Ω ,´

∂Ω
∂xjRq,n(ε(t− s))θ(s) dσs ∀j ∈ {1, . . . , n} ∀t ∈ ∂Ω , (4.8)

are real analytic (cf. [35, Lem. A.7 (i)].) Then the analyticity of Rq,n and analyticity results on the composition
operator imply that the map from ] − ε0, ε0[ to Cm−1,α(∂Ω) which takes ε to the function Rq,n(εt) of t ∈ ∂Ω
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is real analytic (cf. Böhme and Tomi [3, p. 10], Henry [22, p. 29], Valent [48, Thm. 5.2, p. 44].) Moreover, by
assumption (1.3) and [35, Lem. A.7 (ii)], the maps from R to Cm−1,α(∂Ω) which take ε to

Pq,n[Q, fε](p+ εt) ∀t ∈ ∂Ω ,

∂xjPq,n[Q, fε](p+ εt) ∀j ∈ {1, . . . , n} ∀t ∈ ∂Ω ,

are analytic. Then the analyticity of Λ� follows by the linearity and continuity of v[∂Ω, ·]|∂Ω from Cm−1,α(∂Ω)
to Cm,α(∂Ω), and by the linearity and continuity of w∗[∂Ω, ·]|∂Ω from Cm−1,α(∂Ω) to itself, and by the
continuity of the pointwise product in Schauder spaces, and by assumptions (1.3), (4.7).

Next we turn to prove that the differential ∂(θ,c)Λ�[0, 0, θ�, c�] of Λ at the quadruple (0, 0, θ�, c�) with respect
to the variable (θ, c) is a linear homeomorphism from Cm−1,α(∂Ω)0×R onto Cm−1,α(∂Ω). By standard calculus
in Banach space, the differential of Λ� at (0, 0, θ�, c�) with respect to the variable (θ, c) is delivered by the
following formula

∂(θ,c)Λ�[0, 0, θ�, c�](θ, c) =
1

2
θ(t) +

ˆ
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs +Gu(t, c�)c

∀t ∈ ∂Ω ,

for all (θ, c) ∈ Cm−1,α(∂Ω)0 × R (see also [28, Prop. 6.3], which ensures the existence of Gu.) We now show
that ∂(θ,c)Λ�[0, 0, θ�, c�] is a bijection. To do so, we show that if h ∈ Cm−1,α(∂Ω), then the equation

∂(θ,c)Λ�[0, 0, θ�, c�](θ, c) = h , (4.9)

has a unique solution (θ, c) ∈ Cm−1,α(∂Ω)0 × R. If equation (4.9) holds, then c ∈ R must necessarily satisfy
the equation ˆ

∂Ω

h(t)−Gu(t, c�)c dσt = 0 . (4.10)

Indeed,
´
∂Ω

´
∂Ω
νΩ(t)DSn(t − s)θ(s) dσs dσt =

´
∂Ω

1
2θ(s) dσs = 0 (cf. e.g., Folland [20, Prop. 3.19].) Thus we

must have

c =

´
∂Ω
h dσ´

∂Ω
Gu(t, c�) dσ

, (4.11)

(cf. (1.6).) If we choose c as in (4.11), then equality (4.10) and known classical results ensure that there exists
a unique θ ∈ Cm−1,α(∂Ω) such that

1

2
θ(t) +

ˆ
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs = h(t)−Gu(t, c�)c ∀t ∈ ∂Ω ,

(cf. e.g., Folland [20, Prop. 3.37] and [28, Thm. 5.1 (i)].) Then equality (4.10) and the computations following
(4.10) imply that

´
∂Ω
θ(s) dσs = 0. Hence, equation (4.9) does have a unique solution for each h ∈ Cm−1,α(∂Ω)

and ∂(θ,c)Λ�[0, 0, θ�, c�] is a bijection. Then the Open Mapping Theorem implies that ∂(θ,c)Λ�[0, 0, θ�, c�] is a
homeomorphism. Since Λ� is analytic, statement (iii) is an immediate consequence of statements (i), (ii) and
of the Implicit Function Theorem in Banach spaces (cf. e.g., Deimling [18, Thm. 15.3].) �

We are now ready to define our family of solutions of the auxiliary problem (3.1) in case nf ≥ n− 1. We
do so by means of the following.

Definition 4.12. Let the assumptions of Theorem 4.6 hold. Then we set

ω](ε, δ, x) ≡ ω][ε, δ,Θ�[ε, δ], C�[ε, δ]](x) ∀x ∈ clS(ε, 1)− ,

u](ε, δ, x) ≡ ω][ε, δ,Θ�[ε, δ], C�[ε, δ]](x)

+δ2

[ˆ
Q

Sq,n(x− y)fε(y) dy −
ˆ
Q

fε dySq,n(x− p)
]
∀x ∈ clS(ε, 1)− ,

for all (ε, δ) ∈]0, ε′[×]0, δ′[ (see also (3.6), (3.7).)

Then {u](ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[ is a family of solutions of the auxiliary problem (3.1) in case nf ≥ n − 1
and our aim is to analyze the behavior of such a family as (ε, δ) tends to (0, 0).
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5 Analysis of the integral equation (3.5) in case nf < n− 1.

We first analyze the ‘limiting integral integral equation associated to γ0’ (3.14) by means of the following.

Theorem 5.1. Let m ∈ N \ {0}, α ∈]0, 1[. Let Ω be as in (1.1). Let G ∈ C0(∂Ω×R) be such that (3.4) holds.
Let c∗ ∈ R, γ0 ∈ [0,+∞[, F0 ∈ R be such thatˆ

∂Ω

G(t, c∗) dσt − F0γ0 = 0 . (5.2)

Then the following statements hold.

(i) The limiting integral equation associated to γ0 (3.14) with c = c∗ and with F (0) replaced by F0 has a
unique solution θ∗ ∈ Cm−1,α(∂Ω)0.

(ii) The ‘limiting boundary value problem’
∆u = 0 in Rn \ clΩ ,
∂u
∂νΩ

(x) +G(x, c∗)− F0γ0νΩ(x)DSn(x) = 0 ∀x ∈ ∂Ω ,

limx→∞ u(x) = 0 ,

(5.3)

has one and only one solution u]∗ ∈ Cm,αloc (Rn \ Ω) and

u]∗ = v−[∂Ω, θ∗] . (5.4)

Proof. Let a ∈]0,+∞[ be such that clBn(0, a) ⊆ Ω. Since Sn is harmonic in Rn \ {0}, we haveˆ
∂Ω

νΩ(t)DSn(t) dσt

=

ˆ
∂Bn(0,a)

νBn(0,a)(t)DSn(t) dσt =

ˆ
∂Bn(0,a)

|t|2

snan+1
dσt = 1 .

Then condition (5.2) implies that ˆ
∂Ω

G(t, c∗)− γ0F0νΩ(t)DSn(t) dσt = 0 ,

and accordingly statement (i) follows by the classical Fredholm Theory and by Schauder regularity results
(cf. e.g., Folland [20, Props. 3.11, 3.37] and [28, Thm. 5.1(i)].)

We now consider statement (ii). By classical jump relations of the normal derivative of a single layer

potential and by equation (3.14) with c = c∗ and with F (0) replaced by F0, the function u]∗ = v−[∂Ω, θ∗]
satisfies the boundary condition of the limiting boundary value problem (5.3). Since

´
∂Ω
θ∗ dσ = 0, the

function u]∗ ≡ v−[∂Ω, θ∗] satisfies the limiting condition of (5.3). Since Rn \clΩ is connected, the uniqueness of
solutions for problem (5.3) follows by classical results on the exterior Neumann problem for harmonic functions
(cf. e.g., Folland [20, Thm. 3.40].) �

Now the idea is to replace the term δεnf+1−n which appears in (3.12) and which has no limit as (ε, δ) tends
to (0, 0) by a new variable γ and to obtain a new equation which depends on ε and γ and which is not singular
in ε and γ and to analyze the dependence of θ and c upon ε and γ. To do so, we introduce the following.

Theorem 5.5. Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let nf < n − 1. Let G ∈ C0(∂Ω × R) satisfy (4.7). Let c∗ ∈ R, γ0 ∈ [0,+∞[
satisfy (1.8) (cf. (1.5).) Let Λ∗ be the map from ]− ε0, ε0[×R× Cm−1,α(∂Ω)0 × R to Cm−1,α(∂Ω) defined by

Λ∗[ε, γ, θ, c](t) ≡
1

2
θ(t) +

ˆ
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs

+εn−1

ˆ
∂Ω

νΩ(t)DRq,n(ε(t− s))θ(s) dσs

+G

(
t, γεn−nf

ˆ
∂Ω

Sn(t− s)θ(s) dσs + γε2(n−1)−nf
ˆ
∂Ω

Rq,n(ε(t− s))θ(s) dσs + c

+γ2ε2(n−1)−2nf [Pq,n[Q, fε](p+ tε)− εnfF (ε)Rq,n(εt)]− γ2εn−nfF (ε)Sn(t)

)
+γεn−1−nf νΩ(t)

[
DPq,n[Q, fε](p+ εt)− εnfF (ε)DRq,n(εt)

]
−γF (ε)νΩ(t)DSn(t) ∀t ∈ ∂Ω ,
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for all (ε, γ, θ, c) ∈]− ε0, ε0[×R× Cm−1,α(∂Ω)0 × R. Then the following statements hold.

(i) Equation Λ∗[0, γ0, θ, c∗] = 0 is equivalent to the limiting integral equation associated to γ0 (3.14) with
c = c∗ and has one and only one solution θ∗ ∈ Cm−1,α(∂Ω)0 (see (2.1).)

(ii) Let ε̂ be as in (1.7). Let δ ∈]0,+∞[, ε̂(δ) < ε0. Then equation

Λ∗[ε̂(δ), δε̂(δ)
nf−n+1, θ, c] = 0

is equivalent to the integral equation (3.5) with ε = ε̂(δ) in the unknown (θ, c) ∈ Cm−1,α(∂Ω)0 × R.

(iii) There exist ε′ ∈]0, ε0[ and an open neighborhood Γ0 of γ0 in R, and an open neighborhood U of (θ∗, c∗)
in Cm−1,α(∂Ω)0 ×R, and a real analytic map (Θ∗, C∗) from ]− ε′, ε′[×Γ0 to U such that the set of zeros
of the map Λ∗ in ]− ε′, ε′[×Γ0 × U coincides with the graph of (Θ∗, C∗). In particular,

(Θ∗[0, γ0], C∗[0, γ0]) = (θ∗, c∗) .

Proof. Statement (i) is an immediate consequence of Theorem 5.1. Statement (ii) follows by Theorem 4.6 (ii)
and by the definition of Λ∗. By the same arguments of the proof of Theorem 4.6 (iii), the operator Λ∗ is
analytic.

Next we turn to prove that the differential ∂(θ,c)Λ∗[0, γ0, θ∗, c∗] of Λ∗ at the quadruple (0, γ0, θ∗, c∗) with
respect to the variable (θ, c) is a linear homeomorphism from Cm−1,α(∂Ω)0×R onto Cm−1,α(∂Ω). By standard
calculus in Banach space, the differential ∂(θ,c)Λ∗[0, γ0, θ∗, c∗] of Λ∗ at (0, γ0, θ∗, c∗) with respect to the variable
(θ, c) is delivered by the following formula

∂(θ,c)Λ∗[0, γ0, θ∗, c∗](θ, c) =
1

2
θ(t) +

ˆ
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs +Gu(t, c∗)c

∀t ∈ ∂Ω ,

for all (θ, c) ∈ Cm−1,α(∂Ω)0 × R (see also [28, Prop. 6.3], which ensures the existence of Gu), and we have
already proved that the linear operator in the right hand side is a linear homeomorphism from Cm−1,α(∂Ω)0×R
onto Cm−1,α(∂Ω) (cf. Theorem 5.1 (i).) Since Λ∗ is analytic, statement (iii) is an immediate consequence of
statements (i), (ii) and of the Implicit Function Theorem in Banach spaces (cf. e.g., Deimling [18, Thm. 15.3].)
�

By the limiting relations in (1.7), there exists δ′ ∈]0,+∞[ such that

ε̂(δ) ∈]0, ε′[
δ

ε̂(δ)(n−1)−nf
∈ Γ0 ∀δ ∈]0, δ′[ . (5.6)

We are now ready to define our family of solutions of the auxiliary problem (3.1) in case nf < n − 1. We do
so by means of the following.

Definition 5.7. Let the assumptions of Theorem 5.5 hold. Let δ′ ∈]0,+∞[ be as in (5.6). Then we set

ω](δ, x) ≡ ω][ε̂(δ), δ,Θ∗[ε̂(δ), δε̂(δ)
nf−n+1], C∗[ε̂(δ), δε̂(δ)

nf−n+1]](x)

∀x ∈ clS(ε̂(δ), 1)− ,

u](δ, x) ≡ ω][ε̂(δ), δ,Θ∗[ε̂(δ), δε̂(δ)
nf−n+1], C∗[ε̂(δ), δε̂(δ)

nf−n+1]](x)

+δ2

[ˆ
Q

Sq,n(x− y)fε̂(δ)(y) dy −
ˆ
Q

fε̂(δ) dySq,n(x− p)
]

∀x ∈ clS(ε̂(δ), 1)− ,

for all δ ∈]0, δ′[ (see also (3.6), (3.7).)

By Theorem 5.5, {u](δ, ·)}δ∈]0,δ′[ is a family of solutions of the auxiliary problem (3.1) in case nf < n− 1
and our aim is to analyze the behavior of such a family as δ tends to 0.
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6 A functional analytic representation theorem for the family of
solutions {u](ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[ and {u](δ, ·)}δ∈]0,δ′[ of the auxilary
problem (3.1)

We first introduce the following lemma.

Lemma 6.1. Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let ε∗ ∈]0, ε0[. There exist ρ′ ∈]0,+∞[ such that the map Pε∗ from ] − ε0, ε0[ to
C0
q,ω,ρ′(clS[Ωp,ε∗ ]

−) defined by

Pε∗ [ε](x) ≡
ˆ
Q

Sq,n(x− y)fε(y) dy −
ˆ
Q

fε dySq,n(x− p) ∀x ∈ clS[Ωp,ε∗ ]
− , (6.2)

for all ε ∈]− ε0, ε0[ is analytic.

Proof. By assumption (1.3) and [35, Prop. A.2], there exists ρ′ ∈]0, ρ] such that the map from ] − ε0, ε0[ to
C0
q,ω,ρ′(clS[Ωp,ε∗ ]

−), which takes ε to Pq,n[Q, fε]|clS[Ωp,ε∗ ]− is analytic. Since Sq,n(·−p) is analytic in Rn\(p+qZn)

and clS[Ωp,ε∗ ]
− is contained in Rn \ (p+qZn), possibly shrinking ρ′, we can assume that Sq,n(·−p)|clS[Ωp,ε∗ ]− ∈

C0
q,ω,ρ′(clS[Ωp,ε∗ ]

−). By assumption (1.3), the integral
´
Q
fε dy depends analytically on ε. Hence, Pε∗ is

analytic. �

We are now ready to prove a representation theorem for the family of solutions {u](ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[.

Theorem 6.3. Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let nf ≥ n− 1. Let G ∈ C0(∂Ω× R) satisfy condition (4.7). Let c� ∈ R be such
that (1.6) holds. Let ρ′, Pε∗ be as in Lemma 6.1 for all ε∗ ∈]0, ε0[. Let ε′, δ′ be as in Theorem 4.6 (iii). Then
the following statements hold.

(i) Let Ω̃ be an open subset of Rn with nonzero distance from p+ qZn. Then there exist ε∗
Ω̃
∈]0, ε′[ such that

clΩ̃ ⊆ S[Ωp,ε]
− ∀ε ∈ [−ε∗

Ω̃
, ε∗

Ω̃
] ,

and εΩ̃ ∈]0, ε∗
Ω̃

[ such that clS[Ωp,ε∗
Ω̃

]− ⊆ S[Ωp,ε]
− for all ε ∈ [−εΩ̃, εΩ̃], and a real analytic map V�,S[Ωp,ε∗

Ω̃
]−

from ]− εΩ̃, εΩ̃[×]− δ′, δ′[ to Cm,αq (clS[Ωp,ε∗
Ω̃

]−) such that

ω](ε, δ, x) = εn−1δV�,S[Ωp,ε∗
Ω̃

]− [ε, δ](x) + C�[ε, δ] + δ2,nδ
2

ˆ
Q

fε dy
log ε

2π
,

u](ε, δ, x) = εn−1δV�,S[Ωp,ε∗
Ω̃

]− [ε, δ](x) + C�[ε, δ] + δ2,nδ
2

ˆ
Q

fε dy
log ε

2π

+δ2Pε∗
Ω̃

[ε](x) ∀x ∈ clS[Ωp,ε∗
Ω̃

]− ,

for all (ε, δ) ∈]0, εΩ̃[×]0, δ′[. Moreover,

V�,S[Ωp,ε∗
Ω̃

]− [0, 0] = 0 ∀x ∈ clS[Ωp,ε∗
Ω̃

]− C�[0, 0] = c� . (6.4)

(ii) Let Ω̃ be a bounded open subset of Rn \ clΩ. Then there exist εΩ̃,r ∈]0, ε′[ and a real analytic map V r�,Ω̃
from ]− εΩ̃,r, εΩ̃,r[×]− δ′, δ′[ to Cm,α(clΩ̃) and a real analytic map Pr

Ω̃
from ]− ε0, ε0[ to Cm,α(clΩ̃) such

that

p+ εclΩ̃ ⊆ clS[Ωp,ε]
− ∀ε ∈]− εΩ̃,r, εΩ̃,r[ ,

ω](ε, δ, p+ εt) = εδV r�,Ω̃[ε, δ](t) + C�[ε, δ] + δ2,nδ
2

ˆ
Q

fε dy
log ε

2π
∀t ∈ clΩ̃ ,

u](ε, δ, p+ εt) = εδV r�,Ω̃[ε, δ](t) + C�[ε, δ] + δ2Pr
Ω̃

[ε](t) ∀t ∈ clΩ̃ ,

for all (ε, δ) ∈]0, εΩ̃,r[×]0, δ′[. Moreover,

V r�,Ω̃[0, 0](t) = u]�(t) Pr
Ω̃

[0](t) =

ˆ
Q

Sq,n(p− y)f0(y) dy ∀t ∈ clΩ̃ .
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(iii) There exist a real analytic map V r�,∂Ω from ]− ε′, ε′[×]− δ′, δ′[ to Cm,α(∂Ω) and a real analytic map Pr∂Ω

from ]− ε0, ε0[ to Cm,α(∂Ω) such that

ω](ε, δ, p+ εt) = εδV r�,∂Ω[ε, δ](t) + C�[ε, δ] + δ2,nδ
2

ˆ
Q

fε dy
log ε

2π
∀t ∈ ∂Ω ,

u](ε, δ, p+ εt) = εδV r�,∂Ω[ε, δ](t) + C�[ε, δ] + δ2Pr∂Ω[ε](t) ∀t ∈ ∂Ω , (6.5)

for all (ε, δ) ∈]0, ε′[×]0, δ′[. Moreover,

V r�,∂Ω[0, 0](t) = u]�(t) Pr∂Ω[0](t) =

ˆ
Q

Sq,n(p− y)f0(y) dy ∀t ∈ ∂Ω . (6.6)

(iv) There exist ε1 ∈]0, ε′[, δ1 ∈]0, δ′[ and two analytic maps J�1 from ]− ε1, ε1[×]− δ1, δ1[ to R and J�2 from
]− ε1, ε1[ to R such that

ˆ
Q\clΩp,ε

u](ε, δ, x) dx = J�1 [ε, δ] + δ2,nδ
2εñfJ�2 [ε] log ε ∀(ε, δ) ∈]0, ε1[×]0, δ1[ .

Moreover,

J�1 [0, 0] = c�mn(Q) J�2 [0] =
F (0)

2π
mn(Q)

Finally, if
´
Q
fε dy = 0 for all ε ∈]− ε0, ε0[, then we can take J�2 equal to 0.

Proof. We first consider statement (i). Let ε∗
Ω̃

, εΩ̃ be as in Lemma A.12 (i) of the Appendix. By Definition

4.12 of ω](ε, δ, ·) and u](ε, δ, ·), and by (6.2), we have

ω](ε, δ, x) = εn−1

ˆ
∂Ω

Sq,n(x− p− εs)δΘ�[ε, δ](s) dσs ,

+C�[ε, δ] + δ2,nδ
2

ˆ
Q

fε dy
log ε

2π

u](ε, δ, x) = ω](ε, δ, x) + δ2Pε∗
Ω̃

[ε](x) ∀x ∈ clS[Ωp,ε∗
Ω̃

]− ,

for all (ε, δ) ∈]0, ε′[×]0, δ′[. Thus we find natural to set

V�,S[Ωp,ε∗
Ω̃

]− [ε, δ](x) ≡
ˆ
∂Ω

Sq,n(x− p− εs)Θ�[ε, δ](s) dσs ∀x ∈ clS[Ωp,ε∗
Ω̃

]− ,

for all (ε, δ) ∈]−εΩ̃, εΩ̃[×]−δ′, δ′[. Now it suffices to show that the right hand side of the above definition defines
a real analytic map from ] − εΩ̃, εΩ̃[×] − δ′, δ′[ to Cm,αq (clS[Ωp,ε∗

Ω̃
]−). Let V be an open bounded connected

subset of Rn of class C1 such that

clQ ⊆ V, clV ∩ (qz + clΩp,ε∗
Ω̃

) = ∅ ∀z ∈ Zn \ {0} ,

Let W ≡ V \ clΩp,ε∗
Ω̃

. Since Sq,n(x − p − εs) is analytic in (ε, x, s), a result on integral operators with real

analytic kernels and with no singularity (cf. [33, Prop. 4.1 (i)]), and the analyticity of Θ� imply that the
function from ]− εΩ̃, εΩ̃[×]− δ′, δ′[× to Cm,α(clW ) which takes (ε, δ) to the function

ˆ
∂Ω

Sq,n(x− p− εs)Θ�[ε, δ](s) dσs ∀x ∈ clW ,

is real analytic. Since the restriction operator from clS[Ωp,ε∗
Ω̃

]− to clW induces an isomorphism from Cm,αq (clS[Ωp,ε∗
Ω̃

]−)

onto the subspace of Cm,α(clW ) of the restrictions to clW of q-periodic functions of clS[Ωp,ε∗
Ω̃

]−, we conclude

that the function from ] − εΩ̃, εΩ̃[×] − δ′, δ′[ to Cm,αq (clS[Ωp,ε∗
Ω̃

]−) which takes (ε, δ) to the above integral for

x ∈ clS[Ωp,ε∗
Ω̃

]− is analytic. Also, equality (6.4) follows by the definition of V�,S[Ωp,ε∗
Ω̃

]− and by Theorem 4.6

(iii) and by the membership of θ� in Cm−1,α(∂Ω)0.
We now turn to prove statement (ii). By assumption, there exists R > 0 such that clΩ̃ ⊆ Bn(0, R). Then

we set Ω∗ ≡ Bn(0, R) \ clΩ. Let εΩ∗,r be as in Lemma A.12 (ii) of the Appendix with ε1 = ε′. Then we take
εΩ̃,r ≡ εΩ∗,r.
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It clearly suffices to show that V r�,Ω∗ and PrΩ∗ exist and are analytic and then to set V r�,Ω̃ and Pr
Ω̃

equal to

the composition of the restriction of Cm,α(clΩ∗) to Cm,α(clΩ̃) with V r�,Ω∗ and PrΩ∗ , respectively. By definition

of ω](ε, δ, ·) and u](ε, δ, ·) and by equality (2.3), and by equality
´
∂Ω

Θ�[ε, δ] dσ = 0, we have

ω](ε, δ, p+ εt) = εδ

ˆ
∂Ω

Sn(t− s)Θ�[ε, δ](s) dσs (6.7)

+

ˆ
∂Ω

εn−1δRq,n(ε(t− s))Θ�[ε, δ](s) dσs + C�[ε, δ] + δ2,nδ
2

ˆ
Q

fε dy
log ε

2π
,

u](ε, δ, p+ εt) = ω](ε, δ, p+ εt)

+δ2

[
Pq,n[Q, fε](p+ εt)−

ˆ
Q

fε dySq,n(εt)

]
= εδ

ˆ
∂Ω

Sn(t− s)Θ�[ε, δ](s) dσs +

ˆ
∂Ω

εn−1δRq,n(ε(t− s))Θ�[ε, δ](s) dσs

+C�[ε, δ] + δ2,nδ
2εñfF (ε)

log ε

2π
+ δ2

[
Pq,n[Q, fε](p+ εt)

−εñfF (ε)

(
ε2−nSn(t) + δ2,n

log ε

2π
+Rq,n(εt)

)]
,

for all t ∈ clΩ∗ and for all (ε, δ) ∈]0, εΩ̃,r[×]0, δ′[. Thus we find natural to set

V r�,Ω∗ [ε, δ] ≡
ˆ
∂Ω

Sn(t− s)Θ�[ε, δ](s) dσs (6.8)

+

ˆ
∂Ω

εn−2Rq,n(ε(t− s))Θ�[ε, δ](s) dσs ,

PrΩ∗ [ε](t) ≡ Pq,n[Q, fε](p+ εt) (6.9)

−εñf+2−nF (ε)Sn(t)− εñfF (ε)Rq,n(εt) ,

for all t ∈ clΩ∗ and for all (ε, δ) ∈] − εΩ̃,r, εΩ̃,r[×] − δ′, δ′[. Now it suffices to prove that the right hand sides
of (6.8), (6.9) define real analytic maps from ] − εΩ̃,r, εΩ̃,r[×] − δ′, δ′[ and from ] − εΩ̃,r, εΩ̃,r[ to Cm,α(clΩ∗),

respectively. Since v[∂Ω, ·]|clΩ∗ is linear and continuous from Cm−1,α(∂Ω) to Cm,α(clΩ∗), Theorem 4.6 (iii)
implies the analyticity of the map which takes (ε, δ) to v[∂Ω,Θ�[ε, δ]]|clΩ∗ . Next we consider the second integral
operator in the right hand side of (6.8). Since clΩ∗ − ∂Ω is compact, possibly shrinking εΩ̃,r we can assume
that

ε(t− s) ∈ (Rn \ qZn) ∪ {0} ∀(ε, t, s) ∈]− εΩ̃,r, εΩ̃,r[×clΩ∗ × ∂Ω . (6.10)

Then we note that the maps from ]− εΩ̃,r, εΩ̃,r[ to Cm,α(∂Ω) and to Cm,α(clΩ∗) which take ε to εid∂Ω and to
εidclΩ∗ are real analytic, respectively. Then a result on integral operators with analytic kernels of [33, Prop. 4.1
(i)] implies that the map from ]− εΩ̃,r, εΩ̃,r[×Cm,α(∂Ω) to Cm,α(clΩ∗) which takes (ε, θ) to the function

ˆ
∂Ω

Rq,n(ε(t− s))θ(s) dσs ∀t ∈ clΩ∗ , (6.11)

is analytic. Then we conclude that the map V r�,Ω∗ is analytic. We also note that V r�,Ω∗ [0, 0] = v[∂Ω, θ�] = u]�
(cf. (4.4).) Then the analyticity of Rq,n and analyticity results on the composition operator imply that the
map from ]− ε0, ε0[ to Cm−1,α(∂Ω) which takes ε to the function Rq,n(εt) of t ∈ ∂Ω is real analytic (cf. Böhme
and Tomi [3, p. 10], Henry [22, p. 29], Valent [48, Thm. 5.2, p. 44].) Then by Theorem [35, Prop. A.7 (ii)] and
by the analyticity of F , it follows that PrΩ∗ is analytic. By setting ε = 0, we obtain the formula for PrΩ∗ [0].

Next we prove statement (iii). We define V r�,∂Ω[ε, δ](t) and Pr∂Ω[ε](t) to be equal to the right hand side of
(6.8) and (6.9) for all t ∈ ∂Ω, respectively. Then equality (6.7) for t ∈ ∂Ω implies the validity of the equalities
(6.5). The analyticity of V r�,∂Ω[ε, δ] and Pr∂Ω[ε] follows by the same arguments of the proof of statement (iii)
with clΩ∗ replaced by ∂Ω. We also note that (6.10) with clΩ∗ replaced by ∂Ω holds for all ε ∈]− ε0, ε0[. Indeed
a point p+ εt with t ∈ ∂Ω can equal p+ εs+ qz with s ∈ ∂Ω and z ∈ Zn only if z = 0.

Next we prove statement (iv). We first set

ω]1(ε, δ, x) ≡ εn−1

ˆ
∂Ω

Sq,n(x− p− εs)δΘ�[ε, δ](s) dσs + C�[ε, δ] ∀x ∈ clS[Ωp,ε]
− ,

for all (ε, δ) ∈]0, ε′[×]0, δ′[. By Definition 4.12 of ω](ε, δ, ·), we have

ω](ε, δ, x) = ω]1(ε, δ, x) + δ2,nδ
2

ˆ
Q

fε dy
log ε

2π
∀x ∈ clS[Ωp,ε]

− ,
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for all (ε, δ) ∈]0, ε′[×]0, δ′[, and accordingly

ˆ
Q\clΩp,ε

u](ε, δ, x) dx =

ˆ
Q\clΩp,ε

ω]1(ε, δ, x) dx

+δ2,nδ
2εñfF (ε)

log ε

2π
mn(Q \ clΩp,ε) + δ2

ˆ
Q\clΩp,ε

Pq,n[Q, fε](x)

−εñfF (ε)Sq,n(x− p) dx

for all (ε, δ) ∈]0, ε′[×]0, δ′[. By equality (6.5), the function ω]1(ε, δ, ·) is the only solution in Cm,αq (clS[Ωp,ε]
−) of

the Dirichlet problem 
∆w = 0 in S[Ωp,ε]

− ,
w is q − periodic in S[Ωp,ε]

− ,
w(p+ εt) = εδV r�,∂Ω[ε, δ](t) + C�[ε, δ] ∀t ∈ ∂Ω ,

for all (ε, δ) ∈]0, ε′[×]0, δ′[. Then Lemma A.4 of the Appendix and the limiting relation

lim
(ε,δ)→(0,0)

ω]1(ε, δ, x) = C�[0, 0]

for all x ∈ Rn \ (p + qZn) and Corollary A.5 of the Appendix imply the existence of ε1 ∈]0, ε′[ and δ1 ∈]0, δ′[
and of an analytic map J̃�1 from ]− ε1, ε1[×]− δ1, δ1[ to R such that

J̃�1 [ε, δ] =

ˆ
Q\clΩp,ε

ω]1(ε, δ, x) dx ∀(ε, δ) ∈]0, ε1[×]0, δ1[ ,

J̃�1 [0, 0] = C�[0, 0]mn(Q) = c�mn(Q) .

By assumption (1.3) and by [35, Prop. A.2], there exists ρ′ ∈]0, ρ] such that the map from ] − ε0, ε0[ to
C0
q,ω,ρ′(Rn) which takes ε to Pq,n[Q, fε] is real analytic. Then Proposition A.8 (i) of the Appendix implies the

existence of an analytic map J̃�2 from ]− ε0, ε0[ to R such that

ˆ
Q\clΩp,ε

Pq,n[Q, fε] dx = J̃�2 [ε] ∀ε ∈]0, ε0[ , (6.12)

J̃�2 [0] =

ˆ
Q

Pq,n[Q, f0] dx .

By Proposition A.8 (ii) of the Appendix, there exists an analytic map G1 from ]− ε0, ε0[ to R such that

ˆ
Q\clΩp,ε

Sq,n(x− p) dx = G1(ε)− δ2,n
ε2 log ε

2π
mn(Ω) ∀ε ∈]0, ε0[ , (6.13)

G1(0) =

ˆ
Q

Sq,n(x− p) dx .

Hence, we conclude that

ˆ
Q\clΩp,ε

u](ε, δ, x) dx = J̃�1 [ε, δ] + δ2J̃�2 [ε] + δ2,nδ
2εñfF (ε)

log ε

2π
[mn(Q)− εnmn(Ω)]

−δ2εñfF (ε)G1(ε) + δ2εñfF (ε)δ2,n
ε2 log ε

2π
mn(Ω)

for all (ε, δ) ∈]0, ε′[×]0, δ′[. Thus if we set

J�1 [ε, δ] ≡ J̃�1 [ε, δ] + δ2J̃�2 [ε]− δ2εñfF (ε)G1(ε) ,

J�2 [ε] ≡ F (ε)

[
ε2

2π
mn(Ω) + (mn(Q)− εnmn(Ω))

1

2π

]
,

for all (ε, δ) ∈]− ε1, ε1[×]− δ1, δ1[, then statement (iv) holds true. �

Next we turn to introduce a representation theorem for the family of solutions {u](δ, ·)}δ∈]0,δ′[ in case
nf < n− 1.
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Theorem 6.14. Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let nf < n − 1. Let G ∈ C0(∂Ω × R) satisfy condition (4.7). Let c∗ ∈ R,
γ0 ∈ [0,+∞[ satisfy (1.8). Let ε′ ∈]0, ε0[, be as in Theorem 5.5 (iii). Let Γ0 be an open neighborhood of γ0

in R as in Theorem 5.5 (iii). Let ρ′, Pε∗ be as in Lemma 6.1 for all ε∗ ∈]0, ε0[. Let ε̂ be as in (1.7). Let
δ′ ∈]0,+∞[ be as in (5.6). Then the following statements hold.

(i) Let Ω̃ be an open subset of Rn with nonzero distance from p+ qZn. Then there exist ε∗
Ω̃
∈]0, ε′[ such that

clΩ̃ ⊆ S[Ωp,ε]
− ∀ε ∈ [−ε∗

Ω̃
, ε∗

Ω̃
] ,

and εΩ̃ ∈]0, ε∗
Ω̃

[ such that clS[Ωp,ε∗
Ω̃

]− ⊆ S[Ωp,ε]
− for all ε ∈ [−εΩ̃, εΩ̃], and δΩ̃ ∈]0, δ′[ such that

ε̂(δ) ∈]0, εΩ̃[ , δε̂(δ)nf−(n−1) ∈ Γ0 ∀δ ∈]0, δΩ̃] , (6.15)

and a real analytic map V∗,S[Ωp,ε∗
Ω̃

]− from ]− εΩ̃, εΩ̃[×Γ0 to Cm,αq (clS[Ωp,ε∗
Ω̃

]−) such that

ω](δ, x) = ε̂(δ)n−1δV∗,S[Ωp,ε∗
Ω̃

]− [ε̂(δ), δε̂(δ)nf−(n−1)](x)

+C∗[ε̂(δ), δε̂(δ)
nf−(n−1)] + δ2,nδ

2

ˆ
Q

fε̂(δ) dy
log ε̂(δ)

2π
,

u](δ, x) = ε̂(δ)n−1δV∗,S[Ωp,ε∗
Ω̃

]− [ε̂(δ), δε̂(δ)nf−(n−1)](x)

+C∗[ε̂(δ), δε̂(δ)
nf−(n−1)] + δ2,nδ

2

ˆ
Q

fε̂(δ) dy
log ε̂(δ)

2π

+δ2Pε∗
Ω̃

[ε̂(δ)](x) ∀x ∈ clS[Ωp,ε∗
Ω̃

]− ,

for all δ ∈]0, δΩ̃[. Moreover,

V∗,S[Ωp,ε∗
Ω̃

]− [0, γ0] = 0 ∀x ∈ clS[Ωp,ε∗
Ω̃

]− , C∗[0, γ0] = c∗ . (6.16)

(ii) Let Ω̃ be a bounded open subset of Rn \ clΩ. Then there exist εΩ̃,r ∈]0, ε′[ and δΩ̃,r ∈]0, δ′[ and a real

analytic map V r∗,Ω̃ from ] − εΩ̃,r, εΩ̃,r[×Γ0 to Cm,α(clΩ̃) and a real analytic map Pr
Ω̃

from ] − ε0, ε0[ to

Cm,α(clΩ̃) such that

ε̂(δ) ∈]0, εΩ̃,r[ , δε̂(δ)nf−(n−1) ∈ Γ0 ∀δ ∈]0, δΩ̃,r] ,

p+ ε̂(δ)clΩ̃ ⊆ clS[Ωp,ε̂(δ)]
− ∀δ ∈]0, δΩ̃,r[ ,

ω](δ, p+ ε̂(δ)t) = ε̂(δ)δV r∗,Ω̃[ε̂(δ), δε̂(δ)nf−(n−1)](t)

+C∗[ε̂(δ), δε̂(δ)
nf−(n−1)] + δ2,nδ

2

ˆ
Q

fε̂(δ) dy
log ε̂(δ)

2π
∀t ∈ clΩ̃ ,

u](δ, p+ ε̂(δ)t) = ε̂(δ)δV r∗,Ω̃[ε̂(δ), δε̂(δ)nf−(n−1)](t)

+C∗[ε̂(δ), δε̂(δ)
nf−(n−1)] + δ2Pr

Ω̃
[ε̂(δ)](t) ∀t ∈ clΩ̃ ,

for all δ ∈]0, δΩ̃,r[. Moreover,

V r∗,Ω̃[0, γ0](t) = u]∗(t) Pr
Ω̃

[0](t) =

ˆ
Q

Sq,n(p− y)f0(y) dy ∀t ∈ clΩ̃ . (6.17)

(iii) There exist a real analytic map V r∗,∂Ω from ]− ε′, ε′[×Γ0 to Cm,α(∂Ω) and a real analytic map Pr∂Ω from
]− ε0, ε0[ to Cm,α(∂Ω) such that

ω](δ, p+ ε̂(δ)t) = ε̂(δ)δV r∗,∂Ω[ε̂(δ), δε̂(δ)nf−(n−1)](t) (6.18)

+C∗[ε̂(δ), δε̂(δ)
nf−(n−1)] + δ2,nδ

2

ˆ
Q

fε̂(δ) dy
log ε̂(δ)

2π
∀t ∈ ∂Ω ,

u](δ, p+ ε̂(δ)t) = ε̂(δ)δV r∗,∂Ω[ε̂(δ), δε̂(δ)nf−(n−1)](t)

+C∗[ε̂(δ), δε̂(δ)
nf−(n−1)] + δ2Pr∂Ω[ε̂(δ)](t) ∀t ∈ ∂Ω ,

for all δ ∈]0, δ′[. Moreover,

V r∗,∂Ω[0, γ0](t) = u]∗(t) Pr∂Ω[0](t) =

ˆ
Q

Sq,n(p− y)f0(y) dy ∀t ∈ ∂Ω .
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(iv) There exist ε1 ∈]0, ε′[ and an open neighborhood Γ1 of γ0 contained in Γ0 and two analytic maps J∗1 , J∗2
from ]− ε1, ε1[×Γ1 to R and δ1 ∈]0, δ′[ such that

ε̂(δ) ∈]0, ε1[ , δε̂(δ)nf−(n−1) ∈ Γ1 ∀δ ∈]0, δ1[ ,

and ˆ
Q\clΩp,ε̂(δ)

u](δ, x) dx = J∗1 [ε̂(δ), δε̂(δ)nf−(n−1)]

+δ2,nδ
2ε̂(δ)nfJ∗2 [ε̂(δ)] log ε̂(δ) ∀δ ∈]0, δ1[ .

Moreover,

J∗1 [0, γ0] = c∗mn(Q) J∗2 [0] =
F (0)

2π
mn(Q)

Finally, if
´
Q
fε dy = 0 for all ε ∈]− ε0, ε0[, then we can take J∗2 equal to 0.

Proof. Let ε∗
Ω̃

, εΩ̃ be as in Lemma A.12 (i) of the Appendix. The existence of δΩ̃ as in (6.15) is an immediate

consequence of the limiting relations in (1.7). By Definition 5.7 of ω](δ, ·), we have

ω](δ, x) = ε̂(δ)n−1

ˆ
∂Ω

Sq,n(x− p− ε̂(δ)s)δΘ∗[ε̂(δ), δε̂(δ)nf−(n−1)](s) dσs

+C∗[ε̂(δ), δε̂(δ)
nf−(n−1)] + δ2,nδ

2

ˆ
Q

fε̂(δ) dy
log ε̂(δ)

2π

u](δ, x) = ω](δ, x) + δ2Pε∗
Ω̃

[ε̂(δ)](x) ∀x ∈ clS[Ωp,ε∗
Ω̃

]− ,

for all δ ∈]0, δΩ̃[. Thus we find natural to set

V∗,S[Ωp,ε∗
Ω̃

]− [ε, γ](x) ≡
ˆ
∂Ω

Sq,n(x− p− εs)Θ∗[ε, γ](s) dσs ∀x ∈ clS[Ωp,ε∗
Ω̃

]− ,

for all (ε, γ) ∈]− εΩ̃, εΩ̃[×Γ0. By the analyticity of Θ∗ and by the very same argument of the proof of Theorem
6.3 (i), the map V∗,S[Ωp,ε∗

Ω̃
]− is analytic. By Theorem 5.5 (iii) and by the membership of θ∗ in Cm−1,α(∂Ω)0,

we deduce the validity of (6.16).
We now turn to prove statement (ii). Then we take Ω∗ and εΩ̃,r ≡ εΩ∗,r as in the proof of Theorem 6.3

(ii). The existence of δΩ̃,r is an immediate consequence of the limiting relations in (1.7). It clearly suffices to
show that V r∗,Ω∗ and PrΩ∗ exist and are analytic and then to set V r∗,Ω̃ and Pr

Ω̃
equal to the composition of the

restriction of Cm,α(clΩ∗) to Cm,α(clΩ̃) with V r∗,Ω∗ and PrΩ∗ , respectively. By definition of ω](δ, ·) and u](δ, ·)
and by equality (2.3), and by equality

´
∂Ω

Θ∗[ε, δ] dσ = 0 and by the same computations of (6.7), we have

ω](δ, p+ ε̂(δ)t) = ε̂(δ)δ

ˆ
∂Ω

Sn(t− s)Θ∗[ε̂(δ), δε̂(δ)nf−(n−1)](s) dσs (6.19)

+

ˆ
∂Ω

ε̂(δ)n−1δRq,n(ε̂(δ)(t− s))Θ∗[ε̂(δ), δε̂(δ)nf−(n−1)](s) dσs

+C∗[ε̂(δ), δε̂(δ)
nf−(n−1)] + δ2,nδ

2

ˆ
Q

fε̂(δ) dy
log ε̂(δ)

2π
,

u](δ, p+ ε̂(δ)t)

= ε̂(δ)δ

ˆ
∂Ω

Sn(t− s)Θ∗[ε̂(δ), δε̂(δ)nf−(n−1)](s) dσs

+

ˆ
∂Ω

ε̂(δ)n−1δRq,n(ε̂(δ)(t− s))Θ∗[ε̂(δ), δε̂(δ)nf−(n−1)](s) dσs

+C∗[ε̂(δ), δε̂(δ)
nf−(n−1)] + δ2,nδ

2ε̂(δ)nfF (ε̂(δ))
log ε̂(δ)

2π

+δ2

[
Pq,n[Q, fε̂(δ)](p+ ε̂(δ)t)

−ε̂(δ)nfF (ε̂(δ))

(
ε̂(δ)2−nSn(t) + δ2,n

log ε̂(δ)

2π
+Rq,n(ε̂(δ)t)

)]
,
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for all t ∈ clΩ∗ and for all δ ∈]0, δΩ̃,r[. Thus we find natural to set

V r∗,Ω∗ [ε, γ] ≡
ˆ
∂Ω

Sn(t− s)Θ∗[ε, γ](s) dσs (6.20)

+

ˆ
∂Ω

εn−2Rq,n(ε(t− s))Θ∗[ε, γ](s) dσs ,

PrΩ∗ [ε](t) ≡ Pq,n[Q, fε](p+ εt) (6.21)

−εnf+2−nF (ε)Sn(t)− εnfF (ε)Rq,n(εt) ,

for all t ∈ clΩ∗ and for all (ε, γ) ∈]− εΩ̃,r, εΩ̃,r[×Γ0. Now it suffices to prove that the right hand side of (6.20),
(6.21) define real analytic maps from ]− εΩ̃,r, εΩ̃,r[×Γ0 and ]− εΩ̃,r, εΩ̃,r[ to Cm,α(clΩ∗), respectively. We have
already proved that PrΩ∗ is analytic and that the second equality in (6.17) holds (see proof of Theorem 6.3
(ii).) By arguing precisely as in the proof of Theorem 6.3 (ii), and by exploiting the analyticity of Θ∗, we can
prove that V r∗,Ω∗ is analytic. We also observe that

V r∗,Ω∗ [0, γ0](t) =

ˆ
∂Ω

Sn(t− s)Θ∗[0, γ0](s) dσs =

ˆ
∂Ω

Sn(t− s)θ∗(s) dσs = u]∗(t)

∀t ∈ clΩ∗ ,

(cf. (5.4).) Next we prove statement (iii). We define V r∗,∂Ω[ε, γ](t) and Pr∂Ω[ε](t) to be equal to the right hand
side of (6.20) and (6.21) for all t ∈ ∂Ω, respectively. Then equality (6.19) for t ∈ ∂Ω implies the validity of
the equalities (6.18). The analyticity of V r∗,∂Ω[ε, γ] and Pr∂Ω[ε] follows by the same arguments of the proof of
statement (ii) with clΩ∗ replaced by ∂Ω. We also note that (6.11) with clΩ∗ replaced by ∂Ω holds for all
ε ∈]− ε0, ε0[. Indeed a point p+ εt with t ∈ ∂Ω can equal p+ εs+ qz with s ∈ ∂Ω and z ∈ Zn only if z = 0.

Next we prove statement (iv). We first set

ω]1(δ, x) ≡ ε̂(δ)n−1

ˆ
∂Ω

Sq,n(x− p− ε̂(δ)s)δΘ∗[ε̂(δ), δε̂(δ)nf−n+1](s) dσs

+C∗[ε̂(δ), δε̂(δ)
nf−n+1] ∀x ∈ clS[Ωp,ε̂(δ)]

− ,

for all δ ∈]0, δ′[. By Definition 5.7 of ω](δ, ·), we have

ω](δ, x) = ω]1(δ, x) + δ2,nδ
2

ˆ
Q

fε̂(δ) dy
log ε̂(δ)

2π
∀x ∈ clS[Ωp,ε̂(δ)]

− ,

for all δ ∈]0, δ′[, and accordingly

ˆ
Q\clΩp,ε̂(δ)

u](δ, x) dx =

ˆ
Q\clΩp,ε̂(δ)

ω]1(δ, x) dx

+δ2,nδ
2ε̂(δ)nfF (ε̂(δ))

log ε̂(δ)

2π
mn(Q \ clΩp,ε̂(δ))

+δ2

ˆ
Q\clΩp,ε̂(δ)

Pq,n[Q, fε̂(δ)](x)

−ε̂(δ)nfF (ε̂(δ))Sq,n(x− p) dx

for all δ ∈]0, δ′[. By equality (6.18), the function ω]1(δ, ·) is the only solution in Cm,αq (clS[Ωp,ε̂(δ)]
−) of the

Dirichlet problem
∆w = 0 in S[Ωp,ε̂(δ)]

− ,
w is q − periodic in S[Ωp,ε̂(δ)]

− ,
w(p+ ε̂(δ)t) = ε̂(δ)n−nf δε̂(δ)nf−n+1V r∗,∂Ω[ε̂(δ), δε̂(δ)nf−n+1](t)

+C∗[ε̂(δ), δε̂(δ)
nf−n+1] ∀t ∈ ∂Ω ,

for all δ ∈]0, δ′[. By Theorems 5.5 (iii) and 6.3 (iii), the function εn−nf γV r∗,∂Ω[ε, γ] + C∗[ε, γ] is real ana-

lytic in (ε, γ) ∈]− ε′, ε′[×Γ0. Moreover, such a function equals ε̂(δ)n−nf δε̂(δ)nf−n+1V r∗,∂Ω[ε̂(δ), δε̂(δ)nf−n+1] +

C∗[ε̂(δ), δε̂(δ)
nf−n+1] if we set ε = ε̂(δ), γ = δε̂(δ)nf−n+1 for δ ∈]0, δ′[. Then Lemma A.4 of the Appendix and

the limiting relation
lim
δ→0

ω]1(δ, x) = C∗[0, γ0] ∀x ∈ Rn \ (p+ qZn)
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and Corollary A.5 of the Appendix imply the existence of ε1 ∈]0, ε′[ and of an open neighborhood Γ1 of γ0 in
R contained in Γ0 and of an analytic map J̃∗1 from ]− ε1, ε1[×Γ1 to R and of δ1 ∈]0, δ′[ such that

ε̂(δ) ∈]0, ε1[ , δε̂(δ)nf−(n−1) ∈ Γ1 ∀δ ∈]0, δ1] ,

J̃∗1 [ε̂(δ), δε̂(δ)nf−n+1] =

ˆ
Q\clΩp,ε̂(δ)

ω]1(δ, x) dx ∀δ ∈]0, δ1[ ,

J̃∗1 [0, γ0] = C∗[0, γ0]mn(Q) = c∗mn(Q) .

Next we define J̃∗2 ≡ J̃�2 as in (6.12) and and G1 as in (6.13). Hence, we conclude that

ˆ
Q\clΩp,ε̂(δ)

u](δ, x) dx = J̃∗1 [ε̂(δ), δε̂(δ)nf−n+1] + δ2J̃∗2 [ε̂(δ)]

+δ2,nδ
2ε̂(δ)nfF (ε̂(δ))

log ε̂(δ)

2π
[mn(Q)− ε̂(δ)nmn(Ω)]

−δ2ε̂(δ)nfF (ε̂(δ))G1(ε̂(δ)) + δ2ε̂(δ)nfF (ε̂(δ))δ2,n
ε̂(δ)2 log ε̂(δ)

2π
mn(Ω)

for all δ ∈]0, δ1[. Thus if we set

J∗1 [ε, γ] ≡ J̃∗1 [ε, γ] + (γε(n−1)−nf )2J̃∗2 [ε]− (γε(n−1)−nf )2εnfF (ε)G1(ε) ,

J∗2 [ε] ≡ F (ε)

[
ε2

2π
mn(Ω) + (mn(Q)− εnmn(Ω))

1

2π

]
,

for all (ε, γ) ∈]− ε1, ε1[×Γ1, then statement (iv) holds true. �

7 A convergence result for the solutions of the auxiliary problem
(3.1)

We now plan to analyze the behavior of the family {u](ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[ and of the family {u](δ, ·)}δ∈]0,δ′[

in a Lebesgue space as (ε, δ) tends to (0, 0) and as δ tends to 0, respectively. The difficulty here is that the
domain clS(ε, 1)− of u](ε, δ, ·) depends on ε and that the domain clS(ε̂(δ), 1)− of u](δ, ·) depends on δ. Then
we extend such functions ‘by zero’ to the whole of Rn, and we analyze the behavior of the extensions as (ε, δ)
tends to (0, 0) and as δ tends to 0, respectively. Thus if v is a function from clS(ε, δ)− to R, we denote by
E(ε,δ)[v] the function from Rn to R defined by

E(ε,δ)[v](x) ≡
{
v(x) ∀x ∈ clS(ε, δ)− ,
0 ∀x ∈ Rn \ clS(ε, δ)− .

Then we have the following.

Proposition 7.1. Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let G ∈ C0(∂Ω×R) satisfy condition (4.7). Let r ∈ [1,+∞[. Then the following
statements hold.

(i) Let nf ≥ n−1. Let c� ∈ R be such that (1.6) holds. Let ε′, δ′ be as in Theorem 4.6 (ii). Let {(εj , δj)}j∈N
be a sequence in ]0, ε′[×]0, δ′[ which converges to (0, 0). Then

lim
j→∞

E(εj ,1)[u
](εj , δj , ·)] = c� in Lr(V ) ,

for all bounded open subsets V of Rn.

(ii) Let nf < n − 1. Let c∗ ∈ R, γ0 ∈ [0,+∞[ satisfy (1.8). Let ε̂ be as in (1.7). Let δ′ be as in (5.6). Let
{δj}j∈N be a sequence in ]0, δ′[ which converges to 0. Then

lim
j→∞

E(ε̂(δj),1)[u
](δj , ·)] = c∗ in Lr(V ) ,

for all bounded open subsets V of Rn.
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Proof. We first show that
sup

x∈clS[Ωp,εj ]−
|u](εj , δj , x)| < +∞ . (7.2)

By Definition 4.12, it suffices to show that

sup
j∈N

sup
x∈clS[Ωp,εj ]−

|ω](εj , δj , x)| < +∞ , (7.3)

sup
j∈N

sup
x∈clS[Ωp,εj ]−

δ2
j

∣∣∣∣ˆ
Q

Sq,n(x− y)fεj (y) dy −
ˆ
Q

fεj dySq,n(x− p)
∣∣∣∣ < +∞ . (7.4)

We first prove (7.3). Since ω][εj , δj ,Θ�[εj , δj ], C�[εj , δj ]] is harmonic and q-periodic, the Maximum Principle
implies that

sup
j∈N

sup
x∈clS[Ωp,εj ]−

|ω](εj , δj , x)| ≤ sup
j∈N

sup
x∈∂Ωp,εj

|ω](εj , δj , x)| .

Then equality (4.5) and Theorem 6.3 (iii) imply that

sup
j∈N

sup
x∈∂Ωp,εj

|ω](εj , δj , x)|

≤ sup
j∈N

sup
t∈∂Ω

∣∣∣∣εjδjV r�,∂Ω[εj , δj ](t) + C�[εj , δj ] + δ2,nδ
2
j ε
ñf
j F (εj)

log εj
2π

∣∣∣∣ < +∞ ,

and accordingly inequality (7.3) holds true. Indeed, V r�,∂Ω and C� are continuous at (0, 0) and F is continuous
at 0. Next we consider inequality (7.4). By assumption (1.3) and [35, Lem. A.2], there exists ρ′ ∈]0, ρ] such
that the map from ] − ε0, ε0[ to C0

q,ω,ρ′(Rn), which takes ε to Pq,n[Q, fε] is analytic. Since C0
q,ω,ρ′(Rn) is

continuously imbedded into C0
b (Rn), we have

sup
j∈N

sup
x∈clS[Ωp,εj ]−

∣∣∣∣δ2
j

ˆ
Q

Sq,n(x− y)fεj (y) dy

∣∣∣∣ ≤ sup
j∈N

sup
x∈Rn

∣∣δ2
jPq,n[Q, fεj ](x)

∣∣ < +∞ . (7.5)

Then equality (4.5) implies that

sup
j∈N

sup
x∈clS[Ωp,εj ]−

∣∣∣∣δ2
j

ˆ
Q

fεj dySq,n(x− p)
∣∣∣∣

≤ sup
j∈N

sup
x∈clS[Ωp,εj ]−

∣∣∣δ2
j ε
ñf
j F (εj)Sq,n(x− p)

∣∣∣ . (7.6)

Since −∆xSq,n(x− p) = 1
mn(Q) > 0 for all x ∈ Rn \ (p+ qZn), the function Sq,n(· − p) is super-harmonic and

satisfies the strong Minimum Principle in Rn \ (p+ qZn). Accordingly,

min
x∈clS[Ωp,εj ]−

ε
ñf
j Sq,n(x− p) = min

t∈∂Ω
ε
ñf
j Sq,n(p+ tεj − p)

= min
t∈∂Ω

(
ε
ñf
j ε2−n

j Sn(t) + ε
ñf
j δ2,n

log εj
2π

+ ε
ñf
j Rq,n(εjt)

)
∀j ∈ N .

Since Rq,n is continuous at 0 and ñf ≥ n− 1, we conclude that there exists M1 ∈ R such that

min
x∈clS[Ωp,εj ]−

ε
ñf
j Sq,n(x− p) ≥M1 ∀j ∈ N . (7.7)

On the other hand we know that Sq,n(· − p) is continuous and q-periodic in Rn \ (p+ qZn) and that

lim
x→p

Sq,n(x− p) = lim
x→p

(Sn(x− p) +Rq,n(x− p)) = −∞ .

Accordingly, Sq,n(· − p) is bounded from above and there exists M2 ∈]0,+∞[ such that

sup
x∈clS[Ωp,εj ]−

ε
ñf
j Sq,n(x− p) ≤M2 ∀j ∈ N . (7.8)

By combining (7.5), (7.6), (7.7) and (7.8) and the continuity of F at 0, we conclude that (7.4) holds true.
Hence, (7.2) is also true. Now Theorem 6.3 (i) implies that

lim
j→∞

E(εj ,1)[u
](εj , δj , ·)] = c� a.e. in Rn .
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Hence, the Dominated Convergence Theorem in the set Q and the q-periodicity of E(εj ,1)[u
](εj , δj , ·)] imply

the validity of statement (i). Similarly, in order to prove statement (ii), we prove that

sup
x∈clS[Ωp,ε̂(δj)]−

|u](δj , x)| < +∞ , (7.9)

and we invoke the Dominated Convergence Theorem in the set Q. As above, inequality (7.9) follows by
inequalities (7.3) and (7.4) with εj and ω](εj , δj , x) replaced by ε̂(δj), ω

](δj , x), respectively. We can prove
such inequalities by replacing C�[εj , δj ], V

r
�,∂Ω[εj , δj ] by C∗[ε̂(δj), δj ε̂(δj)

nf−(n−1)], V r∗,∂Ω[ε̂(δj), δj ε̂(δj)
nf−(n−1)],

respectively, and by exploiting the same argument of the proof of statement (i) and Theorems 5.5, 6.14 (iii)
instead of Theorems 4.6, 6.3 (iii). �

8 A convergence result for the solutions of problem (1.4)

As we have already said at the beginning of section 3, a function u ∈ Cm,α(clS(ε, δ)−) satisfies problem (1.4) if
and only if the function u](·) = u(δ·) ∈ Cm,α(clS(ε, 1)−) , satisfies the auxiliary boundary value problem (3.1).
Thus we can now introduce a family of solutions for problem (1.4) by means of the following.

Definition 8.1.

(i) Let the assumptions of Theorem 4.6 hold. Then we set

ω(ε, δ, x) ≡ ω](ε, δ, x/δ) ∀x ∈ clS(ε, δ)− ,

u(ε, δ, x) ≡ u](ε, δ, x/δ) ∀x ∈ clS(ε, δ)− ,

for all (ε, δ) ∈]0, ε′[×]0, δ′[.

(ii) Let the assumptions of Theorem 5.5 hold. Let δ′ ∈]0,+∞[ be as in (5.6). Then we set

ω(δ, x) ≡ ω](δ, x/δ) ∀x ∈ clS(ε̂(δ), δ)− ,

u(δ, x) ≡ u](δ, x/δ) ∀x ∈ clS(ε̂(δ), δ)− ,

for all δ ∈]0, δ′[.

By Theorems 4.6 and 5.5, {u(ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[ is a family of solutions of problem (1.4) in case nf ≥
n − 1, and {u(δ, ·)}δ∈]0,δ′[ is a family of solutions of problem (1.4) in case nf < n − 1. Our aim is to analyze
the behavior of such families as (ε, δ) tends to (0, 0) and as δ tends to 0, respectively. To do so, we exploit
the results on the families of solutions of the auxiliary problem (3.1), which we have introduced in Definitions
4.12 and 5.7.

In particular, we note that Theorem 6.3 (i), (ii) implies that the family of solutions {u(ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[

satisfies conditions (�), (��) of the introduction, and that the limit of (�) is precisely the constant c�. Similarly,
Theorem 6.14 (i), (ii) implies that the family of solutions {u(δ, ·)}δ∈]0,δ′[ satisfies conditions (∗), (∗∗) of the
introduction, and that the limit of (∗) is precisely the constant c∗.

Next we show the validity of the following convergence theorem in Lebesgue spaces.

Proposition 8.2. Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let G ∈ C0(∂Ω×R) satisfy condition (4.7). Let r ∈ [1,+∞[. Then the following
statements hold.

(i) Let nf ≥ n−1. Let c� ∈ R be such that (1.6) holds. Let ε′, δ′ be as in Theorem 4.6 (iii). Let {(εj , δj)}j∈N
be a sequence in ]0, ε′[×]0, δ′[ which converges to (0, 0). Then

lim
j→∞

E(εj ,δj)[u(εj , δj , ·)] = c� in Lr(V ) ,

for all bounded open subsets V of Rn.

(ii) Let nf < n − 1. Let c∗ ∈ R, γ0 ∈ [0,+∞[ satisfy (1.8). Let ε̂ be as in (1.7). Let δ′, be as in (5.6). Let
{δj}j∈N be a sequence in ]0, δ′[ which converges to 0. Then

lim
j→∞

E(ε̂(δj),δj)[u(δj , ·)] = c∗ in Lr(V ) ,

for all bounded open subsets V of Rn.
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Proof. By Lemma A.10 of the Appendix, there exists C ∈]0,+∞[ such that

‖E(εj ,δj)[u(εj , δj , ·)]− c�‖Lr(V ) = ‖E(εj ,δj)[u
](εj , δj , ·/δ)]− c�‖Lr(V )

= ‖E(εj ,1)[u
](εj , δj , ·)](·/δ)− c�‖Lr(V )

≤ C‖E(εj ,1)[u
](εj , δj , ·)]− c�‖Lr(Q) ∀j ∈ N .

Then the statement follows by Theorem 7.1 (i). The proof of statement (ii) follows the same lines by replacing
Theorem 7.1 (i) with Theorem 7.1 (ii). �

The result above is akin to those obtained by variational methods, although here the methods are com-
pletely different. We now exploit our methods to describe the convergence of the families of solutions
{u(ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[ and {u(δ, ·)}δ∈]0,δ′[ as (ε, δ) tends to (0, 0) and as δ tends to 0, respectively, in the
spirit of the present paper.

We first note that if Ω̃ is a nonempty open subset of Rn, then

Ω̃ ∩
(
Rn \ clS(ε, δ)−

)
6= ∅ ,

whenever (ε, δ) is sufficiently close to (0, 0). Hence, u(ε, δ, ·) is not defined in the whole of Ω̃ for (ε, δ) sufficiently
close to (0, 0), and we cannot hope to describe the behavior of u(ε, δ, ·) as we did for u](ε, δ, ·) in Theorem 6.3.
Similarly, u(δ, ·) is not defined in the whole of Ω̃ for δ sufficiently close to 0, and we cannot hope to describe
the behavior of u(δ, ·) as we did for u](δ, ·) in Theorem 6.14. Hence, we must resort to a different avenue.

We first fix r ∈ [1,+∞[ and we identify E(ε,δ)[u(ε, δ, ·)] and E(ε̂(δ),δ)[u(δ, ·)] with the corresponding func-

tionals in the dual of the space of functions of Lr
′
(Rn) with compact support, where r′ is the conjugate

exponent to r, and we would like to describe the ‘weak’ behavior of E(ε,δ)[u(ε, δ, ·)] as (ε, δ) tends to (0, 0) and
of E(ε̂(δ),δ)[u(δ, ·)] as δ tends to 0 in terms of analytic maps. More precisely, we would like to describe the
behavior of the integrals

ˆ
Rn

E(ε,δ)[u(ε, δ, ·)]φdx ,
ˆ
Rn

E(ε̂(δ),δ)[u(δ, ·)]φdx (8.3)

as (ε, δ) tends to (0, 0) and as δ tends to 0 in terms of analytic maps, for all elements φ with compact support
of Lr

′
(Rn). At the moment however, we cannot do so for all elements φ with compact support of Lr

′
(Rn), but

only for all the elements φ which belong to a certain dense subspace Tq of Lr
′
(Rn) of functions with compact

support, which we now turn to introduce by means of the following technical statement of [36, § 9]

Proposition 8.4. Let Tq be the vector subspace of L∞(Rn) ∩ L1(Rn) generated by the set of functions

{χsQ+y : (s, y) ∈ (Q∩]0,+∞[)× Rn} .

(i) If r ∈ [1,+∞[, then the space Tq is dense in Lr(Rn).

(ii) If φ ∈ Tq, then there exist y1,. . . ,yr ∈ Rn, and λ1, . . . , λr ∈ R, and s ∈ Q∩]0,+∞[ such that

φ(x) =

r∑
l=1

λlχyl+sQ(x) a.a. x ∈ Rn .

Next we turn to analyze the behavior of the integrals in (8.3) with φ ∈ Tq as (ε, δ) tends to (0, 0) and as δ
tends to 0, respectively. In the spirit of this paper, we represent the integrals in (8.3) in terms of analytic maps
evaluated at specific values of (ε, δ) and δ, respectively. Namely, at values of δ such that the periodic cell δQ
is a certain integer fraction of the periodicity cell Q. More precisely, we require that δ equals the reciprocal of
some integer l ∈ N \ {0}. To do so, we first introduce the following technical statement.

Theorem 8.5. Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let G ∈ C0(∂Ω×R) satisfy condition (4.7). Let r ∈ [1,+∞[. Then the following
statements hold.

(i) Let nf ≥ n− 1. Let c� ∈ R be such that (1.6) holds. Let ε′, δ′ be as in Theorem 4.6 (iii). Then we have
the following.
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(j1) Let s ∈]0,+∞[. Let ỹ ∈ Rn. Let ε1, δ1, J�1 , J�2 be as in Theorem 6.3 (iv). Thenˆ
Rn

E(ε,l−1s)[u(ε, l−1s, ·)]χỹ+sQ dx

= snJ�1 [ε, l−1s] + δ2,ns
n(l−1s)2εñfJ�2 [ε] log ε ,

for all l ∈ N \ {0} such that l > s/δ1 and for all ε ∈]0, ε1[. Moreover,

snJ�1 [0, 0] =

ˆ
Rn
c�χỹ+sQ dx .

Finally, if
´
Q
fε dy = 0 for all ε ∈]− ε0, ε0[, then we can take J�2 equal to 0.

(j1j1) Let φ ∈ Tq. Let s ∈ Q∩]0,+∞[ be as in Proposition 8.4 (ii). Then there exist real analytic maps

H�,φ from ]− ε1, ε1[×]− δ1, δ1[ to R and H̃�,φ from ]− ε1, ε1[ to R such thatˆ
Rn

E(εj ,l−1s)[u(ε, l−1s, ·)]φdx

= snH�,φ[ε, l−1s] + δ2,ns
n(l−1s)2εñf H̃�,φ[ε] log ε

for all l ∈ N \ {0} such that l > s/δ1 and for all ε ∈]0, ε1[. Moreover,

snH�,φ[0, 0] =

ˆ
Rn
c�φdx .

Finally, if
´
Q
fε dy = 0 for all ε ∈]− ε0, ε0[, then we can take H̃�,φ equal to 0.

(ii) Let nf < n− 1. Let c∗ ∈ R, γ0 ∈ [0,+∞[ satisfy (1.8). Let ε′, Γ0 be as in Theorem 5.5 (iii). Let ε̂ be as
in (1.7). Let δ′ be as in (5.6). Then we have the following.

(j2) Let s ∈]0,+∞[. Let ỹ ∈ Rn. Let δ1, ε1, Γ1, J∗1 , J∗2 be as in Theorem 6.14 (iv). Thenˆ
Rn

E(ε̂(l−1s),l−1s)[u(l−1s, ·)]χỹ+sQ dx

= snJ∗1 [ε̂(l−1s), l−1sε̂(l−1s)nf−(n−1)]

+δ2,ns
n(l−1s)2ε̂(l−1s)nf log ε̂(l−1s)J∗2 [ε̂(l−1s)] ,

for all l ∈ N \ {0} such that l > s/δ′. Moreover,

snJ∗1 [0, γ0] =

ˆ
Rn
c∗χỹ+sQ dx .

Finally, if
´
Q
fε dy = 0 for all ε ∈]− ε0, ε0[, then we can take J∗2 equal to 0.

(j2j2) Let φ ∈ Tq. Let s ∈ Q∩]0,+∞[ be as in Proposition 8.4 (ii). Then there exist real analytic maps

H∗,φ from ]− ε1, ε1[×Γ1 to R and H̃∗,φ from ]− ε1, ε1[ to R such thatˆ
Rn

E(ε̂(l−1s),l−1s)[u(ε̂(l−1s), l−1s, ·)]φdx

= snH∗,φ[ε̂(l−1s), l−1sε̂(l−1s)nf−(n−1)]

+δ2,ns
n(l−1s)2ε̂(l−1s)nf H̃∗,φ[ε̂(l−1s)] log ε̂(l−1s) ,

for all l ∈ N \ {0} such that l > s/δ′. Moreover,

snH∗,φ[0, γ0] =

ˆ
Rn
c∗φdx .

Finally, if
´
Q
fε dy = 0 for all ε ∈]− ε0, ε0[, then we can take H̃∗,φ equal to 0.

Proof. By Lemma A.11 of the Appendix and by Theorem 6.3 (iv), we haveˆ
Rn

E(ε,l−1s)[u(ε, l−1s, ·)]χỹ+sQ dx

=

ˆ
Rn

E(ε,1)[u
](ε, l−1s, ·)](x/(l−1s))χỹ+sQ(x) dx

= sn
ˆ
Q

E(ε,1)[u
](ε, l−1s, ·)] dx = sn

ˆ
Q\clΩp,ε

u](ε, l−1s, x) dx

= snJ�1 [ε, l−1s] + snδ2,nl
−2s2εñfJ�2 [ε] log ε
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for all l ∈ N \ {0} such that l > s/δ′ and for all ε ∈]0, ε′[. Hence, (j1) holds true.
Similarly, we now prove (j2). By Lemma A.11 and by Theorem 6.14 (iv), we have

ˆ
Rn

E(ε̂(l−1s),l−1s)[u(l−1s, ·)]χỹ+sQ dx

= sn
ˆ
Q

E(ε̂(l−1s),1)[u
](l−1s, ·)] dx = sn

ˆ
Q\clΩp,ε̂(l−1s)

u](l−1s, x) dx

= snJ∗1 [ε̂(l−1s), l−1sε̂(l−1s)nf−(n−1)]

+snδ2,nl
−2s2ε̂(l−1s)nfJ∗2 [ε̂(l−1s)] log ε̂(l−1s)

for all l ∈ N\{0} such that l > s/δ′. Hence, (j2) holds true. Since φ is a finite linear combination of translations
of functions such as χỹ+sQ, statements (j1j1) and (j2j2) are an immediate consequence of statements (j1) and
(j2), respectively. �

A Appendix

We first introduce the following variant of a result of Preciso [47, Prop. 1.1, p. 101].

Proposition A.1. Let n1, n2 ∈ N \ {0}, ρ ∈]0,+∞[, m ∈ N, α ∈]0, 1]. Let Ω1 be a bounded open subset of
Rn1 . Let Ω2 be a bounded open connected subset of Rn2 of class C1. Then the composition operator T from
C0
ω,ρ(clΩ1)× Cm,α(clΩ2,Ω1) to Cm,α(clΩ2) defined by

T [u, v] ≡ u ◦ v ∀(u, v) ∈ C0
ω,ρ(clΩ1)× Cm,α(clΩ2,Ω1) ,

is real analytic.

Then we introduce the following statement of [43, Lem. 3.8, Prop. 3.14, Rmk. 3.15].

Theorem A.2. Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
g̃ ∈ Cm,α(∂Ω). Then there exist ε1 ∈]0, ε0[ and an open neighborhood Γ̃ of g̃ in Cm,α(∂Ω) and a real analytic

map (η̂[·, ·], ξ̂[·, ·]) from ] − ε1, ε1[×Γ̃ to Cm,α(∂Ω)0 × R such that the only solution ς[ε, g] ∈ Cm,αq (clS[Ωp,ε]
−)

of the Dirichlet problem  ∆u(x) = 0 ∀x ∈ S(ε, 1)− ,
u is q − periodic in S(ε, 1)− ,
u(p+ tε) = g(t) ∀t ∈ ∂Ω ,

is delivered by the formula

ς[ε, g](x) = w−q [∂Ωp,ε, η̂[ε, g](ε−1(· − p))](x) + ξ̂[ε, g] ∀x ∈ clS(ε, 1)− ,

for all (ε, g) ∈]0, ε1[×Γ̃. Moreover,

(η̂[0, g̃], ξ̂[0, g̃]) = (η̃, ξ̃) ,

where (η̃, ξ̃) ∈ Cm,α(∂Ω)0 × R is the only solution of the equation

−1

2
η̃ + w[∂Ω, η̃] + ξ̃ = g̃ on ∂Ω .

Also,

ξ̃ =

ˆ
∂Ω

g̃τ̃ dσ ,

where τ̃ ∈ Cm−1,α(∂Ω) is the only solution of the problem

− 1

2
τ + w∗[∂Ω, τ ] = 0 on ∂Ω ,

ˆ
∂Ω

τ dσ = 1 . (A.3)

In order to compute ξ̃, the following lemma is sometimes useful.

Lemma A.4. Let the same assumptions of Theorem A.2 hold. Then

lim
]0,ε1[×Γ̃3(ε,g)→(0,g̃)

ς[ε, g](x) = ξ̃ ∀x ∈ Rn \ (p+ qZn) .
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Proof. Since

ς[ε, g](x) = −εn−1

ˆ
∂Ω

νΩ(s)DSq,n(x− p− εs)η̂[ε, g](s) dσs + ξ̂[ε, g] ∀x ∈ clS[Ωp,ε]
− ,

for all (ε, γ) ∈]0, ε1[×Γ̃, the statement follows by the continuity of η̂ and ξ̂ at (0, g̃), and by the continuity of
DSq,n in Rn \ (p+ qZn). �

Then we deduce the validity of the following corollary.

Corollary A.5. Let the same assumptions of Theorem A.2 hold. Then there exist ε1 ∈]0, ε0[, and an open
neighborhood Γ̃ of g̃ in Cm,α(∂Ω), and an analytic map J1 from ]− ε1, ε1[×Γ̃ to R such that

ˆ
Q\Ωp,ε

ς[ε, g] dx = J1[ε, g] ∀(ε, g) ∈]0, ε1[×Γ̃ .

Moreover, J1[0, g̃] = mn(Q)
´
∂Ω
g̃τ̃ dσ, where τ̃ is the only solution in Cm−1,α(∂Ω) of problem (A.3).

Proof. We first observe that

ˆ
Q\clΩp,ε

ς[ε, g] dσ =

ˆ
Q\clΩp,ε

w−q [∂Ωp,ε, η̂[ε, g](ε−1(· − p))](x) dx+ ξ̂[ε, g]mn(Q \ Ωp,ε) (A.6)

for all (ε, g) ∈]0, ε1[×Γ̃. Next we note that

ˆ
Q\clΩp,ε

w−q [∂Ωp,ε, η̂[ε, g](ε−1(· − p))](x) dx (A.7)

= −
ˆ
Q\clΩp,ε

ˆ
∂Ωp,ε

νΩp,ε(y)DSq,n(x− y)η̂[ε, g](ε−1(y − p)) dσy dx

= −
ˆ
Q\clΩp,ε

n∑
j=1

∂

∂xj

ˆ
∂Ωp,ε

Sq,n(x− y)η̂[ε, g](ε−1(y − p))(νΩp,ε(y))j dσy dx

=

ˆ
∂Ωp,ε

n∑
j=1

(νΩp,ε(x))j

ˆ
∂Ωp,ε

Sq,n(x− y)η̂[ε, g](ε−1(y − p))(νΩp,ε(y))j dσy dσx

=

n∑
j=1

ˆ
∂Ω

(νΩ(t))j

ˆ
∂Ω

Sq,n(ε(t− s))η̂[ε, g](s)(νΩ(s))j dσsdσtε
2n−2

=

n∑
j=1

ˆ
∂Ω

(νΩ(t))j

ˆ
∂Ω

Sn(t− s)η̂[ε, g](s)(νΩ(s))j dσsdσtε
n

+
δ2,n
2π

ε(ε log ε)

n∑
j=1

ˆ
∂Ω

(νΩ(t))j dσt

ˆ
∂Ω

η̂[ε, g](s)(νΩ(s))j dσs

+

n∑
j=1

ˆ
∂Ω

(νΩ(t))j

ˆ
∂Ω

Rq,n(ε(t− s))η̂[ε, g](s)(νΩ(s))j dσsdσtε
2n−2

=

n∑
j=1

ˆ
∂Ω

(νΩ(t))j

ˆ
∂Ω

Sn(t− s)η̂[ε, g](s)(νΩ(s))j dσsdσtε
n

+

n∑
j=1

ˆ
∂Ω

(νΩ(t))j

ˆ
∂Ω

Rq,n(ε(t− s))η̂[ε, g](s)(νΩ(s))j dσsdσtε
2n−2 ,

for all (ε, g) ∈]0, ε1[×Γ̃. Thus it is natural to define J1 as the map from ] − ε1, ε1[×Γ̃ to R which takes (ε, g)

to the sum of the right hand side of (A.7) and of the term ξ̂[ε, g]mn(Q \ Ωp,ε) = ξ̂[ε, g](mn(Q) − εnmn(Ω))
in the right hand side of equality (A.6). By classical potential theory, the operator v[∂Ω, ·]|∂Ω is linear and
continuous from Cm−1,α(∂Ω) to Cm,α(∂Ω). Then the continuity of the pointwise product in Cm−1,α(∂Ω)
and the analyticity of η̂[·, ·] imply the analyticity of the first sum in the right hand side of (A.7). Then the
analyticity of the map in (6.11), and the continuity of the product in Cm−1,α(∂Ω) and the analyticity of η̂[·, ·]
imply the analyticity of the second sum in the right hand side of (A.7) in the variable (ε, g). The analyticity
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of ξ̂[·, ·] implies the analyticity of the term ξ̂[ε, g](mn(Q)− εnmn(Ω)) upon the variable (ε, g). Hence, J1[·, ·] is
real analytic from ]− ε1, ε1[×Γ̃ to R. Finally,

J1[0, g̃] = mn(Q)ξ̂[0, g̃] = mn(Q)ξ̃ = mn(Q)

ˆ
∂Ω

τ̃ g̃ dσ ,

where τ̃ is the unique solution of problem (A.3). �

Next we introduce the following technical statement.

Proposition A.8. Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2).

(i) Let ρ ∈]0,+∞[. Then there exists a real analytic map G from ]− ε0, ε0[×C0
ω,ρ(clQ) to R such that

ˆ
Q\Ωp,ε

h dx = G[ε, h] ∀(ε, h) ∈]0, ε0[×C0
ω,ρ(clQ)

G[0, h] =

ˆ
Q

h dx ∀h ∈ C0
ω,ρ(clQ) .

(ii) There exists a real analytic function G1 from ]− ε0, ε0[ to R such that

ˆ
Q\Ωp,ε

Sq,n(x− p) dx = G1(ε)− δ2,n
ε2 log ε

2π
mn(Ω) ∀ε ∈]0, ε0[ .

Moreover,

G1(0) =

ˆ
Q

Sq,n(x− p) dx .

Proof. For the existence of G, we follow the proof of Lemma 2.2 of [30] and we note that
´
Q\Ωp,ε h dx =´

Q
h dx−εn

´
Ω
h(p+εs) ds for all (ε, h) ∈]0, ε1[×C0

ω,ρ(clQ), and we define G as the map from ]−ε0, ε0[×C0
ω,ρ(clQ)

to R which takes (ε, h) to the right hand side of such an equality. The analyticity of G follows by Proposition
A.1. The formula for G[0, h] follows by the definition of G. Next we turn to prove statement (ii). By identity
(2.3) and by the rule of change of variables, we have

ˆ
Q\Ωp,ε

Sq,n(x− p) dx =

ˆ
Q

Sq,n(x− p) dx

−ε2
ˆ

Ω

Sn(t) dt− δ2,n
ε2 log ε

2π
mn(Ω)− εn

ˆ
Ω

Rq,n(εt) dt ∀ε ∈]0, ε0[ .

Then we can set

G1(ε) ≡
ˆ
Q

Sq,n(x− p) dx− ε2
ˆ

Ω

Sn(t) dt− εn
ˆ

Ω

Rq,n(εt) dt ∀ε ∈]− ε0, ε0[ .

By the analyticity of Rq,n in (Rn\qZn)∪{0} and by analyticity results on the composition operator (cf. Böhme
and Tomi [3, p. 10], Henry [22, p. 29], Valent [48, Thm. 5.2, p. 44]), we deduce that the map from ] − ε0, ε0[
to Cm,α(clΩ), which takes ε to the function Rq,n(εt) of the variable t ∈ clΩ is real analytic. Then by the
continuity of the linear operator from Cm,α(clΩ) to R which takes a map to its integral, the function G1 is
analytic from ]− ε0, ε0[ to R. Then we obviously have G1(0) =

´
Q
Sq,n(x− p) dx. �

Next we introduce the following inequality for dilated q-periodic functions, which we prove by arguments
akin to those of Braides and De Franceschi [6, ex. 27, p. 20]. We denote by uδ the function from Rn to C
defined by

uδ(x) ≡ u(x/δ) ∀x ∈ Rn , (A.9)

for all δ ∈]0,+∞[ and for all q-periodic functions u ∈ L1
loc(Rn). Then we have the following.

Lemma A.10. Let r ∈ [1,+∞[, δ0 ∈]0,+∞[. Let V be a bounded open subset of Rn. Then there exists
C ∈]0,+∞[ such that

‖uδ‖Lr(V ) ≤ C‖u‖Lr(Q) ∀δ ∈]0, δ0[ ,

for all q-periodic u ∈ L1
loc(Rn).
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Proof. Since V is bounded, there exists a family {zl}sl=1 of points of Zn such that

V ⊆
s⋃
l=1

(qzl + clQ) .

Then the q-periodicity of u implies that

ˆ
V

|uδ(y)|r dy ≤
s∑
l=1

ˆ
qzl+clQ

|uδ(y)|r dy =

s∑
l=1

ˆ
δ−1qzl+δ−1clQ

|u(x)|r dxδn

≤
s∑
l=1

ˆ
δ−1qzl+([δ−1]+1)clQ

|u(x)|r dxδn = s

ˆ
([δ−1]+1)clQ

|u(x)|r dxδn

≤ Cr
ˆ
Q

|u(x)|r dx ∀δ ∈]0, δ0[ ,

for all q-periodic u ∈ L1
loc(Rn), where

C ≡ s1/r

{
sup

δ∈]0,δ0[

([δ−1] + 1)nδn

}1/r

< +∞ ,

and where [δ−1] denotes the integer part of δ−1. �

Next we introduce the following lemma for dilated q-periodic functions.

Lemma A.11. Let u ∈ L1
loc(Rn) be a q-periodic function. Let ỹ ∈ Rn, s ∈]0,+∞[, l ∈ N \ {0}. Then the

following equality holds ˆ
Rn
us/l(x)χỹ+sQ(x) dx = sn

ˆ
Q

u dx ,

(see (A.9).)

Proof. Since us/l is l−1sq-periodic, it is also sq-periodic and accordingly,
ˆ
Rn
us/l(x)χỹ+sQ(x) dx =

ˆ
ỹ+sQ

us/l(x) dx =

ˆ
sQ

us/l(x) dx .

Next we observe that

⋃
0≤zj≤l−1

(qz + l−1Q) ⊆ Q , mn

Q \ ⋃
0≤zj≤l−1

(qz + l−1Q)

 = 0 .

Accordingly, the l−1sq-periodicity of us/l(·) implies that
ˆ
sQ

us/l(x) dx =

ˆ
sl−1Q

us/l(x) dxln

=

ˆ
sl−1Q

u(x/(s/l)) dxln =

ˆ
Q

u(y) dyln(s/l)n = sn
ˆ
Q

u dx .

�

Finally, we introduce the following elementary lemma of [32, Lem. A.5].

Lemma A.12. Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 ∈]0,+∞[ be as in (1.2).
Let ε1 ∈]0, ε0[.

(i) Let Ω̃ be an open subset of Rn with a nonzero distance from p + qZn. Then there exist ε∗
Ω̃
∈]0, ε1[ such

that
clΩ̃ ⊆ S[Ωp,ε]

− ∀ε ∈ [−ε∗
Ω̃
, ε∗

Ω̃
] ,

and εΩ̃ ∈]0, ε∗
Ω̃

[ such that

clS[Ωp,ε∗
Ω̃

]− ⊆ S[Ωp,ε]
− ∀ε ∈ [−εΩ̃, εΩ̃] .

(ii) Let Ω] be a bounded open subset of Rn such that Ω] ⊆ Rn \ clΩ. Then there exists εΩ],r ∈]0, ε1[ such that

p+ εclΩ] ⊆ Q , p+ εΩ] ⊆ S[Ωp,ε]
− ∀ε ∈ [−εΩ],r, εΩ],r] \ {0} .
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