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Abstract 

 

We define tephras and cryptotephras and their components (mainly ash-sized 

particles of glass ± crystals in distal deposits) and summarize the basis of 

tephrochronology as a chronostratigraphic correlational and dating tool for 

palaeoenvironmental, geological, and archaeological research. We then document and 

appraise recent advances in analytical methods used to determine the major, minor, and 

trace elements of individual glass shards from tephra or cryptotephra deposits to aid 

their correlation and application. Protocols developed recently for the electron probe 

microanalysis of major elements in individual glass shards help to improve data quality 

and standardize reporting procedures. A narrow electron beam (diameter ~35 μm) can 

now be used to analyze smaller glass shards than previously attainable. Reliable 

analyses of ‘microshards’ (defined here as glass shards <32 µm in diameter) using 

narrow beams are useful for fine-grained samples from distal or ultra-distal geographic 

locations, and for vesicular or microlite-rich glass shards or small melt inclusions. 

Caveats apply, however, in the microprobe analysis of very small microshards (~5 µm 

in diameter), where particle geometry becomes important, and of microlite-rich glass 

shards where the potential problem of secondary fluorescence across phase boundaries 

needs to be recognised. Trace element analyses of individual glass shards using laser 

ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), with crater 

diameters of 20 μm and 10 μm, are now effectively routine, giving detection limits well 



 

3 

 

below 1 ppm. Smaller ablation craters (<10 μm) can be subject to significant element 

fractionation during analysis, but the systematic relationship of such fractionation with 

glass composition suggests that analyses for some elements at these resolutions may be 

quantifiable. In undertaking analyses, either by microprobe or LA-ICP-MS, reference 

material data acquired using the same procedure, and preferably from the same 

analytical session, should ideally be presented alongside new analytical data.  

In part 2 of the review, we describe, critically assess, and recommend ways in 

which tephras or cryptotephras can be correlated (in conjunction with other information) 

using numerical or statistical analyses of compositional data. Statistical methods 

provide a less subjective means of dealing with analytical data pertaining to tephra 

components (usually glass or crystals/phenocrysts) than heuristic alternatives. They 

enable a better understanding of relationships among the data from multiple viewpoints 

to be developed and help quantify the degree of uncertainty in establishing correlations. 

In common with other scientific hypothesis testing, it is easier to infer using such 

analysis that two or more tephras are different rather than the same. Adding 

stratigraphic, chronological, spatial, or palaeoenvironmental data (i.e. multiple criteria) 

is usually necessary and allows for more robust correlations to be made. A two-stage 

approach is useful, the first focussed on differences in the mean composition of 

samples, or their range, which can be visualised graphically via scatterplot matrices or 

bivariate plots coupled with the use of statistical tools such as distance measures, 
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similarity coefficients, hierarchical cluster analysis (informed by distance measures or 

similarity or cophenetic coefficients), and principal components analysis (PCA). Some 

statistical methods (cluster analysis, discriminant analysis) are referred to as ‘machine 

learning’ in the computing literature. The second stage examines sample variance and 

the degree of compositional similarity so that sample equivalence or otherwise can be 

established on a statistical basis. This stage may involve discriminant function analysis 

(DFA), support vector machines (SVMs), canonical variates analysis (CVA), and 

ANOVA or MANOVA (or its two-sample special case, the Hotelling two-sample T2 

test). Randomization tests can be used where distributional assumptions such as 

multivariate normality underlying parametric tests are doubtful.   

Compositional data may be transformed and scaled before being subjected to 

multivariate statistical procedures including calculation of distance matrices, 

hierarchical cluster analysis, and PCA. Such transformations may make the assumption 

of multivariate normality more appropriate. A sequential procedure using Mahalanobis 

distance and the Hotelling two-sample T2 test is illustrated using glass major element 

data from trachytic to phonolitic Kenyan tephras. All these methods require a broad 

range of high-quality compositional data which can be used to compare ‘unknowns’ 

with reference (training) sets that are sufficiently complete to account for all possible 

correlatives, including tephras with heterogeneous glasses that contain multiple 

compositional groups. Currently, incomplete databases are tending to limit correlation 



 

5 

 

efficacy. The development of an open, online global database to facilitate progress 

towards integrated, high-quality tephrostratigraphic frameworks for different regions is 

encouraged.  
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Highlights 

 Advances in the microanalysis of major, minor, and trace elements of glass shards are 

reviewed  

 We evaluate numerical and statistical methods for tephra correlation via glass/crystal 

analyses  

 We focus on (1) differences in mean composition of samples or their range; and 

 (2) sample variance and degree of compositional similarity to establish equivalence or 

not 

 We illustrate various statistical methods and data transformations using case studies 
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1. Introduction  

 

1.1. Tephra and cryptotephra deposits and their componentry 

 

Tephras are the unconsolidated, pyroclastic or fragmental products of explosive 

volcanic eruptions (Greek tephra, ‘ash’ or ‘ashes’) (Thorarinsson, 1981; Lowe, 2011). 

Erupting pyroclasts propelled through the air, together with volcanic gases, typically 

comprise three main components: (i) volcanic glass (including glass shards, pumice, and 

scoriae); (ii) crystalline mineral phases (hereafter crystals); and (iii) lithics or rock 

fragments. Volcanic glass, a non-crystalline phase, occurs in multiple morphologies 

including individual bubble-wall (cuspate) or platy glass shards, pumiceous or ‘inflated’ 

shards, and pumice or scoria clasts, which all originate from the rapid quenching of 

molten magma during eruption (Fig. 1). The degree of ordering and linkage of SiO4
4- 

tetrahedra (so-called ‘polymerisation’) within these glasses is dependent on 

composition, and reflects the structure of the magma from which the glass formed. 

Basaltic magmas are less polymerised than rhyolitic magmas, and are thus less viscous 

and erupt more effusively. The space between the partly-linked SiO4
4- tetrahedra in the 

melt is occupied by cations such as Na, K, Mg, Ca, and Fe, which act to depolymerise 

the melt. Glass may also occur as coatings or rims on crystals (selvedges). Pumice and 

scoria clasts consist mainly of glass with vesicles (voids) formed by expanding gases 
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during eruption and various quantities of crystals or crystal fragments (loose or as 

phenocrysts) and occasionally lithic fragments. Pumice is most commonly silicic and 

pale-coloured (although dark-coloured basaltic pumice also occurs) and has a low 

density, whereas scoriae (or ‘cinders’) are mafic and dark-coloured, typically basaltic to 

andesitic, and have a greater density (Fisher and Schminke, 1984). Crystals and crystal 

fragments are mainly formed in the magma prior to eruption (Jerram and Martin, 2008). 

Lithic fragments are pieces of pre-existing rock that became incorporated into the tephra 

during eruption, transport, or deposition (Fisher and Schminke, 1984; Sarna-Wojcicki, 

2000). Volcanic glass, pumice/scoria, and most crystals (including tiny crystals, i.e. 

microcrysts/microlites or microphenocrysts) within glass are juvenile or co-magmatic 

constituents of the tephra (i.e. formed from magma involved in the eruption), and 

provide the materials for tephra characterization using physical properties and 

compositional analyses. Lithic fragments (xenoliths) may be related (cognate xenoliths, 

or autoliths) or unrelated to contemporaneous magmatic activity. Similarly, crystalline 

material may be physically removed from older rocks surrounding the magma chamber 

or vent (becoming xenocrysts), it may be ‘reincorporated’ from earlier cumulates in the 

current magmatic cycle (antecrysts, e.g. zircon, sensu Jerram and Martin, 2008), or it 

may be a restite phase from assimilation of unrelated, older country rock. In some cases 

material, termed ‘detrital’ (Sarna-Wojcicki, 2000), may be entrained from clastic 

sources during transport and deposition of the tephra deposit. 
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Fig. 1. (a) BSE image of unpolished glass shards, ranging in size from ~1 to ~75 µm in 

diameter, from tephra erupted in 1997 from the Soufrière Hills volcano, Montserrat 

(collected at the Montserrat Volcanic Observatory South, 28 September, 1997) (image 

provided by Stuart Kearns; see also Kearns and Buse, 2012, p. 2). (b) SEM image of a 

thick-walled cuspate (bubble-wall) glass shard, 50–60 µm in size, from a mid-Holocene 

rhyolitic tephra deposit preserved in peat, northern New Zealand. Such shards need 

polishing flat before reliable geochemical analysis can be undertaken on them. Image 

provided by Maria Gehrels. (c) SEM image of a melt (glass) inclusion within a quartz 

grain from a cryptotephra deposit in Japan (identified as Kikai-Tozurahara tephra, K-

Tz). The indistinct round melt inclusion, near the middle of the grain, is 7 µm in 

diameter (from Matsu’ura et al., 2011a, p. 51). 

 

The proportions of these various components (glass, pumice/scoria, crystals, 

lithics) differ widely according to eruption composition and style, proximity to vent, 

atmospheric conditions, and other factors (Fisher and Schminke, 1984; Alloway et al., 

2013; Edmonds and Wallace, 2017). Large-magnitude, very explosive, and voluminous 

silicic eruptions with dacitic to rhyolitic bulk compositions and dacitic (~6369 wt% 

SiO2) to rhyolitic (>69 wt% SiO2) glass tend to generate extensively dispersed tephras 

that persist as relatively thick layers of ash over large distances (e.g. Froggatt et al., 

1986; Machida, 2010). Basaltic tephras, much less siliceous (<52 wt% SiO2), derive 

from typically lesser-magnitude eruptions and lower eruption columns (but with notable 

exceptions, e.g. Laki and Grimsvötn eruptions 1783-1785: Thordarson and Self, 1993; 

Tarawera eruption 1886: Walker et al., 1984). The bulk of associated basaltic tephras 

are mainly locally dispersed but many finer particles of ash are now known to be 

distributed very widely under favourable wind conditions (e.g. Davies et al., 2010a; 



 

11 

 

Watson et al., 2016). However, unlike rhyolitic tephras, dispersed basaltic fallout 

deposits typically are very thin, commonly forming cryptotephras. Andesitic (and 

basaltic andesitic) tephras are intermediary in composition (~5263 wt% SiO2) and may 

be locally or quite widely dispersed as either thin tephra layers or cryptotephra deposits. 

The pyroclasts making up a tephra deposit potentially encompass grain sizes 

ranging from volcanic ash (<2 mm in diameter), to lapilli (264 mm), to large blocks 

(dense, angular) or bombs (vesicular, rounded) (>64 mm) (Schmid, 1981). Fine-grained 

tephras, usually ash-size, can be deposited and preserved hundreds to thousands of 

kilometres away from their source (e.g. Lane et al., 2013a; Jensen et al., 2014; 

Ponomareva et al., 2015a; Pyne-O’Donnell et al., 2016; van der Bilt et al., 2017). At 

such distal locations, deposits may consist solely of bubble-wall or platy glass shards 

(Izett, 1981; Sarna-Wojcicki, 2000; Pyne-O’Donnell et al., 2012). Diminutive, non-

visible tephra deposits typically in distal to ultra-distal locations are referred to as 

cryptotephras (Greek kryptein, ‘to hide’) (Lowe, 2011; Davies, 2015). These are 

defined as tephra-derived glass shard or crystal concentrations, or both, preserved and 

‘hidden’ in peats, lacustrine, aeolian, or marine sediments, in frozen sediments or ice, or 

in buried paleosols or modern (surface) soils. Cryptotephras are essentially not visible in 

the field as a layer to the naked eye and hence are best referred to as ‘deposits’, i.e. 

normally not as ‘layers’, by definition. They are usually fine-grained, often <125 μm in 

diameter (i.e. very fine ash or smaller using the detailed classification of White and 
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Houghton, 2006), and grains ~4060 μm, or even finer, are not uncommon depending 

on location and source (e.g. Abbott and Davies, 2012; Stevenson et al., 2012, 2015; 

Watson et al., 2016; van der Bilt et al., 2017). New approaches have been developed to 

enable glass shard (or crystal) concentrations from cryptotephras, or from very thin 

visible tephra layers, to be first detected and then isolated from enclosing sediments 

(e.g. Kylander et al., 2012; Lane et al., 2014; McCanta et al., 2015; Chan et al., 2016).  

Geochemical approaches to the quantification of dispersed glass shards in marine 

sediments were reported by Scudder et al. (2016), and novel 2D and 3D visualisation 

methods have been applied to marine deposits (Griggs et al., 2014, 2015). Hopkins et al. 

(2015) and Zawalna-Geer et al. (2016) have developed new methods for differentiating 

between primary cryptotephra deposits and reworked ones in lake sediments. The 

subsequent chemical analysis of such small and often sparse grains of glass has been 

challenging, and new techniques and protocols have been required to attain high-

quality, reproducible data. The key recent developments are described in Sections 2‒4.  

 

1.2. Tephrochronology 

 

Tephrochronology is the use of primary tephra layers or cryptotephra deposits as 

isochronous (time-parallel) marker beds to link and synchronize depositional sequences, 

or soils/paleosols, and to transfer relative or numerical ages or dates to the sequences 
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using lithostratigraphic and compositional data pertaining to the tephras or 

cryptotephras (Sarna-Wojcicki, 2000; Alloway et al., 2013; Lowe and Alloway, 2015). 

Tephrochronology has become an important (even essential) tool in a very wide range 

of fields (e.g. Lowe, 2011; Davies, 2015; Lane et al., 2017), including ‘classical’ 

applications such as aligning and dating palaeoenvironmental reconstructions, landscape 

evolution, and archaeology, and more recent ‘modern’ applications  growing numbers 

of which are based entirely on cryptotephra deposits  such as medical and pandemic 

research (D’Costa et al., 2011; Streeter et al., 2012), evaluating aviation hazards (Scaini 

et al., 2014; Bourne et al., 2016; Watson et al., 2017a), and hominin/human evolution 

and adaptation (Tryon et al., 2009; Lowe et al., 2012; Blegen et al., 2015; McHenry et 

al., 2016; Alloway et al., 2017). 

Although tephrochronology is underpinned by lithostratigraphy and the law of 

superposition, the method typically relies as much, or more, on characterizing or 

‘fingerprinting’ inherent tephra-derived, pyrogenic components characteristic of the 

magma composition prior to and during its eruption, namely the volcanic glass, pumice 

fragments, and crystals or crystal fragments (minerals) as described above (Section 1.1). 

Thus laboratory-based analyses are usually needed to complement field-based evidence 

such as stratigraphy, especially in more distal regions where tephras become thinner and 

finer-grained and where exposures tend to contain layers from other eruptions and other 

volcanic sources as well as detrital and non-volcanic materials (Lowe and Alloway, 
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2015).  Such analyses include the identification of mineral assemblages by optical 

microscopy (petrography) or X-ray diffraction, and the chemical analysis of glass shards 

or crystals (e.g. biotite, titanomagnetite) using the electron microprobe and other tools 

(Table 1). Analyses of melt inclusions  glass preserved within crystals including quartz 

and other host minerals (Fig. 1c)  also provide a possible ‘window’ into the history of 

magmatic evolution and composition leading up to eruption (and hence potentially 

furnish ‘fingerprints’ for correlation).  
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Wherever possible, such analytical data are very markedly supported and more 

readily interpreted by the attainment of numerical ages on tephras (Turner et al., 2011b; 

Green et al., 2014; Damaschke et al., 2017a). Dating techniques applied to tephras 

include:  (i) radiometric, for example radiocarbon (14C), fission track, luminescence, 

40Ar/39Ar, U-Th-disequilibrium/U-Pb and (U–Th)/He zircon dating (e.g. Biswas et al., 

2013; Westgate et al., 2013a; Danišík et al., 2017; Giaccio et al., 2017; Leonard et al., 

2017); (ii) incremental, such as dendrochronology, varves, ice-core layering (e.g. 

Kurbatov et al., 2006; Hogg et al., 2012; Abbott and Davies, 2012; Lane et al., 2013b); 

(iii) age-equivalence, for example magnetic polarity, orbital or ice-core tuning, 

palynostratigraphy (e.g. Newnham et al., 2004; Alloway et al., 2005; Lohne et al., 

2013); (iv) relative dating,  such as amino-acid geochronology (e.g. Kimber et al., 

1994); (v) historical observations including eye-witness accounts and remote sensing 

(e.g. Dugmore et al., 2004); and (vi) age modelling including wiggle-match dating 
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sequences of contiguous 14C-dated tree rings (e.g. Hogg et al., 2012; Friedrich et al., 

2006; Yin et al., 2012), and Bayesian and other statistical depositional age modelling 

relating to the above methods (e.g. Kaufman et al., 2012; Lowe et al., 2013; Bronk 

Ramsey et al., 2015a; Schmid et al., 2017). Multiple dating methods are being applied 

increasingly in lacustrine and marine sequences that contain tephra or cryptotephra 

deposits (e.g. Sirocko et al., 2013; Staff et al., 2013; Hopkins et al., 2015; Matsu’ura 

and Komatsubara 2017), a key aim being to generate independent chronologies (Brauer 

et al., 2014). 

The correlation of tephras or cryptotephras from one site to the next requires the 

use of stratigraphy (stratigraphic position in a sequence and relationship to other 

deposits or a defined age datum) and age together with comparison of the inherent 

compositional features of the deposits and the associated palaeoenvironmental (e.g. 

biostratigraphic or climatostratigraphic associations) or archaeological or 

paleoanthropological contexts (e.g. Feibel, 1999; Davies et al., 2004; Riede and 

Thastrup, 2013; Turner et al., 2013; Westgate et al., 2013b; Harper et al., 2015; 

Westgate and Pearce, 2017). In effect, such correlation is based on the degree of 

similarity or otherwise of the lithostratigraphic, contextual, compositional, and 

chronological data pertaining to one deposit with those of others. Typically it is the 

combination of these various lines of evidence  multiple parameters  that allow for 
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the most secure correlations to be made (e.g. Lowe et al., 2008; Westgate et al., 2008; 

Habermann et al., 2016; Damaschke et al., 2017a). 

Once a close match or correlation is established with confidence, the relative or 

numerical age or date attached to a tephra or cryptotephra deposit at one site is 

transferable to other sites where the same deposit is identified. Used this way, 

tephrochronology is a powerful age-equivalent (or correlational) dating tool, the 

tephra/cryptotephra providing a tie-point of known age in relevant depositional 

sequences. The age transfer, a key principle in tephrochronology, is valid because most 

tephras are erupted and deposited virtually instantaneously (usually within hours or days 

of an eruption event) so that primary tephra deposits (i.e. those not substantially 

reworked after deposition) have the same short time interval from eruption to deposition 

everywhere they occur, forming isochrons or chronostratigraphic marker beds (Lowe, 

2011; Dugmore and Newton, 2012). 

 

1.3. Remainder of paper 

 

We focus firstly on more recent developments and advances in analytical 

methods used to characterize or ‘fingerprint’ tephra layers and cryptotephra deposits by 

quantitative analysis of constituent glass components, with special consideration of the 

forensic-like analysis of small glass shards <32 µm in size, which we define as 

‘microshards’ (Sections 2 to 4). Secondly, we describe and evaluate numerical and 



 

20 

 

statistical methods, including multivariate analysis, used to assist with and effect their 

correlation (Sections 5 to 9). We examine this second topic in detail using a 

multidisciplinary approach (Tingley et al., 2012). Thus, Section 5 introduces concepts 

in correlation and includes short discussions on the roles of stratigraphy and chronology 

and the importance of scale in tephra correlation studies. It is followed in Section 6 by 

description and discussion of various numerical and statistical methods, including 

cluster analysis and machine learning methods, used in correlation, and treatment of 

outliers. Transformation, scaling, and testing are then evaluated in Section 7. In Section 

8, we provide a simplified step-by-step guide to tephra correlation, in effect a summary 

of key points and recommendations from the previous three sections.  We then illustrate 

a range of statistical methods, including the use of data both untransformed and 

transformed, utilizing three case studies in Section 9 before the summary and 

conclusions (Section 10). 

 

2. Characterizing or ‘fingerprinting’ tephras and cryptotephras via 

glass analysis 

 

2.1. Electron probe microanalysis and laser ablation inductively coupled plasma-mass  

     spectrometry 
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Two analytical techniques are now in common or increasing use for tephra or 

cryptotephra analysis, namely (i) electron probe microanalysis (EPMA) and (ii) laser 

ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) (Table 1). EPMA 

is widely used for determining the major- and minor-element composition of individual 

glass shards, glassy coatings on crystals, pumice fragments, melt inclusions, and ‘free’ 

or loose crystals/crystal fragments, or phenocrysts, such as plagioclase, anorthoclase, 

olivine, pyroxenes, amphiboles, apatite, or Fe-Ti oxides such as titanomagnetite (e.g. 

Marcaida et al., 2014; Habermann et a., 2016; Damaschke et al., 2017a). In many cases, 

such crystals are formed during crystallization of the magma from which a particular 

tephra is produced and hence are potentially useful for characterizing it for correlational 

purposes (Table 1). In some cases, however, antecedent xenocrystic material may be 

entrained from earlier events, and therefore can generate potentially spurious data (e.g. 

Liu et al., 2006). 

Major elements expressed as oxides usually are defined as >1 wt%, minor element 

oxides as 0.1 to 1 wt%, and trace elements as <0.1 wt% or <1000 parts per million 

(ppm) by weight of the element (not oxide) (Winter, 2009, p. 135).  

In this section we target the microanalysis of well-preserved glass. Methods of 

sample separation and extraction and the preparation of glass shards for EPMA have 

been documented previously by, for example, Froggatt (1992), Turney (1998), Blockley 

et al. (2005), Davies et al. (2010b), Kuehn and Froese (2010), Kuehn et al. (2011), 
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Preece et al. (2011a), Hall and Hayward (2014), Roland et al. (2015), and Iverson et al. 

(2017). LA-ICP-MS is a more recently developed technique used predominantly to 

obtain trace element compositions of individual glass shards that now has the capacity 

to analyze shards with a 10 μm diameter beam or smaller (e.g. Pearce et al., 2011, 

2014b).  

 

2.1.1. Advantages of single-grain techniques for analyzing individual glass shards 

 

In applying both EPMA and LA-ICP-MS methods, the ability to analyze 

individual glass shards confers many advantages compared with other methods, such as 

X-ray fluorescence (XRF) or instrumental neutron activation analysis (INAA), that 

analyze bulk tephra material or multiple grains such as ‘purified’ glass separates (Table 

1). Firstly, such grain-specific methods are essential because (i) bulk samples often vary 

in composition with distance from volcanic source because of differential settling of 

lithics, crystals, and glass shards, and therefore relative abundances (e.g. Sarna-

Wojcicki et al., 1981; Juvigné and Porter, 1985); (ii) xenocrysts, xenoliths, and detrital 

contaminants (i.e. accessory or accidental material as well as juvenile or ‘new’ 

magmatic material) may be incorporated into tephra deposits; (iii) bulk analyses fail to 

distinguish multiple populations and other variations in glass compositions that can 

arise from magmatic heterogeneity (e.g. Shane et al., 2008a; Ukstins Peate et al., 2008; 
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Tomlinson et al., 2012; Westgate et al., 2013c; Pearce et al., 2014a; Abbott et al., 2016; 

Alloway et al., 2016) or from post-depositional mixing processes (e.g. Óladóttir et al., 

2011; Tryon et al., 2011; Swindles et al., 2013; Cerovski-Darriau et al., 2014); and (iv) 

bulk analysis would generate anomalous values for various elements where glass had 

undergone post-depositional chemical alteration, such as palagonitization or 

zeolitization (Thorseth et al., 1991; Kraus and Kurbatov, 2010; McHenry et al., 2011; 

Churchman and Lowe, 2012), or vesicular infilling by pyritization in marine settings 

(Nelson et al., 1985; Hunt et al., 1995).  

We recognise that analyses of glass separates, or bulk (‘whole-rock’) samples, by 

XRF or other methods such as solution ICP-MS, especially for trace elements, 

nevertheless remain useful where compositional differences relating to potential tephra 

provenance (source volcanoes) are marked (e.g. Sarna-Wojcicki et al., 1987; Shane, 

1994; Pearce et al., 1999; Hermanns and Schellenberger, 2008; Tamura et al., 2008; 

Kraus and Kurbatov, 2010; Watt et al., 2011; Petrelli et al., 2017); in trace-element-

based correlation projects (Knott et al., 2007; Preece et al., 2011b); in detailed 

petrological investigations (Smith et al., 2005; Donoghue et al., 2007; Shane et al., 

2008c; Allan et al., 2013); in provenance studies where large-size samples of 

homogenous obsidian are the analytical target (Barberena et al., 2011; Sheppard et al., 

2011); or simply to detect rather than analyze very thin tephra layers or cryptotephras in 

peat or sediment cores, such as by using -XRF core scanners (e.g. Gehrels et al., 2008; 
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Vogel et al., 2009; Kylander et al., 2012; Damaschke et al., 2013; Fortin et al., 2013). 

Note that such -XRF core scanning detects elemental differences between a possible 

tephra or cryptotephra occurrence and the enclosing sediment ‒ unless the tephra layer 

is relatively thick (e.g. Peti and Augustinus, 2017). In some cases where samples are 

optimal (glass is abundant), conventional XRF analyses have been used to cross-check 

results obtained by EPMA and to obtain some useful minor or trace element data 

(Sarna-Wojcicki et al., 2005). However, in some archives, especially ice cores and distal 

peat bogs or lakes, there are commonly insufficient numbers of shards to permit bulk 

analysis by XRF, INAA, or solution ICP-MS, and microbeam methods are the sole 

means of characterizing the glass composition.  

Using EPMA-derived major element analyses of individual glass shards from a 

suite of tephras in marine cores from near New Zealand (Shane et al., 2006), we 

illustrate that four of the tephras are essentially homogenous with regard to K2O and 

CaO, and match compositional fields for the same oxides of known on-shore 

(terrestrial) correlatives (Fig. 2a). In contrast, the EPMA data show that some shards 

from Maketu tephra have low-CaO contents not represented in the analyses presented 

for the on-shore deposits (Fig. 2b). These ‘outliers’ could either represent minor 

accidental ejecta or components of another tephra (Te Mahoe) that display a similar 

compositional range and which occurs onshore stratigraphically above Maketu tephra 

with few or no intervening deposits (Smith et al., 2002; Shane et al., 2006). In Figs. 2c 
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and 2d, the glass-shard data are heterogeneous. They show on one hand that a single 

tephra (Hauparu tephra in this case) can display a wide compositional range relating to 

source magma variations (Fig. 2c) (Shane et al., 2005a) (or shards can potentially derive 

from a compositionally zoned magma body). On the other hand the heterogeneity is 

likely to be indicative of post-depositional mixing (reworking) of shards from different 

tephras (or shards from different magma sources) (Fig. 2d). 
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Fig. 2. Compositions as bivariate plots of K2O vs CaO in wt % of individual glass 

shards (obtained using EPMA) from tephra layers in 16 marine cores from Bay of 

Plenty, northern New Zealand (redrawn from Shane et al., 2006, p. 283). (a) Examples 

of homogeneous shard compositions from four marine tephra layers plotted (as 

individual points) with the compositional fields (polygons) of known on-shore 

correlatives, showing the on-shore/off-shore similarities. Sample numbers are core 

sites/core depths in centimetres. (b) Composition of shards from marine tephra layers 

identified as Maketu tephra (samples from 10 cores) plotted with the compositional 

field (polygon) of the on-shore correlative. Note the ‘tail’ of low-CaO glasses (<1.9 

wt %) that are not represented in lapilli of on-shore eruptives. (c) Composition of shards 

from tephra layers identified as Hauparu tephra (samples from 11 cores) plotted with the 

compositional field of the on-shore eruptives, showing the characteristic wide spread of 

CaO content that probably reflects heterogeneities in the source magmas (Shane et al., 

2005a). (d) Heterogeneous compositions of shards from seven deposits in core 67 

(depths in centimetres as noted) (Shane et al., 2006). These glass analyses, which may 

represent reworked and mixed shards, or shards from different magmas (notably low in 

K2O), cannot be easily correlated visually with those of known eruptions. 

 

 

A second advantage is that glass compositions may be potentially more distinctive 

than crystal compositions because (i) glass compositions are not limited by crystalline 

structures or stoichiometry, and (ii) the compositions of glasses, which represent the 

melt fraction of erupted magmas as noted earlier, can be changed significantly, 

particularly in terms of their trace element compositions, by relatively small amounts of 

fractional crystallization occurring between successive eruptions. The major element 

composition of magmas is, however, more constrained than the trace element 

composition, being controlled (in simple evolving systems) by magmatic evolution 

along compositionally narrow phase boundaries. Many basaltic magmas, for example, 

erupt at the surface as cotectic liquids (crystallising plagioclase and clinopyroxene), and 



 

27 

 

their major element composition is forced to evolve along the cotectic phase boundary 

by continued extraction of mineral phases (fractional crystallization) between 

successive eruptions. In contrast, many rhyolitic magmas are either eutectic or 

minimum melts, the major element compositions of which do not, or only barely, 

change with continued crystallisation. These differences are exemplified by the rhyolitic 

magmas of the three major eruptions from the Yellowstone caldera in USA over the 

past two million years (e.g. Perkins and Nash, 2002), which have indistinguishable 

(granite minimum) major element compositions (see Sarna-Wojcicki and Davis, 1991; 

Pearce et al., 2004a, 2007). In contrast, basaltic melts from individual Icelandic volcanic 

centres show major element evolution by fractional crystallization between eruptions 

(e.g. Abbott et al., 2012; Óladóttir et al., 2012). Trace element abundances, however, 

generally are not controlled directly by phase relationships within the magma but by 

their partitioning between crystallizing phases and the melt which, because of large 

variations in mineral/melt distribution coefficients, can cause readily detectable 

variations in trace element composition with only small amounts of crystallization 

(Pearce et al., 2008a; Westgate et al., 2013c). 

  

2.2. Reference glasses and secondary standards 
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In all cases where geochemical analyses are performed on either bulk or single 

grain (glass or mineral) material derived from tephra or cryptotephra deposits, it is 

imperative that reference material data are presented alongside the new analytical data 

in each study. In the following sections we describe microbeam analyses of glass 

separates by EPMA and LA-ICP-MS (for major and trace element analyses, 

respectively). In instances where elemental data are presented, data from an appropriate 

reference glass or well-characterized secondary standard should also be published. 

Ideally the reference standard should have a matrix composition similar to that of the 

sample because a poor choice of calibration standard may produce differential elemental 

response in the standard and sample (matrix effects) during the analysis, resulting in the 

generation of inaccurate data (e.g. Kroslakova and Günther, 2007; Allan et al., 2008; 

Gaboardi and Humayun, 2009). Reference materials include, among others, the rhyolitic 

Lipari obsidian (major elements), the USGS glasses (e.g. BCR-2G, BHVO-2G for 

major and trace elements, isotope ratios) (Wolf and Wilson, 2007), Smithsonian 

microbeam standards (e.g. USNM 111240 VG-2, USNM 113498 A-99, USNM 72854 

VG-568: Jarosewich et al., 1980; Jarosewich, 2002), or the MPI-DING suite of glasses 

(e.g. ATHO-G) from the Max Plank Institute (major, trace, and isotope analyses: 

Jochum et al., 2005, 2006, 2011; Jochum and Stoll, 2008; Borisova et al., 2010; Ulrich 

and Kamber, 2013; Westgate et al., 2013c). It is worth noting that there may be 

problems related to the analyses of relatively new (synthesized) reference materials 
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which only come to light with continued analyses, such as possible heterogeneity issues 

(e.g. Borisova et al., 2010) or the methods employed in characterizing the material. We 

note here, for example, that the reference Na2O concentrations in ATHO-G (e.g. 

Jochum et al., 2006) are, in our view, somewhat too low because of certain EPMA 

procedures used in its assessment (especially the combination of beam diameter, beam 

current, and analysis time) (see also Hunt and Hill, 2001).  

Analyses of these standards by EPMA or LA-ICP-MS, when interspersed with 

unknown samples throughout an analytical session, can be used to identify and correct 

for drift and session-to-session variation, and to provide data for publication. Published 

secondary standard data allow analytical quality to be independently verified, and 

enable data to be compared between laboratories with greater confidence (e.g. Kuehn et 

al., 2011; Bourne et al., 2013; Westgate et al., 2013c). Their use applies equally to 

major element, trace element, and isotope ratio analysis. At present the list of 

appropriately certified trace element standards is still relatively limited, but is growing 

steadily as more materials become more widely available and better certified. 

 

3. Advances in electron probe microanalysis of glass  

 

3.1. Inter-laboratory comparisons and development of revised and new protocols 

 



 

30 

 

One feature of major element glass analysis by EPMA that has become more 

evident in recent times is that although analytical differences between many tephras are 

often substantial, in other instances the differences can be subtle for the reasons just 

described (Westgate et al., 2008; Kuehn et al., 2009). In addition, the use of published 

data is complicated by small differences between results produced by different 

laboratories. Consequently, high levels of precision, accuracy, and long-term intra- and 

inter-laboratory reproducibility, are required for the reliable identification of individual 

tephra beds, especially those with relatively similar glass compositions. A desire to 

assess the quality of data currently being produced via EPMA, and to stimulate 

improvements in analytical protocols and data reporting to improve the efficacy and 

quality of tephra fingerprinting and correlation, motivated the EPMA laboratory inter-

comparison exercise of the International Focus Group on Tephrochronology and 

Volcanism (INTAV) (Kuehn et al., 2011). The exercise followed previous but less 

extensive studies undertaken by Jarosewich et al. (1979), Froggatt (1992), Hunt and Hill 

(1996), Suzuki (1996), Hunt et al. (1998), Potts et al. (2002), Turney et al. (2004), and 

Coulter et al. (2010) (see also discussions by Bennett, 1994; Hunt and Hill, 1994). 

Despite substantial variety in procedures and calibration standards, most mean values 

obtained on a purpose-developed set of reference standards by 24 participating 

laboratories compared favourably on a laboratory-to-laboratory basis and with other 

reference data. Ten key recommendations for improving accuracy, precision, and 
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reporting of data on glass obtained by EPMA were provided by Kuehn et al. (2011). 

(See Vander Heyden and Smeyers-Verbeke, 2007, regarding interlaboratory studies 

from a statistical viewpoint.)  These recommendations built on the protocols initially 

recommended by Froggatt (1992). In particular, the routine analysis of secondary 

standards is demonstrably a powerful tool for maximizing and documenting data 

accuracy. In addition to the routine analysis of reference glasses, Jensen et al. (2008) 

and Preece et al. (2011a, 2011b), working in Alaska and the Yukon Territory, used 

existing EPMA-based geochemical databases and the Old Crow tephra as a ‘regional’ 

secondary standard to facilitate tephra correlations. They also re-analyzed samples of 

potential or likely correlatives from reference collections during the same sessions in 

which they analyzed the glass from unknown tephras to help eliminate possible small, 

day-to-day differences in electron microprobe calibration. This side-by-side analysis of 

unknown and reference tephra samples  preferably at the same laboratory and using 

the same methodology (consistent beam currents, defocussing techniques, counting 

criteria), secondary standards with concentrations similar to those of the unknowns and 

of the same broad compositional series (i.e. calc-alkaline, alkaline, peralkaline)  is 

advocated as a means to achieve the most robust and precise correlations, as 

demonstrated by Westgate et al. (2013c). These latter authors reported in a study of the 

Toba tuffs that their calibration scheme remained the same over the two-year period 

during which the samples were analyzed, hence minimizing any compositional variance 
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arising from analytical conditions. The EPMA stability was confirmed by analysis of 

reference materials including the rhyolitic (Lipari) obsidian, UA5831, and the Toba 

glass sample UT778 was also included in most runs as a secondary monitor of 

calibration differences, i.e. an in-house standard (Westgate et al., 2013c). 

 

3.2. Analysis of microshards by electron probe microanalysis 

 

 Another development in the use of EPMA has been the ability to reliably 

analyze glass shards (or melt inclusions) using a narrow beam only ~5 m in diameter, 

which is considerably narrower than previously possible (Hayward, 2012; Hall and 

Hayward, 2014; Pearce et al., 2014b; Kuehn, 2016). Usually a defocussed beam ~1020 

m in diameter, or a rastered beam extending over an area of 5 x 5 µm for example, and 

moderate beam current, are deployed in EPMA to minimize mobilization of alkalis (Na 

and to a lesser extent  K) which can lead to underestimation of Na and K concentrations  

and overestimation of Si and Al concentrations, especially in glasses that are more 

siliceous, more alkaline, or more hydrated (Smith and Westgate, 1968; Froggatt, 1983, 

1992; Hunt and Hill, 1993; Morgan and London, 1996, 2005; Coulter et al., 2010; 

Kuehn et al., 2011). The very small sizes of glass shards from distal deposits, including 

shards in ice cores, or small melt inclusions (Fig. 1c), often necessitate the use of 

narrow beam diameters. We suggest the term ‘microshards’, defined as shards <32 m 
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in diameter (i.e., finer than 5 phi), is useful here. Shards smaller than 32 m, especially 

those much smaller (<~1020 µm), typically pose the greatest challenges in acquiring 

sound analyses. Extremely small microshards, <3 m in diameter, were collected as 

airborne particles during the Eyjafjallajökull eruption in Iceland in 2010 (Dellino et al., 

2012), and Kearns and Buse (2012) stabilised such glasses for analysis by EPMA using 

a stage cooled by liquid nitrogen. Although Hunt and Hill (2001) showed that reducing 

beam sizes for EPMA of microshards, or the thin glass vesicle walls within small 

pumiceous pyroclasts, could lead to unreliable or distorted geochemical analyses and 

hence potentially invalidate correlations, Hayward (2012) have developed robust 

protocols that enable the routine use of narrow beam diameters of 5 µm, and as low as 3 

µm, without loss of Na. The efficacy of this approach was demonstrated by Wastegård 

and Davies (2009), who applied Hayward’s (2012) protocols in their study, and 

subsequently by others including Pyne-O’Donnell et al. (2012), Abbott et al. (2013), 

Bourne et al. (2013), Lilja et al. (2013), and Pouget et al. (2014a).  

Zander et al. (2013) also demonstrated the routine use of a ~5 m beam and 10 

nA current to analyze glass shards. They generally employed a time-varying intensity 

correction for Na, Si, and Al to minimize alkali element migration (with an analysis 

time for Na of 30 s), and a voltage slightly lower than the typical 15 kV to shrink the 

analysis volume. A 3-m beam diameter was used successfully for microlite-rich 

basaltic to andesitic glass samples even though results, judging from the use of high-Na 
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standards (Sheep Track and Lipari: Kuehn et al., 2011), were not quite as good as those 

derived from using a 5 m beam (Zander et al., 2013). 

Such a development  the reliable use of narrow beam diameters for glass-shard 

or melt-inclusion analysis by EPMA  is extremely important generally because (i) it 

enables many fine-grained samples to be analyzed from more distal geographic 

locations than previously possible; (ii) it reduces or prevents bias in data collection 

because most or all shards in a sample set can be analyzed; (iii) it enables more shards 

that are vesicular or microlite-rich, as occur frequently in andesitic or basaltic tephras 

(e.g. Clift et al., 2003; Platz et al., 2007; Shane and Zawalna-Geer, 2011), to be 

analyzed than previously possible; (iv) it enables small melt inclusions to be analyzed 

(e.g. a 4 m EPMA grid was used by Matsu’ura et al., 2011a, to analyze melt inclusions 

720 m in diameter); and (v) the acquisition of EPMA data is more easily automated 

and hence potentially more cost-effective (Hayward, 2012). 

Nevertheless, issues of Na migration for some rhyolitic tephras, and those with 

both sodic and hydrous glass, remain (Hayward, 2012). Possible hazards may arise 

during analyses in some circumstances, and caution is needed. Firstly, in analyzing very 

small microshards, typical X-ray matrix corrections assume the sample has an “infinite” 

lateral and depth extent. At around 5 µm, this assumption begins to break down, and 

particle geometry starts to become important (Kearns and Buse, 2012). In addition, the 

volume of material excited by the electron beam may not be fully contained within the 
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sample. Both of these effects can skew the results, and so it is best to proceed carefully. 

Software exists which can model the interactions and allow the extent of the problem to 

be examined (e.g. see Casino, Win X-ray, LMS-MC: 

http://www.lehigh.edu/~maw3/link/mssoft/mcsim.html). A lower accelerating voltage 

may be used to shrink the source volume of the X-rays, and analyzing reference 

material of the same very-fine particle size may also help to make the data more 

comparable (Pearce et al., 2014b). 

Secondly, the fluorescence of secondary X-rays in crystals in close proximity to 

the glass being analyzed in a microlite-rich shard may lead to an element present in a 

crystal being over-estimated in the adjoining glass, i.e. it is possible to analyze glass 

close to a boundary with a microlite and unwittingly generate and acquire X-rays from 

the (micro)crystal, which becomes significant if the element is at minor to trace 

concentrations in the glass but at major element concentration in the adjacent 

(micro)crystal, e.g. Ca in plagioclases in a rhyolitic, low-Ca, glass (Fournelle, 2007; 

Jerram and Martin, 2008; Reed, 2010, p. 123). However, in basalts (in which crystals 

are fast-forming), the same elements that constitute common crystals (e.g. Fe, Mg in 

olivine; Ca in plagioclase) are also abundant in the associated glass. Shane and 

Zawalna-Geer (2011) reported that EPMA of randomly selected basaltic glass shards 

from the Mt Wellington volcano in the Auckland Volcanic Field (AVF), New Zealand, 

showed only limited variation within samples (± 1 wt % SiO2), suggesting that variable 

http://www.lehigh.edu/~maw3/link/mssoft/mcsim.html
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microlite formation had limited or little effect on the residue melt. Larger compositional 

differences such as those between samples from different morphological parts of the Mt 

Wellington volcano (tuff ring versus main cinder cone) also did not appear to be related 

to microlite formation because both deposits manifested a similar range in microlite 

content. Shane and Zawalna-Geer (2011) additionally observed that the microlite 

variation between shards is greater within some samples than between samples from 

different sites, and that the compositional differences between deposits were also 

reflected in the Fe-Ti oxide compositions, hence suggesting magmatic control was via 

composition and/or intensive parameters, rather than via micro-crystallization. 

The problem is greater in andesites and especially in rhyolites, where low 

concentrations of Ti, Fe, Ca, and Mg could be affected by secondary fluorescence from 

nearby microlites of Fe-Ti oxides, pyroxenes, amphiboles, or feldspars too small to be 

detected microscopically or using back-scattered electron (BSE) imagery (see also Allan 

et al., 2013). Hunt and Hill (2001) examined this phase-boundary effect in detail for 

eruptives from Hekla volcano in Iceland of 1970, 1980, and 1991, and showed that 

hybrid analyses may be encountered in glass fragments containing micron-sized 

microlites of feldspar. One of the authors (Stephen Kuehn) has begun using quick (30 

sec to 1 min) X-ray maps of microlite-rich shards to help avoid microcrystals that are 

not always clearly visible in BSE images because of low contrast (although X-ray 

mapping if prolonged can cause Na mobilization in the glass). BSE contrast relates to 
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the average atomic mass, Z, of the target, and in some cases minerals may have a very 

similar average Z to that of their host. The availability of silicon-drift detector-based 

energy-dispersive X-ray spectrometers with large detectors that can collect many X-rays 

quickly has made this test feasible. X-ray maps also reflect the contents of the full X-ray 

analytical volume whereas the BSE images reflect a smaller/shallower volume. 

Consequently, X-ray maps help in two ways: (i) overcoming potential low (BSE) 

contrast between some microlite and glass compositions, and (ii), by sampling the full 

volume, include microlites just below the surface, or deeper, that can be missed by BSE 

imaging. Calcium and aluminium maps are useful for highlighting plagioclase crystals 

which can have BSE intensities that are very close to those of intermediate (andesitic) 

matrix glasses. In tephras lacking mica or sanidine, potassium maps tend to highlight 

the glass because K concentrates in the glass. Olivines, pyroxenes, and Fe-Ti oxides 

generally are easy to spot with the BSE imaging alone (ideally using a low current, such 

as 1 nA, to prevent Na mobilization in glass). 

Platz et al. (2007) developed an evaluation procedure using least-squares mixing 

calculations based on bivariate oxide diagrams, comprising a compatible and an 

incompatible oxide of the most common groundmass mineral phase (plagioclase in this 

case) to classify andesitic glass data sets for hybrid analyses impacted by the presence 

of microlites, and to estimate the proportions of the main contaminant microlite phase 

(e.g. via bivariate plots of Al2O3 vs FeOt, SiO2 vs K2O, and K2O vs Na2O: Platz et al., 
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2007; Karátson et al., 2016). These and other authors (e.g. Damaschke et al., 2017a) 

note the need for ‘sensible’ error analysis of glass microprobe data, and that outliers not 

able to be explained as glass/mineral mixtures should be removed from the database 

because they contribute needlessly to large variations in glass compositional datasets. 

Such ‘error analysis’ uses prior expert knowledge – for example, knowing from 

previous assays that anomalously high Al and Ca levels suggest a glass/plagioclase 

mixture – to help inform data acquisition and quality. 

Thirdly, analyses from melt inclusions must be interpreted cautiously.  Although 

some studies show that the glass inclusion analyses tend to mirror those of matrix 

glasses or loose glass shards, as demonstrated for some tephras in New Zealand and 

Japan (Horrocks, 2000; Shane et al., 2005b; Matsu’ura et al., 2011a) (Fig. 3), others 

show that glass inclusion analyses may not reflect the full compositional range of matrix 

glasses or shards (e.g. Shane et al., 2007, 2008b, 2008c; Chesner and Luhr, 2010; Allan 

et al., 2013), or they may show a different pattern from that associated with matrix 

(groundmass) glass analyses (e.g. Kilgour et al., 2013; Neave et al., 2015). Such a 

mismatch may arise because melt inclusion glass is older (i.e. derived from magma 

trapped during crystal growth at some time before the final eruption of a magmatic 

cycle) and thus generally less evolved (more primitive) than the glass that is erupted as 

shards, or because the host crystals are xenocrysts (wholly or partly foreign crystals) or 
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antecrysts (recycled crystals from earlier cycles of the same magmatic system) 

incorporated in an eruption. 

 

 

 

Fig. 3. Comparison of bivariate analyses (K2O vs CaO in wt %) of individual melt 

inclusions in quartz with analyses of matrix glass and shards from the same Rotoiti 

eruptives in northern New Zealand (redrawn from Shane et al., 2005b, p. 300).  Samples 

Re1, Re2pf (from pyroclastic flow deposits), and Re3 represent early to late pyroclastic 

eruptives, respectively, in the Rotoiti tephra sequence. Composition fields of type 1 and 

type 2 magmas (defined in Shane et al., 2005b) are also shown. Matrix glass fields are 

shaded for clarity. 
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Analysis using such highly focussed beams requires the use of extremely low 

beam currents, 0.5 to 2 nA, for measurement of alkalis, Si, and Al. Such analyses are 

thus best facilitated with a microprobe equipped with four or, ideally, five wavelength-

dispersive spectrometers, a large TAP analysing crystal for maximum Na sensitivity, 

and the ability to measure at two or three different beam currents during each analysis 

both to prevent Na loss and to provide adequate count rates for good analytical 

precision for other elements (Hayward, 2012). We note here that in some circumstances, 

a time-varying-intensity correction approach with the appropriate automation software 

(e.g. Cameca PeakSight or Probe for EPMA) can be used successfully, even on older 

microprobes which cannot run multiple currents and which do not have large analyzing 

crystals (Kuehn, 2016). This approach can allow higher currents and longer Na analysis 

times than would otherwise be possible on such instruments (see also Zander et al., 

2013). 

 

3.3. Normalizing electron probe microanalysis-derived glass analyses 

 

EPMA-derived glass analyses typically are normalized to a volatile-free basis  

i.e. re-calculated to sum to 100 %, most of the deficit being attributable to water (both 

primary magmatic and secondary)  to avoid the effects of variable post-depositional 

hydration and to enable valid comparison of analyses for tephra deposits from different 
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environments (Allan et al., 2008; Pearce et al., 2008a, 2014; Lowe, 2011). Water 

content can be estimated in various ways including EPMA, ion probe, and Fourier-

transform infrared spectroscopy (e.g. Froggatt, 1983; Nash, 1992; Dunbar and Kyle, 

1993; Devine et al., 1995; Clift et al., 2003; Humphreys et al., 2006; Chesner and Luhr, 

2010; Kearns and Buse, 2012; Kilgour et al., 2013). However, the need for 

normalization has been disputed because any analytical deficit (below a total of 100%) 

is not entirely attributable to water. Instead the deficit may be the result of spectrometer 

drift, charging, or mobilization of a specific element (Hunt and Hill, 1993; Pollard et al., 

2006), the omission of volatile and trace elements from the analysis (e.g. Mn, P, Cl, F, 

S), the lack of a correction for the substitution of halogens for oxygen, poor sample 

positioning during analysis (both horizontal and vertical focus), and the penetration of 

the beam through thin shards (Kuehn et al., 2011). The incorrect or incomplete 

assignment of Fe to its variable oxidation states (e.g. assuming all Fe is FeO) may also 

be problematic, particularly in mafic tephras with higher Fe concentrations. Surface 

roughness from imperfect polishing can also reduce analytical totals (Shane et al., 

2005b; Platz et al., 2007). If a loss of alkalis occurs then Si and Al concentrations 

especially may be artificially inflated. Side-by-side EPMA analyses, however, would 

overcome many of the (analytical) problems described above, and issues such as 

differences in redox state of elements such as Fe (e.g. Brown et al., 1992) would be 

minimized in the analysis of similar materials. Once datasets are normalized then it has 
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been argued that statistical treatments of data are compromised because they fail to take 

into account the condition that the relative abundances of the measured oxides sum to 

100 % (Aitchison, 1982; Pouget et al., 2014a).  

In contrast, others maintain that normalization is very helpful if not essential 

(e.g. Sarna-Wojcicki and Davis, 1991; Froggatt, 1992; Shane, 2000; Allan et al., 2008; 

Pearce et al., 2008a; Shane et al., 2008c; Preece et al., 2011a; Coulter et al., 2012; Smith 

et al., 2013; Westgate et al., 2013b, 2014; Mackay et al., 2016), especially for marine 

tephras according to Albert et al. (2012) and Pearce et al. (2014b) (cf. Salisbury et al., 

2012). Normalization results in consistent elemental abundances, suggesting that the 

water is accommodated within the glass structure without chemical alteration, and in 

much tighter clustering of the analyses for each sample with outliers more readily seen 

(Pearce et al., 2008a).  This contention is supported by EPMA analyses (with 

defocussed beam and low beam current) undertaken by Nairn et al. (2004) of rhyolitic 

melt inclusions completely encased in uncracked quartz in Kaharoa pyroclastic 

eruptives in New Zealand. They argued that the water totals in such completely-sealed 

melt inclusions, between ~6.1 and ~6.5 wt %, must represent the primary, dissolved 

H2O content of the magma prior to eruption. We also record that the total alkalis-silica 

classification must be undertaken on analyses normalized to an anhydrous basis (Le 

Maitre, 2002). 
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For these reasons, we support this latter view that normalization is useful  

although we recognise the theoretical objections  and follow the rationale advocated by 

Baxter (2008, 2016) that it is usually better to work pragmatically with an ‘incorrect’ 

method that on the whole produces fruitful results rather than a ‘correct’ method that is 

less consistently useful in answering research questions. To support this argument, 

Baxter (2008, p. 976) drew an analogy with single-linkage cluster analysis (described 

later): 

 

“According to some accounts, this is one of the few theoretically sound methods  

of cluster analysis available (it satisfies theoretically prescribed desiderata). It  

is used very little in archaeometry because the results produced are often un- 

interpretable, unless the data structure is so obvious that any sensible method  

would reveal it”. 

 

Normalizing or not seems to make little difference to the outcome of statistical 

applications for correlation in studies where it has been evaluated (e.g. Stokes and 

Lowe, 1988; Charman and Grattan, 1999; Tryon et al., 2009, 2010). In any event, 

Kuehn et al. (2011) recommended that all acquired compositional data, including the 

analytical totals, should be published. For all cases, these totals should therefore be 

listed, either as ‘raw’ non-normalized data or given as the difference between the 
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original totals and 100 % (typically expressed as ‘water by difference’) (Froggatt, 

1992). Publishing the original totals or ‘water’ amounts allows the non-normalized 

results to be reconstituted if necessary (rather like reporting conventional radiocarbon 

ages as well as calibrated ages because the former do not change when new calibration 

curves are published). One good approach has been to present normalized data (always 

identified as such) in tables and figures in the text of a paper and to include raw 

compositional data in supplementary materials (e.g. Smith et al., 2013). 

Pouget et al. (2014a) suggested that plotting ratios of oxides in bivariate plots, 

rather than plotting normalized oxide data, would overcome the need for the relative 

abundances of major oxides to sum to 100 %. We think that this approach complicates 

the simplicity of a two-oxide scatterplot for little gain, but if it is utilised then we 

generally agree with the suggestion to use (for example) K2O as a divisor for basaltic 

tephras. This oxide is appropriate for such compositions because it is incompatible 

meaning that it is normally relatively abundant in the glass, and hence the ensuing ratios 

are much less affected than would be the case if a divisor with low abundance were used 

(such an oxide with low abundance as a divisor would generate very large and variable 

ratios, and the ensuing ratio values would excessively reflect the divisor oxide). 

However, in more evolved eruptives (dacites, trachytes, rhyolites, phonolites), K2O is 

compatible in the alkali feldspars that typically form in these and so would not normally 

be an appropriate divisor. Another option is Al2O3, which varies in abundance much less 
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than most other elements across the spectrum from mafic to felsic compositions, and so 

patterns on plots involving Al2O3 would be more similar to the plots of normalized data 

that many are accustomed to. Additionally, Al is often the second-most abundant metal 

after Si and therefore is analysed with high precision. Using Al2O3 as a divisor might 

also help highlight mixed glass-feldspar analyses. 

 

 

4. Advances in laser ablation inductively coupled plasma-mass 

spectrometric analysis of glass  

 

4.1. Advantages of trace-element analyses of glass  

 

Although the recent advances in EPMA have enabled quite subtle differences in 

glass major-element compositions to be detected accurately and precisely (and on much 

smaller shards than it was possible to analyze before), there remain instances where 

individual tephra layers may not be distinguishable uniquely by glass-based major 

elements alone. In these cases, other analytical methods are needed (Fig. 4). Trace 

element analyses of glass separates from tephra deposits offer a greater range of 

elements to be used in correlation studies, and can also provide additional information 

on petrogenesis as well as provenance. Allan et al. (2008) for example found the most 
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useful elements for correlating and distinguishing between 70 tephras (<1.65 Ma) 

preserved in cores from Ocean Drilling Program Site 1123 (in the southwest Pacific 

Ocean ~1200 km east of New Zealand) to be the abundances of Rb, Ba, Sr, Y, Zr, Hf, 

Mg, Mn, and Ti, along with trace element ratios such as Rb/Sr, Ba/Sr, Zr/Y, Y/Th, 

Ba/Th, and Rb/Sm. Based on trace element data acquired for glass shards using LA-

ICP-MS, Allan et al. (2008) illustrated how two stratigraphically adjacent tephras with 

similar major element compositions were easily distinguishable (Fig. 4). They also used 

glass trace element data to show that two confusing sections of the cores 1123A (~4.5 m 

long) and 1123C (~7.9 m long), unable to be resolved by visual inspection, nor from the 

glass major element data, had been repeated (possibly by a localised sedimentary slide) 

(Allan et al., 2008).  
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Fig. 4. Bivariate plots for selected major and trace elements derived from analyses of 

individual glass shards from two New Zealand tephras, Omataroa (~31.6 cal. ka, 

erupted from Okataina Volcanic Centre, pink circles) and Kawakawa (~25.4 cal. ka, 

erupted from Taupo Volcanic Centre, yellow squares and triangles), identified in marine 

cores A, B, and C from ODP Site 1123, which is ~1200 km east of New Zealand (from 

Lowe and Alloway, 2015, p. 792, redrawn from Allan et al., 2008, p. 2351).  (a) CaO vs 

FeOt (total iron expressed as FeO) derived by EPMA. Glass analyses from an on-shore 

occurrence of Kawakawa tephra (at Irirangi) are also shown for comparison. The plot 

shows (i) that the analyses of glass from marine and on-shore samples of Kawakawa 

tephra are the same, and (ii) that Kawakawa and Omataroa tephras cannot be 

distinguished using these two oxides alone (cf. Fig. 13). In contrast, trace element 

concentrations (in ppm), derived by LA-ICP-MS, in (b) and (c), show that the tephras 

are distinctly different with respect to these elements/element ratios. The trace-element 

analyses for glasses of Kawakawa tephra from the marine samples (yellow squares) and 

on-shore samples (yellow triangles) are the same. Fields are shaded for clarity.  

 

Similarly, Westgate et al. (2013c) and Pearce et al. (2014a) showed that all three 

Toba tuffs (erupted from the Toba caldera complex of northern Sumatra) can be readily 

recognized by their glass trace element compositions, but not the major elements which 

are essentially uniform. Strontium, Ba, and Y were identified as the best discriminators. 

This finding contrasts with that of Smith et al. (2011), who suggested, from a more 

limited set of data, that the major and trace element compositions of glass shards could 

not be used to distinguish between the Youngest Toba Tuff tephra (YTT, ~75 ka), the 

Middle Toba Tuff (MTT, ~500 ka), and the Oldest Toba Tuff (~800 ka); instead, Smith 

et al. (2011) used biotite compositions which allow these three major eruptive units to 

be distinguished. The revelation by Westgate et al. (2013c) of four primary glass 

populations (IIV), with the recognition of a possible fifth population (termed IVa and 

IVb) by Pearce et al. (2014a), in the YTT using trace elements enables the tephra to be 
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easily and reliably recognised across its very wide fallout zone: within each glass 

population, trace element variations are broadly consistent with the fractional 

crystallization of phenocryst phases observed within YTT, and the variations between 

the average glass compositions for individual populations mirror bulk pumice 

compositional data, also suggesting that magmatic evolution was dominated by 

fractional crystallization (Westgate et al., 2013c; see also Chesner and Luhr, 2010).  

Until relatively recently, the trace element analysis of glass required the 

separation typically of between 0.1 g and 10 g of ‘pure’ glass for bulk analysis by XRF, 

INAA, or SN-ICP-MS or ICP-AES (Table 1), although Pearce et al. (2004a) and Knott 

et al. (2007) successfully analyzed separates as small as ~0.03 g for SN-ICP-MS. It is 

only in the last 1015 years that trace element techniques with comparable spatial 

resolutions to those of EPMA have become more common, the most widely available of 

these being LA-ICP-MS (Pearce et al., 2004a, 2007, 2011; Tomlinson et al., 2010; 

Jenner and O’Neil, 2012; Pearce, 2014). This method, which is relatively inexpensive 

compared with others such as the ion probe, is now being used widely (e.g. Harangi et 

al., 2005; Ukstins Peate et al., 2008; Preece et al., 2011b; Albert et al., 2012; 

Ponomareva et al., 2013; Westgate et al., 2013c; Tomlinson et al., 2015). In the analysis 

of individual glass shards, around 200 individual grains can be analyzed for about 30 

trace elements in the course of a typical day in an LA-ICP-MS laboratory.   
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 Although Pearce et al. (2007) demonstrated the broad similarity of analyses of 

trace elements in glass (from the Santorini and Aniakchak eruptions) derived using 

three different methods, namely LA-ICP-MS, solution ICP-MS, and the ion probe, 

subtle differences in elements associated with phenocrysts of plagioclase not removed 

completely from the bulk sample were evident (e.g. Sr; see also Pearce et al., 2002). 

Depending on microlite loading in the glass, which can be detected using microbeam 

analyses (see Pearce, 2014), comparison of results from bulk analyses of glass 

concentrates with those from microbeam analyses of the pure glass phase can be fraught 

with problems, and thus concentrations in glass from tephra beds obtained using one 

method do not necessarily compare well with analyses using others (see, for example, 

Pearce et al., 2002). Consequently, trace element data should be compared directly only 

when they are produced by analysis of the same type of material, i.e. compare bulk 

sample analyses with data from other bulk methods, or compare only microbeam data. 

In some cases, ratios of highly incompatible elements may compare between bulk and 

microbeam analyses (e.g. Martin Jones et al., 2017), but care needs to be exercised in 

mixing data acquired by different methods.  

Before describing the preparation of samples and functioning of LA-ICP-MS, 

we note that it is possible to analyze trace elements in glass down to ~100 ppm routinely 

with EPMA although this is slow. It is envisaged that by using analytical routines 

specifically designed for trace element work, it should be feasible to evaluate some of 
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the more abundant trace elements (several hundred ppm) by EPMA with enough 

precision to be potentially useful in tephrochronology. Such methods are currently 

being developed by one of the authors (Stephen Kuehn) using USGS reference glasses, 

and good results have been attained thus far for Ba, V, Cr, Co, Ni, and S, where 

analyses of Ba by EPMA would be sufficient to discriminate between the Toba tephra 

deposits for example.  

 

4.2. Glass sample preparation and analysis by LA-ICP-MS 

 

To undertake LA-ICP-MS, cleaned and picked glass shards, mounted, polished, 

carbon coated, and analyzed previously by EPMA, are placed in the ablation chamber of 

the laser system and, by using annotated images (maps) acquired during the EPMA 

analysis, or an x-y coordinate system (see below), the same shards can be relocated on 

the sample mount for analysis by LA-ICP-MS (Pearce et al., 2007, 2011; Lowe, 2011; 

Pearce, 2014). Using three reference points marked onto mounts enables such 

relocations to be undertaken accurately using a spreadsheet developed by Kuehn and 

Froese (2010) that is based on the coordinate transform mathematics described by 

Admon et al. (2005) (the spreadsheet is available from Stephen Kuehn on request, or at 

Kuehn, 2017). The spreadsheet takes as input the x-y stage coordinates of the three 

reference positions measured on the source and the target instrument and the grain 
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(glass shard) coordinates from the source instruments. Pearce et al. (2011) advocated 

that such referencing be adopted as a matter of routine during the EPMA analysis of 

glass shards so that if the need arises for trace element analyses by LA-ICP-MS, then 

the same shards can be relocated and analyzed without recourse to further EPMA 

analyses. Alternatively, BSE (or other appropriate high resolution) images of each grain 

or mount could be acquired and marked to show the location of individual analyses so 

that closely-adjacent sites could be re-analyzed for trace element content by LA-ICPMS 

(e.g. Allan et al., 2008). Note that ideally the same spot should not be analyzed by 

EPMA and LA-ICP-MS because of the risk of damage to the glass by electron beam 

radiation (Pearce et al., 2014b), but for small shards this risk is impossible to avoid. 

Calibration of analyses in LA-ICP-MS requires the knowledge of one element 

(usually determined by EPMA) in the sample to act as an internal standard. Pearce et al. 

(2007) suggested that preferaby analyses would be undertaken using both Si and Ca as 

internal standards for different elements, but recognized that generally low 

concentrations of Ca in rhyolitic glasses (often <1 wt %) usually make it unsuitable as 

an internal standard (Pearce, 2014). Hence Si is normally the first choice (see below). 

The use of an internal standard accounts for any variation in the amount of ablated 

material reaching the plasma (the ‘ablation yield’) between samples and calibration 

standards, and any differences in concentration of the internal standard are corrected 

during the calculation of concentrations (Pearce et al., 2007; Pearce, 2014).   
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As with use of the microprobe, there is a possibility of microlites affecting trace 

element characterizations of individual shards via LA-ICP-MS, especially as the volume 

analyzed during LA-ICP-MS is considerably larger than that used for EPMA (Pearce et 

al., 2011; Abbott et al., 2013; Pearce, 2014). Consequently, it could be appropriate to 

use LA-ICP-MS data determined from shards outlying the main major element 

geochemical population to check for anomalous elemental concentrations (e.g. high Sr 

from a feldspar inclusion) and the possibility that a microlite had contributed to the X-

ray signal during the EPMA. Abbott et al. (2013) suggested that any such ‘analytical’ 

outliers so identified should be excluded from further analysis and the reasons for 

exclusion documented, as advocated earlier for microprobe data. Ideally, complete 

results, including outliers, with analysis-by-analysis comments as needed, could be 

published in supplementary data files. 

 

4.3. Analysis of microshards by LA-ICP-MS 

 

 

The most recent advances in LA-ICP-MS have been driven by the need and 

desire to analyze small grains of glass <32 μm in diameter (microshards) from distal 

localities, including ice cores, using ablation craters of 20 μm, 10 μm, or smaller (Fig. 5; 

Pearce et al., 2011; Pearce, 2014). As ablation crater sizes become smaller, however, 

issues surrounding instrumental blanks, calibration, and possible matrix effects become 



 

54 

 

more significant. Developments in laser ablation systems, such as the move to deep UV 

wavelengths (for instance 193 nm Excimer lasers), and increases in ICP-MS sensitivity, 

allow current LA-ICP-MS systems to achieve detection limits below parts per million 

for most trace elements of petrogenetic significance from craters well below 20 μm in 

diameter.  

 

 

Fig. 5. Laser-induced ‘craters’, one ~20 µm in diameter (in middle of shard) and 

another ~10 µm in diameter (visible in part at bottom left), in a glass shard derived from 

the Minoan eruption deposit on Santorini, Greece. The craters were formed during LA-

ICP-MS analysis at Aberystwyth University using a Coherent GeoLas 193nm ArF 

Excimer laser ablation system (see Pearce et al., 2002, 2011). 
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By way of comparison, detection limits of <1 ppm from 40 μm craters were 

attained previously by Pearce et al. (2004a, 2007) using 266 nm laser systems and older 

ICP-MS systems. Pearce et al. (2011) and Pearce (2014) have now shown that LA-ICP-

MS systems can produce ablation craters as small as 4 μm, and that analyses of 

individual glass shards with crater diameters of 20 μm and 10 μm are essentially 

routine, with good accuracy measured from reference materials, provided account is 

taken of issues related to elemental fractionation at such small crater diameters. Element 

fractionation is likely to differ from instrument to instrument because this is an issue 

related to laser-sample interaction, and needs to be assessed in each laboratory by the 

use of appropriate reference materials. Analytical precision varies with element 

concentration and crater diameter, being around ± 1530 % at 1 ppm and around ± 

23 % at 500 ppm from a 10 μm ablation crater. Lower limits of detection are below 1 

ppm for most petrogenetically significant elements from 10 μm craters, when 2528 

trace elements are determined in a ~20-second analysis (Pearce et al., 2011). Again, 

being instrumentation based, these measures are likely to vary from laboratory to 

laboratory.  

Neither 44Ca nor 43Ca can be used reliably as the internal standard for the 

analysis of rhyolitic (Si-rich) glasses at 10 or 20 μm because CaO (at ~1 wt %) is close 

to the lower limit of quantitation (LLQ), and has some fractionation problems in 

rhyolites, hence Si must be used, although either element could be used in the analysis 
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of basaltic (Si-poor) or andesitic glasses at 10 or 20 μm (Pearce et al., 2014b). The use 

of Si as the internal standard in LA-ICP-MS also allows the accidental ablation of 

phenocrystic material to be identified more readily than when Ca is used, particularly in 

rhyolites where the majority of phenocrysts encountered are Ca-rich. The increase in Sr 

when a plagioclase is ablated is useful to indicate that the analysis has been 

contaminated by a mineral inclusion, but using Ca as the internal standard (also high in 

the plagioclase) can cause the Sr/Ca ratio to decrease, and hide the increase in Sr in the 

analysis. This is not seen using Si as the internal standard which would report both high 

Sr and Ca, and identify ablation of the plagioclase grains (Pearce, 2014). With analyses 

at 6 μm or 4 μm, many of the most abundant trace elements remain above the LLQ (e.g. 

in rhyolitic glasses these include Zr, Ba, light rare earth elements [REEs], Y, Rb, U, 

Th), but even in basic or intermediate glasses only Si can be used as the internal 

standard because Ca concentrations (and thus counts) are too low to be quantified 

(Pearce et al., 2011). Hence, in most analyses, SiO2 (determined by EPMA) is used to 

calibrate each analysis, and for comparison with the EPMA data, the Si concentration is 

normalised to an anhydrous basis (Pearce et al., 2011; Westgate et al., 2013c; Pearce, 

2014). With likely future improvements in ICP-MS sensitivity, some of these problems 

may become resolved.  

Element fractionation (using the 193 nm Excimer laser as applied by author 

Nick Pearce) is an issue for ablation craters ~30 μm in diameter, becoming increasingly 
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problematic in small (<10 µm) craters, because the volume of a thin film of melt which 

forms on the walls of the crater becomes an increasingly significant proportion of the 

volume of the ablated material (Pearce et al., 2011; see also Sylvester, 2008). The 

surface area/volume ratio of the ablated crater increases as crater diameters become 

smaller, and element retention or volatility from this film of melt formed on the crater 

walls appears to cause much of the fractionation. The initial studies of Pearce et al. 

(2011) suggested that, for many elements, there seems to be a systematic variation in 

the degree of fractionation with the degree of polymerisation of the glass and thus melt 

film, which is in turn related to the glass composition (see also Westgate et al., 2013c). 

This systematic behaviour, however, offers the possibility for the analysis of a selection 

of abundant trace elements in individual shards of glass using ablation craters of 6 μm 

and 4 μm in diameter (Pearce et al., 2011). Lasers with shorter pulse lengths in the 

femtosecond (fs) rather than nanosecond (ns) range offer the promise of analyses with 

less elemental fractionation (e.g. see Borisova et al., 2010; Maruyama et al., 2016b), but 

currently these are less widely available than solid-state or Excimer UV or deep-UV 

lasers. 

Thus, in summary, the LA-ICP-MS technique provides an efficient, accurate, 

and appropriately precise method for determining abundances of a wide variety of trace 

elements including REEs at low concentrations in individual glass shards with ablation 

craters as small as 10 µm in diameter. We note here that some laboratories are now 
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using LA-ICP-MS to analyse some major elements along with trace elements (e.g. 

Maruyama et al., 2017). Currently the precision of LA-ICP-MS major element analyses 

is worse than that for EPMA, although accuracies for many (but not all) elements are 

comparable, and these factors would have an impact on the utility of such major 

element determinations in tephra correlation studies.  For the smaller crater sizes the 

physical process of ablation causes elemental fractionation although that may be 

correctable where it is consistent. Such advances in spatial resolution and sensitivity 

make it possible generally now to fingerprint fine-grained glass in tephra or 

cryptotephra deposits using a full suite of major-, minor-, and trace-element data, and 

will greatly extend the range over which correlation of tephras potentially can be 

undertaken.  

As with EPMA, to avoid any possible differences in trace element microbeam 

analyses it may be advantageous to perform side-by-side analyses of potential tephra 

correlatives to provide the most robust comparisons. These differences may be 

instrumental between different wavelength laser ablation systems where fractionation 

may differ and/or be corrected for different internal standard choices and spatial 

resolution, which may both have an impact associated with microlite contamination 

(Pearce, 2014), or simply possible minor day-to-day sensitivity, blank, and calibration 

differences which may have a slight impact on data quality.  Trace element analyses 

also provide key information about magmatic setting, and thus can point towards likely 
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source volcanoes of tephras, as well as enabling multiple compositional modes 

(heterogeneities) within populations of shards from individual tephra beds to be 

identified and evaluated. 

A guide to the main issues in undertaking major- and trace-element analyses of 

microshards by EPMA and LA-ICP-MS, and the main indicators of, and solutions to, 

the issues as discussed in previous sections, is summarised in Table 2. 

 



 

60 

 

 



 

61 

 

 

 

5. Correlating tephras and cryptotephras 

 

5.1. General concepts including role of databases 

 

Correlations between tephra or cryptotephra deposits are best considered testable 

hypotheses, subject to continual revision with expanded datasets. Consequently, the 

strongest correlations are those that show concordance between multiple independent 

datasets, including lithostratigraphic, palaeoenvironmental or archaeological data, 
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chronological data, and mineralogical and geochemical evidence (e.g. Westgate and 

Gorton, 1981; Lowe, 1988; Sarna-Wojcicki, 2000; Pearce et al., 2008a; Housley et al., 

2012; Davies et al., 2016). In effect, prior correlations proposed on the basis of age 

equivalence (i.e. stratigraphic criteria including palaeoecological or archaeological 

context) are tested by examining potential correlatives suggested by mineralogical 

variations or by compositional variation within the glass or crystal/phenocryst (mineral) 

phases of tephra deposits, or by dating appropriate materials associated with the tephras 

either locally or at sites elsewhere. As tephra studies have developed, publications of 

stratigraphic, age, and compositional data have emerged on a local or regional basis, and 

these have been used as the essential prior information to facilitate new correlations. In 

many cases, however, the necessary comprehensive and analytically-coherent 

geochemical databases have not been developed for many volcanic centres, an 

observation reported (for example) for the Mediterranean region by Bourne et al. (2010) 

and for West Antarctica by Dunbar and Kurbatov (2011). Even at the single volcano 

level (especially andesitic volcanoes), despite a few notable exceptions (e.g. Andreastuti 

et al., 2000; Moebis et al., 2011; Ponomareva et al., 2015b; Damaschke et al., 2017b), 

accurate datasets are inherently difficult to compile even if one or more well-dated 

eruption records are available. For example, a single record typically under-represents 

the eruption frequency, while combining two or more records may result in an over-
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representation (Turner et al., 2009; see also Bebbington and Cronin, 2011; Green et al., 

2014; Hopkins et al., 2015, 2017; Damaschke et al., 2017a).  

Hence it is becoming clear that the systematic compilation of accurate local and 

regional information pertaining to tephras into appropriate databases is an increasingly 

important requirement for improving correlation efficiency and soundness. Examples of 

published databases or regional compilations include those described by Froggatt and 

Lowe (1990), Sarna-Wojcicki et al. (2005), Newton et al. (2007), Lowe et al. (2008), 

Preece et al. (2011a), Riede et al. (2011), Coulter et al. (2012), Lawson et al. (2012), 

Kraus et al. (2013), Smith et al. (2013), Ponomareva et al. (2015b), Tomlinson et al., 

(2015), Strong et al. (2016), and Petrelli et al. (2017). Perhaps the most advanced 

currently is the online database derived from the RESET project based at University of 

Oxford (http://c14.arch.ox.ac.uk/reset/index.html) (Bronk Ramsey et al., 2015b).  Now 

owned by the Natural Environmental Research Council, UK, it is designed to link all 

data to secondary standards to allow users to check accuracy and precision of these data, 

a critical step for reliable tephrochronology. It currently holds considerable European 

data and the future inclusion of data on tephras from South America, Africa, and Japan 

is planned (Victoria Smith pers. comm., 2017). 

The development of an open, online database, which would become used 

routinely globally, is therefore strongly encouraged, but of course it must be extremely 

robust with multiple criteria to minimise misuse and to avoid spurious correlations 

http://c14.arch.ox.ac.uk/reset/index.html
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being made. Kuehn et al. (2013, 2014) suggested that such a development would 

facilitate progress towards an integrated tephrostratigraphic framework for different 

regions, thereby increasing efficacy and confidence in tephra correlation, and 

substantially enhance progress on questions relating to volcanology and petrology as 

well. Kuehn et al. (2013) envisaged a series of steps to attain an online database:  (i) 

integration of decades of tephra data and available metadata into a system with a single 

point of access for all data types; (ii) development of an interface and mechanism for 

multiparameter searching; (iii) development of protocols for more routine collection and 

reporting of physical data for tephra samples, and better collection and reporting of 

metadata; and (iv) simplification of data entry to encourage routine submission of new 

data. This prospective database could take a system-of-systems approach that links 

together and extends the capabilities of existing repositories, each of which focuses on 

different geographic regions, data types (e.g. samples, geochemistry, ages, published 

articles, laboratories, people), and sample contexts (e.g. marine sediment cores, lake 

sediment cores, ice cores, proximal or distal terrestrial samples). With such a model, it 

does not matter where any specific data are stored. All of the linked systems could be 

searched simultaneously, the results aggregated, and then fed into tools for (e.g.) 

plotting geochemistry, mapping locations, modelling ages, or calculating tephra 

volumes. A researcher could also, for example, discover a potential correlation based on 

geochemistry and age and then follow linked data to find out which laboratory 
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undertook the analyses, who has samples, and from which core the samples were 

collected; then the researcher could obtain photos of the core and perhaps even make a 

request to the core repository to see it in person.  

To enable tephra correlations to be properly evaluated and to facilitate the robust 

application of statistical methods, we re-iterate the importance of publishing all EPMA- 

or LA-ICP-MS-derived glass data (probably as supplementary material available online) 

including analytical conditions, primary and secondary standards, and any other relevant 

analytical parameters and comments (such as any outlier filtering performed formally or 

informally).   

 

5.1.1. Introduction to numerical and statistical methods 

 

Numerical or statistical methods to help suggest or refute correlations in a 

quantifiable way have been used for more than three decades in tephrochronology 

(Table 3). Baxter (2008) reported that in recent times there has been a convergence in 

statistical methodologies used by practitioners from different disciplines (e.g. 

archaeology, palaeoecology, computing, and forensic science alongside the 

geosciences), and we describe some of the common methods below. Before doing so we 

emphasise that straightforward visual (graphical) methods such as the use of bivariate 

(x-y element-element) plots of geochemical data are normally among the most useful 
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ways of inspecting and displaying compositional data (e.g. Fig. 2), and should be 

undertaken, as advocated by Baxter (2008, 2016) and Pearce et al. (2008a), whether or 

not more formal methods are also used. Carr (2017) and Janoušek et al. (2006, 2015) 

provide software that allows such data to be plotted rapidly. In many cases, bivariate 

plots alone can provide sufficient guidance to enable anomalous data points to be 

identified (e.g. Fig. 2b), and possibly explained using comprehensive databases of 

compositional analyses for comparison (Shane et al., 2006; Abbott et al., 2013) (see also 

discussion in Section 7.3 about using loadings derived from principal components 

analysis [PCA] to help inform the selection of bivariate plots likely to be most useful). 

Often, ‘expert knowledge’ will allow an analyst to know that an unusually high Ca 

major element analysis may derive from a plagioclase, or a high Zr and heavy REE 

analysis are from the unintentional ablation of a zircon. It has been argued that if PCA is 

undertaken then plots of the PCA scores are sufficient without additional oxide plots. It 

should be pointed out, however, that the loadings of the oxides on the principal 

components differ between different sets of data, and hence, if plots obtained from 

different datasets are to be compared, oxides rather than principal components should be 

used. (An alternative in this case would be to plot, for each dataset, the principal 

components obtained from the pooled covariance matrix.) We note also that there is 

potential for miscorrelation because of the limited dimensionality of such plots (Stokes 

and Lowe, 1988; Snow, 2006; Li et al., 2015; Petrelli et al., 2017). Moreover, Pearce et 
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al. (2008a) showed that some selectivity is needed in the choice of elements/oxides used 

for correlation/discrimination using PCA because the key variations in some 

elements/oxides which discriminate between separate deposits (e.g. Al2O3) can become 

‘‘swamped” in the PCA calculations by the similarities in all the other elements/oxides. 

By reducing the number of variables considered, the importance of those key 

discriminating elements becomes more apparent (Pearce et al., 2008a; Baxter, 2016; cf. 

Pollard et al., 2006). Nevertheless, potential correlations or otherwise can be established 

with reasonable confidence, especially where multiple criteria provide independent 

support, such as concordance of glass major- and trace-element data together with 

mineral assemblage and crystal or phenocryst compositional data (e.g. Cronin et al., 

1996a; Preece et al., 1999, 2011b).  
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Many statistical packages, for example Minitab (Minitab, Inc., 2017) and R (R 

Core Team, 2017), have the capability to display what is called a scatterplot matrix, a 

matrix-like array of bivariate plots (Fig. 6). The R software is especially recommended 

because it is very comprehensive as well as being free and open source. Bivariate (or 

trivariate) plots can readily demonstrate, for example, (i) the range of compositions for a 

specific sample and any trends within that data; (ii) compositional overlaps or 

differences between samples; (iii) the presence of any ‘outliers’ within a sample that 

plot away from the main group (see Section 6.5 below); (iv) the possible presence of 

contaminants (seen as multiple compositional modes) from an older tephra within a 

younger one; or (v) compositionally bimodal or trimodal  eruptions where two or three 

modes are erupted at the same time or sequentially in the same eruption episode   e.g. 

the Laacher See eruption, Germany (Bogaard and Schminke, 1985); the Aniakchak 

eruption, Alaska (Pearce et al., 2004b; Denton and Pearce, 2008); and multiple late 

Quaternary eruptions from Okataina Volcanic Centre, New Zealand (Smith et al., 2004, 

2005, 2006; Shane et al., 2007, 2008a, 2008c; Kilgour and Smith, 2008). Statistical 
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procedures such as PCA and canonical variates analysis (CVA) also lead to plots which 

can be used to address these questions, as discussed below. We note that a useful 

glossary of terms and concepts pertaining to numerical and statistical techniques 

(including those used in our paper) is provided by Birks (2012); Baxter (2016) is also a 

valuable text encompassing many of the methods and terms discussed here. 
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Fig. 6. Scatterplot matrix constructed using R (R Core Team, 2017) of nine major 

element oxide analyses derived via EPMA for the observations (individual glass-shard 

analyses) in samples CAT09-02a and CAT09-02b (represented by a and b, respectively) 

obtained from tephra deposits in the Wasiriya Beds, Kenya (after Tryon et al., 2010). 

Values on axes are abundances of oxides (in wt %). The data in this figure, and in others 

below, are provided in supplementary data Table S1. 
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5.1.2. Advantages and limitations of statistical methods  

 

The advances in analytical techniques that enable tephras to be characterized 

much more rapidly and with better accuracy and precision than before has led to 

increasingly large datasets.  Statistical methods offer a way not only of reducing such 

datasets but also to enable decisions to be made about whether or not any two or more 

tephra deposits are correlative using non-subjective and formalised protocols. Statistical 

methods thus help to provide an objective (non-subjective) means of dealing with data 

pertaining to tephra components to develop a better understanding of relationships 

among the data from multiple viewpoints and in some cases enabling otherwise 

confused or ambiguous relationships to become clearer, thereby helping to quantify the 

degree of certainty or uncertainty in establishing correlations using quantifiable 

confidence limits (Stokes et al., 1992; Bourne et al., 2010; Lowe et al., 2011). As 

emphasised already, graphical methods such as bivariate plots of geochemical data are 

extremely useful ways of inspecting and displaying compositional data, particularly if 

the observations are plotted against the first two principal components or the first two 

canonical variates. If bivariate plots of oxides are used, the choice of elements for such 

plots remains subjective. Most of the statistical methods we illustrate are complemented 

with graphics that act as a check on the statistics by demonstrating that the matching of 

tephras suggested by the statistics is reasonable. For example, Bourne et al. (2010) 
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noted that bivariate plots and outputs from discriminant function analysis (DFA) from 

glass major element data on the same deposit in their study of marine cryptotephras did 

not always generate concordant results or interpretations (see also Pearce et al., 2008a). 

In using numerical or statistical methods to establish sample equivalence or 

difference, however, it must be appreciated that all methods have limitations to some 

degree. For example, the standard similarity coefficient (SC) method used to make 

comparisons of glass compositions (as discussed in Section 6 below) is difficult to use 

for making inferences of correlation because it does not have a normal distribution 

(Sarna-Wojcicki and Davis, 1991; Addison et al., 2010; see also Pollard et al., 2006). In 

addition, the SC cut-off point for correlatives is not definitive (e.g. it can vary from 0.90 

to 0.96) because each case is dependent on analytical uncertainty and other factors 

(Lowe, 2011), such as silica variability and the numbers of glass shards able to be 

analyzed to generate sample populations. Blegen et al. (2015) offer one alternative, 

which they termed ‘empirically informed SCs’: they used data from a ‘type sample’ for 

a given deposit as the basis for 5,000 normally distributed randomized samples of the 

type tephra. SCs calculated between each of the 5000 replicates and the type sample 

were used to generate a frequency distribution of expected SC values and to define a 

lower SC value for accepted correlations with the type sample that included the upper 

95 % of the observations. Because SiO2 concentrations in glass can vary widely from 

tephra to tephra, such variations can impact markedly on any statistical measures 
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involving mean concentrations (and were excluded from analysis by Blegen et al., 2015, 

2016). Many cryptotephra deposits comprise only a few glass shards and hence 

minimum numbers of analyses to define a population cannot be prescribed. Moreover, 

there is no consensus as to the optimum specific elements for SC calculations, nor how 

they might be weighted (Stokes et al., 1992; Hallett et al., 2001; Hillenbrand et al., 

2008). The difficulty in choosing a cut-off value for the SC in a hierarchical cluster 

analysis (discussed below in Section 6.3) is well-known to many disciplines (e.g. Everitt 

et al., 2011, section 4.4.4). 

The statistical distance measure of Perkins et al. (1995, 1998) is also not easy to 

apply to the trace-element analyses derived by SN-ICP-MS of single samples because it 

can be difficult to obtain a realistic measure of analytical error/precision (Preece et al., 

2011b). Similarly, the successful use of DFA is directly reliant upon both the quality 

and comprehensiveness of the reference sets (database), statistically representative 

numbers of samples (Petrelli and Perugini, 2016), and the recognition of heterogeneity 

in glass-shard assemblages from some single eruptive episodes (Kuehn and Foit, 2006; 

Lowe, 2011; Petrelli et al., 2017). Further limitations, as well as attributes, of numerical 

or statistical approaches were discussed in detail by Pollard et al. (2006), Pearce et al. 

(2008a), and Pouget et al. (2014b).  

 

5.2. Stratigraphy and age 
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As noted earlier, the law of superposition and the relative positions of layers or 

deposits, and their associations with other deposits (or a known age datum such as a 

change in magnetic polarity) within sequences, are fundamental tenets used widely in 

the correlation of tephra deposits from place to place (Lowe, 2011; Preece et al., 2011a; 

Bourne et al., 2013). More than 25 years ago, Sarna-Wojcicki and Davis (1991) 

indicated that if the same stratigraphic sequence of tephra layers (or cryptotephras), as 

defined by physical properties or geochemical criteria, is found at two or more 

localities, then the likelihood that the respective tephra layers of the sequence correlate 

increases with the number of these localities. Such increased likelihood is true only if it 

can be shown that the sequence did not form by chance or by ‘cyclic differentiation’ 

processes in the past (i.e. as a compositionally identical but older sequence of 

eruptives). The number of possible combinations of a sequence increases with the 

number of layers (or glass shard/crystal concentration zones) in the sequence, the 

number of locations where the sequence is found, and the number of independent 

variables used to characterize (identify) the members of the sequence (Sarna-Wojcicki 

and Davis, 1991). The probability that such sequences is due to chance decreases 

concomitantly with the increase in these parameters.  

The other possibility, that a sequence of tephra layers or cryptotephra deposits 

with the same set of characteristics can be duplicated at different times by a cyclic 
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magmatic process, can be eliminated by informed field work, or age or compositional 

data, and historical observations of the eruptive behaviour of relevant volcanoes. Thus, 

because chance and cyclicity are usually able to be virtually eliminated as probable 

causes of the repetition of tephra/cryptotephra sequences at different localities, then the 

identification of characteristic sequences becomes strong evidence supporting 

correlation of the tephra layers or cryptotephra deposits in these sequences via 

geochemical and statistical approaches (Sarna-Wojcicki and Davis, 1991).  

The generation of compositionally-similar batches of magma (repeating 

geochemical cycles) through time is known to occur, however, as illustrated for instance 

by Turner et al. (2011a), Albert et al. (2012), Jennings et al. (2014), Hopkins et al. 

(2015, 2017), and Damaschke et al. (2017b). In such cases, stratigraphic ordering, age, 

or other (non-compositional) criteria such as thickness and location (spatial 

information), are needed to inform the likelihood of correlation or not (e.g. Bebbington 

and Cronin, 2011; Turner et al., 2011b; Green et al., 2016). Use of trace element data 

may also be appropriate where compositional similarity has been based solely on major 

elements (e.g. Westgate et al., 2008; Davies et al., 2012; Hopkins et al., 2015, 2017).  

In another study, Lane et al. (2012) demonstrated that the ~12,100 cal.-yr BP 

Vedde Ash, the most widely dispersed late Quaternary tephra deposit from Iceland, was 

generated by the mixing of separate rhyolitic and basaltic magma batches, but that 

several compositionally similar tephra layers were unable to be distinguished from the 
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Vedde Ash rhyolitic fraction using major and trace element composition alone. Because 

these eruptions were well spaced in time, however, Lane et al. (2012) were able to show 

that it should be possible to assign an unknown distal tephra deposit to the correct 

volcanic event by taking into account associated stratigraphic (or age) information. 

Similarly, Bourne et al. (2013) showed that the Faroe Marine Ash Zone (FMAZ) III in 

the marine realm is most likely a complex ash zone that represents a series of closely 

timed Grimsvötn eruptions (on Iceland) that currently can only be stratigraphically 

separated in the high-resolution ice-core records. Previously, Davies et al. (2010b) had 

identified a very thin visible tephra layer at 2066.95 m in the North Greenland Ice Core 

Project (NGRIP) ice core that they subsequently correlated to the FMAZ III layer in 

marine sediments on the basis of overlapping major element signatures. That correlation 

was shown by Bourne et al. (2013) to be erroneous. Such miscorrelations  arising for 

example by errors in field work, assignments of incorrect ages, incompleteness of 

stratigraphic records (which can lead to a potentially erroneous ‘counting back’ 

approach when attempting to match newly-identified deposits to those of antecedent 

records), inadequacy of characterization data  and their possible resolution using 

secure and detailed stratigraphic and age data, were emphasised by Westgate et al. 

(2008), Lowe (2011), Damaschke et al. (2017b), and Timms et al. (2017). The study by 

Bourne et al. (2013) also highlighted the differing resolution of different palaeorecords 

and the compositional similarities of Icelandic Grimsvötn tephras. Subtle compositional 



 

79 

 

differences further emphasize the importance of obtaining robust glass-shard chemical 

data, bracketed by analysis of secondary standards. 

Green et al. (2014) used a stochastic local optimization technique (related to the 

field of operations research and optimization) to develop an automated procedure for 

correlating tephra deposits in sediments at five maar sites in the AVF, Auckland, New 

Zealand. The first step in an iterative approach to find the most likely ‘arrangement’ of 

tephras across the sites (stratigraphic inter-relationships) was to establish tephra ages 

using both radiometric dates (derived both locally and transferred from elsewhere via 

tephrochronology) and stratigraphic superpositioning and juxtapositioning within and 

between cores, respectively. The ages and associated errors provided the basis of the 

algorithm to connect the tephras from one site to the next. In the second step, the tephra 

correlations were confirmed or ruled out on the basis of mineralogical and geochemical 

data (Green et al., 2014). A subsequent variation on this approach was reported by 

Kawabata et al. (2016). 

Further analysis of mainly basaltic tephra/cryptotephra deposits in the AVF was 

undertaken in a separate study by Hopkins et al. (2015). By applying multiple analytical 

techniques (including X-ray density scanning of sediment cores to help identify primary 

versus reworked tephras/cryptotephras), they were able to correlate some tephras on the 

basis of glass major element oxides, and some (where oxide signatures were inadequate) 

using incompatible trace elements (mainly REEs) and trace element ratios (e.g. 
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REE/Yb) of glass shards. However, Hopkins et al. (2015, 2017) emphasised that the 

glass-based chemistry (both major and trace) was insufficiently diverse to be used alone 

as a definitive correlation tool in the AVF because each volcanic centre does not have a 

unique geochemical signature in the field as a whole. This constraint prevented 

unambiguous correlation of tephras to source centre using only geochemistry. 

Consequently, stratigraphic relationships (including use of well-dated rhyolitic tephra 

marker beds), ages (via Ar/Ar dating and paleomagnetic data: Leonard et al., 2017), 

eruption scale, spatial relationships (locations of centres and sites sampled), provided 

additional constraints essential for cross-core correlations and hence resolution of the 

relative ordering of 48 out of 53 vents in the AVF. In addition, these new 

chronostratigraphic findings (Hopkins et al., 2017) indicate that the prior statistical 

correlation models for the AVF-derived tephras, powerful though they are, had been 

constrained by input data excessively weighted by a cluster of tephras around 30 cal. ka 

in the modelled ages (Leonard et al. 2017). 

Parallel conclusions have been drawn from North Atlantic and northern/western 

European studies regarding the difficulties of correlating temporally closely-spaced, 

multiple cryptotephra deposits with indistinguishable glass-shard compositions (Jones et 

al., 2017). For example, the problematic late glacial Borrobol and Penifiler tephras 

(Pyne-O’Donnell et al., 2008; Lind et al., 2016; Jones et al., 2017), and the c. 10 cal. ka 

Saksunarvatn tephra, which seems to represent a conflation of five or more separate 
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eruptives deposited over a ~500-year interval (e.g. Bramham-Law et al., 2013; Jennings 

et al., 2014; Timms et al., 2017), provide significant challenges to identify individual 

eruptives, especially when one or more eruptives of the ‘full’ depositional sequence 

is/are missing from any specific site, or where reworking has occurred. Another 

example concerns the Sheep Creek tephra. Previously thought to be a single widespread 

tephra in central Alaska and western Yukon Territory, it is now known to comprise five 

separate stratigraphic units (Westgate et al., 2008). In any event, analysis of multiple 

sediment cores, and high-resolution contiguous rather than ‘rangefinder-based’ 

sampling methods, are required to develop a comprehensive (crypto)tephrostratigraphy 

using superpositioning and age (both relative and numerical) as key criteria (Jones et al., 

2017; Timms et al., 2017). 

Turner et al. (2011b) and Damaschke et al. (2017a) also used temporally and 

geochemically defined groups together with prior information about stratigraphic 

superpositioning to help understand the chemically diverse, variable, and spatially 

restricted tephras associated with Holocene andesitic volcanism of Mt Taranaki, a 

stratovolcano in western North Island, New Zealand.  

 

5.3. Scale 
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In examining the concept of scale in tephrostratigraphy, Tryon et al. (2011) 

commented, firstly, that issues of scale include the type of volcanic deposit being 

studied and sampled so that the spatial and temporal ‘scope’ of a study may thus range 

from (i) a volcano, to (ii) decimetre- or centimetre-thick layers of tephras, to (iii) 

individual glass shards, or crystals or phenocrysts/microphenocrysts, within a tephra 

layer (or cryptotephra deposit). These different targets are exemplified, respectively, by 

the studies of (i) Stokes and Lowe (1988), who correlated tephras to an array of 

different source volcanoes; (ii) Stokes et al. (1992), who correlated multiple tephras 

associated with specific individual volcanoes; and (iii) Shane et al. (2007, 2008a), who 

identified and correlated multiple heterogeneous tephra beds deriving from single 

eruption events. In a grain-by-grain study on titanomagnetite microphenocrysts from 

andesitic tephra layers, Turner et al. (2008) showed that the degree (scale) of solid-state 

exsolution of titano-haematite/ilmenite lamellae was related to the ascent rate of 

magmas, with fast-ascent titanomagnetites devoid of, and slow-ascent magmas enriched 

in, such lamellae. This distinction provided a useful correlational criterion for very fine-

grained distal tephras as well as contributing petrological and volcanological 

information (Turner et al., 2008). 

Secondly, Tryon et al. (2011) observed that compositional data are also collected 

at scales that range from grain-discrete to bulk techniques (see Table 1) and may include 

elemental abundances ranging from weight percentage to parts per million or less. Much 
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earlier, Hodder and Wilson (1976) developed a parallel concept of tephra analysis 

though application of a hierarchy of methods from multicomponent (e.g. analysis of 

mineral assemblages), to single component (e.g. analysis of glass shards in bulk), to 

single particle (e.g. analysis of individual glass shards or crystals/phenocrysts). 

Consequently, in determining which of a multitude of techniques to use to establish a 

correlation on the basis of compositional data relating to certain components, the scale 

of the question and the resolution of the data determine which method or methods are 

best suited to assess the probability of correlation. Ultimately, Tryon et al. (2011) 

concluded that the ability to construct sequences of correlated tephra deposits requires 

analytical flexibility and an increased awareness of the importance of scale. In brief, 

they stated (p. 125): 

 

“There is no single best method for correlating among tephra deposits on the 

basis of geochemical compositional data. The resolution of the data and the 

scale of the proposed questions determine which method is most appropriate.”  

Similarly, in demonstrating the efficacy of apatite trace-element analyses for correlating 

both fresh and strongly weathered tephras, Sell and Samson (2011a, p. 162) observed, 

correctly, that no single tephrochronological method is infallible. 
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6. Numerical and statistical approaches to correlation using 

compositional data 

 

6.1. Introduction 

 

Many numerical or statistical studies of quantitative compositional data acquired 

from tephra components for the purpose of correlating tephras use a two-stage 

approach. The first stage is to examine mean abundances (of major elements expressed 

as oxides, for example, as obtained from glass shards via EPMA) to identify potential 

candidates for correlation and to characterize the general structure of the data (discussed 

further below), the idea being to compare the differences in means between the 

candidate pairs with those found between other samples or layers/deposits.  The second 

stage compares differences between candidate-pair means in relation to the 

compositional variance between samples taken from within each candidate layer or 

deposit.  

The first stage can be undertaken via the calculation of SCs or distances for all 

possible sample pairs (discussed below), and via cluster analysis (Campisano and 

Feibel, 2008; Tryon et al., 2008) (Table 3). Sarna-Wojcicki (1976) was a pioneer in 

these applications for large tephra-based datasets. PCA is another useful tool in this 

regard (e.g. Gonzalez et al., 1999). Cluster analysis methods are many and varied but all 
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are concerned with sorting a collection of objects into a number of groups in such a way 

that the objects in each group are as similar as possible, each object having a number of 

variables, features, or characters measured on it (Kaufman and Rousseeuw, 1990). In 

our case the objects are pyrogenic components of tephra-derived samples as represented 

by the results of a set of chemical analyses for the constituent oxides or elements of 

glass shards or minerals (as free crystals or crystal fragments, or as phenocrysts). 

Statistically, cluster analysis methods may be said to be descriptive in that their 

outcome is a set of groups that may suggest a matching between samples, but such 

groupings alone can never prove definitively that the matched samples belong to the 

same eruption event. (Nor will the failure of two samples to be grouped necessarily 

prove that they do not belong to the same eruption.) 

Discriminant analysis, like cluster analysis, is concerned with the grouping of 

objects. However, in discriminant analysis there is an existing classification of objects 

into groups and the aim is to develop a rule to assign new, unclassified, objects into one 

of the existing groups (or perhaps to reject the object as not belonging to any of the 

known groups). In the computing literature, cluster analysis and discriminant analysis 

are both regarded as belonging to the field of ‘machine learning’ and are viewed, 

respectively, as examples of ‘unsupervised learning’ and ‘supervised learning’ (e.g. Han 

et al., 2012, mainly chapters 8-11; James et al., 2013, mainly chapters 4, 9, 10) (Table 

3). Petrelli et al. (2017) tested the application of a machine learning technique termed 
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support vector machines (SVMs) (Han et al., 2012, chapter 9.3; James et al., 2013, 

chapter 9) to attempt to correlate tephra deposits in Italy. In common with DFA, a 

training set of major and trace element data relating to whole-rock and glass-shard 

analyses was established using a machine learning algorithm; then ‘unknown’ tephra 

sample analyses were matched to ultimately determine their specific volcanic source as 

‘Roman Magmatic Province’. Petrelli et al. (2017) showed that the SVM application, 

despite considerable volcanic complexity (high dimensionality), was successful (on the 

basis of comparisons with a suite of qualitative geochemical analyses) whereas bivariate 

discriminant plots both of major and trace element data (for whole rock, glass, or melt 

inclusions in pyroxene) were mainly ineffective in the study.  

The form of cluster analysis most commonly used in geochemistry is 

agglomerative hierarchical clustering (Everitt et al., 2011, p. 73ff).  Such clustering 

begins with as many groups as there are objects. Progressively the groups are combined 

until at the end all objects have been merged into a single group. After this, the pattern 

of group combinations is reviewed and a decision is made on the number of groups to 

adopt as best representing the structure of the data. For convenience we use ‘cluster 

analysis’ to mean ‘agglomerative hierarchical clustering’. Other forms of clustering are 

given their more specific names.  

 

6.2. Forming matrices of similarities and distances 
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Cluster analysis is based on a symmetric matrix of inter-point distances or 

similarities, analogous to a mileage table of distances between towns on a touring map. 

Although this matrix may be directly available, it usually needs to be calculated from an 

n by p matrix of  ijX x of data containing the results of p variables taken on n objects. 

Usually in geochemistry the variables are the amount of each of p oxides or elements 

found in n glass or mineral samples. Distance and similarity measures of this kind 

appropriate for continuous variables were described by Everitt et al. (2011, p. 49ff), and 

in particular we mention the Euclidean (‘straight line’) distance  

 
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Here i and j range from 1 to n, the number of objects. The constants 
kw  are positive 

weights, with a value of 1 if the variables are equally weighted. The choice of the 

weights wk is discussed below. 

Gower (1966) showed that if a similarity matrix satisfies a certain mathematical 

condition (it has all eigenvalues positive), then it may be transformed into a distance 

matrix by 1ij ijd s  . This result was discussed by Everitt et al. (2011). The resulting 
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distance has the property that a configuration of points exists in multidimensional space 

whose Euclidean distances reproduce the distances in the matrix. For this reason, this 

transformation is often applied to convert similarity matrices into distance matrices and 

vice versa. Cluster analysis can be applied to either similarity or distance matrices and 

the results tend to be similar.  

Gower’s ‘general coefficient of similarity’ (Gower, 1971) is a flexible SC which 

allows for the incorporation of both continuous and categorical variables within the one 

coefficient. It could be of value in a situation, for example, where the absolute 

(numerical) weight percentage of an oxide ( a ‘continuous’ variable) could not be 

determined precisely but could be reliably graded as ‘high’, ‘medium’, or ‘low’ (a 

‘categorical’ variable). This case may arise in tephra studies where, for example, SEM-

based analyses of minute, sparse glass shards from an ice core (e.g. Kuehn and Froese, 

2010; Iverson et al., 2017) are not well characterized, or if calibration is less than 

optimum. Other situations could involve, for example, different shard morphologies or, 

when working with proximal samples, different types of lithic clasts (e.g. platy shards, 

or certain lithics, might be ‘abundant’, ‘common’, or ‘rare’), or potentially with respect 

to approximate age (e.g. Holocene versus Pleistocene), or to a stratigraphic event (e.g. 

before or after it). The Gower SC has been widely implemented in statistical software. 
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If the variables are left unweighted the major constituent variables will tend to 

dominate the distance or similarity measure. If this were considered undesirable, then 

choosing a weighting 
1( )k kw sd   where  
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is the standard deviation of constituent variable k, will have the effect of evening out the 

effect of all variables. This type of weighting is equivalent to dividing each variable 

value by its standard deviation and then using unweighted distance measures, and may 

be very important if the dataset being compared contains elements that are determined 

with variable degrees of analytical precision – for example, SiO2 (high precision) and 

MgO (relatively poor precision) in rhyolites ‒ or because of different degrees of inter-

laboratory reproducibility (e.g. Na analyses of the same glass/tephra might vary more 

from laboratory to laboratory than might Ca analyses because of differences in dealing 

with alkali element migration; consequently, Na might be less reliable and therefore 

downweighted). We discuss such standardization further below in Section 6.3. 

A distance measure used quite frequently in this field is the distance 
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introduced in Appendix B of Perkins et al. (1995). Note that 
2D is an example of the 

Euclidean distance where the weights are given by 
21/(2 )k kw 

. Here, 
2

k  is for the 

analytical variance for variable k but might better be defined to also include known 

within-tephra variance, such as compositional variation which may result from the 

eruption of a zoned magma chamber, as might be built up over much field or laboratory-

based experience. Variance (σ2) is the square of standard deviation. Mardia et al. (1979) 

referred to this distance as ‘Karl Pearson distance’, but we refer to it as ‘Perkins’ 

distance’ because of its initial and subsequent application in tephra studies (Table 3). 

The most famous multivariate distance measure is that proposed by the Indian 

statistician Prasanta Chandra Mahalanobis.  The Mahalanobis distance can be best 

explained by regarding the composition of a glass shard as a vector of p different oxide 

or elemental quantities (weight percentages or ppm). If 1 2( , , , )i i i ipx x x x  and 

1 2( , , , )j j j jpx x x x  are two vectors of observations from a multivariate distribution, 

with covariance matrix  , then the (squared) Mahalanobis distance between the two 

vectors with respect to   is given by  

2 1( ) ( )m i j i jD     x x x x  

where the prime indicates a matrix transpose. 
2

mD  is a multivariate analogue of a 

squared difference divided by a variance. Mahalanobis distance is similar to Perkins’ 
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distance but takes into account the covariance between variables as well as their 

variances. Mahalanobis distance is not often used in clustering of individual 

observations because an appropriate   is not usually known. It can be used for 

clustering groups of observations (Mardia et al. 1979, p. 368). When calculating an 

empirical covariance matrix ̂  from compositional data for use in a Mahalanobis 

distance, one variable should be dropped because the sum-to-one property means that 

the covariance matrix inverse will not exist. It does not matter which variable is dropped 

 the same Mahalanobis distance is obtained.  

 

6.3. Hierarchical cluster analysis 

 

Once the matrix of similarities and distances is formed by one of the methods 

discussed above, the cluster analysis can begin.  Firstly, the smallest distance (or 

greatest similarity) in the matrix is located. This distance corresponds to the two objects 

that are closest (or most similar). These two objects are merged into a group and the 

distance matrix is re-calculated for the reduced set of 1n objects. The new, smaller, 

distance matrix is again scanned for its smallest element and the process repeats until all 

objects are merged. The distance values at which a merger takes place are recorded. 

In order to carry out the algorithm, it must be specified what is meant by the 

distance between an object and a group of objects and the distance between two groups 
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of objects. Everitt et al. (2011, p. 76ff) discussed a number of these options, some of 

which are illustrated in Fig. 7: single linkage (also called the nearest neighbour, Fig. 

7a), complete linkage (furthest neighbour, Fig. 7b), centroid linkage (which uses the 

distance between the centroids of the two groups, Fig. 7c), average linkage (which uses 

the average distance between all pairs of objects in groups), and Ward linkage (a 

measure of variability within each group to evaluate the similarity between groups) (see 

examples in Table 3 and discussion in Cortés et al., 2007).  For most applications the 

single linkage method is not recommended because it can lead to the formation of 

clusters that are not very homogeneous (Baxter et al., 2005, p. 185). 
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Fig. 7. Graphical representation of the main hierarchical methods used for cluster 

analysis: (a) single linkage or nearest neighbour; (b) complete linkage or furthest 

neighbour; (c) centroid linkage or average linkage (redrawn from Cortés et al., 2007, p. 

167). The stars represent individual samples within the groups defined by the ellipses. 

In (c) the encircled dot represents a mean. 

 

Brendryen et al. (2010) used freely available software known as PAST (Hammer 

et al., 2001) to develop a dendrogram from cluster analysis of SC data based on the 

single linkage (nearest neighbour) protocol. Preece et al. (1999, 2000) used Ward 
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minimum variance linkages in their study of Type I and Type II tephra beds (derived 

from different source volcanic regions) in the Yukon Territory. Their cluster analysis 

enabled 41 samples to be matched to one of 12 distinct beds, 11 of which are shown in 

Fig. 8. Note that this two-fold classification (Type I vs Type II beds) has been modified 

as a result of subsequent analytical work in the region that has shown greater 

compositional diversity (Preece et al., 2011a). 

 

Fig. 8. Cluster analysis of glass-shard major element analyses of two sets of tephras, 

Type I and Type II, in central Yukon Territory (Canada) showing their degree of 

similarity/dissimilarity based on the joining distance: samples are most similar where 

the horizontal line lengths are shortest. Adjacent nearest neighbours in the clusters were 

assigned to the same tephra bed if they clustered in the same group, had the same trace 

element and petrographic characteristics, and had compatible stratigraphic positions 

(from Lowe, 2011, p.133, redrawn from Preece et al., 2000, pp. 992-993). (A) Four 

Type-I tephra beds derived from vents in the Aleutian arc–Alaskan Peninsula region. 

(B) Seven Type-II tephra beds derived from vents in the Wrangell volcanic field or 

Hayes volcano. Note that this dichotomous classification was modified by Preece et al. 

(2011a). 
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The most common way to communicate the results of a cluster analysis is via a 

tree-diagram known as a dendrogram, as shown in Fig. 8 (see also Fig. 15 in Section 9 

below). The objects are at the tips of branches and the branches are joined in the 

diagram each time a merger takes place in the algorithm. A dendrogram may be drawn 

either horizontally or vertically. A joining or merging distance (or similarity) axis is 

drawn alongside the dendrogram so that the distance value at a merger may be read off 

the axis. A line drawn at right angles to the axis is said to ‘cut’ the dendrogram and it 

corresponds to a partition of the objects into a number of groups, each of which is 

defined as a cluster. Thus, to define a partition it is necessary to make a choice of the 

appropriate distance value to cut the tree. This choice is ultimately subjective but it is 

logical to choose a distance value near a point at which not many mergers are taking 

place as this avoids having objects nearly equidistant from more than one cluster being 

almost arbitrarily assigned to a particular cluster.  

In Preece et al. (2011b), a spreadsheet (Microsoft Excel) was used to calculate 

both the distance statistic (as D2) and the Euclidean distance measure for major-element 

oxide data and trace-element data, respectively, and then single-linkage cluster analysis 

for each matrix was performed using the Stata 10 software package (available at 

http://www.stata.com/). The resulting dendrograms demonstrated for both sets of 

analyses that numerous occurrences of the Old Crow tephra across Alaska and the 

Yukon Territory (the object of the study) were tightly clustered together at low joining 

http://www.stata.com/
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distances and were separate from other tephra beds. The combination of graphical and 

statistical techniques demonstrated that Old Crow tephra could easily be distinguished 

from a number of compositionally similar rhyolitic tephra beds (Preece et al., 2011b).  

In their study of tephra beds from Silali volcano in eastern Africa, Tryon et al. 

(2008) developed a dendrogram using hierarchical cluster analysis (based on average 

linkages) and calculated the degree of sample similarity (measured by Euclidean 

distance) using Multivariate Statistical Package version 3.13 (Kovach Computing 

Services, 2008). Clustering was based on centred log-ratio-transformed mean values of 

all available element oxides. The centred log-ratio is the natural log of the ratio of each 

oxide value to the geometric mean of all oxides in a particular sample. Such 

transformations of data are discussed further in Section 7. 

Baron et al. (2008) undertook hierarchical clustering of analyses of a series of 

samples of tephras from California to compare with analyses of the Kern River ash. 

They adopted three steps: (i) finding dissimilarity or similarity between pairs of objects 

in the dataset (using Euclidean distance); (ii) grouping the objects into a binary 

hierarchical dendrogram (the linkage method was not reported); and (iii) determining 

where to cut the dendrogram into clusters. The groups on the dendrograms displaying 

the shortest (joining) distances were more closely correlated. A cophenetic correlation 

coefficient, C, discussed shortly, was calculated using the cophenet function in MatLab, 

which was used by Baron et al. (2008) for all these statistical procedures.  
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A new distance measure between objects can be read off the dendrogram. The 

cophenetic distance between two objects can be defined as the distance value at which 

the two objects are merged in the dendrogram. The original matrix of distances between 

objects may be compared with the new matrix of cophenetic distances by calculating the 

Pearson correlation between the p(p-1)/2 original distances with the corresponding 

cophenetic distances. (Note that if we have p localities there are p(p-1)/2 distances 

between them, as displayed in a mileage table, noted earlier.) The result is called the 

cophenetic correlation and is a measure of how faithful the clustering has been to the 

original distances between the objects. (The closer to 1, the better the dendrogram 

reflects the true relative distances between pairs of objects.) This cophenetic correlation 

can give some evidence to help decide between alternative linkage methods in the 

clustering. In the study on Kern River ash, a C value calculated at 0.81 indicated that the 

(unstated) linkage method that Baron et al. (2008) used gave a dendrogram that was a 

good reflection of the Euclidean distance matrix on which it was based.  

It is often useful and appropriate to combine cluster analysis with PCA, which 

finds the directions in multi-dimensional space in which a set of variables vary most. 

The aim is to provide potentially interesting lower-dimensional projections of 

multivariate data. When the variables are measured on different scales it is necessary to 

‘standardize’ each variable by dividing by its standard error. When variables are 

measured on the same scale it may also be useful to standardize them in cases where 
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there is a wide disparity in standard deviations, but nevertheless all variables are 

considered to be important. For example, in observations on human beings two 

variables may be height and hair thickness, both measured in millimetres. In this 

situation hair thickness would be effectively eliminated from consideration unless the 

variables were both standardized.   

If the variable standard deviations differ markedly the principal components found 

will reflect predominantly the more dispersed (i.e. the most imprecisely determined) 

variable (see Pearce et al., 2008a). A bivariate scatterplot of the first two principal 

component scores (or occasionally higher principal components) can be useful when the 

groups of objects are identified on the diagram (Fig. 9). Scatterplots of pairs of 

constituent variables are also useful, as shown, for example, by Preece et al. (2011b) 

where a cluster analysis was used in combination with scatterplots (noted earlier). 

Classification trees (Sheppard et al., 2011) can be fruitful for selecting pairs of variables 

that separate groups of samples well. An example of such use is given in Fig. 10. 

Another method for selecting the most useful bivariate plots is through the identification 

of loadings using PCA that show which elements explain most of the differences 
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between samples in PCA plots, as illustrated in Fig. 11 (discussed further below).

 

Fig. 9. Example of use of principal components analysis, expressed as a plot of first and 

second axes (multivariate ordination), to compare oxide abundances of glass shards 

from tephra deposits in the Wasiriya Beds, Kenya. For clarity, the prefix CAT09- used 

by Tryon et al. (2010) to denote sample numbers has been omitted here. Samples that 

are not significantly different, numbers 1 and 5, are equivalent and thus likely 

correlatives, as are samples in a second group, numbers 2b, 3, and 21. However, 

samples 2a, 4, and 22 differ from one another (analyses are not equivalent) and hence 

cannot be correlatives (redrawn from Tryon et al., 2010, p. 662). Results from a 

multivariate analysis of variance (MANOVA) of the geochemical centroids supported 

these interpretations. 
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Fig. 10. Classification tree predicting sample group from values of non-normalized 

oxides of glass shards from tephra deposits of the Kenyan Wasiriya Beds (data from 

Table S1). For clarity, the prefix CAT09- used by Tryon et al. (2010) to denote sample 

numbers has been omitted. 
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A possible source of confusion is the term ‘biplot’ which has been used in 

geochemical papers to mean a bivariate scatterplot but which is defined in multivariate 

statistics as a plot similar to the plot of two principal components to which has been 

added a vector for each variable showing how that variable relates to the two principal 

components (Aitchison, 1983; Aitchison and Greenacre, 2002; Baxter et al., 2005, 

2006). ‘Biplot’ in Aitchison’s sense combines the PC1 vs PC2 plot with the ‘loading’ 

plot although it may also be constructed for PCA based on covariance matrices. 

 

6.4. Non-hierarchical cluster analysis 

 

Hierarchical cluster analysis, considered in the previous section, is the form of 

cluster analysis most commonly used in tephrochronology. The nested form of the 

clusters that it produces, as indexed by the dendrogram also produced, are indeed 

helpful when a natural nesting of clusters is present in the data. For example, clusters 

corresponding to tephras derived from particular volcanic events might be grouped, at a 

higher level, into clusters corresponding to particular volcanic sources. However, there 

is no guarantee that tephra clusters in a sample will be nested in this way, nor, even 

when they are, that the hierarchy produced when hierarchical cluster analysis is 

employed can be interpreted in this way. 
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Some drawbacks to hierarchical cluster analysis include the fact that the 

similarities or distances may be defined in many ways and a number of different linkage 

methods leading to a large number of possible clustering methods. If the tephras are 

“well-separated” in their properties then the clusters constructed may not be sensitive to 

these choices, but otherwise they can be. 

Where the clusters found by hierarchical cluster analysis are well-separated there 

is no need to analyse further, but if this is not the case it is sensible to consider what 

alternative clustering methods might suggest. 

Some alternative methods of cluster analysis, not commonly used in 

tephrochronology thus far, are now considered (Table 3). Partitioning methods form 

another class of cluster analysis methods. In these methods, the number of clusters, k, is 

taken as known. From some initial cluster assignment, continual perturbations are made 

with the goal of optimising a criterion. A number of criteria are available, usually based 

on W , the within-cluster covariance matrix, B , the between-cluster covariance matrix, 

and T , their total, the overall covariance matrix. The goal is to choose W to be small in 

some sense. The k-means clustering algorithm, an unsupervised learning algorithm, is 

usually considered to be a partitioning algorithm, although it does not directly seek to 

optimise a criterion. It starts from k points rather than k clusters. At each step all objects 

are associated with their closest point and then the points are moved to be the mean of 

their associated objects. It is necessary to run the algorithm many times from different 



 

103 

 

starting configurations because the results depend on the initial starting position. The 

solutions found are rated by the mean of the squared Euclidean distances from the 

points to the cluster centre, smaller being better. Partitioning methods are discussed in 

detail by Everitt et al. (2011, chapter 8). A difficulty with applying these methods is that 

in practice k is not known. It is necessary to form the cluster solutions for a range of k 

values and compare them with regard to a criterion. Increasing the number of clusters 

will usually improve the mean squared Euclidean distance criterion, but there will be 

‘diminishing returns’ and a plot of the criterion against k will usually suggest a good 

choice for k. 

An example of the use of k-means clustering to help stratify analytical data to 

enable more robust multivariate statistical tests to be undertaken is illustrated in Fig. 11. 

This figure is derived from a study on the use of apatite trace-element compositions to 

correlate a sequence of weathered tephras, namely Late Ordovician K-bentonites in 

Pennsylvania, by Sell and Samson (2011a), who initially used PCA to help distinguish 

nine different beds in the sequence (Fig. 11a). The data were analyzed for principal 

components using the nonlinear iterative partial least squares (NIPALS) algorithm in 

the software package The Unscrambler®. The PCA results were compared with other 

statistical software that showed similar results, and the analysis was repeated after 

removing outliers that were greater than 3-sigma of the sample population (Sell and 

Samson, 2011a). 
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Fig. 11. PCA of trace element analyses of apatite crystals from nine closely-spaced Late 

Ordovician altered tephra deposits (K-bentonites) in Pennsylvania, USA (redrawn from 

Sell and Samson, 2011a, p. 164). Sample numbers in the key represent stratigraphic 

depths in the sequence (metres). Plot (a) shows the PCA of all samples minus outliers. 

Plot (b) shows the PCA of the three multi-component samples (4.5, 12, and 39) that 

contain the outliers, the separate units identified within each sample being depicted 

using k-means clusters. The loadings, shown as ellipses, document which elements 

(those in the outer ellipse) explain most of the differences between samples in each 

PCA plot. Thus in (a) the three most important elements in the PCA are Cl, Mn, and Fe, 

but in (b) these elements are Cl, Fe, and Mg, with Mn losing its ability to be a powerful 

discriminator (i.e. the importance of a specific element for distinguishing samples can 

vary from sample to sample). 

 

The ellipses, designated ‘loadings’ in each PCA plot, indicate which elements 

explain most of the differences between the samples, those in the outer ellipse being 

dominant  i.e. Cl, Mn, and Fe in Fig. 11a; and Cl, Fe, and Mg in Fig. 11b. These 

differences (especially the lesser importance of Mn in Fig. 11b) show that the 

importance of a specific element for distinguishing samples can vary from sample to 

sample. 

In any event, and irrespective of which elements contribute to the greatest 

variance between samples, the analyses for beds 4.5, 12, and 39 in Fig. 11a are non-

normally distributed because the apatite crystals evidently represent different 

populations from the mixing of two or more magmas, or the post-depositional mixing of 

tephra layers from several different eruptions, or both. Sell and Samson (2011a) 

therefore applied a k-means algorithm to group the data pertaining to samples 4.5, 12, 

and 39 into more homogenous or normal distributions (on the assumption that the 
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apatite trace-element variations in these samples represent distinct crystal groups as 

occur in magmas: e.g. Jerram and Martin, 2008). These clusters were then able to be 

visualised in the PCA bivariate plot in Fig. 11b (and which subsequently could be tested 

using, for example, DFA or the Hotelling T2 test, described below in Section 7.3). Any 

further overlap in such subsets of data would indicate that more multivariate analyses 

are needed to fully characterize the sample(s) (Sell and Samson, 2011a). 

A second example of the use of k-means clustering is that of Avery et al. (2017) 

who differentiated tephra deposits on the basis of ash-particle morphometries 

(ultimately to evaluate diverse volcanic eruption styles and fragmentation mechanisms). 

They also employed factor analysis (via R software), the selection of the smallest 

number of factors to account for most of the variance of the observed parameters being 

informed by PCA (as in the example above), along with DFA. 

 

6.5. Outliers and robust methods 

 

Outliers, or extreme data, are known to have a disruptive effect on many 

statistical analyses and it is possible to distinguish between statistical procedures that 

are sensitive to extreme data, such as the mean, and those that are not, such as the 

median. The latter are called robust (Hampel et al., 2011). When using divisive, 

distance-matrix based methods with a sensibly-defined distance (or similarity measure), 
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outliers are not really a problem because they will separate early from the majority of 

the observations and hence will have no effect on the subsequent splitting up of the rest. 

Indeed, this attribute might be taken as a definition of “outlier”. 

This will not necessarily be true of other clustering methods. Many statistical 

methods are based on sums of squared differences (the so-called L2 norm). These 

methods are nonrobust. The mean, which minimizes the sum of squared distances to the 

data points, is nonrobust; and the median which minimizes the sum of absolute 

distances (the L1 norm) to the data points, is robust.   

Kaufman and Rousseeuw (1990) developed a set of robust clustering programs 

based on L1 norm methods. Initially these were stand-alone programs but they were re-

written as a library for the statistical language S-PLUS (Struyf et al., 1997). At present, 

these programs are most commonly used via the “cluster” package of the R statistical 

language (R Core Team, 2017). As the syntax of R and S-PLUS is very similar, Struyf 

et al. (1997) remains a key reference for the use of these programs. It is noteworthy that 

the “cluster” package forms a part of the base distribution of R and is thus available 

from every working copy of R. This accessibility is a sign both of the level of usage of 

the functions of “cluster” and of the confidence shown by the R Core Team in the 

package. 

A brief summary of these seven robust clustering programs is given in the 

Supplementary data (Table S2).  
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Multivariate procedures such as principal components analysis are basically L2 

norm methods and are consequently at risk of being seriously affected by outliers. It is 

common to remove outliers before carrying out PCA but an alternative is to base the 

PCA on a covariance matrix that has been estimated by a robust method. The R function 

covRob()in the package robust is one easily available means of obtaining such a 

robust covariance matrix. The help page for this function lists references underlying the 

algorithms used. The use of a robust method avoids the necessity of classifying 

observations as outlying or non-outlying. PCA can be done under both robust and 

standard covariance estimation and the results compared. Features that emerge under 

both PCAs can be trusted more than those which appear in one only. 

 

7. Transformation, scaling, and testing 

 

It is common for tephra analysts to make judgements about equality of tephras 

using plots and visual comparisons. Although these can be powerful tools in the hands 

of expert practitioners (and they often provide compelling evidence for correlations), 

they are undeniably subjective and there are several reasons why it may be desirable to 

“calibrate” them against statistical procedures. For example, it may be necessary for the 

work to be carried out by a less experienced individual for whom the interpretation of 

some plots without numerical guidance may be difficult. Another situation occurs when 
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combining earlier analyses of tephra deposits in neighbouring areas that have previously 

been identified (effectively classified) by different experts. In reporting the combined 

analysis it is desirable that the same basis for correlational judgements be made 

throughout the region. Statistical methods assure this. Finally, when analysing very 

large collections of tephra-derived compositional data, visual methods become 

impractical whereas numerical or statistical methods may be incorporated into a 

program. 

 

7.1. Transformation 

 

A number of transformations have been recommended for use with 

compositional data (although the need and most appropriate choice of transform remain 

disputed; e.g. see Baxter, 2008, 2016). These transformations may be used prior to 

subjecting the data to multivariate statistical procedures such as the calculation of 

distance matrices, hierarchical cluster analysis, and PCA. Baxter (1995) recommended a 

rank transformation in which each variable has its values replaced by ranks. Scealy and 

Welsh (2011) suggested a transformation in which the raw data are replaced by the 

square root of the proportion of each variable. By far the most commonly recommended 

transformation for compositional data, however, is the centred log-ratio transformation 

advocated by Aitchison (1986) and Aitchison et al. (2002) and discussed by Stokes and 
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Lowe (1988), Pollard et al. (2006), and Pouget et al. (2014b). Campbell et al. (2011) 

give computational details. This transformation is the log of the ratio of the variable to 

the geometric mean of all variables. A related transformation is the additive log-ratio 

transformation (Aitchison, 1986; Campbell et al., 2011) which selects one variable as a 

‘reference’ (e.g. Al2O3 from EPMA analyses) and forms the logs of the ratios of all 

other variables to this reference variable. 

Transforming data via log ratios before undertaking canonical variates analysis 

(CVA), or PCA, places more emphasis on the most imprecisely determined element 

oxides (e.g. MnO, MgO, TiO2, which in rhyolites typically have the lowest abundance 

and poorest analytical precision) by enhancing their variability at the expense of 

abundant well-determined oxides (such as SiO2 or Al2O3), whose influence in the 

CVA/PCA is reduced (see Pearce et al., 2008a).  Thus the weight of discrimination can 

be biased in favour of the most poorly determined elements, and hence log 

transformation followed by CVA or PCA should be used with caution (Baxter et al., 

2005; Baxter, 2008, 2016; Pearce et al., 2008a). (CVA is discussed further below.) The 

square root transformation also focuses more attention on smaller components but to a 

lesser degree than the log-ratio transformation. It also can cope with zero 

concentrations, which frustrate the log-ratio transformation as the logarithm of zero is 

not defined, preventing the calculation of the geometric mean. These effects can be 

overstated, however. It is not uncommon for log-ratio analysis to give almost identical 
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PCA and CVA plots as the corresponding plots from the analysis of untransformed data. 

Indeed, if this fails to be the case it would be advisable see if a poorly determined 

element/oxide is the cause and to consider excluding it from the analyses (see, for 

example, Pearce et al., 2008a; Baxter, 2016, pp. 93-99). This comment probably applies 

to most transformations. 

 

7.2. Scaling 

 

It is common to scale variables by dividing each by their standard deviation 

prior to PCA. For example, Baxter et al. (2005) compared the results of scaling with 

those of log-ratio transformation in undertaking PCA and found transformation to be 

less effective. Note that scaling the variables prior to applying the log-ratio 

transformation would have essentially no effect because the transformed variables 

would only differ by a constant from their unscaled values. Scaling may be applied prior 

to calculating a distance matrix for use in cluster analysis: essentially Perkins’ 
2D is an 

unweighted Euclidean distance on the scaled data. 

 

7.3. Sample variance and testing 
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In returning to the two-stage approach noted near the start of Section 6 (the first 

stage being to examine mean values to identify potential candidates for correlation and 

to characterize the general structure of the data), the second stage in numerical or 

statistical studies involves the examination of sample variance (which may show 

unimodal,  polymodal, or broad compositional ranges: Perkins, 2005) to more precisely 

evaluate the degree of compositional similarity amongst samples (Tryon et al., 2008) 

(see also general texts such as Walford, 2011). As well as using simple bivariate plots 

(e.g. Figs. 2 and 6) to seek petrologically meaningful patterns in the data, a range of 

techniques can be employed including the use of bootstrap sampling (re-calculating the 

statistics for multiple datasets derived from the original data by sampling with 

replacement) to test for pair-wise differences between the means of each sample (Tryon 

et al., 2008; Watson et al., 2017b), Student’s t-test, and DFA (Table 3).  

Another methodology that could be used for this purpose is randomization 

testing (Manly, 2007). Randomization tests (also known as permutation tests, e.g. 

Anderson, 2001) are similar to those based on bootstrap sampling and neither approach 

requires knowledge of the distribution of the test statistic under the null hypothesis, 

which is certainly an advantage not only when that distribution is totally unknown but 

also when the assumptions that it has a traditional form (such as a normal distribution) 

are dubious. Randomization/permutation tests were used, for example, by D’Costa et al. 

(2011), although not to correlate tephras. 
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It is very desirable when suggesting a ‘match’ or ‘correlation’ between tephra 

samples at different sites on geochemical grounds to have a reasonable number of 

replicates at each site in order that reliable values of Perkins’ 2D  or Mahalanobis 
2

mD  

statistics may be calculated to obtain distances between the means of match candidates 

and also between the means of other pairs of tephra samples in the area.  (Strictly, we 

mean Perkins’-like statistics with the analytical variance replaced by within-group 

variance; in other words, Mahalanobis distances with all covariances taken to be zero. 

Note, though, that the Perkins’ 2D  has an extra divisor of 2.) Such replication is also 

valuable for graphical presentation in plots of two elements/oxides of scores from 

principal components or canonical variates. 

The Mahalanobis 
2

mD  statistic is closely related to the Hotelling two-sample T2 

test (Mardia et al., 1979, p. 139). This test is a multivariate generalization of the 

common two-sample t-test for the equality of the means of two populations. The most 

commonly encountered version of the two-sample t-test assumes that the populations 

are both normally distributed with equal variance, which is estimated for the test by a 

‘pooled’ variance estimate that combines the variance information from both samples. 

The Hotelling two-sample T2 test applied to k-variate data from two samples tests the 

hypothesis that the population mean of each of the k variables is the same in both 

populations. A significant result (small p-value) on this test for two tephra sample 

groups is evidence that the mean compositions of the two tephra populations are 
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different, and accordingly that the two groups cannot be a match. The test statistic for 

the Hotelling two-sample T2 test is a multiple of the 
2

mD  between the two groups that is 

based on the pooled variance-covariance matrix. It is intuitive that a large
2

mD  gives 

evidence against a match but the test provides a way of calibrating this. Analogously to 

the one-dimensional two-sample t-test, the Hotelling two-sample T2 test assumes that 

both populations have equal variance-covariance matrices and that both are (k-variate) 

normally distributed. Doubts about the equality of two variance-covariance matrices 

would not undermine a conclusion from a significant test that two tephras did not match 

because, if the population variance-covariance matrices were not equal, that finding in 

itself would mean that the two tephras did not match. An alternative to assuming 

normality and equal variance-covariance matrices is to use the randomization or 

permutation test methods mentioned above to calculate the p-value, as suggested by 

Campbell and Curran (2009). The R function hotelling.test in the package Hotelling can 

carry out a Hotelling two-sample T2 and has an option to calculate the p-value by 

randomization test methods. PAST software will also provide Hotelling T2 values 

(Hammer et al., 2001). 

Chiasera and Cortés (2011) have developed a modified PCA-based method to 

define a predictive region based on the calculation of the eigenvalues and eigenvectors 

of the covariance matrix of a log-ratio-transformed dataset. A predictive region cannot 

be constructed for the raw data because of the singularity of the covariance matrix of the 
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raw data because of the closure problem. The predictive region, also known as the 

tolerance region, is the zone ‘drawn’ around the mean of the transformed data enclosing 

the region where individual samples of a single population should be with a given 

probability. In a plot of the two larger principal components of the data (PC1, PC2), 

such a prediction region becomes an ellipse. Pouget et al. (2014a) applied this method 

using the first two principal components to successfully distinguish Mono, Trego Hot 

Springs, and Rockland tephras, and other samples, in northern California. The main use 

for the loadings (variable coefficients in the principal components obtained from a PCA 

based on the correlational matrix of the variables) is choosing which bivariate plots will 

be most informative. For this large loadings are needed, but not too similar. For 

example, in Fig. 11a, Mn, Fe, and Cl stand out with large loadings, but we would not 

plot Mn vs Fe because their loadings on PC1 and PC2 are similar. Instead, we would 

plot Fe vs Cl because they are nearly at right angles. If another element X were at 190 

degrees in the plot (just into the third quadrant), we would not plot X vs Cl because X 

and Cl define almost the same line through the origin and so would be very similar. 

Perhaps an ironical point here is that most geoscientists studying geochemical data 

typically generate bivariate plots before undertaking PCA – e.g. using Igpet (Carr, 

2017) or GCDkit (Janoušek et al., 2006) as noted earlier – but it is the loadings from the 

PCA that provide the information on which bivariate plots will be most informative. 

(Petrogenetic geochemical knowledge is also useful here, using Sr for example as an 
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indicator of plagioclase extraction.) Ideally, both the predictive regions and the 

Hotelling T2 analyses should be examined: they will usually line up with each other and 

the outlier trimming used by Pouget et al. (2014a) is good practice provided it is not 

pushed too far. 

Canonical discriminant analysis is used to refer to one of two closely related 

statistical methods, canonical variates analysis (CVA) and discriminant function 

analysis (also known as discriminant analysis). Both are concerned with distinguishing 

between two or more groups of multivariate observations. CVA is a statistical technique 

related to PCA that reduces the dimensionality of data (such as compositional analyses) 

with a large number of independent variables (Mardia et al., 1979, chapter 11.5) (Table 

4). As with PCA, CVA is an algebraic technique that results in several new variables 

that are linear combinations of the original variables. These are called the first, second, 

etc, canonical variates, analogous to the first, second, etc, principal components. Plots 

with respect to the canonical variates tend to separate groups better than plots with 

respect to the original variables. DFA adopts a model formulation assuming a 

multivariate normal distribution for the populations from which each group is sampled 

(Table 4). Once the model is fitted to the data it can be used to assign new observations 

that are known to belong to one of the groups, to the group to which it has the greatest 

likelihood of belonging (Mardia et al., 1979, chapter 11). This turns out to be the group 

closest to the new observation in Mahalanobis distance. When all groups are assumed to 
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have a common covariance matrix, the likelihood functions for assigning new 

observations to classes can be shown to have a simple relationship to the canonical 

variates (Venables and Ripley, 2002, p. 334).  

  

 

 



 

118 

 

On the other hand, CVA produces a small number of linear combinations of the 

quantitative variables which best discriminate pre-defined groups of observations or 

analyses. Consequently, instead of working with, say, nine or ten oxide analyses of 

glass to discriminate groups of samples, one or two canonical variables may contain 

most of the relevant information. A reference (or training) set of analyses with pre-

defined groupings must first be set up, and DFA may be used to produce a discriminant 

model or classification that can be used to classify unknown observations or analyses 

using the reference set (e.g. Lowe et al., 2007; Bourne et al., 2010; Cerovski-Darriau et 

al., 2014; Habermann et al., 2016). Such a training set may comprise analyses of ‘type’ 

or well-established ‘reference’ samples for a specific tephra, or a comprehensive suite 

of analyses of stratigraphically constrained proximal eruptives to which analyses from 

possible distal correlatives can be compared.  

CVA has an important application to the graphical display of several groups of 

samples. Plotting the groups of samples with respect to the first and second (and 

possibly higher) canonical variate scores gives a picture of the data in which the 

different groups of samples tend to be well separated. If two groups fail to be separated 

in such plots they are possibly a match (correlation) (e.g. see Fig. 14 in Section 9.3). 

 

8. Guide to tephra correlation: recommendations 
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We have discussed many different statistical approaches to establish the 

equivalence of tephra deposits using their intrinsic, grain-by-grain, glass or mineral 

compositions.  Although we strongly advocate the use of quantitative approaches to 

assess what is essentially the degree of confidence in our correlations, we caution 

against a wholly “black box” approach. That is, it is often the case that if a correlation 

can only be established using a very sophisticated statistical approach, then that 

correlation may be highly suspect. Also unsupported are correlations made solely on the 

basis of geochemical compositional data that violate basic stratigraphic observations or 

chronological data.  As is the case with many things in life, the principles of Occam’s 

Razor from the 14th century are useful in tephrostratigraphy. With this in mind, we 

outline here a broad step-by-step approach (Fig. 12) for the correlation of tephra 

deposits that draws on the methods described earlier in this paper, followed in Section 9 

by new and published examples using a common set of data to show different results. 

For each step, the reader is referred to the previous text for in-depth explanations, 

examples, and references. Because tephras have multiple origins and compositions, and 

potentially complex patterns of distribution and varying degrees of preservation, we 

firmly emphasise that it is not possible to cover all circumstances with a “one-size-fits-

all” approach to tephra or indeed cryptotephra correlation, and so Fig. 12 is necessarily 

generalised. 
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Fig. 12. General step-by-step guide for the correlation of tephra deposits that draws on 

the methods described earlier in this paper. It is important to use (and document) 

currently accepted analytical protocols in acquiring compositional data. 

 

8.1. Field setting provides stratigraphic context  

 

As described elsewhere (Section 5), the stratigraphic position, age, and physical 

properties of a tephra layer (or cryptotephra deposit) in an outcrop or in a core – the 

field setting  form the essential starting point and basis for any chemical analyses to 

characterize a deposit and its components (such as glass shards) to help enable its 

correlation. We are dealing here entirely with glass or mineral chemical data and the 

presentation and statistics associated with such data. Other information, such as mafic 

(ferromagnesian) mineralogy or glass-shard morphology (or magnetostratigraphy, for 

example), can also be important, which is why there is a ‘feedback’ loop from the base 

of Fig. 12 to the top to ensure that correlations based on geochemical and statistical 

inferences are consistent with the field setting and context (or with the 

chronostratigraphic evidence associated with a sediment core).  If not, questions need to 

be asked.  

 

8.2. Data inspection 
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Following the generation of compositional data by EMPA, LA-ICP-MS, or other 

approaches, the first step is an initial inspection of data to identify degree of 

homogeneity or heterogeneity, outliers, cases of poor or incorrectly entered data, or 

results that fail some other minimal criterion for an acceptable analysis, such as 

analytical totals <90 wt % in the case of glass. Although this step can be done by 

inspecting tables of analytical data, it is perhaps most readily performed graphically 

using visualization tools available in Excel or other readily available software to aid the 

process (noted previously). There are no fixed “rules” to this process, which is often 

based on expert knowledge or experience ‒ for example, having a prior understanding 

of the compositional range of the deposits associated with a potential source volcano, or 

spotting a glass analysis that unwittingly included a feldspar microcryst. 

 

8.3. Data transformation 

 

At this point, the decision should be made whether or not to transform the (raw) 

compositional data and, if so, which approach to use.  We advocate generally a 

conservative approach, with data analysis performed using both raw and transformed 

data.  In our experience, the results are often the same (e.g. see example in Section 9.3), 

but different results between raw and transformed data may be useful for highlighting 

important features within the dataset.  These features might arise from differences in 
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variance or abundance among elements, or measurement precision. Several different 

types of data transformation are available, from the relatively common normalization of 

analytical totals of glass major-elements to sum to 100% on the assumption that the 

difference is due to water (Section 3.3) or to ensure the same range of elements is 

compared from different laboratories, to more complex approaches, such as use of the 

centered log-ratio transformation, that attempt to standardize variables to measure 

differences between them that may be more meaningful. 

 

8.4. Data exploration 

 

This step represents initial exploration of the dataset to begin to develop testable 

hypotheses, i.e. pairs or groups of tephra suspected to be equivalent, informed perhaps 

by stratigraphic or other considerations such as age or mafic mineralogy. There are 

various ways to do this, and much of it is a matter of personal preference between 

numerical and various visual approaches. One numerical approach is to use a process of 

iterative sorting on an element-by-element basis in Excel or other database to group 

objects into sets that are most alike.   

The simplest visual approach is the bivariate plot (or sets of them, as in a 

scatterplot matrix, e.g. Fig. 6), where the values of pairs of element oxides are shown on 

an x-y grid.  This approach can be undertaken with any available software, and bivariate 
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plots by far are the most common method of data presentation in tephrostratigraphic 

studies (e.g. Pearce et al., 2008a).  Several points must be made about them.  First, any 

given bivariate plot is useful only in suggesting a potential correlation. For example, 

that sample A and sample B overlap perfectly in, say, a plot of FeO vs. TiO2 may be  

insufficient to establish correlation if those same two samples show substantial 

divergence in the abundance of, say, CaO or Al2O3, or in trace elements (e.g. Fig. 4). As 

a result, bivariate plots on their own can be more useful for identifying sample pairs that 

are not the same rather than demonstrating equivalence. If all plots overlap for all the 

elements that have been determined, then a correlation is strongly indicated. However, 

sample pairs that do not show some form of overlap in a simple bivariate plot are most 

likely not equivalent, regardless of how complex the computational algorithm used.  

A complication here is that some tephras may have multiple “fingerprints”, 

shown usually by heterogeneous glass populations, because they derived from 

compositionally-zoned magma chambers or from an eruption that tapped several magma 

chambers simultaneously or sequentially, or they comprise the products of magma-

mingling. Consequently, different stages of the eruption episode may have generated a 

series of closely-spaced tephras with very different compositions temporally and 

spatially if they were dispersed in different directions away from the source volcano 

over time (e.g. Bacon and Druitt, 1988; Lowe et al., 2008). Such internal heterogeneity 

within a tephra ostensibly derived from a ‘single’ eruption episode highlights the 
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inadequacy of characterizing a tephra from a small number of samples of restricted 

dispersal (e.g. Shane et al., 2008a). 

Principle components analysis (PCA) and various forms of cluster analysis also 

provide relatively simple data reduction and visualization tools that recognize the 

multivariate nature of geochemical data, but reduce this variance into a few axes or 

measures. Typically, a plot of the first two (or sometimes three) axes of a PCA will 

demonstrate the major structure within a dataset, and identify potential correlatives (e.g. 

Fig. 9). Similarly, although we have outlined a number of different types of cluster 

analysis, in most cases, the major ‘cuts’ or groupings produced tend to differ little for a 

given dataset, and thus we advocate use of any of the cluster analyses as an exploratory 

tool. Hierarchical clustering with average or Ward’s linkages is often recommended as a 

default. When the number of tephras to be clustered is large, we may expect some data 

quality problems, suggesting the use of a more robust method, such as AGNES or 

FANNY from Table S2.  Of course, the grouping of particular samples or analyses may 

vary with method, but these sorts of differences can be more formally explored or tested 

in the next step.  

 

8.5. Hypothesis testing and the identification of correlative deposits 
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Once potentially equivalent samples have been identified, more formal statistical 

testing of the hypothesized correlations can be attempted.  The approach used depends 

in part on the nature of the proposed correlations and the questions being asked, and the 

compositional complexity of the deposits.  For example, if the question is, “Does distal 

tephra sample X come from volcano Y?” and if the geochemical compositions of 

glasses (and/or crystals) of tephra eruptives of volcano Y are known from single-grain 

analyses, then approaches suited to comparing samples of ‘unknown’ distal tephras to 

those of ‘known’ composition from the source volcano are ideal. We warn there that (i) 

it is imperative that ‘like is compared with like’ so that single-grain analyses of glass 

shards in distal samples should be compared with similarly-analysed individual glass 

shards close to source (i.e. rather than with bulk proximal analytical data on either 

pyroclastic material or lava) to ensure that any heterogeneity or magma mixing or post-

depositional mixing is identified; and (ii) the proximal stratigraphy may not be 

completely known nor fully analysed. The most widely used of these statistical tools are 

discriminant function analysis (DFA) and the closely related canonical variates analysis 

(CVA) (Table 4).  Both DFA and CVA provide quantitative measures of the goodness-

of-fit of various ‘unknown’ samples to possible ‘known’ correlates, but interpreting the 

results depends strongly on the nature and completeness of the ‘known’ dataset.  If, 

after years of study, a new eruptive phase on volcano Y is discovered and characterized, 
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the DFA/CVA would need to be repeated to account for the presence of new analyses 

within the expanded ‘known’ dataset, which may result in a different set of correlations. 

Perhaps a more common, and less assumption-laden approach, is to simply seek 

correlations between samples or analyses within a given dataset.  A typical question in 

this approach might be “Do sample D and sample E represent the same 

eruption/depositional event?” There will always be some compositional variance 

between shards from a single eruption (variation caused by magmatic processes or 

eruption from multiple magma bodies, post-eruption or post-depositional alteration, or 

instrumental issues, described earlier). Because of this, and in addition to adherence to 

analytical protocols defined earlier, we advocate measures that recognize sample 

variance and co-variance be used to establish equivalence among that subset of samples 

identified during the data exploration step. These include methods that compare the 

mean and standard deviation of different element oxides between pairs or groups of 

samples, such as Student’s t-test, bootstrapping, Hotelling’s T2, analyses of variance 

(ANOVA), or multiple analyses of variance (MANOVA).  Other approaches generate 

single values for a given sample (assessing multiple variables simultaneously) that can 

be used to assess the similarity of a given pair of samples, including the t-test, Perkins 

D2 statistic, or some derivative of the similarity coefficient (SC) approach.  

The point of the hypothesis testing step is simply to provide some quantified 

measure of similarity as a means to assess the strength or confidence in a given 
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correlation, whether expressed in terms of formal statistical probability (e.g. p < 0.05, or 

there being a less than 5% chance that a difference as great or greater than that observed 

would be encountered were each of the pair to come from the same source) or according 

to some arbitrarily but clearly defined cut-off (e.g. correlative deposits are potentially 

those with an SC >0.95).  

 

8.6. Back to first principles 

 

Geochemical data are subject to statistical manipulation in the same way that 

any other numerical data are, and we have outlined a number of different ways to 

examine, plot, transform, and compare the suite of elemental abundances used to 

characterize tephra through analysis of its primary components, especially glass shards 

(Fig. 12).  The advantage of these numerical data is that they can be subjected to 

rigorous statistical analyses, something we feel has still not yet become standard 

tephrostratigraphic practice, although ideally it should.  However, the final step in our 

recommended analytical scheme is to re-examine any correlations proposed by 

statistical analyses by comparing them against basic stratigraphic observations and other 

supporting data such as tephra age, physical properties (e.g. grain size), mineral 

assemblage, phenocryst or crystal composition, the effects of magmatic processes which 

may operate to cause compositional change during eruptions, and associated 
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information such as depositional context of the site (e.g. palynology may indicate 

glacial vs interglacial conditions at the time of tephra deposition).  This step will serve 

to identify false-positives, and also likely provide a useful springboard for further 

research. For example, (i) potential correlates and chemically similar tephra or 

cryptotephra deposits derived from a single volcano undergoing a repetitive eruptive 

cycle might in fact represent multiple eruptives separated in age by several thousands of 

years rather than representing the product of a single eruption event (Section 5.2); (ii) 

two compositionally different deposits from different locations may be linked as 

products of the eruption of a zoned magma chamber, or an eruption from multiple 

magma chambers, dispersed in different directions; or (iii) the ‘surprise’ or aberrant 

identification of correlative deposits can help in the identification of a previously 

unrecognized fault, sediment slump, or re-depositional event (e.g. Lowe, 2011).    

In some cases where geochemical data have been used to affect correlations that 

seem to contradict new findings, it may also be necessary to re-examine the data 

underpinning the previously-proposed correlations because an error (miscorrelation) in 

an antecedent paper could lead to perpetuation of that error in later ones. 

 

 

9. Case studies using statistical methods 

 



 

130 

 

9.1. PCA, MANOVA, and Hotelling T2 test (Kenyan tephra data) 

 

Tryon et al. (2010) published a study using a number of the statistical methods 

mentioned above. PCA, as noted earlier, is a data reduction technique designed to 

identify and visualize the major axes (components) of variability in a matrix of data. 

Tryon et al. (2010) used PCA to examine sample equivalence between eight groups of 

observations taken from analyses of glass in tephras from within the sedimentary 

Wasiriya Beds in Rusinga Island, Lake Victoria, Kenya (Fig. 9).  The data comprise the 

amounts (weight percentages) of nine major element oxides in glass shards from the 

trachytic and phonolitic Wasiriya tephra deposits as determined by EPMA (listed in 

Supplementary data Table S1). (Strictly speaking, the use of PCA belongs to the first 

stage of statistical analysis as it is based on overall variation, not within-group 

variation.) Tryon et al. (2010) then tested that sample equivalence using multivariate 

analysis of variance (MANOVA), the first tephra study to do so, together with 

Hotelling’s two-sample T2 test amongst others. PCA was used to visualize the 

distribution of samples in a low-dimensional space (Fig. 9) with MANOVA, and 

Hotelling’s two-sample T2 test was then used to determine if geochemical centroids of 

different samples were significantly different. Samples that were found not to differ 

statistically were likely to be correlatives (Tryon et al., 2010), or at least had passed a 

major barrier against being regarded as such. Results of the one-way MANOVA 
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indicated that there were significant differences in the geochemical composition of 

different samples in the total sample pool examined by Tryon et al. (2010), suggesting 

that it was highly unlikely (p < 0.0001) that all sampled tephra deposits were derived 

from a single eruption, thus confirming stratigraphic observations of multiple, separate 

depositional events. The statistical analyses also provide independent support (in this 

instance) for the interpretation of various bivariate plots that visually show similar 

separations.  

 

9.2. DFA (New Zealand tephra data) 

 

An example of how DFA was used, in conjunction with stratigraphic and 

mineralogical data, to distinguish and correlate late Quaternary rhyolitic tephras in 

North Island, New Zealand, is shown in Fig. 13 as the first part of the second case 

study. The tephras were divided into two stratigraphically distinct groups of tephras 

using a regional marker bed (Kawakawa tephra) so that two relatively simple 

discriminant models were developed rather than a single but more complex model 

(Stokes and Lowe, 1988; Cronin et al., 1997; Lowe, 2011). From this study, based on 

seven (log-transformed) major element oxides obtained from the EMPA of glass, it is 

evident that two very widespread late Quaternary tephras such as the Kawakawa and 

Rotoehu tephras would be unlikely to be misidentified if only one of them were present 
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in an exposure or core at a distal site. The least similar (most different) tephras are 

Hauparu and Tihoi, which plot far apart in Fig. 13. The distance measure used was the 

squared Mahalanobis distance, D2
m, with a value of 262 in this case. In contrast, the 

Kawakawa and Okaia tephras (both erupted from Taupo volcano within about ~3000 

years of each other: Lowe et al., 2013) are indistinguishable on the basis of glass major-

element composition (the D2
m

 value is only 7.3 in this instance) (Cronin et al., 1997). 

Note that Omataroa and Kawakawa tephras, although relatively close (D2
m is 25), are 

separable using DFA, whereas they cannot be distinguished using the bivariate plot of 

CaO vs FeO glass content as presented  in Fig. 4a. It is evident from analytical data that 

the oxides of Omataroa and Kawakawa glasses are essentially identical except for 

Na2O, which is higher in Omataroa (Cronin et al., 1997; see also Smith et al., 2005). 

This relatively small difference appears sufficient to provide the DFA-based separation. 
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Fig. 13. Example of use of DFA to compare degree of similarity of seven late 

Quaternary rhyolitic tephras in central North Island, New Zealand. Glass compositions 

of each tephra were combined using DFA into the first two canonical variates. The 

Mahalanobis distance between groups (Dm
2) is a direct measure of their multivariate 

similarity/dissimilarity based on all seven major oxides analyzed, not just two or three 

(from Lowe, 2011, p. 135, redrawn from Cronin et al., 1997, p. 182). Note that this 

DFA plot using multiple elements distinguishes Omataroa and Kawakawa tephras, in 

contrast to the single bivariate plot of Fig. 4a. 
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Another New Zealand study that used DFA of EPMA-derived analyses of Fe-Ti 

oxides (titanomagnetite crystals), rather than glass shards, is that of Turner et al. 

(2011b). They correlated andesitic tephras preserved in lake sediments with sub-aerial 

(dry-land) proximal tephras associated with Mt Taranaki. In many instances the DFA-

based correlations, afforded by the smallest D2
m values, provided more than one 

possible correlation for each individual tephra. This ambiguity arose because the 

titanomagnetites in some tephras from different eruptions were similar compositionally 

because of magmatic cycling (and magma temperature variations) at Mt Taranaki, as 

documented by Turner et al. (2011a). Therefore, only the DFA-based correlations that 

were consistent with the observed stratigraphy (stratigraphic ordering) were adopted. 

 

9.3. Classification and clustering methods including use of transformations (Kenyan  

   tephra data)  

 

As a third example we consider again the tephra samples from the Wasiriya 

Beds in Kenya. Seven samples (comprising multiple glass shard analyses: Table S1) 

were labelled CAT09-01, CAT09-02, CAT09-03, CAT09-04, CAT09-05, CAT09-21 

and CAT09-22 (Tryon et al., 2010, their fig. 3). Heterogeneity was detected in CAT09-

02, which was subdivided into two subsamples, CAT09-02a and CAT09-02b (Fig. 9). 

We illustrated earlier in Fig. 6 the use of a scatterplot matrix to show the clear-cut 
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nature of the separation between CAT09-02a and CAT09-02b. Notice in that matrix that 

oxides SiO2, Al2O3, and MgO are particularly effective in separating the two sub-

populations, and pairs of these yet more so (Fig. 6). Fig. 10 shows a classification tree 

for all eight sample groups obtained using the rpart package of R (R Core Team, 2017) 

in which the sample group is predicted from the non-normalized oxide values. This 

package is an R implementation of the routines of Therneau and Atkinson (1997) 

written to carry out the algorithms of Breiman et al. (1984). It should be cautioned that 

this classification tree is not suitable for matching two sample groups: in the 

classification tree the groups CAT09-02a and CAT09-22 could appear to be matched, 

but it is evident in Fig. 9 – and also in further statistical tests described below – that this 

is far from true. It could, however, be used to allocate a new sample to one of the eight 

groups if it were known to belong to one of them. The classification tree suggests that a 

scatterplot of SiO2 vs Al2O3 with different symbols for each group could be useful. 

We considered multivariate analyses of both the untransformed data and the log-

ratio transformed data for tephras of the Wasiriya Beds. For the log-ratio transformation 

we chose a reference group for the formation of the ratios. It is advisable to choose a 

reference element with a coefficient of variation as small as possible, or, almost 

equivalently, a standard deviation of the log-transformed data as small as possible 

(Table 5). 
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In Table 6 we compare the correlation coefficients of log-ratios for the choices 

of SiO2 and MgO as reference oxides. The much higher relative variability of MgO 

causes MgO-based log-ratios to be highly correlated and hence harder to interpret 

(Table 6a). Accordingly, we used SiO2 as the reference oxide in our log-ratio 

transformations (Table 6b). 
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The scatterplot matrices of the element oxides (Fig. 6) do not show any other 

cases of clear separation between groups apart from that between CAT09-02a and 

CAT09-02b, and in fact between CAT09-02a and all other sample groups. CAT09-02a 

remains a locally distinctive trachytic tephra, even with a substantially expanded 

comparative database for the Lake Victoria region (Blegen et al., 2015).  Because of its 

distinctiveness, we dropped the group CAT09-02a and submitted the remaining groups 

to canonical variates analysis (Figs. 14a, 14b). The first two canonical variates explain 

91.82% (untransformed) (Fig. 14a) and 93.85% (log-ratio transformed) (Fig. 14b) of the 

variance in the observations. The plots are almost identical (bearing in mind that axis 

orientation is arbitrary) and show three clusters of points: CAT09-22 by itself (almost); 

CAT09-01 and CAT09-05; and a looser cluster containing CAT09-02b, CAT09-03, 

CAT09-04, and CAT09-21. A single analyzed shard from CAT09-03 (pale blue star) is 

located in both plots close to CAT09-22 and remote from its own group. This 
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positioning might or might not be a misidentified or mis-entered observation, or it may 

simply represent variation present in the bed resulting from post-depositional mixing of 

shards from two formerly separate eruptives (e.g. Fig. 2d; see also Boygle, 1999; Pyne-

O’Donnell, 2011; Guðmundsdóttir et al., 2012; Pouget et al., 2014b).  
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Fig. 14. CVA plot of oxide abundances of glass shards from tephra deposits in the 

Kenyan Wasiriya Beds shown as (a) untransformed normalized data, and (b) log-ratio 

transformed data (data from Table S1). For clarity, the prefix CAT09- used by Tryon et 

al. (2010) to denote sample numbers has been omitted. 

 

Mahalanobis distance may be used to cluster the groups by successively merging 

groups separated by the smallest Mahalanobis distance. In considering the 

untransformed data first, the Mahalanobis distances are shown in Table 7a. At each step 

in the process a table of Mahalanobis distances between groups is formed. The groups 
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that are closest are then merged and the distances involving the merged groups are 

recalculated. The process continues until all groups are merged. The resulting 

dendrogram is shown in Fig. 15a. Because of the high skewness of the 
2

mD  values, the 

joining ‘distance’ is shown in terms of mD rather than
2

mD . 
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The pairwise Mahalanobis distance 
2

mD  is closely related to the two-sample 

Hotelling 2T  statistic and so the equality of group means can be tested before they are 

merged. We would not consider as equivalent any groups with significantly different 

variable means, and hence we need only continue the merging until significance is 

found. However, on this occasion we carried out the full process and the merging 
2

mD  

and the test results are shown in Table 8. In Tables 6b and 7b, and Fig. 15b, the same 

information is repeated for the log-ratio transformed data. The results for the 

untransformed and log-ratio transformed data are very similar and, in particular, the 

groups merge in the same sequence. The clustering suggests the equivalence of the pair 

CAT09-03 and CAT09-21, and also the pair CAT09-01 and CAT09-05. No other pairs 

are equivalent. The equivalences are ‘suggested’ rather than ‘established’ because 

questions of statistical power and what differences may be tolerated between means of 

equivalent groups have not been examined.  
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Fig. 15. Dendrograms for clustering of tephra sample groups of the Kenyan Wasiriya 

Beds separated by Mahalanobis distance as (a) untransformed normalized data, and (b) 

log-ratio transformed data (data from Table S1). For clarity, the prefix CAT09- used by 

Tryon et al. (2010) to denote sample numbers has been omitted. The dendrograms are 

very similar (but not identical). 
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9.4. Limitations 

 

  Methods based on Mahalanobis distance and Hotelling tests may be expected to 

encounter difficulties if the number of variables is large or the number of samples per 

group is small, or both (Blegen et al., 2015, faced a parallel problem with SCs and 

hence developed the randomized version of SCs to cope with a large sample size). They 

also depend on the multivariate normality of the samples. Campbell and Curran (2009) 

discussed some techniques for making Hotelling tests more robust in a related forensic 

situation. 

Other studies also show that in some cases tephra samples are not easily 

discriminated (distinguished) from others using DFA of glass data (e.g. Charman and 

Grattan, 1999; Eden et al., 2001; Turney et al., 2008). Bourne et al. (2010), working 

mainly on cryptotephras in cores of marine sediments in the Adriatic Sea, emphasized 

that the efficacy of the DFA employed in their study was limited by (i) training sets (i.e. 

databases of geochemical information pertaining to proximal eruptives) that were 

insufficiently comprehensive (see also Lawson et al., 2012), and (ii) because not all data 

were well clustered (ordered). DFA nevertheless has several advantages, the most 

important being that all or most elements in the analyses are taken into account non-

subjectively, samples are able to be classified (matched) with known probability of 

error, and their degree of similarity or dissimilarity is reflected by D2
m (Lowe, 2011). It 
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may also be remarked that the descriptive value of the closely related CVA plots is not 

affected by the failure of the database to be comprehensive or the failure of the 

observations to clearly cluster. The efficacy of the technique can be tested using 

iterative or jackknifing procedures (e.g. see Stokes et al., 1992; Cronin et al., 1997), or 

cross-validation (e.g. Habermann et al., 2016), to measure classification efficiency – in 

effect, the probability of misclassification. As noted previously, DFA relies directly on 

high quality data and comprehensive reference sets against which unknowns are 

compared; the recognition of multiple glass-shard compositions in some tephra units 

from single eruptive episodes adds complexity (Lowe, 2011). Finally, Tryon et al. 

(2009) showed that the model they generated using CVA and DFA was robust enough 

to overcome any errors of precision within their dataset arising from interlaboratory 

variation. 

A problem with the use of hypothesis testing methodology in testing the 

correlation of tephras is that we essentially wish to establish that the null hypothesis is 

true (the meaning of equivalence). Unfortunately, failing to reject the null hypothesis 

does not establish it as true. As well as in tephrochronology, this is a problem of some 

importance in pharmaceutics where biostatisticians have developed methodologies for 

testing ‘bioequivalence’. Even in that field, bioequivalence is not usually studied in a 

multivariate way, Wang et al. (1999) being one of a few academic papers on the topic. 

The consequences of falsely assuming medical drugs to be equivalent can be serious, 
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and it is not surprising that these methodologies have been slow to spread. For 

tephrochronology the most practical approach would be to ensure that, for the most 

important variables, confidence intervals for differences in means (i) contain zero, and 

(ii) are short. 

 

10. Summary and conclusions 

 

10.1. Advances in analyzing constituent glass to characterize tephras and cryptotephras 

to help facilitate their correlation 

 

Tephrochronology involves the characterization and use of tephras layers or 

cryptotephra deposits as stratigraphic correlational and dating tools. The ability to 

correlate tephra deposits requires recognition of the importance of spatial and temporal 

scale, which dictate the range of approaches and applications that are necessary to 

answer geoscientific questions, together with analytical flexibility (Tryon et al., 2011).  

In this review, we have initially outlined some of the latest developments in analytical 

methods used to characterize or ‘fingerprint’ glass from tephra or cryptotephra deposits 

to aid their correlation. New protocols in the use of EPMA have been developed mainly 

since c. 2010 to help ensure major- and minor-element data of very high quality can 

now be attained, allowing subtle differences in composition to be distinguished more 
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reliably than previously (Pearce et al., 2014b). As well, individual glass shards (or glass 

selvedges/rims on crystals, or melt inclusions) can be analyzed using beam diameters 

considerably narrower than previously possible (~5 μm to 3 μm), thereby enabling 

many fine-grained samples, including the smallest of the microshards (shards <32 μm in 

diameter), to be analyzed from wider and more distal geographic locations. This 

advance also enables the compositions of vesicular or microlite-rich glasses, and small 

melt inclusions, to be obtained more readily (Hayward, 2012).  Previously, these shards 

or inclusions typically could not be analyzed reliably.  

Possible difficulties may arise during such analyses, however. Firstly, in 

analyzing very small microshards of ~5 µm diameter, the assumption of an infinite 

lateral and depth extent of the sample, which is built into the X-ray matrix corrections, 

starts to break down, and particle geometry becomes important (Kearns and Buse, 

2012). At such small sizes, it could be helpful to analyze reference material of the same 

particle size, and it may also be useful to use a lower beam voltage on the instrument to 

shrink the source volume of the X-rays (Table 2). Secondly, the fluorescence of 

secondary X-rays in crystals in close proximity to the glass being analyzed in a 

microlite-rich shard may lead to a hybrid analysis with an element present in a crystal 

being over-represented in the adjoining glass (especially if the element is at minor to 

trace concentrations in the glass but at major element concentration in the adjacent 

crystal/microcrystal) (Hunt and Hill, 2001; Reed, 2010).  



 

149 

 

To enable the sound evaluation of tephra correlations and to facilitate the robust 

application of statistical methods, all EPMA-derived glass data should be published 

(possibly as ‘supplementary material’) including analytical conditions, primary and 

secondary standards, as should all other relevant analytical parameters (Kuehn et al., 

2011). In the near future, the data may also be submitted to open-access databases along 

with all relevant sample and analytical metadata. Reasons for discarding inappropriate 

analytical data (effectively an informal ‘discard protocol’) prior to data reduction or 

statistical manipulation should be considered carefully (Abbott et al., 2013). A similar 

advocacy is invoked for LA-ICP-MS-acquired glass data and their evaluation for 

undertaking correlations (Pearce et al., 2011; Westgate et al., 2013c).  

Using LA-ICP-MS, analyses of individual glass shards with crater diameters of 

20 μm and 10 μm to obtain trace-element data are now essentially routine, and some 

200 grains of glass can be analyzed for about 30 trace elements in the course of a typical 

day in the laboratory, making this a relatively low-cost method (Pearce et al., 2011; 

Pearce, 2014). Smaller (sub-10 μm) ablation craters suffer increasingly from the effects 

of element fractionation during analysis, but the systematic relationships of this 

fractionation with glass composition suggests that analyses for the more abundant trace 

elements may be quantifiable, and advances in laser technology, related to shorter pulse 

lengths, may improve or overcome this. 
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10.2. Correlating tephras or cryptotephras using numerical and statistical methods 

 

In the second part of the review, we have described and evaluated various ways 

in which tephras can be correlated using geochemical (compositional) data, mainly for 

individual glass shards or minerals (crystals or phenocrysts), with emphasis on 

numerical or statistical methods (especially multivariate methods) used in this process 

(e.g. Fig. 12). Statistical methods provide a less subjective means of dealing with data 

pertaining to tephra components than alternative methods. They enable a better 

understanding of relationships among the data to be developed from multiple 

viewpoints, and help to quantify the degree of uncertainty in establishing correlations. 

In applying statistical methods to establish sample equivalence or difference, we 

emphasise that all methods have some degree of limitation. Furthermore, using 

statistical analysis of tephra compositional data, it is much easier to prove a difference 

between two samples than it is to prove they are the same. Bivariate plots, where all 

analyses overlap for all analyzed elements, or an inability to separate two samples by 

PCA or other analyses, do not prove that the two samples are necessarily the same. 

More analyses may show differences in a particular parameter, or they may not, and if 

not, then the evidence builds that the two samples being compared are putative 

correlatives  but it is still an ‘increasingly likely’ rather than ‘definite’ correlation. 

Adding multiple criteria such as stratigraphic, chronological, mineralogical, 
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palaeoenvironmental, or archaeological (contextual) data allows for increasingly sturdy 

correlations to be made. In a number of studies such data have been essential for 

enabling correlations to be made where compositional data for glass or mineral phases 

have been inadequately diverse on their own (e.g. Hopkins et al., 2015, 2017; 

Damaschke et al., 2017a). 

A two-stage approach has been used in recent times, the first stage being to 

identify the main data structure by way of simple but useful, and visually compelling, 

scatterplot matrices (bivariate plots) before undertaking statistical distance measures, 

SCs, hierarchical cluster analysis (which may be informed by distance measures or 

similarity or cophenetic coefficients), non-hierarchical cluster analysis using k-means, 

and PCA. Some of these methods (e.g. cluster analysis) are also referred to as machine 

learning in the field of computer science. Quite often, graphical methods such as 

bivariate plots (including use of ratios) or trivariate plots are sufficient, and 

sophisticated statistical techniques are not necessary. In some cases there is potential for 

miscorrelation because of the limited dimensionality of such plots (Petrelli et al., 2017).  

Loadings obtained by PCA (variable coefficients in the principal components obtained 

from a PCA based on the correlational matrix of the variables) can provide useful 

information about which bivariate plots will be most informative, however. 

The second stage typically examines sample variance and the degree of 

compositional similarity so that sample equivalence or otherwise can be established on 
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a statistical basis. This stage has involved DFA, CVA, and analysis of variance 

(ANOVA) or MANOVA (or its two-sample special case, the Hotelling two-sample T2 

test) (Fig. 12). We have suggested that where distributional assumptions such as 

multivariate normality underlying parametric tests are doubtful then randomization 

(permutation) tests can be considered.  

A number of transformations and scalings may be applied to compositional data 

prior to subjecting the data to multivariate statistical procedures such as the calculation 

of distance matrices, hierarchical cluster analysis, and PCA. Such transformations may 

make the assumption of multivariate normality more appropriate. A sequential 

procedure using Mahalanobis distance and the Hotelling two-sample T2 test has been 

illustrated for identifying correlated tephra deposits using Kenyan glass-shard major 

element data from Tryon et al. (2010). 

We emphasise that all these methods require that (i) stratigraphic and allied 

information  such as age and spatial data   are available, and (ii) that compositional 

data are of high quality and sufficiently comprehensive so that ‘unknowns’ can be 

compared with reference (training) sets that are sufficiently complete to account for all 

possible correlatives including tephras with heterogeneous glasses that have multiple 

fingerprints. Limited databases are tending to restrict correlation efficacy in some 

studies at the present time. The development of an open, high-quality online database 
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would facilitate progress towards an integrated tephrostratigraphic framework for 

different regions, thereby increasing effectiveness and confidence in tephra correlation. 

 

Acknowledgements 

 

We appreciate encouragement initially from former editor Colin Murray-

Wallace and then Claude Hillaire-Marcel to prepare this article, together with valued 

support from Tim Horscroft and Debbie Barrett of Elsevier. Shane Cronin, Siwan 

Davies, Andrei Sarna-Wojcicki, Shari Preece, Jeff Knott, John Hunt, and three other 

(anonymous) referees are especially thanked for very helpful reviews, as are Kieran 

McNulty (who conducted the original PCA and MANOVA analyses of the tephras of 

the Wasiriya Beds that are further developed here), Tim Warner, Matthew Tocheri, 

Nick Blegen, Tyler Faith, and Earl Bardsley for useful comments. Jo Horrocks allowed 

us to cite her unpublished PhD thesis. Figs. 1a, 1b, and 1c were provided by Stuart 

Kearns, Maria Gehrels, and Tabito Matsu’ura, respectively, and Marie-Josée Duquette 

provided the photograph of Stephen Stokes for the dedication; Max Oulton drafted most 

remaining figures. Hayward acknowledges the support of NERC for the Tephra 

Analysis Unit at Edinburgh. Lowe thanks the Japan Society for the Promotion of 

Science, and Hiroshi Moriwaki, for support that enabled him to attend the “Active 

Tephra” conference in Kirishima in 2010, Caitlin Buck for facilitating his earlier visit to 



 

154 

 

the UK to take part in the SUPRAnet workshop, and Marcus Bursik for enabling his 

participation in the INTAV tephra workshop in Portland, USA, in 2017 on “Best 

Practices in Tephra Collection, Analysis, and Reporting: Leading Toward Better Tephra 

Databases”. As well as SUPRAnet, the paper is an output of the EXTRAS project 

“EXTending TephRAS as a global geoscientific research tool stratigraphically, 

spatially, analytically, and temporally within the Quaternary” (objectives 2 and 4), an 

initiative of INTAV supported by SACCOM, and of the SHAPE project “Southern 

Hemisphere Assessment of PalaeoEnvironments”, supported by PALCOM, of the 

International Union for Quaternary Research (INQUA). 

  

 

 

Dedication 

 



 

155 
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teacher/mentor. Stephen began his research career in Earth sciences at the University of 

Waikato, Hamiton, New Zealand, completing an MSc (1987) and then an MPhil (1989) 
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function analysis (DFA) on major-element glass-derived data, firstly to match tephras to 

source volcanic centres in New Zealand (Stokes and Lowe, 1988; cited 52 times 

Google Scholar, GS) and then to correlate individual eruptives derived from each centre 

(Stokes et al., 1992; cited 68 times, GS), being inspired in part by the seminal papers 

of King et al. (1982) and Beaudoin and King (1986). He presented his DFA findings at 
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Yellowstone National Park in June, 1990. Stephen by then was enrolled at Oxford for 

his DPhil research as a Commonwealth Scholar, entering and soon shining in the world 
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despite his limited stature, and a loyal colleague and generous mentor for his students at 
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