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Abstract

Ordered weighted aggregation procedures have been introduced in many applications with promising results.
In this paper, an innovative approach for ordered weighted aggregation of fuzzy relations is proposed. It
allows the integration of component relations generated from different perspectives of a certain observation
to form an overall fuzzy relation, deriving a useful similarity measure for observed data points. Two types
of aggregation are investigated: a) min/max operators are employed for the aggregation of component re-
lations defined by the minimum T-norm; and b) sum/product operators are employed for the aggregation
of component relations defined by the  Lukasiewicz T -norm. The resultant ordered weighted aggregations
prove to preserve the desirable reflexivity and symmetry properties, with T -transitivity also conditionally
preserved if appropriate weighting vectors are adopted. The conditions upon which the proposed aggregat-
ed relations preserve T -transitivity are studied. The characteristics of applying an aggregated relation in
combination with clustering procedures is also experimentally examined, where fuzzy similarity relations re-
garding individual features are aggregated to support hierarchical clustering. An application to the detection
of water treatment plant malfunction demonstrates that better results can be obtained with the transitive
fuzzy relations acting as the required similarity measures, as compared to the use of non-transitive ones. By
introducing transitivity to the aggregation the interpretability of the detection system is also enriched.

Keywords: Fuzzy relations, similarity measures, water treatment, OWA, aggregator transitivity,
hierarchical clustering.

1. Introduction

Methods for aggregation of different pieces of information into an integrated form are an indispensable
tool, not only for theoretical development in e.g., mathematics and physics, but for many real-world appli-
cations in engineering, economical, social, and other fields. Having recognised this, a significant number of
aggregation operators have been developed, ranging from simple arithmetic mean to more complicated fuzzy5

methods, including minimum/maximum, uninorm, and other alternative T -norms/T -conorms [1, 2, 3]. In
particular, a class of parameterised mean-like aggregation operators, commonly named as ordered weight-
ed averaging (OWA), have been introduced in the literature [4] and successfully applied in different areas
[5, 6, 7, 8]. Intuitively, with an appropriate specification of a weighting vector, an OWA operator helps
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to capture and reflect the uncertain nature of human judgments in problem-solving, generating an aggre-10

gated result that lies between the (conventional) two extremes of minimum or maximum combination of
multi-featured data objects [9].

In general, relations holding amongst data points form the basis for many developments and applications
of fuzzy systems. However, in their applications to supporting multicriteria decision making [10, 11], which
forms a major challenge for practical fuzzy systems, a key question is what underlying properties of the data15

can be preserved in the process of constructing or aggregating similarity relations. For certain applications
like prototype-based reasoning where clusters of objects that are similar to certain prototypical samples
are sought [12], properties such as reflexivity and transitivity [13] may not be necessary. Yet, there are
many other situations in which it is desirable to maintain the symmetry and a degree of transitivity over
the homogeneous similarity classes or granules whose members possess these properties as symmetric and20

transitive classes or granules support intuitive interpretation of the reasoning process involved [14, 15, 16].
To enhance the mechanism for aggregation of fuzzy relations with such desired properties entailed, this

paper presents two novel types of OWA-based aggregation methods, where the component relations are sort-
ed first and subsequently aggregated with assigned weights. These techniques allow the aggregated results
to retain the Tmin-transitive and T L-transitive similarities, respectively. It is theoretically proven that the25

aggregated relations can hold the respective T -transitivity if the weights are arranged in ascending order.
To illustrate the effectiveness of such ordered weighted aggregation of fuzzy relations, it is systematically
evaluated over the task of clustering both synthetical and UCI datasets, by following the strategy of hierar-
chical clustering. In this experimental evaluation, similarities between data patterns are measured through
ordered weighted aggregation of component fuzzy relations which hold amongst individual features. The30

work is applied to the detection of water treatment plant malfunction, demonstrating that the aggregated
T L-transitive similarities lead to better hierarchical clusters than those of non-transitive similarities.

The paper is organised as follows. Section 2 introduces the basic concepts of the aggregation of fuzzy
relations. Section 3 presents two types of ordered weighted aggregation of fuzzy relations, with a detailed
discussion of their properties, including the use of stress functions to decide on the weighting vectors for35

them. Section 4 describes the experimental investigation into the proposed aggregation of fuzzy relations in
performing clustering tasks, evaluated over a number of classic datasets. Section 5 presents an application
of the proposed aggregator to detecting malfunctions of a water treatment plant. The paper is concluded in
Section 6, with a discussion of further research.

2. Preliminaries40

2.1. Fuzzy relations

The concept of similarity is a preliminary notion in human cognition, playing an essential role in many
tasks such as taxonomy, recognition, and inference (e.g., case-based reasoning). Particularly, fuzzy sets
and relations [17] are of great significance in both theoretical development and industrial applications of
constructing similarity metrics when dealing with imprecise situations [18, 19, 20].45

Definition 1. Let X be a nonempty universe. A fuzzy relation R = [r(a, b)] : X ×X → [0, 1] is
• reflexive iff ∀a ∈ X, r(a, a) = 1;
• symmetric iff ∀a, b ∈ X, r(a, b) = r(b, a);
• T -transitive iff ∀a, b, c ∈ X, r(a, b) ≥ T (r(a, c), r(c, b)),
where T is a T -norm [21], e.g., a mapping T (x, y) : [0, 1]× [0, 1]→ [0, 1] which satisfies50

1) commutativity: T (x, y) = T (y, x);
2) monotonicity: T (x, y) ≤ T (x′, y′), if x ≤ x′ and y ≤ y′;
3) associativity: T (x, T (y, z)) = T (T (x, y), z); and
4) boundary condition: T (x, 1) = x.

A number of T -norms have been proposed in the literature, including (but not limited to):55

• the minimum T -norm: Tmin(x, y) = min(x, y),
• the product T -norm: Tp(x, y) = x · y, and
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• the  Lukasiewicz’s T -norm: T L(x, y) = max(x+ y − 1, 0).
There exist many different definitions of similarity metrics which have been employed with success

for different purpose such as clustering, classification, recognition and diagnostics. However, it is very60

challenging to validate the effectiveness of a similarity metric in real application scenarios. In this paper,
the proposed aggregation methods focus on the use of transitive similarity metrics in support of water
treatment plant monitoring.

2.2. Aggregation of fuzzy relations

In describing many engineering problems, an entity is commonly represented by a set of features or65

evaluated by a set of characteristic indicators [22]. As such, the evaluation of similarity between two entities
is usually based on their feature/indicator-values. When multiple indicators are considered, an aggregator
is typically employed to combine multiple similarity values into a single one. For example, the similarity
degrees derived from individual water quality indicators can be aggregated using a weighted sum in an effort
to construct an overall water quality index for rivers [23]. In the following, relevant concepts and properties70

regarding aggregation of fuzzy relations are introduced.
Formally, let X denote a finite set, Rj = [rj(a, b)] : X × X → [0, 1], a, b ∈ X, j = 1, · · · ,m denote m

fuzzy relations (named as component relations) on X, and w1, · · · , wm ∈ [0, 1] denote weights, respectively
associated with these relations. The aggregation process aims at providing a relation R = [r(a, b)], a, b ∈
X, summarising the component relations R1, · · · , Rm in conjunction with the information implied by the75

weights w1, · · · , wm. Here, the aggregated degree r(a, b) ∈ [0, 1] at position (a, b), a, b ∈ X depends on
the local compositions r1(a, b), · · · , rm(a, b). The component relations usually represent the similarities of
patterns from different perspectives such as opinions from different experts, multiple criteria of evaluation
and different features of describing data.

Definition 2. [24] The aggregation of component relations R1 = [r1(a, b)], · · · , Rm = [rm(a, b)], a, b ∈ X,80

with weights w1, · · · , wm, is a relation R over X such that

r(a, b) = Agg(r1(a, b), · · · , rm(a, b), w1, · · · , wm) (1)

where a, b ∈ X and Agg is a mapping [0, 1]2m → [0, 1], non-decreasing in the first m places and satisfying:

Agg(0, · · · , 0, w1, · · · , wm) = 0, and Agg(1, · · · , 1, w1, · · · , wm) = 1

Both the weighted and non-weighted aggregation procedures have been studied in the literature. For
the purpose of aggregating fuzzy relations, typical methods investigated include the norm-conorm and sum-
product operators. Usually, the T -norm/conorm operators are employed to aggregate a more general type of85

fuzzy relations while the sum-product operators are employed to aggregate fuzzy relations which preserve T L

transitivity [24, 25]. An aggregator may be described as optimistic or pessimistic: An optimistic aggregator
produces outputs that are closer to the maximum of its inputs, and the outputs of a pessimistic one are
closer to the minimum of its inputs.

Definition 3. [24] Given component fuzzy relations Rj = [rj(a, b)], j = 1, . . . ,m, the optimistic aggregated
fuzzy relation over these relations is

Ropt = [ropt(a, b)] : ropt(a, b) = Sj=1,··· ,mT (wj , rj(a, b)); (2)

and the pessimistic aggregated fuzzy relation over these relations is

Rpess = [rpess(a, b)] : rpess(a, b) = Tj=1,··· ,mS(N(wj), rj(a, b)); (3)

where, T is a T -norm, S is a T -conorm and N is a strong negation.90
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Intuitively, the weight wj here reflects the relative importance of Rj . These two aggregators may be
explained with the specific case where all the m weights are assumed to be either 0 or 1 (representing
negligible or significant, respectively). In this case, Eqn. (2) and Eqn. (3) can be rewritten as Ropt =
S{j|wj=1}Rj and Rpess = T{j|wj=1}Rj , respectively. Thus, ropt(a, b) can be viewed as the degree of truth
of the statement that “there exists at least one significant criterion for which a hold the relation with b”,
and rpess(a, b) as the degree of truth of the statement that “a holds the relation with b for all significant
criteria” [24]. It has proved that Ropt ⊆ Rpess, that is, ropt(a,b) ≥ rpess(a,b). If the minimum, maximum
and the standard negation N(x) = 1− x are selected as the T -norm, T -conorm and negation in definition 3
respectively, then

ropt(a, b) = max
j=1,··· ,m

min(wj , rj(a, b)) (4)

and
rpess(a, b) = min

j=1,··· ,m
max(1− wj , rj(a, b)). (5)

Transitivity is considered to be an important property when similarity relations are adopted to handle
many real-world problems. Take biological data partitioning as an example, transitivity clustering can
outperform typical clustering approaches such as connected component analysis, Markov clustering, and
spectral clustering [16]. Therefore, maintaining transitivity in the aggregation of fuzzy relations can be
important and sometimes, critical to seeking desired solutions of a given problem. Three theorems about95

transitivity of fuzzy relation aggregations are introduced below.

Theorem 1. If R1, · · · , Rm are Tmin-transitive fuzzy relations, and f1, · · · , fm are non-decreasing mappings
from [0, 1] into [0, 1], then R = min

j=1,··· ,m
fj(Rj) is Tmin-transitive.

It is easy to conclude from theorem 1 (whose proof can be found in [24]) that if R1, · · · , Rm are Tmin-
transitivity, then Eqn. (5) preserves Tmin-transitivity.100

Theorem 2. [25] Let Rj = [rj(a, b)], j = 1, · · · ,m be m T L-transitive fuzzy relations. Then, the weighted
average of these relations: R = [r(a, b)] = [

∑m
j=1 wjrj(a, b)] with wj ≥ 0 and

∑m
j=1 wj = 1 is also T L-

transitive.

Theorem 3. [14] Let Rj = [rj(a, b)], j = 1, · · · ,m be m T L-transitive fuzzy relations. Then, R = [r(a, b)]
where r(a, b) = Agg(r1(a, b), · · · , rm(a, b)) is T L-transitive iff the De Morgan’s dual of Agg(x), x ∈ [0, 1]m,105

defined as N(x) = 1 − Agg(1 − x1, · · · , 1 − xm), satisfies the following condition: ∀x, y, z ∈ [0, 1]m, x =
y + z =⇒ N(x) ≤ N(y) +N(z).

Based on the pessimistic aggregated fuzzy relation implemented with the min-max or sum-product weighted
aggregation of T L-transitive relations, this paper investigates two types of ordered weighted aggregation of
fuzzy relations, as follows.110

3. Novel OWA of Fuzzy Relations

As indicated earlier, the associations between fuzzy relations and similarity/distance metrics have been
widely studied. According to [26], aggregating operations can also be interpreted in terms of distance
measurements. In particular, when appropriate weights are selected, an OWA operator can act as a distance
metric, being a positive mapping which satisfies identity, symmetry, and triangle inequality [9, 27]. In115

essence, OWA operators form a family of aggregation procedures which may be seen as a special type
of weighted average based on the ordering of their arguments. The fundamental property of this family of
operators is the reordering step in which the arguments are rearranged in descending order and subsequently
integrated into a single aggregated value.

Definition 4. [4] A mapping A : Rm → R is called an OWA operator if120
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A(x1, · · · , xm) =

m∑
j=1

wjxπ(j)

where xπ(j) is a permutation of xj ∈ R, j = 1, · · · ,m, which satisfies that xπ(j) is the j-th largest amongst
all xj , j = 1, . . . ,m, and wj ∈ [0, 1], j = 1, · · · ,m is a collection of weights that jointly satisfy

∑m
j=1 wj = 1.

Three special cases of this type of operator are: arithmetic mean, maximum, and minimum. The mean
operator results by setting wj = 1/m, j = 1, · · · ,m, the maximun by w1 = 1 and wj = 0 for j 6= 1, and
the minimum by wm = 1 and wj = 0 for j 6= m. These weighting vectors are denoted as Wmean, Wmax and
Wmin respectively in the remainder of this paper. Obviously, an important feature of the OWA operator is
that it is a “mean” operator which satisfies:

min{x1, · · · , xm} ≤
m∑
j=1

wjxπ(j) ≤ max{x1, · · · , xm}.

Such an operator provides aggregation between the maximum and the minimum of the arguments. This
boundedness implies that it is idempotent; that is, if all xj = constant then A(x1, · · · , xm) = constant.
For presentational simplicity, the weights of an ordered weighted aggregation are hereafter denoted as a125

weighting vector W = (w1, · · · , wm), in which the j-th component is wj . Different choices of the weighting
vector W can lead to different aggregation results. The ordering of the arguments normally implies the
nonlinear nature of the OWA operators.

3.1. Ordered Weighted Aggregations of Fuzzy Similarity Relations

It has proven [9] that if an OWA weighting vector satisfies the buoyancy property (e.g., a special case of130

Choquet integral where a symmetric submodular fuzzy measure is used), wi ≥ wj for i < j (i, j = 1, · · · ,m),
the corrsponding OWA operator manifests the properties of a norm and hence, it can be used to form a
distance metric. The resulting metric has found successful applications in group decision making [28] and
in semi-supervised clustering [27]. However, there are many other applications where fuzzy similarities are
adopted instead of distance metrics [29, 30, 31]. Thus, further development of OWA operators by exploit-135

ing the aggregation of fuzzy relations would benefit such applications. Inspired by this observation, two
types of ordered weighted aggregation are introduced here, using the min-max and sum-product operators
respectively.

Definition 5. Let Rj = [rj(a, b)], j = 1, · · · ,m be m fuzzy relations. Then, the ordered weighted aggregation
Rmin = [rmin(a, b)], a, b ∈ X, of component relations R1, · · · , Rm, implemented with the weighting vector
(w1, · · · , wm) and min-max operator is a relation Rmin over X ×X such that

rmin(a, b) = min
j=1,··· ,m

max(1− wj , rπ(j)(a, b)) (6)

where rπ(j)(a, b) is a permutation of rj(a, b), j = 1, · · · ,m, which satisfies that Rπ(j)(a, b) is the j-th largest
of the rj(a, b), j = 1, . . . ,m, and wj ∈ [0, 1], j = 1, · · · ,m is a collection of weights that jointly satisfy140

max
j=1,··· ,m

wj = 1.

Definition 6. Let Rj = [rj(a, b)], j = 1, · · · ,m be m fuzzy relations. Then, the ordered weighted aggrega-
tion R L = [r  L(a, b)], a, b ∈ X, of component relations R1, · · · , Rm, implemented with the weighting vector
(w1, · · · , wm) and sum-product operator is a relation R L over X ×X such that

r  L(a, b) = A(r1(a, b), · · · , rm(a, b)) =

m∑
j=1

wjrπ(j)(a, b) (7)

where rπ(j)(a, b) is a permutation of rj(a, b), j = 1, · · · ,m, which satisfies that rπ(j)(a, b) is the j-th largest
of the rj(a, b), j = 1, . . . ,m, and wj ∈ [0, 1], j = 1, · · · ,m is a collection of weights that jointly satisfy∑m
j=1 wj = 1.

5



The above two aggregated relations Rmin and R L implement two different mappings from multiple145

similarity relations onto one relation: Rm → R. The constraint over the weights in Rmin is different from
that over those in R L. This is due to the requirement of Definition 2 that when all the component relations
R1, · · · , Rm are zero, the constraint max

j=1,··· ,m
wj = 1 must ensure Rmin = 0. Obviously, both Rmin and R L

are “mean” operators which satisfy the boundedness

min
j=1,··· ,m

rj(a, b) ≤ rmin(a, b), r L(a, b) ≤ max
j=1,··· ,m

rj(a, b).

Importantly, as these two aggregators are designed for combining fuzzy relations, the reflexivity, sym-150

metry and T -transitivity need to be considered. It is straightforward to prove that the aggregated relations
Rmin and R L preserve the reflexivity and symmetry if R1, · · · , Rm are themselves reflexive and symmetric.
However, the aggregated relation does not always display T -transitivity.

The discussion of transitivity and symmetry on fuzzy relations has drawn much attention, especially on
their effectiveness and interpretation in real applications. When an inference process is prototype-based,155

such as generating clusters of patterns that are similar to certain prototypical samples, such properties do not
seem to be a necessary condition. However, there are many other situations that may require homogeneous
similarities and clusters/granules whose members satisfy symmetry and transitive property. Clusters of
this type are easy to recognise from a practical point of view, and the knowledge extracted from one of
such clusters may also be applied in the same fashion to the rest. It is owing to this observation that160

symmetry and transitivity in similarity relations are considered to be very useful properties for knowledge
extraction in many scenarios. Thus, the Tmin-transitivity and T L-transitivity of the proposed Rmin and R L

are investigated. Although transitivity is not always preserved in these aggregation procedures, it is proven
that transitivity can be retained by the aggregated results if the weighting vectors employed satisfy certain
constraints. The relevant theoretical development is summarised in the following two theorems.165

Theorem 4. Let R1, · · · , Rm be Tmin-transitive relations and (w1, · · · , wm) be the weighting vector in Rmin

such that wi ≤ wj for i < j, then Rmin is Tmin-transitive.

Proof. Without losing generality, suppose that π1(j), π2(j) and π3(j) are three permutations of j = 1, · · · ,m,
such that rπ1(j)(a, b), rπ2(j)(a, c) and rπ3(j)(c, b) are the j-th largest value in {r1(a, b), · · · , rm(a, b)}, {r1(a, c),
· · · , rm(a, c)} and {r1(c, b), · · · , rm(c, b)}, respectively, and that w′j = 1 − wj . For all a, b, c ∈ X, since
R1, · · · , Rm are Tmin-transitive, then

rmin(a, b) = min
j=1,··· ,m

max(w′j , rπ1(j)(a, b)) ≥ min
j=1,··· ,m

max
(
w′j ,min(rπ1(j)(a, c), rπ1(j)(c, b))

)
.

Because of the distributivity of max over the min operator and the associativity of min, the right side of
Eqn. (3.1) equals

min
j=1,··· ,m

min
(

max(w′j , rπ1(j)(a, c)),max(w′j , rπ1(j)(c, b))
)

=

min
(

min
j=1,··· ,m

max(w′j , rπ1(j)(a, c)), min
j=1,··· ,m

max(w′j , rπ1(j)(c, b))
)
. (8)

Given that wi ≤ wj ⇒ w′i ≥ w′j for i < j and rπ2(i)(a, c) ≥ rπ2(j)(a, c), then rmin(a, c) = min
j=1,··· ,m

max(w′j ,

rπ2(j)(a, c)) is equal to max(w′m, rπ2(m)(a, c)), which is the minimum value amongst all the permutations of
r1(a, c), · · · , rm(a, c) combined with w′1, · · · , w′m where w′i ≥ w′j for i < j. Then,

rmin(a, c) = min
j=1,··· ,m

max(w′j , rπ2(j)(a, c)) ≤ min
j=1,··· ,m

max(w′j , rπ1(j)(a, c)),

and similarly,

rmin(c, b) = min
j=1,··· ,m

max(w′j , rπ3(j)(c, b)) ≤ min
j=1,··· ,m

max(w′j , rπ1(j)(c, b)).

6



Thus, the expression given in Eqn. (8) is greater or equal to

min
(

min
j=1,··· ,m

max(w′j , rπ2(j)(a, c)), min
j=1,··· ,m

max(w′j , rπ3(j)(c, b))
)

= min(rmin(a, c), rmin(c, b)).

Theorem 5. Let R1, · · · , Rm be T L-transitive relations and (w1, · · · , wm) be the weighting vector in T L such
that wi ≤ wj for i < j, then R L is T L-transitive.170

Proof. In general, suppose that π1(j), π2(j) and π3(j) are three permutations of j = 1, · · · ,m, such that
rπ1(j)(a, b), rπ2(j)(a, c) and rπ3(j)(c, b) are the j-th largest value in {r1(a, b), · · · , rm(a, b)}, {r1(a, c), · · · , rm(a, c)}
and {r1(c, b), · · · , rm(c, b)}, respectively. For all a, b, c ∈ X, since r1, · · · , rm are T L-transitive, then

r L(a, b) =

m∑
j=1

wjrπ1(j)(a, b) ≥

m∑
j=1

wj ·max
(
rπ1(j)(a, c) + rπ1(j)(c, b)− 1, 0

)
≥

m∑
j=1

max
(
wjrπ1(j)(a, c) + wjrπ1(j)(c, b)− wj , 0

)
≥

max

( m∑
j=1

(
wjrπ1(j)(a, c) + wjrπ1(j)(c, b)− wj

)
, 0

)
≥ max

( m∑
j=1

wjrπ1(j)(a, c) +

m∑
j=1

wjrπ1(j)(c, b)− 1, 0
)

e.g.,

r L(a, b) ≥ T L(

m∑
j=1

wjrπ1(j)(a, c),

m∑
j=1

wjrπ1(j)(c, b)) (9)

Because the sum-product
∑m
j=1 wjrπ(j)(a, c) with wi ≤ wj for i < j achieves its minimal value amongst

all the permutations of r1(a, c), · · · , rm(a, c) when π(j) = π2(j), e.g., when r1(a, c), · · · , rm(a, c) are in
descending order and wj=1,··· ,m are in ascending order. Therefore,

∑m
j=1 wjrπ1(j)(a, c) ≥

∑m
j=1 wjrπ2(j)(a, c)

and similarly,
∑m
j=1 wjrπ1(j)(c, b) ≥

∑m
j=1 wjrπ3(j)(c, b). Then, the right side of Eqn. (9) is greater than or

equal to

T L(

m∑
j=1

wjrπ2(j)(a, c),

m∑
j=1

wjrπ3(j)(c, b)) = T L(r L(a, c), r L(c, a))

3.2. Decision on the Weighting Vector

A common pitfall with existing aggregation operators is the inability to provide an explanatory means by
which a user can utilise to enhance the individual perception of arguments’ significance. To resolve this short
coming, the stress function has been introduced [32] as a simple mechanism for attaining interpretability175

in OWA, which formalises characterisation (andness/orness) of the resultant OWA operators. This can be
accomplished using a function h : [0, 1]→ R+ to stress positions where significant values stand out from the
weighting vector. Formally, a weighting vector of OWA can be defined by a stress function h such as that
is given below.

Definition 7. [32] Let h : [0, 1]→ R+ be a non-negative function on the unit interval. The OWA weighting
vector W = (w1, · · · , wj , · · · , wm) can then be defined by:

wj =
h( jm )∑m
j=1 h( jm )

(10)

Such a function h is termed a stress function for OWA.180
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The OWA weighting vector obtained by the use of a stress function has a number of helpful features. For
instance, values from a stress function h(x) associated with the lower portion of the left side of [0, 1] reflect
those weights associated with the larger argument values, while the values associated with the right side of
the unit interval reflect the weights associated with the smaller values in the aggregation. Other properties
are omitted here but can be found in [27, 32, 33].185

Different types of stress function can be used to express, and to impose constraints over, the distribution
of weights, thereby resulting in different aggregation behaviours. The overall behaviour of an aggregation
operator can be described by the so-called attitudinal character measure. It gives an estimation of whether
an aggregation operator behaves similarly to conjunction/andness (influenced by smaller argument values)
or disjunction/orness (influenced by larger values) [34]. In particular, a useful attitudinal character measure
of an OWA operator with the weighting vector W is:

A-C(W ) =
1

m− 1

m∑
j=1

((m− j)wj). (11)

Interestingly, note that A-C(Wmean) = 0.5, A-C(Wmax) = 1 and A-C(Wmin) = 0, where Wmean, Wmax and
Wmin denote the weighting vectors used in the conventional aggregation operators that are implemented by
the arithmetic average, maximum and minimum, respectively.

The concepts of attitudinal character and stress function can be extended to the proposed aggregations
of fuzzy relations. Since the constraints on the weighting vector in Rmin is different from Eqn. (10), a modi-190

fication regarding the normalisation is needed. An intuitive modification is: wj = h(j/m)/ max
j=1,··· ,m

h(j/m).

This implies that the measure of attitudinal character for Rmin is normalised such that

A-C′(W ) =
A-C(W )∑m
j=1 wj

. (12)

However, obtaining the weighting vector from a stress function for R L remains the same as with Eqn. (10),
this is because the weighting vector of R L satisfies

∑m
j=1 wj = 1. Hence, A-C′(W ) = A-C(W ) for R L.

As an example, consider three data points α, β, γ ∈ X. Let A1,··· ,4 denote four fuzzy sets A1, · · · , A4195

as shorthand, representing four fuzzy terms defined on X. Suppose that µ1,··· ,4(α) = (0.63, 0.94, 0.97, 0.62),
representing that µA1

(α) = 0.63, µA2
(α) = 0.94, µA3

(α) = 0.79 and µA4
(α) = 0.62 (with the rest below

representing similar information in the same manner), µ1,··· ,4(β) = (0.01, 0.49, 0.25, 0.97) and µ1,··· ,4(γ) =
(0.68, 0.91, 0.62, 0.68). Denote Tmin-transitive and T L-transitive fuzzy relations by Tmin and T L norms, re-
spectively. Thus, rmin

j (α, β) = min(µAj (α), µAj (β)) and r L
j (α, β) = 1−|µAj (α)−µAj (β)|, j = 1, · · · , 4. Then,200

the corresponding Tmin-transitive similarity relations are: rmin
1,··· ,4(α, β) = (0.01, 0.49, 0.25, 0.62), rmin

1,··· ,4(α, γ) =

(0.63, 0.91, 0.62, 0.62), rmin
1,··· ,4(γ, β) = (0.01, 0.49, 0.25, 0.68), and the T L-transitive ones over the three exam-

ples are: r L
1,··· ,4(α, β) = (0.38, 0.55, 0.28, 0.65), r L

1,··· ,4(α, γ) = (0.95, 0.97, 0.65, 0.94), r L
1,··· ,4(γ, β) = (0.33, 0.58,

0.63, 0.71).
From the above, Table 1 summarises the resulting weights obtained from the application of the present205

approach and Table 2 shows the aggregated results ofRmin
1,··· ,4 andR L

1,··· ,4 using Eqns. (6) and (7), respectively.
It can be seen from the example that generally, the results of aggregated relations are affected by the

specification of the stress function. Higher attitudinal character values will result in higher-valued aggregated
similarities. The example also demonstrates that Rmin dose not preserve Tmin-transitive in general, as under
W1, rmin(α, β) < min(rmin(α, γ), rmin(γ, β)). Similarly, under W1 and W2, r L(α, β) < T L(r L(α, γ), r L(γ, β)),210

which means that R L dose not generally preserve T L-transitive either. However, with the assistance of
Theorem 3, it can be proven that in general, when the component relations are T L-transitive in R L, the
aggregated relation is T L-transitive if and only if the weighting vector satisfies the additional condition that
wi ≤ wj for i < j (see Appendix A).

To further illustrate how the changes in weighting vectors may affect the behaviour of Rmin and R L,215

an example involving a two dimensional dataset is employed. Each dimension represents the membership
value of a data point belonging to a certain given fuzzy set. The Z-axises (similarities) in Figs. 1 and 2
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Table 1: Examples of Stress Function, where x ∈ [0, 1]

h(x) = Weighting Vector A-C′(W )

W1 1, for x = 0; Rmin : (1.00, 0.00, 0.00, 0.00) 1.00

0, otherwise. R L : (1.00, 0.00, 0.00, 0.00)

W2 1.25− x Rmin : (1.00, 0.75, 0.50, 0.25) 0.63

R L : (0.40, 0.30, 0.20, 0.10)

W3 constant ∈ (0, 1] Rmin : (1.00, 1.00, 1.00, 1.00) 0.50

R L : (0.25, 0.25, 0.25, 0.25)

W4 x Rmin : (0.25, 0.50, 0.75, 1.00) 0.33

R L : (0.10, 0.20, 0.30, 0.40)

W5 0, for x = 0; Rmin : (0.00, 0.00, 0.00, 1.00) 0.00

1, otherwise. R L : (0.00, 0.00, 0.00, 1.00)

Table 2: Aggregated Result of Examples

W W1 W2 W3 W4 W5

rmin(α, β) 0.6200 0.4900 0.0100 0.0100 0.0100

rmin(α, γ) 0.9100 0.6200 0.6200 0.6200 0.6200

rmin(γ, β) 0.6800 0.4900 0.0100 0.0100 0.0100

r L(α, β) 0.6500 0.5290 0.4650 0.4010 0.2800

r L(α, γ) 0.9700 0.9260 0.8775 0.8290 0.6500

r L(γ, β) 0.7100 0.6220 0.5625 0.5030 0.3300

outline the aggregated similarities of every possible point in the problem space, β ∈ X, to a certain point
α, with µA1

(α) = 0.5 and µA2
(α) = 0.5 being the memberships of α belonging to the two fuzzy sets A1 and

A2 shown. That is, Z = rmin(α, β) in Fig. 1 and Z = r L(α, β) in Fig. 2, where µ1,2(α) = (0.5, 0.5) and220

µ1,2(β) ∈ [0, 1]× [0, 1].
Note that when non-transitive weighting vectors (A-C′(W ) > 0.5) are used, both of the surfaces in Figs.

1 and 2 project non-convex contour lines, reflecting the non-transitivity of the aggregation. It can be seen
from this example that as the proposed aggregation is applied to such real problems, engineering users will
have the degree of freedom to control both the T -transitivity and the behaviour (optimistic or pessimistic)225

of the Rmin and R L, by tuning the stress function, or by tuning the weights in a weighting vector. With
the assistance of attitudinal character, engineers can have an intuitive interpretation of how optimistic or
pessimistic a certain aggregator is, so that the tuning of the system parameters is not done in a “black-box”
manner.

Note also that, due to the fact that aggregations based on min-max operators more easily produce discrete230

results than the ones based on sum-product operators, Rmin is not so sensitive as R L to the change of weights.
Besides, if the weighting vectors satisfy the constraint in Theorem 4 in an effort to retain transitivity, the
Rmin aggregation will behave as the classic min operator and hence, losing the point of developing this type
of aggregator (see proof in Appendix B).

4. Examples of Applying R L to Hierarchical Clustering235

In order to demonstrate the potential of ordered weighted aggregation of fuzzy relations in problem-
solving, this section presents an application of aggregated relations to perform hierarchical data clustering.
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Figure 1: Trend of Rmin Aggregated Similarity against Weighting Vector

Figure 2: Trend of R L Aggregated Similarity against Weighting Vector
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Since similarity is fundamental to the definition of a cluster, a measure of the similarity between two patterns
drawn from the same feature space is essential to most clustering procedures. This application therefore,
uses the proposed OWA approach to justify the similarity of each pair of patterns, grouping similar patterns240

into the same cluster using a hierarchical clustering algorithm. Its performance is assessed over synthetic
2-dimensional datasets and also UCI benchmark datasets. In addition, the work further investigates the
impact of different weighting vector settings upon the clustering results. Due to the relative insensitiveness
of Rmin in recognising the changes of the weights, only the results on R L are reported here.

Most hierarchical clustering methods are variants of either the so-called single-link or complete-link245

algorithm. These two algorithms differ in the way they characterise the similarity between a pair of clusters.
In single-link methods, the distance between two clusters is the minimum of the distances between all pairs
of patterns separately drawn from the two clusters. In complete-link methods, the distance between two
clusters is the maximum of all pairwise distances between patterns in the two clusters. In either case, two
clusters are merged to form a larger cluster based on certain minimum distance criterion. Unlike classical250

k-means clustering, both single-link and compete-link algorithms do not involve random initialisations. The
complete-link hierarchical clustering is selected herein to test the performance of the proposed aggregation
of fuzzy relations as similarity metrics in clustering analysis. This is because the complete-link algorithm
generally produces tightly bound or compact clusters [35].

A component fuzzy relation can be regarded as a similarity/dissimilarity metric amongst data points,255

based on a certain feature. The OWA-aggregated fuzzy relation reflects the overall estimation of component
similarities which are based on each considered feature. Without losing generality, in this work, it is assumed
that each feature is described by a number of fuzzy sets, defined on the relevant underlying problem domain.
Formally, given a dataset of N points (p1, · · · , pN ), each point pa, a = 1, · · · , N is described by M features,
and the j-th feature is expressed by a set of membership functions µjk, k = 1, · · · , Lj . To have a common260

representation for all features, the number of linguistic labels naming the fuzzy sets for each feature is
extended to maxj∈{1,...,LM}Lj , denoted as L. This does not lose generality as for those features whose
original number of fuzzy labels is smaller than L, artificial labels can be created by copying the last label
(or the first if so desired) to fill the gap. As such, each data point pa is characterised by the following:
((µ11

a , · · · , µ1L
a ), · · · , (µj1a , · · · , µjla , · · · , µjLa ), · · · , (µM1

a , · · · , µML
a )), j = 1, . . . ,M .265

From this, fuzzy relations between points can be first built with respect to each individual feature.
Then, the proposed ordered weighted aggregation can be employed to aggregate the similarities evaluated
on the basis of individual features. The hierarchical clustering mechanism using the proposed R L is therefore
summarised as follows:

• Step 1. Acquire the fuzzy similarity relations rj(pa, pb) based on the j-th feature, j = 1, . . . ,M .
According to [14], the T L-transitive similarity relation involving L linguistic labels can be obtained by:

r L
j (pa, pb) = inf

l∈{1,··· ,L}
(1− |µjla − µ

jl
b |) (13)

• Step 2. Aggregate r L
j , j = 1, · · · ,M using R L, i.e., Eqn. (7).270

• Step 3. Apply complete-link hierarchical clustering based on the aggregated similarities.

4.1. Experimental Setup

To evaluate the performance of utilising R L-aggregated fuzzy relations for clustering, it is experimentally
tested over six synthetic 2-dimensional datasets (see Fig. 3) and six UCI standard benchmark datasets whose
variables are continuously valued [36], where the underlying true labels of the instances are known but are275

not explicitly used in the clustering process. Details of these datasets are summarised in Table 3.
Both the normalisation and fuzzification of original UCI datasets are implemented (synthetic datasets are

only fuzzified). For a point pa, a = 1, · · · , N , its j-th feature value Fj(pa) ∈ R, j = 1, · · · ,M is normalised
to F ′j(pa) ∈ [0, 1] by

F ′j(pa) =

Fj(pa)− min
i=1,··· ,N

(Fj(pi))

max
i=1,··· ,N

(Fj(pi))− min
i=1,··· ,N

(Fj(pi))
. (14)
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Figure 3: Synthetic 2-dimensional Datasets
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Table 3: Summary of Datasets Used

Datasets #Instances #Features (M) #Clusters Resource

2-banana 373 2 2 [37]

4-gaussin 400 2 4 generated

Aggregation 788 2 7 [38]

Compound 399 2 6 [39]

Flame 240 2 2 [40]

Path-based 300 2 3 [41]

Ecoli 336 7 8 [42]

Glass 214 9 6 [43]

Ionosphere 351 34 2 [44]

Iris 150 4 3 [45]

Thyroid 215 5 3 [46]

Wine 178 13 3 [47]

Figure 4: Fuzzification of Feature Values

In fuzzification, every normalised feature value is transformed into a set of five membership functions as
depicted in Fig. 4 [14].

To facilitate direct comparison, the number of clusters is set to the the number of given classes per
dataset. The clustering results are evaluated in terms of accuracy as the ground truth of the clusters280

for each dataset is known. To examine the relationship between clustering accuracy and the attitudinal
character of the R L weighting vector, 21 weighting vectors are generated using linear stress functions with
the attitudinal character values distributed from zero to one. As it is shown in Fig. 5, an aggregator
of minimum can be gained by using SF1 as the stress function in OWA (i.e., W1 = (0, · · · , 0, 1)),
while an aggregator of average can be gained by using SF11 (i.e., W11 = (1/m, · · · , 1/m), where285

m is the number of features). By reshaping the stress function from SF1 to SF11, the value of
attitudinal character can be tuned from A-C′(W1) = 0.0 to A-C′(W11) = 0.5. Weighting vectors
with A-C′(W ) ∈ (0.5, 1] are in reverse order of the weights within W10 to W1, respectively
(e.g., W21 = (1, 0, · · · , 0) whose weights are in reverse order of W1 = (0, · · · , 0, 1)). The weighting
vectors with A-C′(W ) ∈ [0, 0.5] preserve transitivity while the others (A-C′(W ) ∈ (0.5, 1]) do not. For290

each weighting vector on each dataset, the clustering algorithm runs only once, since the complete-link
hierarchical clustering does not involve any random parameter initialisation and multiple runs would only
generate identical outputs.
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Figure 5: Stress Functions for Weights Generating
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Figure 6: Trend of Accuracy Change against Attitudinal Character

4.2. Results and Discussion

Figure 6 shows the change of accuracy (Y-axis) with respect to the (normalised) attitudinal character295

value of the weighting vectors (X-axis). “N/F-RL” represents normalisation/fuzzification of the datasets
with R L similarity based hierarchical clustering.

It can be seen from Fig. 6 that the final clustering result is sensitive to the A-C′(W ) value of a weighting
vector. In particular, regarding the 4-gaussin and Aggregation datasets, the accuracy of “RL” generally
decreases as A-C′(W ) increases. This shows a preference for T L-transitive similarities. A common feature of300

these two synthetic datasets is that the majority of their data points are in the clusters of convex shapes. In
the 2-banana dataset, where the clusters form non-convex shapes, the accuracy of “RL” shows an ascending
trend with the increase of A-C′(W ). On the Flame dataset, where nearly 50% points are in the cluster of
a convex shape, whilst the others are in the cluster of a non-convex shape, the clustering result vibrates
drastically when the A-C′(W ) increases. It can be concluded from these results that T L-transitive similarities305

(A-C′(W ) ∈ [0, 0.5]) are preferred in the construction of convex clusters (for complete-link hierarchical
clustering), while A-C′(W ) ∈ (0.5, 1] are preferred in the construction of non-convex clusters. However, for
datasets of both convex clusters and non-convex clusters (especially when their boundaries are close to each
other), the selection of an appropriate weighting vector can be a challenge.

To compare the results obtainable by the T L-transitive aggregation against those not T L-transitive, the310

average accuracies (with standard deviation) and the best achievable accuracies are reported in Tables 4
and 5, for normalised and fuzzified datasets respectively. If the same best accuracy is obtained with more
than two weighting vectors, their attitudinal character values are given by intervals. Note that not all the
values in the interval are tested in this experiment, but only those discrete points which are shown in Fig.
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Table 4: Comparison of Accuracy (%) of N-R L: T L-transitive vs. Not T L-transitive

Average±Standard Deviation Best-accuracy (A-C′(W ))

T L-transitive Not T L-transitive T L-transitive Not T L-transitive

Ecoli 78.84±3.63 66.76±13.15 83.63 (0.33) 78.87 (0.62)

Glass 47.20±3.22 50.23±2.76 49.53 (0.11, 0.42) 55.61 (0.52)

Ionosphere 54.98±6.06 58.43±6.26 69.13 (0.20) 68.26 (0.52)

Iris 78.85±9.17 82.47±3.44 88.00 (0.38) 88.67 (0.75)

Thyroid 78.18±3.58 84.09±8.54 82.79 (0.48) 94.88 ([0.62,0.67])

Wine 84.63±12.91 83.09±16.50 96.63 (0.39) 96.63 (0.57)

Table 5: Comparison of Accuracy (%) of F-R L: T L-transitive vs. Not T L-transitive

Average±Standard Deviation Best-accuracy (A-C′(W ))

T L-transitive Not T L-transitive T L-transitive Not T L-transitive

Ecoli 63.18±9.99 60.53±10.62 75.00 (0.50) 70.24 (0.82)

Glass 49.24±4.68 50.56±3.00 53.74 (0.42,0.46) 55.61 (0.52)

Ionosphere 57.87±7.34 62.26±10.82 74.35 (0.50) 76.96 ([0.52, 0.57])

Iris 67.09±17.09 74.27±9.66 82.67 ([0.38,0.45]) 84.67 (0.83)

Thyroid 77.72±4.62 80.93±0.72 80.93 ([0.25,0.5]) 81.86 ([0.75,0.83])

Wine 61.59±13.22 75.06±9.07 79.21 (0.50) 91.01 (0.61)

6. Since it is difficult to define a non-transitive counterpart for a transitive aggregation, the paired t-tests315

are not available for this comparison.
In terms of hierarchical clustering accuracy regarding the selected UCI datasets, the ascending/descending

trend with the increase of A-C′(W ) is not so obvious. This differs from the cases on the 2-banana, 4-gaussin
and Aggregation datasets. Overall, the accuracies of clustering with non T L-transitive similarities are better
than those achievable by T L-transitive ones. However, the standard deviations of the results are slightly320

higher, which shows that the result of hierarchical clustering is sensitive to the A-C′(W ) value of weighing
vectors. Nevertheless, non T L-transitive results outperform T L-transitive ones on both normalised and fuzzi-
fied datasets. This demonstrates that weighting vectors with higher A-C′(W ) (orness) are more preferable
on problems that exhibit similar properties as those selected UCI datasets.

Note that when Wmean is applied to R L aggregation, the resultant hierarchical clustering on normalised325

datasets is identical to Manhattan distance based complete-link hierarchical clustering (refer to the point
on line “RL” and “N-RL” with A-C′(W ) = 0.5 in Fig. 6). By comparing the positions where the R L

aggregated similarity relation obtains its best accuracy, it can be concluded that the proposed approach
has the potential of providing better clusters than the classic Manhattan distance metric when they are
applied to hierarchical clustering. Furthermore, R L also has the potential of producing better results than330

the classic max and min operators in the aggregation of T L-based fuzzy similarities on different features.
Clearly, the proposed aggregations are capable of dealing with fuzzy datasets. However, the accuracies

achieved using R L on fuzzified datasets are not necessarily better than those achieved on unfuzzified datasets.
One possible explanation is that the component similarity relations defined in Eqn. (13) are “pessimistic”
due to the use of the min operator. This may result in r L

j (pa, pb) = 0 between many data point pairs (of335

pa and pb) when trapezoid membership functions are used. In this case, less information is provided for the
following hierarchical clustering than the use of unfuzzified datasets.
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5. Application to Water Treatment Plant Monitoring

Environmental performance has become a critical and general issue in human society [22, 48, 49]. Creating
and maintaining robust environmental indicators is essential when complex environmental quality factors340

need to be effectively exploited in developing and communicating environmental public policy [23, 50]. For
instance, a poorly maintained industrial water treatment plant can significantly degrade the environmental
performance [51]. Such a plant is likely to involve a number of similar water quality measurements, just as
pointed out in [52, 53]: “interrelations between attributes are unavoidable as the plant is a single system with
interconnections”. Having taken notice of this, in this section, the proposed aggregation of fuzzy similarities345

is applied to clustering the dataset of malfunctions in an urban waste water treatment plant [36]. Also,
the interactions (i.e., the T -transitivity and the degree of orness) amongst the aggregation of water quality
measurements are analysed.

The water treatment dataset contains a set of historical data obtained over a period of 527 days, with one
series of measurements per day. 38 real-valued indicators (attributes) are monitored per day, with one set350

of such measurements forming one record in the dataset. According to the elements of the water treatment
plant, those measurements can be grouped into 5 aspects: input to plant (9 attributes), input to primary
settler (6 attributes), input to secondary settler (7 attributes), output from plant (7 attributes), and plant
performance (9 attributes). The status of the plant on a certain date is deemed to be in one of 13 different
categories, some of which representing normal status (positive labels) and others malfunctions in the plant355

(negative labels). Note that all malfunctions appear for very short periods (usually in a single day), so
there are not many examples with negative labels. For monitoring purpose, all forms of faulty behaviour
are regarded as just one type of malfunction. Thus, the dataset is re-labelled into two major categories: 513
samples for positive label, and the remaining 14 samples for negative label. The re-labelled categories are
shown in Table 6. For the present investigation, the dataset is normalised for each individual attribute and360

the missing value is replaced by the means of the values of that attribute.

Table 6: Summary of Re-labelled Water Treatment Dataset

Original Label Description New Label

Class 1 Normal situation Positive

Class 2 Secondary settler problems-1 Negative

Class 3 Secondary settler problems-2 Negative

Class 4 Secondary settler problems-3 Negative

Class 5 Normal situation with performance over the mean Positive

Class 6 Solids overload-1 Negative

Class 7 Secondary settler problems-4 Negative

Class 8 Storm-1 Negative

Class 9 Normal situation with low influent Positive

Class 10 Storm-2 Negative

Class 11 Normal situation Positive

Class 12 Storm-3 Negative

Class 13 Solids overload-2 Negative

Given a historical dataset as described above, the process of utilising the proposed method
to detect water treatment plant malfunction can be summarised by the stages of off-line
training and on-line monitoring.
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5.1. Off-line Training365

The training stage is aimed to find the best clustering structure which can describe the
distribution of the negative and positive instances in the historical dataset. Meanwhile, the
interaction between attributes can be quantified by the attitudinal character of weighing vector
employed in the best clustering, which helps engineers to understand the formation of these
clusters. The steps of off-line training is summarised as follows:370

• Step 1. Define a search space W of weighting vectors with different attitudinal characters.

• Step 2. For each weighting vector Wk ∈ W, calculate the aggregated similarity matrix
R L
Wk

amongst instances by using Eqn. (7) and (13).

• Step 3. For each R L
Wk
,Wk ∈W, generate a clustering result of the training dataset CWk

by
using complete-linkage hierarchical clustering.375

• Step 4. Select the best clustering result C∗ ∈ {CWk
|Wk ∈W} as the prototype for malfunc-

tion detection by analysing the quality of each clustering result, and select the weighting
vector with which C∗ is generated as W ∗.

The above method starts with the definition of a search space of weighting vectors. As shown in Section
4, such a space consists of 21 linear stress functions whose attitudinal character measures are monotonically380

increasing with their input. Table 7 (as given in Appendix C) shows the A-C′(W ) and the weights of
weighting vectors W1 to W11. The weights within W12 to W21 are in reverse order of the weights within W10

to W1, respectively (e.g., W21 = (1, 0, · · · , 0),W1 = (0, · · · , 0, 1)). According to Theorem 5, the weighing
vectors whose A-C′(W ) are in [0, 0.5] (i.e., W1 to W11) preserve transitivity, while the others (i.e., W12 to
W21) do not. By searching for the best weighting vector to support clustering, the proposed method can385

obtain not only a quality clustering prototype for malfunction detection, but also an intuitive explanation
of how the plant features may interact in revealing the working states of the plant.

By adopting each of the weighting vectors that are defined within the search space, the R L-aggregated
fuzzy similarity is used to support the complete-link hierarchical clustering, forming 13 clusters over the 527
days based on the water quality measurements. In assessing the clustering result of each weighting390

vector, the strategy of majority rule is taken; that is, all the days in a resulting cluster are labelled as
positive if the majority of the true labels are positive, otherwise, all the days in that cluster are labelled as
negatives. The experimental results which are generated by all weighting vectors in W are plotted
in Fig. 7 for analysis.

An important point to notice from these results is that in terms of N-RL, the points in the interval of395

A-C′(W ) ∈ [0, 0.5] are generally higher than those in the interval of A-C′(W ) ∈ (0.5, 1], and its accuracy
drops quickly when the A-C′(W ) is above 0.7. This indicates that when the R L aggregated fuzzy similarity
is applied to the water treatment dataset, the transitive aggregation is better than the non-transitive aggre-
gation. It indicates that in the dataset on water treatment plant, both the positive and negative days form
clusters of convex shapes, within the space delimited by the given 38 attributes. To further evaluate the400

quality of the clustering results generated using different weighting vectors, the precision and recall of the
detected negative days are provided in Fig. 8. Here, the precision of negative days is calculated as the the
number of days correctly labelled as negative days divided by the total number of negative days labelled by
the proposed method, and recall is defined as the number of days correctly labelled as negative days divided
by the total number of negative days that are given in the dataset (i.e., 14 for this dataset).405

It is clear from Fig. 8 that the precision values of negative days are generally very high values when
A-C′(W ) ∈ [0, 0.8]. When the A-C′(W ) is above 0.8, the values of precision become invalid since the total
number of the negative days labelled by the proposed method is zero, i.e., all the days are labelled as
positive days. Such high precision values indicate that if a day is clustered to be negative (by the proposed
method), it is very likely that the water treatment plant is indeed malfunctioning on the day. However, the410

values of recall are not so high as those of precision. In particular, when the A-C′(W ) is above 0.7 (or the
aggregated fuzzy similarity is non-transitive), the values of recall are lower than 0.4. This implies that many
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Figure 7: Clustering Accuracy on Water Treatment Dataset

Figure 8: Precision and Recall of Negative Days
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negative days are mis-clustered as positive days. If these clustering results were selected as the prototypes
to implement the monitoring system, malfunctions occurring on those mis-clustered negative days could not
be detected. In this case, if the same malfunctions happen again in future, the system would fail to detect415

them, which might cause serious consequences. On the other hand, when the A-C′(W ) is close to 2.0 (i.e., if
a transitive aggregated fuzzy similarity is employed), the value of recall reaches 1.0 and the value of precision
at this point is 0.824 (14/17 = 0.824). This shows that all the negative days in the dataset are correctly
detected, although 3 positive days are misclassified as negative ones.

Based on the above observation and considering the potential serious environmental consequences that420

may be caused by any undetected malfunction, the weighting vector W4 and its associated clustering result
are chosen as the prototype to implement the working water treatment plant monitoring system. This is
carried out in the implementation despite the fact that there are several weighing vectors which may lead
to a seemingly best accuracy as reflected in Fig. 7. Note that according to the definition of attitudinal
character, A-C′(W4) = 0.197 can be explained as an andness (pessimistic) behaviour of the aggregation.425

In other words, when monitoring the water treatment plant (in order to detect any malfunction), the 38
measurements should be conjunctively rather than disjunctively considered, and a day should be classified
as normal/abnormal only if the majority measurements of that day are normal/abnormal.

5.2. On-line Monitoring

From this discussion, the best weighting vector is selected through the analysis of the recall and precision430

of the negative days. Following this, the aggregated similarity can be calculated between a new instance and
the resultant 13 clusters. The label of the new instance can therefore be assigned by the 1-NN rule, labelling
it with the label of the cluster that is of the highest similarity. The details of on-line monitoring is
shown in Alg. 1.

Algorithm 1 On-line Monitoring

C∗ = {c1, c2, · · · , c13}, the best clustering result selected from off-line training;
W ∗, the weighting vector with which C∗ is generated;
r L, the value of R L aggregated similarity, where W ∗ is employed in the calculation;
Input: io = (i1, · · · , i38), an observed instance which is consist of 38 indicator-values;

1: max cl = 0;
2: for k = 1 : 13 do
3: complete linkage =1;
4: for each instance i ∈ ck do
5: if r L(i0, i) < complete linkage then
6: complete linkage = r L(i0, i)
7: end if
8: end for
9: if complete linkage > max cl then

10: max cl = complete linkage;
11: c∗ = ck;
12: end if
13: end for
14: if label of c∗ is Negative then
15: report a malfunction;
16: end if

Algorithm 1 calculates the values of complete-linkage between the new observation and435

those clusters in C∗ one by one, and the cluster with the maximum value of complete-linkage
(i.e. max cl) to the new observation is located. If there are more than one cluster reach the
maximum value of complete-linkage, the cluster with the smallest index i is located. Therefore,
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in order to detect and report potential malfunction, the negative clusters should be ordered in
front of those positive ones in C∗ after the off-line training. Also, instead of using the complete-link440

and 1-NN rule, there are alternative ways of calculating the similarity between an instance-cluster pair, and
of deciding on which cluster the instance ought to belong to [55, 56].

5.3. Discussion of Robustness

Robustness is key to engineering applications. For the proposed model of water treatment
plant monitoring, the clustering of historical dataset is critical to the off-line training stage445

and hence, to the whole monitoring system. It is assumed that the historical dataset has
collected sufficient amount of instances to represent the distribution of negative and positive
clusters. However, in order to increase the robustness of the system, it is wise to redo the
off-line training and rebuild the prototype of clusters after new data has been collected.

For a given dataset, different clustering algorithms may lead to different results. The450

hierarchical clustering is employed in the proposed system amongst many others due to its
good performance and also due to the dendrogram is very helpful for engineers to understand
the formation of the clusters. In fact, in order to entail comparison of the clustering quality, three
other classical clustering methods: Euclidean distance based complete-link hierarchical clustering (HC for
shorthand in the result presentation later), fuzzy c-means (FC), and k-means (KM) are employed as well455

(their clustering results are shown in Fig. 7). The MATLAB default parameter settings are adopted in these
algorithms. The results also show that the accuracy achieved by the proposed T L-transitive aggregation
outperforms that obtained by Euclidean distance based methods. This demonstrates that if the weights for
R L aggregation are appropriately selected, the proposed method may result in very good performance.

Note that apart from analysing the recall and precision of the clustering result, there are many methods460

that may be employed to decide on the quality of clustering results. For example, the prototype and cluster
consistency may be introduced to evaluate the performance of hierarchical clustering [54]. Nevertheless, no
matter what techniques to use, interpretability is a very important factor in any application of prototype
based methods, in order to assist engineers in detecting malfunctions. By introducing the OWA aggregation
of fuzzy similarity relations, the proposed method can provide not only clustering prototypes of a high465

quality, but also can explain the reason of achieving good clusters through the andness/orness behaviour of
the selected aggregator.

6. Conclusion

This paper has presented a novel notion of ordered weighted aggregation of fuzzy relations and its ap-
plication for hierarchical clustering. Similar to the classic OWA aggregation, the behaviour of the proposed470

aggregation of fuzzy relations can be controlled by the use of stress functions. The work has also invested the
conditions of when the aggregated similarity preserves T -transitivity. In addition to systematic experimen-
tal evaluation over conventional benchmark datasets, the realistic application investigation on monitoring
malfunctions in an urban waste water treatment plant indicate that the aggregated transitive fuzzy relations
generally outperform the non-transitive ones. Meanwhile, by introducing the OWA aggregation of475

fuzzy similarity relations into hierarchical clustering, the system can not only provide cluster-
ing prototypes with the dendrogram, but also can explain the interaction of attributes in the
form of attitudinal character, which is very helpful for engineers to understand the formation
of the clustering results in order to assist them in detecting malfunctions.

Whilst promising, the present work opens up an avenue for further investigation. For instance, the480

proposed method can be applied on other complex real-world problems such as Mars image clustering for
space exploration [57], apart from the detection of water treatment malfunction. It is also useful to examine
the performance of the proposed aggregations when more complicated stress functions rather than the
linear ones are applied. It would be very interesting to investigate how to learn the weights of the proposed
aggregation from datasets, while using stress functions as constraints to control the T L-transitivity of the485

learned weighting vectors. Last but not least, it would be helpful to consider integrating this work with an
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effective feature selection (FS) mechanism (e.g., [58]) to effectively reduce the number of attributes required
to be measured in order to perform the monitoring task more efficiently. In particular, previous research of
applying FS to water treatment plant monitoring as reported in [52, 53] may offer a direct input to such
investigations.490

Acknowledgments

The authors are very grateful to the reviewers for their constructive comments on the original manuscript
which have helped improve this work significantly. The first and third authors would like to thank Aberys-
twyth University for providing PhD scholarships in support of their research. Part of this work has been
supported by the Fundamental Research Funds for the Central Universities, China, under grant number:495

2016MS120.

Appendix A

Theorem 6. Let R1, · · · , Rm be T L-transitive relations, (w1, · · · , wm) be the weighting vector in T L, R L is
T L-transitive iff when wi ≤ wj for i < j.

Proof. It can be concluded from Theorem 3 that R L is T L-transitive ⇐⇒ the De Morgan’s dual of500

A(r1(a, b), · · · , rm(a, b)) satisfies that ∀x, y, z ∈ [0, 1]m|x = y + z;N(x) ≤ N(y) +N(z).
Let x′ = 1− x. Then, the De Morgan’s dual of A(x1, · · · , xm): N(x) = 1−A((1− x1), · · · , (1− xm)) =∑m
j=1 wjx

′
π′(j) where x′π′(j) is a permutation of x′j ∈ [0, 1], j = 1, · · · ,m, which satisfies that x′π′(j) is the

j-th largest of x′j . Since x′ = 1− x, the descent permutation of x′: (1− x)π′(j) can be replaced by an ascent
permutation of x: xπ(j) where xπ(i) ≤ xπ(j) for i < j, so that (1− x)π′(j) = 1− xπ(j). Thus,505

N(x) =1−
m∑
j=1

wjx
′
π′(j) = 1−

m∑
j=1

wj(1− x)π′(j)

=1−
m∑
j=1

wj(1− xπ(j))

=1−
m∑
j=1

(wj − wjxπ(j))

=1−
m∑
j=1

wj +

m∑
j=1

wjxπ(j)

=

m∑
j=1

wjxπ(j).

Hence, the De Morgan’s dual of A(x): N(x) can be seen as a ‘reversed OWA aggregation’ of x ∈ [0, 1]m,
where x1, · · · , xm are increasingly ordered. According to [9], an OWA aggregation is a norm (which satisfies
the triangle inequality f(x)+f(y) ≥ f(x+y)) if and only if the OWA weighting vector satisfies the additional
condition that wi ≥ wj for i < j. In the case of N(x) with wi ≤ wj for i < j, its arguments are reversely
ordered as they were in the original OWA operator, such that it equals to A(x) with wi ≥ wj for i < j.510

Thus, N(x) satisfies that ∀x, y, z ∈ [0, 1]m, x = y + z =⇒ N(x) ≤ N(y) +N(z).

Appendix B

Theorem 7. Let R1, · · · , Rm be m component fuzzy relations, (w1, · · · , wm) be the weighting vector in
Rmin = [rmin(a, b)] such that wi ≤ wj for i < j, then rmin(a, b) = min

j=1,··· ,m
rj(a, b).
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Proof. From the definition of Rmin, it can be obtained that rπ(i)(a, b) ≥ rπ(j)(a, b) for i < j and rπ(m)(a, b) =
min

j=1,··· ,m
rj(a, b). Assume w′j = 1−wj for j = 1, · · · ,m, then w′i ≥ w′j for i < j. Since rπ(i)(a, b) ≥ rπ(j)(a, b)

and w′i ≥ w′j , for i < j, then max(w′1, rπ(1)(a, b)) ≥ · · · ≥ max(w′m, rπ(m)(a, b)). Therefore,

rmin(a, b) = min
j=1,··· ,m

max(1− wj , rπ(j)(a, b))

= max(w′m, rπ(m)(a, b))

= max(1− wm, rπ(m)(a, b))

According to the definition of Rmin, max
j=1,··· ,m

wj = 1 and since wi ≤ wj for i < j then wm = 1.

rmin(a, b) = max(1− wm, rπ(m)(a, b))

= max(0, rπ(m)(a, b))

= rπ(m)(a, b)) = min
j=1,··· ,m

rj(a, b)

515

Note that the purpose of adding the constraint max
j=1,··· ,m

wj = 1 on Rmin is to make it satisfy the re-

quirement of Agg(0, · · · , 0, w1, · · · , wm) = 0 in Definition 2. If the constraint is removed from the defini-
tion of Rmin, Theorem 4 still holds while the result of rmin(a, b) will not equal to min

j=1,··· ,m
rj(a, b), but to

max(1− wm, rπ(m)(a, b)).

23



Appendix C520

Table 7: Searching Space of Weighting Vectors

ID A-C′(W ) Weighting Vector

W1 0.0000
( .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 1.0000 )

W2 0.0600
( .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0183 .0488 .0793 .1098 .1402 .1707 .2012 .2317 )

W3 0.1281
( .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0016 .0097 .0179 .0260 .0341 .0422 .0503 .0584 .0666 .0747 .0828 .0909 .0990 .1071 .1153 .1234 )

W4 0.1965
( .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0029 .0066 .0103 .0140

.0177 .0214 .0251 .0287 .0324 .0361 .0398 .0435 .0472 .0508 .0545 .0582 .0619 .0656 .0693 .0730 .0766 .0803 .0840 )

W5 0.2650
( .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0008 .0029 .0050 .0071 .0092 .0113 .0134 .0155 .0176 .0197 .0218 .0239

.0260 .0281 .0302 .0323 .0344 .0364 .0385 .0406 .0427 .0448 .0469 .0490 .0511 .0532 .0553 .0574 .0595 .0616 .0637 )

W6 0.3333
( .0013 .0027 .0040 .0054 .0067 .0081 .0094 .0108 .0121 .0135 .0148 .0162 .0175 .0189 .0202 .0216 .0229 .0243 .0256

.0270 .0283 .0297 .0310 .0324 .0337 .0351 .0364 .0378 .0391 .0405 .0418 .0432 .0445 .0459 .0472 .0486 .0499 .0513 )

W7 0.3879
( .0095 .0104 .0113 .0123 .0132 .0141 .0150 .0159 .0168 .0177 .0186 .0195 .0204 .0213 .0222 .0231 .0240 .0250 .0259

.0268 .0277 .0286 .0295 .0304 .0313 .0322 .0331 .0340 .0349 .0358 .0368 .0377 .0386 .0395 .0404 .0413 .0422 .0431 )

W8 0.4275
( .0155 .0160 .0166 .0172 .0178 .0184 .0190 .0196 .0202 .0207 .0213 .0219 .0225 .0231 .0237 .0243 .0248 .0254 .0260

.0266 .0272 .0278 .0284 .0290 .0295 .0301 .0307 .0313 .0319 .0325 .0331 .0337 .0342 .0348 .0354 .0360 .0366 .0372 )

W9 0.4575
( .0200 .0203 .0206 .0210 .0213 .0217 .0220 .0224 .0227 .0230 .0234 .0237 .0241 .0244 .0248 .0251 .0255 .0258 .0261

.0265 .0268 .0272 .0275 .0279 .0282 .0286 .0289 .0292 .0296 .0299 .0303 .0306 .0310 .0313 .0316 .0320 .0323 .0327 )

W10 0.4810
( .0235 .0236 .0238 .0239 .0241 .0242 .0244 .0246 .0247 .0249 .0250 .0252 .0253 .0255 .0256 .0258 .0259 .0261 .0262

.0264 .0265 .0267 .0269 .0270 .0272 .0273 .0275 .0276 .0278 .0279 .0281 .0282 .0284 .0285 .0287 .0288 .0290 .0292 )

W11 0.5000
( .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263

.0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 .0263 )
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[34] J. J. Dujmović, Properties of local andness/orness, in: Theoretical Advances and Applications of Fuzzy Logic and Soft
Computing, Springer, 2007, pp. 54–63.585

[35] A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review, ACM Computing Surveys (CSUR) 31 (3) (1999) 264–323.
[36] K. Bache, M. Lichman, UCI machine learning repository (2013).

URL http://archive.ics.uci.edu/ml

[37] A. K. Jain, M. H. Law, Data clustering: A users dilemma, in: Pattern Recognition and Machine Intelligence, Springer,
2005, pp. 1–10.590

[38] A. Gionis, H. Mannila, P. Tsaparas, Clustering aggregation, ACM Transactions on Knowledge Discovery from Data
(TKDD) 1 (1) (2007) 4.

[39] C. T. Zahn, Graph-theoretical methods for detecting and describing gestalt clusters, Computers, IEEE Transactions on
100 (1) (1971) 68–86.

[40] L. Fu, E. Medico, Flame, a novel fuzzy clustering method for the analysis of dna microarray data, BMC bioinformatics595

8 (1) (2007) 3.
[41] H. Chang, D.-Y. Yeung, Robust path-based spectral clustering, Pattern Recognition 41 (1) (2008) 191–203.
[42] P. Horton, K. Nakai, A probabilistic classification system for predicting the cellular localization sites of proteins., in:

Proceedings of the 4th International Conference on Intelligent Systems for Molecular Biology, Vol. 4, 1996, pp. 109–115.
[43] I. W. Evett, E. J. Spiehler, Rule induction in forensic science, Tech. rep., Central Research Establishment, Home Office600

Forensic Science Service (1987).
[44] V. G. Sigillito, S. P. Wing, L. V. Hutton, K. B. Baker, Classification of radar returns from the ionosphere using neural

networks, Johns Hopkins APL Tech. Dig 10 (1989) 262–266.
[45] R. A. Fisher, The use of multiple measurements in taxonomic problems, Annals of Eugenics 7 (2) (1936) 179–188.
[46] D. Coomans, I. Broeckaert, M. Jonckheer, D. L. Massart, Comparison of multivariate discrimination techniques for clinical605

data–application to the thyroid functional state., Methods Archive 22 (2) (1983) 93–101.
[47] B. Vandeginste, Parvus: An extendable package of programs for data exploration, classification and correlation, Journal

of Chemometrics 4 (2) (1990) 191–193. doi:10.1002/cem.1180040210.
[48] M. M. Savino, A. Mazza, G. Neubert, Agent-based flow-shop modelling in dynamic environment, Production Planning &

Control 25 (2) (2014) 110–122.610

[49] M. M. Savino, A. Mazza, Toward environmental and quality sustainability: An integrated approach for continuous im-
provement, IEEE Transactions on Engineering Management 61 (1) (2014) 171–181.

[50] M. M. Savino, M. Macchi, A. Mazza, Investigating the impact of social sustainability within maintenance operations,
Journal of Quality in Maintenance Engineering 21 (3).
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