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ABSTRACT

Aims. We aim to investigate the nature of dissipative instability appearing in a prominence planar thread filled with partially ionised
plasma in the incompressible limit. The importance of partial ionisation is investigated in terms of the ionisation factor and the
wavelength of sausage and kink waves propagating in the slab.
Methods. In order to highlight the role of partial ionisation, we have constructed models describing various situations we can meet
in solar prominence fine structure. Matching the solutions for the transversal component of the velocity and total pressure at the
interfaces between the prominence slab and surrounding plasmas, we derived a dispersion relation whose imaginary part describes the
evolution of the instability. Results were obtained in the limit of weak dissipation. We have investigated the appearance of instabilities
in prominence dark plumes using single and two-fluid approximations.
Results. Using simple analytical methods, we show that dissipative instabilities appear for flow speeds that are less than the
Kelvin-Helmholtz instability threshold. The onset of instability is determined by the equilibrium flow strength, the ionisation fac-
tor of the plasma, the wavelength of waves and the ion-neutral collisional rate. For a given wavelength and for ionisation degrees
closer to a neutral gas, the propagating waves become unstable for a narrow band of flow speeds, meaning that neutrals have a sta-
bilising effect. Our results show that the partially ionised plasma describing prominence dark plumes becomes unstable only in a
two-fluid (charged particles-neutrals) model, that is for periods that are smaller than the ion-neutral collision time.
Conclusions. The present study improves our understanding of the complexity of dynamical processes and stability of solar promi-
nences and the role partial ionisation in destabilising the plasma. We showed the necessity of two-fluid approximation when discussing
the nature of instabilities: waves in a single fluid approximation show a great deal of stability. Our results clearly show that the prob-
lem of partial ionisation introduces new aspects of plasma stability with consequences on the evolution of partially ionised plasmas
and solar prominences, in particular.

Key words. Sun: filaments, prominences – Sun: oscillations

1. Introduction

The lower part of the solar atmosphere is a perfect example of
an environment where temperatures are not high enough for a
complete ionisation of the fluid and charged particles and neu-
trals can coexist due to the collision between them. In partic-
ular, solar prominences are regions of cool and dense plasmas
where the plasma is not fully ionised and the hydrogen ionisation
degree could probably vary in different prominences or even in
different regions within the same prominence (Hirayama 1986;
Patsourakos & Vial 2002). In this state, the role of neutrals be-
comes important as the source of momentum transfer between
species. Since the neutrals are not controlled by the magnetic
field, they flow inside the prominence, preventing the formation
of any equilibrium that was not dynamic. Gilbert et al. (2007)
found evidence for cross-field diffusion of neutrals that could
explain the mass loss in quiescent prominences.

The mathematical description of partially ionised gases
is different from the standard magnetohydrodynamic (MHD)
approach, as the equations needed to fully describe the state and

dynamics of the plasma have to contain corresponding equations
for each species. Considerable advancement can be achieved if
we suppose that the prominence plasma is made up from hydro-
gen only. In addition, we assume that the plasma is in ionisation
equilibrium, that is the number of ionsation and recombination
processes are balanced and the time required for an ion to re-
combine with an electron (or a neutral atom to ionise through
collision) is much shorter than any dynamical time scale under
discussion (e.g. periods, damping times, etc.).

Although the partial ionisation of the prominence plasma
would mean that each constituent species is treated separately,
in the case of ionisation equilibrium and strong correlation of
temperature between species, the plasma can still be treated as
a single fluid and various quantities in the equations (e.g. den-
sity, pressure, etc.) are just the sum of partial components for
each species. For periods that are shorter than the ion-neutral
collisional frequency, the plasma dynamics has to be described
within the framework of two-fluid MHD.

A necessary ingredient in our discussion is the equilib-
rium flow that has a very strong observational evidence in
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prominences and nowadays they are observed in various spec-
tral lines, such as Hα, UV/EUV (Labrosse et al. 2010). Flow
speeds range between 5–20 km s−1 in quiescent filaments (Lin
et al. 2003) to 15–46 km s−1 in active region prominences, seen
by Hinode/SOT (Okamoto et al. 2007). At the same time, com-
plex dynamics containing vertical upflows and downflows were
observed by Berger et al. (2008) in limb prominences. Vortici-
ties inside the prominence of sizes approximately of the order
of 105 × 105 km2 were observed by Liggett & Zirin (1984) with
rotation rates of 30 km s−1.

In our study we assume that the plasmas we are dealing with
are non-ideal. According to the standard picture, dynamical pro-
cesses taking place in these media will be affected by non-ideal
mechanisms by lowering or amplifying their amplitude; as a re-
sult the energy stored in waves and oscillations are dissipated
or accumulated. The plasmas under consideration are dissipative
with anisotropic viscosity in the solar corona, while the dynam-
ics in the prominence plasma is affected by dissipative processes
that are characteristic for its ionisation state.

It is well known that the collisions between ions and neu-
trals introduce an effective anisotropic resistivity into the sin-
gle fluid equations (Cowling 1957; Braginskii 1965), called
Cowling resistivity, which acts only on perpendicular currents.
Khodachenko et al. (2004) estimated that in the photosphere and
chromosphere the magnitude of this resistivity is a few orders
of magnitude larger than the classical parallel Spitzer resistivity,
for chromospheric parameters this difference is of the order of
104−105. The effect of the Cowling resistivity was investigated
in connection to wave damping (Goodman 2001; Leake et al.
2005; Forteza et al. 2008; Carbonell et al. 2010; Singh & Krishan
2010), flux emergence (Leake & Arber 2006; Arber et al. 2007),
the formation of nonlinear force-free fields in the chromosphere
from photospheric fields (Arber et al. 2009), or even reconnec-
tion (Ni et al. 2007).

The problem of the stability of plasmas, and prominences
in particular, is a very important aspect of solar atmospheric
physics as instabilities can disrupt the magnetic configuration
on large scales or can generate turbulent convection cells, which
significantly enhance the transport of energy across magnetic
surfaces. In general, these instabilities can be categorised in
many ways. In the present study, however, we can classify them
as ideal instabilities and non-ideal instabilities. In the first class,
the source of instability (the reservoir for energy and momen-
tum gain and growth) comes from currents or pressure gradients
that are present in ideal plasmas. Particular examples of ideal in-
stabilities are the Kelvin-Helmholtz (KH) and Rayleigh-Taylor
(RT) instabilities, that have been studied in detail in hydrody-
namics and MHD (e.g. Soler et al. 2012; Murawski et al. 2016;
Oliver et al. 2016, etc. studied the triggering and evolution of
the KH instabilities in prominence plasmas, while Diaz et al.
2012, 2014; Shadmehri et al. 2013; Khomenko et al. 2014b;
Ruderman 2015, etc. discussed the problem of RT instability in
solar prominences).

On the other hand, non-ideal instabilities assume that the
plasma contains some sort of transport mechanism that helps in
the triggering of instability (e.g. dissipative instability, thermal
instability, tearing mode instability, etc.). In these instabilities
the presence of a non-ideal effect is a necessity. For instance,
Hillier et al. (2010) studied the effect of Cowling resistivity on
the Kippenhahn and Schluter prominence model. They found
that due to the inclusion of the Cowling resistivity, the tearing
mode instability time scale is reduced by more than one order of
magnitude, meaning that the structure of the whole prominence
can be significantly altered by the Cowling resistivity. Recently

Martínez-Gómez et al. (2015) studied the onset of the KHI in
a two fluid plasma where non-ideal effects due to collision be-
tween species was considered. They found that due to the colli-
sion between ions and neutrals the KHI can appear even for sub-
Alfvénic flow speeds and these collisions are able to reduce the
growth rate of unstable perturbations but they cannot stop the in-
stability completely. In an earlier paper, Ballai et al. (2015) stud-
ied the appearance of dissipative instability at the interface of
prominence and corona plasmas assuming that the prominence
is partially ionised (they assumed the Cowling resistivity to be
important) and the coronal plasma is viscous.

The present study is a normal extension of their previous
work. Here we assume that the magnetic field permeating the
plasma is structured, an assumption that brings the description
of the instability phenomenon closer to a real situation. The on-
set of dissipative instability is discussed for two configurations.
In order to emphasise the importance of a two-fluid MHD, we
discuss the same problem in two different descriptions corre-
sponding to two different regimes compared to the ion-neutral
collisional time. The paper is structured as follows. In Sect. 2,
we introduce the equilibrium configuration and the mathemati-
cal formalism that will be used to determine the dispersion rela-
tion of waves and ultimately the threshold at which instabilities
occur. Section 3 is dedicated to the derivation of the dispersion
relations of waves propagating in the magnetic structure. This is
obtained by matching the solutions at the interfaces. In Sect. 4,
we discuss the generation of the dissipative instability for all the
models used in the study, differentiating between the results ob-
tained in a single and two-fluid approximation. Finally, we con-
clude and summarise our results in Sect. 5.

2. The equilibrium configuration

The magnetic field in the solar atmosphere tends to accumulate
into entities (flux tubes, coronal loops) of finite size (radius) and
very often this size is determined by the balance of various forces
acting upon these structures. Once waves will propagate in finite
size waveguides, their phase speed becomes dependent on the
wavelength at which they propagate, that is they become disper-
sive (in optics this phenomenon is also called waveguide disper-
sion). Depending on the particular dependence of the phase ve-
locity on the wavelength, we can differentiate between positive
and negative dispersion. In the first case, waves will propagate
faster with increasing wavelength, while in the case of waves
with negative dispersion, an increasing wavelength would mean
a decreasing phase speed.

In the present study, the structuring of the magnetic field is
modelled by a three-layer model, where a magnetic slab along
the x-axis of thickness z0 is sandwiched between two semi-
infinite planes situated at z = 0 and z = z0. The magnetic field
in the three regions is taken to be parallel to the x axis, that is
B0 = B0 x̂, where x̂ is the unit vector in the x direction. De-
pending on the possible roles played by different regions in the
equilibrium configuration, we can study the appearance of dissi-
pative instability in two different models. In the first model, the
equilibrium setup describes the case of a partially ionised promi-
nence slab fibril in steady state, which is immersed into the fully
ionised and viscous solar corona. The second model consists of
a partially ionised prominence fibril sandwiched by an interfibril
partially ionised prominence plasma. In both models we assume
that inside the slab the plasma flows with a piecewise constant
flow in the direction of the magnetic field. In all models studied
here, the quantities describing the state of the plasma in the ex-
ternal medium (i.e. outside the slab) are labelled by an index “2”,
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while, inside the slab, the plasma is described through quantities
with an index “1”. For simplicity, we assume that the fluids in the
two regions (and all models) are incompressible, a generalisation
of this restriction would be a rather straightforward task.

A discussion on the nature of transport processes that can act
under these conditions is presented in an earlier paper by Ballai
et al. (2015). Here we are going to employ the same consider-
ations and assume that the viscosity is the dominant transport
mechanism in the solar corona and it is described by the first
term in Braginskii’s viscosity tensor, while the transport mech-
anisms in the prominence appear in the induction equation (sin-
gle fluid description), or due to the friction of different species
of particles evidenced in the momentum equation (two fluid de-
scription). The two frameworks describe the same physics, how-
ever, applicable for different regimes, depending on how the
wave periods compare to the ion-neutral collisional time.

The relative densities of neutrals and ions are defined as
(Forteza et al. 2007)

ξi =
ρi

ρ
≈

ni

ni + nn
, ξn =

ρn

ρ
≈

nn

ni + nn
, (1)

where ρi and ρn are the mass density of ions and neutrals, ρ is
the total density, and ni and nn are the number density of ions
and neutrals, respectively. The degree of ionisation can be char-
acterised by the ionisation fraction defined as

µ =
1

1 + ξi
· (2)

According to this definition, a fully ionised gas corresponds to
µ = 0.5, while a neutral gas is described by µ = 1. The last two
relations allow us to express the relative densities in terms of the
ionisation degree as

ξi =
1
µ
− 1, ξn = 2 −

1
µ
· (3)

The equations of ideal fully ionised plasma can be obtained by
taking ξn = 0 and ξi = 1.

Let us assume that the two-dimensional dynamics in the par-
tially ionised plasma slab is described first within the framework
of a single-fluid MHD. Here perturbations in velocity and mag-
netic field are u = (vx, 0, vz) and b = (bx, 0, bz). The dynamics
in the prominence (inside the slab) is described by the system of
non-ideal linearised MHD equations

∇ · u1 = 0, ∇ · b1 = 0, (4)

ρ01
∂u1
∂t

+ ρ01v0
∂u1
∂x

= −∇P1 +
B0

µ0

∂b1

∂x
, (5)

∂b1

∂t
+ v0

∂b1

∂x
= B0

∂u1
∂x

+ R, (6)

where µ0 is the permeability of free space and R is the resistive
term, given by

R = η∇2b1 − Ξ∇ × (∇p1 × B0)

+
(ηC − η)
|B0|

2 ∇ × {[(∇ × b2) × B0] × B0} . (7)

In the above equation η and ηC denote the standard Spitzer and
Cowling resistivities, respectively and the connection between
them is given by

ηC = η +
ξ2

n B2
0

µ0αn
=

1
µ0

 me

nee2

(
1
νei

+
1
νen

)
+
ξ2

n B2
0

αn

 ,

where νei and νen are the electron-ion and electron-neutral colli-
sional frequencies and αn is the friction coefficient given by

αn = 2ξn(1 − ξn)
ρ2

0

mn

√
kBT0

πmi
Σin,

and Σin ≈ 5×10−19 m2 is the ion-neutral collisional cross section.
In the generalised induction Eq. (6) we neglected other effects,
such as the Biermann’s battery term (under solar atmospheric
conditions this is too small) and the Hall effect. In addition, in
Eq. (5), P1 = p1 + B0bx1/µ0 is the total (kinetic and magnetic)
pressure, and the quantity Ξ in Eq. (7) is given by

Ξ =
ξ2

nξi

(1 + ξi)αn
·

It should be noted that the second term in Eq. (7), called diamag-
netic current term, in the limit of weak dissipation will play no
role in our further analysis.

Let us assume harmonic oscillations, meaning that pertur-
bations are chosen to be proportional to exp[i(kx − ωt)]. It was
shown earlier by Ballai et al. (2015) that, inside the slab, the to-
tal pressure, P1, and z component of the velocity vector, vz, are
connected by(
Ω + iηC1k2

)
P1 =

iρ01

k2

(
DA1 + iηC1Ωk2

) dvz

dz
, (8)

where Ω = ω − kv0 is the Doppler-shifted frequency, DA1 =
Ω2 − k2v2

A1 and ηC1 is the coefficient of the Cowling resistivity in
region 1. In the above calculations we assumed, for simplicity,
that in the dissipative terms we can consider d2/dz2 � k2. This
simplification is fully justified as the plasma movement takes
place in the transversal direction following the oscillatory mo-
tion of the Alfvénic wave (the plasma is incompressible).

In model 1 (prominence slab surrounded by fully ionised vis-
cous corona), the governing equation for perturbations in the vis-
cous and fully ionised solar corona (see Ballai et al. 2015) is

P2 =
iρ02(DA2 + 2iνk2ω)

k2ω

dvz

dz
, (9)

where ν = η0/ρ02 is the kinematic coefficient of viscosity and
η0 is the coefficient of the first term Braginskii’s viscosity tensor
(for details see, e.g. Ballai et al. 2015).

For the second model (partially ionised plasma slab sur-
rounded by another partially ionised interfibril prominence
plasma in a different state of ionisation), the governing
equation is(
ω + iηC2k2

)
P2 =

iρ02

k2

(
DA2 + iηC2ωk2

) dvz

dz
, (10)

where DA2 = ω2 − k2v2
A2 and ηC2 is the Cowling resistivity in

region 2.
The solutions of these equations must be connected at the

boundaries of the regions. We will be concerned with those dis-
turbances that are laterally evanescent, that is vz(z) → 0 as
|z| → ∞, meaning that the energy of the disturbance is essentially
confined to the interior of the slab. As a result, the z-component
of the velocity can be given as (for details see, e.g. Edwin &
Roberts 1982; Ballai et al. 2015)

vz =


βee−k(z−z0) for z > z0,
α0 cosh(kz) + β0 sinh(kz) for 0 < z < z0,
αeekz for z < 0.

(11)
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The coefficients α0, β0, αe, βe are real constants that can be de-
termined after joining the solutions at the boundaries of the slab.
According to the standard classification, the only modes that can
appear in this structure are surface modes that could be sausage
or kink, depending whether vz is an odd or even function of z.

Given the particular orientation of the equilibrium magnetic
field the interfaces between the prominence slab and its en-
vironment can be considered as tangential discontinuities. Let
us assume that the equation of the perturbed discontinuity is
ζ(x, t) = 0. The requirements that the normal component of the
velocity and normal component of the stress tensor are contin-
uous imply that the linearised kinematic boundary condition re-
duces to[[
vz − u0 · ∇ζ

]]
= 0,

while the continuity of the stress tensor in the case of ho-
mogeneous background is [[P]] = 0 and [[g]] denotes the
jump of quantity g across the discontinuity in the sense
that the jump of a function g(z) is defined as [[g(z)]] =
limε→0+

[
g(z + ε) − g(z − ε)

]
. The z-component of the velocity

and ζ can be related by

vz =
∂ζ

∂t
+ u0 · ∇ζ.

Using the above property, the kinematic boundary condition
becomes[[

vz

ω − k · u0

]]
= 0. (12)

In the case of model 2 (single fluid approximation), the conti-
nuity of the stress tensor simplifies to the requirement that the
total pressures on the two sides of the discontinuity are equal,
however, in the case of model 1 the viscosity of the corona is
modifying this requirement, so that the continuity of the normal
component of the stress tensor reduces to

P1 = P2 − 2ρ02ν
∂vz2

∂z
, (13)

that has to be evaluated at the interfaces, situated at z = 0 and
z = z0.

3. Dispersion relation of surface waves propagating
in the slab

Let us first deal with one fluid approximation. In our derivation
we assumed that all perturbations oscillate with the same fre-
quency ω, which is a complex quantity that can be written as
ω = ωr + iωi. Let us introduce the viscous and resistive Reynolds
numbers as

Rr =
vA1

kηC
, Rv =

vA2

kν
· (14)

Under coronal and prominence conditions, both Reynolds num-
bers are very large and therefore waves will propagate with lit-
tle damping over a period, meaning that, in our subsequent cal-
culations, we will consider that |ωr| � |ωi|. The very large
Reynolds numbers also allow us to consider dissipative terms
much smaller than other terms belonging to ideal MHD, mean-
ing that in our calculations all terms containing ν2 or η2

C are
neglected. The interaction of flows and waves in a dissipative
medium will generate the new physics our study deals with.
Later we will see that, contrary to our expectations, dissipation

does not always act towards decreasing the wave amplitude; for
specific values of flow speed or ionisation degree, the interplay
between flows, dissipation, and waves could lead to an increase
of the waves’ amplitude, or an unstable behaviour.

The dispersion relation of waves propagating in the mag-
netic slab can be obtained by imposing the boundary conditions
on the total pressure and normal component of velocity. For the
sinh term (see Eq. (11)), the dispersion relation of sausage waves
reads

d
DA1 +

iηCk4v2
A1

Ω

 + (DA2 + 4iνk2ω) tanh(kz0) = 0, (15)

while the cosh term leads to the dispersion relation of kink waves

d
DA1 +

iηCk4v2
A1

Ω

 +
(
DA2 + 4iνk2ω

)
coth(kz0) = 0. (16)

We can rearrange these relations in the form

DA2

{
tanh(kz0)
coth(kz0)

}
+ dDA1

+ ik2
4νω{

tanh(kz0)
coth(kz0)

}
+
ηCk2v2

A1d
Ω

 = 0. (17)

Following the same consideration and imposing the right bound-
ary conditions at the two interfaces, the dispersion relation for
the second model becomes

DA2

{
tanh(kz0)
coth(kz0)

}
+ dDA1 + ik4

×

ηC1v
2
A1d

Ω
+
ηC2v

2
A2

ω

{
tanh(kz0)
coth(kz0)

} = 0, (18)

where d = ρ01/ρ02 is the density contrast between the interior
and exterior in the slab. These dispersion relations will be in-
vestigated analytically and numerically in the next section to de-
termine the range of flows and thickness of the slab (or wave-
length of waves compared to the geometrical transversal size of
the slab) for which the incompressible surface waves propagat-
ing in the slab are unstable.

4. Dissipative instability

Since the Reynolds numbers, defined by Eqs. (14), are very
large, it is realistic to assume that the damping of waves prop-
agating in the magnetic slab is weak. According to the chosen
dependence of variables with time, a perturbation with ωi > 0
corresponds to an instability, that is when the amplitude of
waves grows exponentially with time according to exp(ωit).
Here we restrict ourselves to the linear phase of instabilities. Lin-
ear growth rates provide us with characteristic time scales for the
instability to operate. Nonlinear studies are needed to assess the
real impact of the instability on the evolution of the plasma pa-
rameters. This topic, however, would require numerical analysis,
which would be outside the scope of the present study.

Following the method developed by Cairns (1979), the imag-
inary part of the frequency can be calculated as

ωi ≈ −
DI

∂DR/∂ω
, (19)

whereDR andDI are the real and imaginary parts of the disper-
sion relations (see Eqs. (17), (18)) and this expression should be
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evaluated at the value of the frequency that corresponds to the
solution of the real part of the dispersion relation, that is a root
of the equationDR = 0.

Let us first concentrate on the sausage modes, the solution
for kink modes being easily generated. The difference in the two
models resides only in the choice of the transport mechanism,
therefore it is obvious that the real part (corresponding to the
ideal case) will be identical. In this case it is straightforward
to show that the root of the real part of the dispersion relation
becomes

ω± =
k

d + tanh kz0

[
dv0 ±

√
d tanh kz0

(
v2

KH − v
2
0

)]
=

dkv0

d + tanh kz0
±

kΓ

d + tanh kz0
, (20)

where we used Γ =

√
d tanh kz0(v2

KH − v
2
0), and vKH is the

Kelvin-Helmholtz speed for propagation in the slab, defined
here as

v2
KH =

(d + tanh kz0)(v2
A1d + v2

A2 tanh kz0)
d tanh kz0

· (21)

This speed plays a special role in the determination of the nature
of instabilities that can appear in the magnetic slab. First of all,
Eq. (20) shows that Kelvin-Helmholtz instabilities (KHI) appear
only for those flows that are greater than vKH. When waves are
restricted to propagate in the slab, even vKH is dispersive and
it varies not only with the density ratio (as in the case of wave
propagation along a density interface) but also with the relative
magnitude of the wavelength compared to the transversal size of
the slab.

Given the importance of vKH, it is instructive to estimate
the magnitude and variation of this quantity for the two mod-
els. Observations show that the wavenumber of waves in promi-
nences varies between 10−8 and 10−6 m−1 (Forteza et al. 2007).
As a characteristic Alfvén speed in the prominence, we choose
vA1 = 28 km s−1 (see Joarder & Roberts 1992). For model 1, we
assume three values of the external Alfvén speed (198 km s−1,
280 km s−1, 343 km s−1) that – under the assumption of identi-
cal field strength – would result in a density contrast of 50, 100
and 150, respectively. For model 2, we assume that our setup de-
scribes the situation of a dark plume, where the internal Alfvén
speed is vA1 = 200 km s−1, that is surrounded by the prominence
with a density contrast of d = 0.05, 0.1 and 0.5, respectively, re-
sulting in Alfvén speeds of 44, 63 and 141 km s−1, respectively.

A key parameter in our discussion is the product kz0, where k
is the wavenumber of the waves under study and z0 is the width
of the slab. Since our analysis refers to two possible scenarios
(prominence slab surrounded by coronal plasma and prominence
slab surrounded by prominence plasma), the value of this param-
eter (kz0) takes different values. In the first case we are going to
assume (hypothetically) that the entire prominence can be con-
sidered as one single plasma slab, in which case we are going
to consider that z0 is the width of the prominence. The typical
width of prominences varies between 4 and 30 Mm (Lin 2010),
meaning that the product kz0 falls in the interval 0.01 and 30. For
the second scenario, we are going to consider that z0 refers to the
size of a thread only, that has a width of 100-600 km, meaning
that the dimensionless parameter kz0 will be in the interval 0.001
and 0.6.

One key aspect to note is that regardless of the model em-
ployed, the KH speed is always super-Alfvénic. Under promi-
nence conditions, these speeds amounts to values that are of the

Fig. 1. Variation of the Kelvin-Helmholtz speed, vKH, with the dimen-
sionless quantity kz0 for model 1 on logarithmic scale for three different
values of the density contrast between the solar prominence and sur-
rounding solar corona.

Fig. 2. Same as Fig. 1, but for model 2.

order of a few hundred km s−1. This would also mean that, in
prominences, the plasma is always Kelvin-Helmholtz stable. The
variation of the threshold speed at which waves propagating in
the slab become KH unstable is shown, on logarithmic scale,
in Fig. 1 for model 1 with the threshold increasing with the
wavelengths for both sausage and kink modes. For both types
of waves the range of speed obtained clearly show that the exis-
tence of flows larger than vKH are not possible to observe, mean-
ing that the prominence in this model is indeed KH stable. For
large values of kz0 (wide slab or long wavelength approxima-
tion) the value of the Kelvin-Helmholtz speeds reaches the value
obtained for a single interface (see, e.g. Ballai et al. 2015). It is
also clear that the threshold were waves become KH unstable
increases with the density contrast between the prominence and
the solar corona.

In the case of model 2, the range of kz0 is different and obser-
vations restrict us to the situation when the wavelength of waves
is larger than the width of the slab (see Fig. 2). In the case of
sausage waves, vKH shows a minimum in the kz0 � 1 domain
(thin slab) that is attained for kz0 = tanh−1 vA1d/vA2 and here the
value of the vKH = vA1 + vA2. For kink waves the KH thresh-
old shows a 1/kz0-type monotonic decrease. For small values of
the dimensionless quantity kz0, the KH threshold for kink waves
is much larger than the corresponding value for sausage modes,
while they tend to become equal for kz0 ≈ 1. This result shows
that, for long wavelengths, sausage waves can become much eas-
ily KH unstable than kink waves, however, the range of speeds
obtained here is inconsistent with the values observed for back-
ground flows.

Now using the definition of ωi together with the dispersion
relations (17), (18) we obtain that the imaginary part of the
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Fig. 3. Contour plot of the variation of ωi1 in the case of sausage (left-
hand side curves) and kink (right-hand side curves) modes in terms of
background equilibrium flow and the value of the dimensionless param-
eter kz0 for model 1. The ionisation rate is µ = 0.95.

frequency in the first model is given by

ωi1 = ∓
k2

2Γ

[
4ν tanh kz0(dv0 ± Γ)

d + tanh kz0

−
ηCv

2
A1d(d + tanh kz0)
v0 tanh kz0 ∓ Γ

 , (22)

where the Cowling resistivity in the solar prominence is given by

ηC = 109T−3/2
p +

(2µ − 1)v2
A1mp

2(1 − µ)ρ1Σin

(
πmp

kBTp

)1/2

, (23)

where Tp is the temperature in the prominence. Here we assumed
that the plasma is made up of hydrogen and, therefore, the mass
of ions is equal to the mass of protons. We need to note here that
a positive imaginary part of the frequency would mean that the
amplitude of waves will grow despite the presence of dissipation,
that is these waves are undergoing a dissipative instability.

For model 2, following the same technique, the imaginary
part of the frequency becomes

ωi2 ≈ ∓
k2(d + tanh kz0)

2Γ

− ηC1v
2
A1d

v0 tanh kz0 ∓ Γ

+
ηC2v

2
A2 tanh kz0

dv0 ± Γ

 · (24)

Now let us investigate graphically the regions where the plasma
becomes unstable, that is we search for the combination of phys-
ical parameters that make the imaginary part of the frequency
positive. As we specified earlier, the flows that are currently ob-
served in solar prominences are of the order of a few tens of km
s−1. In the case of model 1 we first plot the frequency contour
plot of backward propagating waves (see Fig. 3) showing the
regions where the imaginary part of the frequency is changing
sign for a given value of the ionisation factor, µ = 0.95 (here
and thereafter we are going to concentrate mainly on backward
propagating waves as forward propagating waves will have a
standard physical damping). The region above each curve corre-
sponds to a combination of parameters that makes the imaginary
part of the frequency positive, meaning that backward propagat-
ing waves are unstable. For values of equilibrium flows that are
closer to observed values (the lower end of the flow interval con-
sidered here), it is possible to obtain two values of kz0 where ωi1

Fig. 4. Contour plot of the variation of ωi1 in the case of sausage modes
in terms of ionisation degree and the value of the dimensionless param-
eter kz0 for model 1. Here v0 = 30 km s−1. The region where instability
occurs is shown by the plus symbol.

is changing sign, that is the domain of kz0 where waves are un-
stable is bounded by the two values. For example, for d = 50 and
v0 = 35 km s−1, ωi1 > 0 for 0.009338 < kz0 < 0.6246. The plots
in Fig. 3 were obtained for three different values of densities con-
trast and it is obvious that the threshold value for sausage modes
depends on the value of density contrast only for larger values
of flows. In the case of kink modes the three curves are indistin-
guishable, so the instability threshold does not show any depen-
dence on the density contrast. This behaviour could be explained
in terms of the internal motion of the plasma in the two wave
modes. In the case of kink waves, the slab oscillates without dis-
turbing the internal structure of the slab, while, in the case of
sausage modes, the internal plasma structure is compressed and
relaxed according to the oscillating pattern of the wave. While
the instability of sausage modes sets in for smaller values of kz0
(in the long wavelength limit), kink waves become unstable only
when their wavelength is comparable with or shorter than the
width of the slab.

Let us investigate how the instability threshold varies with
the ionisation degree of the prominence slab. We choose a par-
ticular value of the equilibrium flow of 30 km s−1 and let µ vary
between 0.5 and 1, corresponding to the ionisation state of the
plasma (see Fig. 4). We also fix three values of density contrast
(d = 50, 100, 150) between the prominence and solar corona.
In the case of sausage modes, the threshold of instability de-
pends on the ionisation degree for very limited interval of kz0.
For this particular value of flow and density contrast, the back-
ward propagating wave is unstable only for wavelengths that are
larger than the width of the slab, in particular kz0 < 0.15. In
addition significant dependence on the ionisation degree occurs
only near the end of the interval. Density differences between
the two media also influence the instability threshold. Figure 4
shows that, as the density contrast increases, the threshold moves
towards the direction of increased ionisation. The corresponding
plot for kink waves is not shown here, as the appearance of un-
stable modes involves very high values of the equilibrium flow,
therefore the appearance of instability is unrealistic.

Let us now discuss the second model that we use to study the
instability of waves propagating in prominence dark plumes. Ob-
servations by Berger et al. (2008, 2011) and Ryutova et al. (2010)
revealed that dark plumes are turbulent upflows in prominences
which usually develop Kelvin-Helmholtz vortex rolls. Ca II ab-
sorption lines in prominence plumes show these as dark features,
in contrast to the prominence material, which suggests a hotter
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Fig. 5. Contour plot of the variation of ωi2 in the case of sausage modes
in terms of the equilibrium flow speed and the value of the dimension-
less parameter kz0 for model 2. The values of the density is shown in
the legend of the figure. The region where instability occurs is shown
by the plus symbol.

plasma in the plumes compared to their environment. Plumes
are also less dense than their surrounding material. The width of
plumes ranges between 0.5 Mm to 6 Mm and their maximum
heights are between 11 Mm and 17 Mm. The mean flow speed
is about 15 km s−1, although velocities up to 30 km s−1 are also
measured, while the typical plume lifetime is between 400 s and
890 s (Berger et al. 2010).

In this model the plasma inside and outside the slab are par-
tially ionised and the plasma inside the slab exhibits an equilib-
rium flow along the background magnetic field. These structures
are hotter and less dense than their environment, therefore d < 1.
We assume that the plasma in the plume is nearly completely
ionised, therefore we choose µ1 = 0.55. The ionisation degree
of the prominence (region 2) is unknown. We let µ2 vary in the
interval 0.55–0.95. Let us first discuss the sausage modes appear-
ing in these structures. The parameter domains where the imag-
inary part of the frequency of backward propagating sausage
modes changes sign are shown in Fig. 5. First to note is that
the values of the equilibrium flow at which the backward mode
is unstable for all three values of the density contrast are far too
high. For flow spends that are observed modes are stable and
they encounter a normal physical damping. Backward propagat-
ing waves become unstable for flow speeds that are comparable
with the KH speeds. In Fig. 5, backward propagating waves are
unstable only in a narrow band shown by a plus sign. Above the
upper boundary of the instability zone, the plasma becomes KH
unstable. Similar findings can be obtained for other density con-
trasts. In Fig. 6, the appearance of the unstable regime of the
same sausage mode is displayed for a fixed value of kz0 and we
allow the variation of the ionisation of the external medium to
change between the extreme cases of a near complete ionisation
and near neutral gas. Similar to the findings of Fig. 5, the values
of flows at which the instability sets in is at around 250 km s−1,
clearly for values higher than any measured flow speeds. Similar
to the results found in Fig. 5, the instability appears only in a
limited region, that is a well-specified combination of parame-
ters. For d = 0.05, the plasma is unstable in a very small region
for values of the external ionisation, that is, close to full ionisa-
tion. Everywhere else, waves propagating in the slab will damp.

In the case of kink waves (see Fig. 7), the instability sets
in, again, for very large values of the equilibrium flows and for
very long wavelengths. The unstable region, again, is bounded,
similarly to the domain shown in Fig. 4. Finally, for the same
kind of waves, the instability threshold is practically independent
on the ionisation degree (for a fixed value of kz0).

Fig. 6. Contour plot of the variation of ωi2 in the case of sausage modes
in terms of the equilibrium flow speed and the ionisation degree of the
external region for model 2. The values of the dimensionless quantity
kz0 and the ionisation degree of the plasma slab has been fixed and
shown on the figure. The region where instability occurs is shown by
the plus symbol.

Fig. 7. Similar to Fig. 5, but here we plot the regions of instability for
kink waves.

The very large values of equilibrium flows at which dissipative
instabilities occur in filamentary structures lead us to the neces-
sity of an alternative treatment of the partially ionised promi-
nence plasma stability.

Two-fluid approximation

The above one fluid models are restricted to periods that are
larger than the ion-neutral collisional time. For periods that are
less or comparable to the ion-neutral collisional time, the plasma
dynamics is described in a two-fluid approximation, where the
equations are written for the charged particles (ions and elec-
tions) and neutrals. The plasma behaviour of the mixture is en-
sured by collisional terms between ions and neutrals in the in-
duction equation and these collisional are dominant processes in
momentum transfer between species and the electron inertia is
neglected. In reality, the two models are not identical, instead
they are complementary.

Similarly to the equilibrium described earlier in this study
(model 2), we are going to consider that the equilibrium config-
uration is composed of a partially ionised slab filled with plasma
in steady state (u0 is the equilibrium flow and is parallel to the
discontinuity), surrounded by two partially ionised half-space
plasma regions. The plasma is permeated by a homogeneous
magnetic field oriented in the x direction, and the interfaces are
situated at z = 0 and z = z0. The equilibrium plasma param-
eters are homogeneous and constants in all regions. We denote
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the regions inside and outside the slab by the indices 1 and 2,
respectively.

The set of coupled differential equations governing the dy-
namics of linear waves in incompressible two-fluid plasmas is
given by (see, e.g. Zaqarashvili et al. 2011; Khomenko et al.
2014a; Martínez-Gómez et al. 2015)

ρ0i

(
∂ui
∂t

+ u0 · ∇ui

)
= −∇pie +

1
µ0

(∇ × b) × B0

− αin(ui − un), (25)

ρ0n

(
∂un
∂t

+ u0 · ∇un

)
= −∇pn − αin(un − ui), (26)

∂b
∂t

= ∇ × (u0 × b) + ∇ × (ui × B0) + R1, (27)

∇ · ui = ∇ · un = ∇ · b = 0, (28)

where ui = (vix, 0, viz) and un = (vnx, 0, vnz) are the components of
the two-dimensional velocity perturbation of ions and neutrals,
pie and pn are the pressure perturbations of the ion-electron and
neutral fluids, b = (bx, 0, bz) is the magnetic field perturbation,
ρ0i and ρ0n are the equilibrium densities of ions and neutrals,
while αin is the ion-neutral friction coefficient. Frictions between
charged and neutral (close-range interaction) particles is ensured
via collision processes. In the absence of this process, neutrals
will not be able to stay in the system and the momentum equa-
tions would decouple. Equations (25) and (26) are the linearized
momentum equations of the ion-electron fluid and neutrals, re-
spectively. The last terms on their RHSs express the transfer of
momentum between ions and neutrals through diffusion of one
species into the other. As a result of collisions, particles can loose
energy. The dynamics in the external region is described by a
similar system of equations, with the exception that the equilib-
rium outside the slab is static. As pointed out by Zaqarashvili
et al. (2011), Cowling resistivity appears only in the one fluid
approximation, that is why in Eq. (27) R1 = η∇2b, where the
coefficient of resistivity appears only due to the movement and
interaction of electrons in the partially ionised plasma and is de-
fined as

η =
c2(νei + νen)

ω2
pe

,

where νei and νen are the electron-ion and electron-neutrals col-
lisional frequencies and ωpe is the electron plasma frequency.
According to Braginskii (1965) and Zaqarashvili et al. (2011)
the two collisional frequencies are defined as

νei =

√
12nee4 ln Λ

12π3/2ε2
0 m1/2

e (kBT )3/2
, νen = Σennn

(
8kBT
πmn

)1/2

,

where ne is the number density of electrons, e is the electron
charge, ln Λ is the plasma logarithm, ε0 is the permitivity of free
space and Σen = 10−19 m2 is the electron-neutral collision cross-
section. The electron plasma frequency is a quantity that depends
only on the number density of electrons and is defined as ωpe ≈

17.8πn1/2
e (s−1). Introducing the values of physical constant and

assuming ln Λ ≈ 15 we arrive to the relation

η =

[
4.95(1 − µ)T 1/2

2µ − 1
+

15.81 × 108

T 3/2

]
(m2 s−1),

where the temperature is measured in K. Equation (27) clearly
shows that the magnetic field is able to interact only with the
charged part of the plasma fluid.

Let us express the ion-neutral friction coefficient, αin, as

αin = ρ0iρ0nγin, (29)

where γin is the ion-neutral collision rate coefficient per unit
mass. The friction coefficient vanishes in both the fully ionized
(ρ0n = 0) and fully neutral (ρ0i = 0) cases. However, instead
of using γin, we are going to use the collision frequency, which
has a more practical physical meaning. Thus, we define the ion-
neutral, νin, and neutral-ion, νni, collision frequencies as

νin = ρ0iγin, νni = ρ0nγin, (30)

and the two collisional frequencies are connected through
ρ0nνin = ρ0iνni. In consequence, in the remaining part of the
present paper, we are going to use νin only and use ν1 and ν2
to denote the collisional frequencies in the two media.

We are going to employ the same normal mode analysis as
in the case of single fluid description here, however, the conti-
nuity of the normal component of momentum across the discon-
tinuity would require an equivalent relation written for ions and
neutrals. Similarly, the continuity of the stresses at the interface
would translate into the balance of the total pressure of charged
particles and the kinetic pressure of neutrals.

After straightforward calculations we can obtain that the dis-
persion relation for waves propagating along the interface in the
incompressible limit can be given as DR + iDI = 0, where
now the real and imaginary parts of the dispersion relation are
given by

DR = (DA1di + DA2 tanh kz0)(Ω2dn + ω2 tanh kz0),
DI = (DA1di + DA2 tanh kz0)(Ων1dn + ων2 tanh kz0)

+(Ω2dn + ω2 tanh kz0)
[
Ωdiν1χ1 + ων2χ2 tanh kz0

+k4
 v2

A1η1di

Ω
+
v2

A2η2 tanh kz0

ω

 ]· (31)

where DA1 = Ω2 − k2v2
A1, DA2 = ω2 − k2v2

A2, χ1,2 = ρ0n1,2/ρ0i1,2
and dn = ρ0n1/ρ0n2, di = ρ0i1/ρ0i2. The dispersion relation given
by Eq. (31) describes the propagation of two pairs of waves prop-
agating in the opposite direction, in each direction having a wave
that is connected to ions, while the other one to neutrals. The col-
lisions between species lead to the modification in the amplitude
of waves. The presence of collisions between particles (and the
associated momentum transfer) together with the resistivity ren-
ders the equations to be dissipative. Due to the loss of energy
and momentum of individual species waves will propagate with
a complex frequency, where the imaginary part describes damp-
ing or amplification.

Despite lacking a firm physical basis from the partially
ionised plasma point view, let us discuss the collisionless and
ideal limit, that is when ν1 = ν2 = η1 = η2 = 0 (in the absence
of collisions, neutrals cannot be kept in the system), as this will
help us understand the results obtained in the collisional limit. In
this case, the dispersion relation is decoupled and we can solve
separate equations for ions and neutrals. Accordingly, the disper-
sion relation for ions becomes

DA1di + DA2 tanh kz0 = 0, (32)

which can be easily solved to lead to

ω = k
v0di ±

√
di tanh kz0(v2

KH − v
2
0)

di + tanh kz0
, (33)

A78, page 8 of 11



I. Ballai et al.: Dissipative instability in a partially ionised prominence slab

where the Kelvin-Helmholtz speed is defined as

v2
KH =

(di + tanh kz0)(v2
A1di + v2

A2 tanh kz0)
di tanh kz0

·

As Eq. (33) shows, the ion wave becomes KH unstable for flow
speeds larger than vKH. However, since vKH is always super-
Alfvénic in an incompressible plasma and the observed flows
are always sub-Alfvénic, waves due to ions will be always KH
stable.

In the case of neutrals, the dispersion relation in the colli-
sionless limit becomes

Ω2dn + ω2 tanh kz0 = 0, (34)

whose solution reads

ω = k
v0dn ± iv0

√
dn tanh kz0

dn + tanh kz0
· (35)

This dispersion relation describes the propagation of two waves
in the same direction, however, one of them is damped, while
the other is amplified in time. These modes owe their existence
to the presence of the equilibrium flow, and the flow plays the
role of reservoir/sink for gained/lost energy of the wave. The pe-
culiar behaviour of neutrals under prominence conditions was
discussed earlier (see, e.g. Soler et al. 2012) and the unstable
behaviour corresponds to the standard hydrodynamic KH insta-
bility. Another important result of this limit is that a two-fluid
approach allows the propagation of two pairs of waves, one due
to charged particles, and the other one for neutrals. In contrast, a
single-fluid approach allows the propagation of one single pair,
and this mode is a surface Alfvén wave. Similarly to the single-
fluid approach, we are interested in the backward propagating
waves that can develop dissipative instability.

Let us first concentrate on the ion-related waves, for which
the dispersion relation (in the uncoupled limit) of the backward
propagating wave is given by Eq. (33), where we choose the
lower sign. Using Cairn’s criteria, the imaginary part of the fre-
quency is approximately given by Eq. (19) where the equation is
evaluated at the roots of the ideal dispersion relation, that is the
solutions obtained in the collisionless limit.

After straightforward calculations we obtain that the imagi-
nary part of the frequency of the backward propagating wave is
given by

ωii ≈
θ1 + θ2

2Γ̃1(di + tanh kz0)
, (36)

where

θ1 =
k2(di + tanh kz0)2

(v0di − Γ̃1)(Γ̃1 + v0 tanh kz0)

[
Γ̃1

(
v2

A1η1di + v2
A2η2

)
+ v0

(
v2

A2η2 tanh kz0 − v
2
A1η1d2

i

)]
θ2 = − Γ̃1 (diν1χ1 + ν2χ2 tanh kz0)

− v0 tanh kz0di(ν1χ1 − ν2χ2),

and Γ̃1 =

√
di tanh kz0(v2

KH − v
2
0).

Let us apply this relation in connection to the modes that
could appear in prominence dark plumes. A higher temperature
in the slab would mean that more neutrals are ionised, there-
fore, dn < 1. The ion-neutral collisional frequency depends on
the temperature and densities of the plasma. Let us consider that

Fig. 8. Variation of the imaginary part of the frequency for backward
propagating sausage modes due to ions in the two-fluid approximation
with the ionisation degree of the plasma and the wavelength of waves.

ν1 = αν2. As a result, the ratio of the collisional frequencies
becomes

α =
ν1

ν2
=
ρ0n1

ρ0n2

√
T1

T2
= dn

√
T1

T2
·

Although we restricted ourselves to the case dn < 1, the fact that
T1/T2 > 1 means that α can take any values. As a representative
collisional frequency between ions and neutrals in the promi-
nence region we can estimate that the ion-neutral collisional time
(for a hydrogen plasma) can be defined as

νin = 4nnΣin

√
kBT
πmi
· (37)

For typical prominence values (nn = 1016 m−3, T = 104 K using
the FAL3 model), we obtain a collisional frequency of the order
of 208 s−1 (Fontenla et al. 1990; Oliver et al. 2016).

To bring theoretical results closer to observations, we express
neutral densities in terms of ion densities, as current observa-
tions reveal number densities for ions, rather than neutrals. From
Eqs. (1)–(3) we have

ρ0n1 ≈
ξn1ρ0i1

1 − ξn1
,

and a similar relation is valid in region 2. It is easy to calculate
the new expression of dn as

dn = di
(2µ1 − 1)(1 − µ2)
(1 − µ1)(2µ2 − 1)

,

where µ1 and µ2 are the ionisation fractions inside and outside
the slab, respectively.

Let us now consider that medium 1 is a plume and region 2
represents the surrounding prominence. Based on observations
by Berger et al. (2010), we assume that plumes, having a tem-
perature of 105 K, are surrounded by prominence plasma with
temperature of 104 K. Since the exact ionisation degree of the
prominence plasma is not known, we assume for illustration that
µ2 = 0.75 and let the ionisation degree of the plume vary be-
tween 0.5 and 0.75. Furthermore, we consider that the ion den-
sity in the prominence is ρi02 = 5 × 10−11 kg m−3 and a density
of the plume is 10% of it, that is ρ0i1 = 0.1ρ0i2, di = 0.1. For all
types of waves, we adopted a flow speed of 10 km s−1. Since the
imaginary part of the frequency is negative for both waves (re-
gardless the ionisation degree), the waves will undergo a phys-
ical damping (Figs. 8, 9). Similar to the one fluid model, the
instability will set in for much larger values of flow, values that
are currently not observed, however the more ionised the plasma
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Fig. 9. Same as in Fig. 8, but here the dispersion curves denote the
imaginary part of the frequency of kink modes.

Fig. 10. Variation of the imaginary part of the frequency for propagating
sausage modes in the two-fluid approximation.

is, the easier is to have an unstable sausage wave. From this per-
spective, kink modes are more stable than sausage modes.

Now let us look at the waves associated to neutrals where
both waves are forward propagating. Now, if unstable behaviour
appears, it could be attributed to a Kelvin-Helmholtz instability
(similar to the findings by Martínez-Gómez et al. 2015). Since
the mode corresponding to the lower sign is always damped, we
will concentrate on the wave that corresponds to the upper sign
in Eq. (35). In the collisionless limit the amplitude of this wave
grows in time. We should mention here that the imaginary part
of the frequency given by Eq. (35) does not refer to any physical
effect. This value is the solution of the collisionless limit and it
will be used next to determine the real (physical) damping or
growth rate of these waves. Following the same procedure as
before, the imaginary part of the frequency is given by Eq. (A.1)
and it is clear that it is not affected by resistivity.

However, the expression given by Eq. (A.1) is not the full
answer to our problem, since this has to be considered together
with the value determined earlier in Eq. (35). Combining the two
relations, we arrive at the imaginary part of the frequency that
appears due to neutrals

ω+
in = ω+

in +
kv0
√

dn tanh kz0

(dn + tanh kz0)
· (38)

The variation of the imaginary part of the frequency (counter-
plots) is shown in Figs. 10, 11, for sausage and kink modes,
respectively. This result clearly shows what new physics is
brought into these systems by neutrals. While kink waves are
unstable for the whole range of parameters, the instability thresh-
old for sausage modes depends on the ionisation degree of the
plasma and the wavelength of waves (Fig. 10). In the long wave-
length limit (kz0 � 1) waves are unstable until the concentration
of neutrals in the plume regions reaches a certain threshold value,

Fig. 11. Same as in Fig. 10, but here the dispersion curves denote the
imaginary part of the frequency of kink modes.

after which these modes will damp. The value of the critical
neutral concentration increases with decreasing the wavelength
of waves. In addition, there will be a wavelength cut-off value
(here corresponding to kz0 ≈ 0.03) after which modes will be-
come unstable, regardless the amount of neutrals in the system.
In the case of sausage modes the growth rate of waves (for fixed
wavelength) decreases with increasing the number of neutrals in
the plume region. The same pattern is recovered for kink modes,
however, the growth rate is weakly affected by the presence of
more neutrals. Therefore, neutrals indeed have a stabilising ef-
fect on sausage modes due to the increased amount of the mo-
mentum transferred by neutrals in the process of collision. For a
fixed ionisation degree, the frequency increases with decreasing
wavelength, so that the longer the wavelength, the shorter is the
growth time of sausage waves.

These results show that the consideration of a two fluid MHD
for model 2 introduces a new physics that has not been possi-
ble to describe in the framework of a single fluid MHD. The
two regimes are difficult to compare, as they are valid in dif-
ferent frequency regimes. It remains to be seen what the tem-
poral evolution of these instabilities is (e.g. they can saturate,
evolve into a macro instability, or develop turbulences), but this
issue would require a robust numerical investigation. The mix-
ture of two species plasma, therefore, shows a very complex pat-
tern where the Kelvin-Helmholtz unstable behaviour of neutrals
is stabilised by the damping due to collisions with ions. Since
the species of the plasma are coupled through collisions, the in-
stability of one single species will drive the whole mixture into
an unstable state.

Finally, we need to mention that our results are some-
how quantitatively different from the results obtained earlier by
Martínez-Gómez et al. (2015), but this is due to the technique
used here to find the imaginary part of the frequency. While the
above authors used numerical methods to study the onset of the
KHI in a two-fluid model, our analytical approach is valid only
for weakly dissipative and low collisional frequency plasmas.

5. Conclusions

The present research focussed on the appearance of dissipative
instabilities for waves propagating in a partially ionised plasma
slab surrounded by the corona or another partially ionised
prominence environment. The geometrical restrictions imposed
on waves make them dispersive, and different characteristics
were investigated for symmetric and asymmetric waves (sausage
and kink waves).

The nature of the instabilities discussed here means that they
appear for flow speeds lower than the KHI, the value of the KH
speed playing a special role in our discussion. A simple analysis
showed that the KHI is unlikely to occur in the plasmas we
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dealt with. The threshold values where the KH instability occurs
varies with the density ratio of the slab plasma and its surround-
ing and with the wavelength of the waves. In all cases, the flow
speed at which waves are KH unstable is of the order of a few
thousand km s−1, that is much above currently observed values.

We analysed the appearance of dissipative instability, that is
the unstable growth of a backward propagating wave in the pres-
ence of flow, in two different equilibrium set-ups. First we as-
sumed that the whole partially ionised prominence can be treated
as a slab surrounded by the viscous and completely ionised
corona. After imposing the necessary boundary conditions at the
interfaces between the two media, we derived a dispersion rela-
tion describing the propagation of incompressible waves propa-
gating inside the slab. The imaginary part of the frequency de-
scribes the damping or the growth of waves. The results on the
role of viscosity and magnetic field are identical with the find-
ings by Ballai et al. (2015). Here we focussed on the role of
dispersion and the ionisation degree on the stability threshold of
waves. Our results show that sausage modes are more sensitive
to the variation of physical parameters, the value of ionisation
degree is more pronounced for very large wavelengths.

The second model we used is a plasma slab in partially
ionised state surrounded by another partially ionised, infinitely
extended environment, modelling the case of prominence dark
plumes surrounded by another prominence material. Our results
clearly show that the unstable behaviour of these structures re-
quire unrealistically high flows as long as the periods of waves
are larger than the ion-collisional time and the plasma dynamics
is described in a one-fluid MHD model. The situation is different
when we consider very high frequency waves (or low periods)
when the plasma behaviour requires a two-fluid approach.

This investigation also shows the complexity of the physi-
cal situation under investigation and the importance of a two-
fluid MHD approach in partially ionised plasmas. In this descrip-
tion, the plasma becomes unstable solely due to the propagating
waves that appear in the presence of neutrals. The source of in-
stability for this mode in a single-fluid MHD approach does not
exist. Strictly speaking the instability described here is not dissi-
pative in the sense of instabilities described earlier, as the modes
that are unstable are forward propagating.

Large values of flow necessary for an instability to occur in a
single fluid MHD model is not a surprise, given the simplicity of
our model. We are aware that the simple model employed here
misses several key effects for plume dynamics. For example, the
sharp interface considered here does not allow the appearance of
body waves, that could be important concerning the stability of
plumes. Furthermore, the flow of particles oblique to the mag-
netic field might decrease the instability threshold significantly,
as it was shown by Prialnik et al. (1986) in the case of KH insta-
bility. It also remains to be seen how the effect of compressibility
can change the stability criteria, bearing in mind that the general
effect of compressibility is to stabilise the plasma.
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Appendix A: The imaginary part of the frequency
calculated for neutrals

The imaginary part of the frequency calculated with the help of
Cairn’s formula (see Eq. (19)) that corresponds to the positive
(amplified) solution of the collisionless dispersion relation at-
tached to neutrals is given by

ω+
in = −

1
2(dn + tanh kz0)

(
ν1dn − ν2 tanh kz0 +

Ψ+
1

Ψ+
2

)
, (A.1)

where

Ψ+
1 = 2dn tanh2 kz0(ν1 − ν2)

v2
0(di − dn)

(dn + tanh kz0)2 ,

Ψ+
2 =

v2
0(di − dn) tanh kz0

(dn + tanh kz0)2 (tanh kz0 − dn) − v2
A1di − v

2
A2 tanh kz0.
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