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Aleš Zamuda
University of Maribor

Faculty of Electrical Engineering and Computer Science
Smetanova ul. 17, SI-2000 Maribor, Slovenia

ales.zamuda@um.si

Christine Zarges
Department of Computer Science

Aberystwyth University
Aberystwyth, SY23 3DB, United Kingdom

Gregor Stiglic
University of Maribor,

Faculty of Health Sciences, Zitna ul. 15, SI-2000 Maribor,
Faculty of Electrical Engineering and Computer Science,

Smetanova ul. 17, 2000 Maribor, Slovenia

Goran Hrovat
University of Maribor

Faculty of Electrical Engineering and Computer Science
Smetanova ul. 17, SI-2000 Maribor, Slovenia

goran.hrovat@um.si

ABSTRACT
�is paper presents a Genetic Algorithm (GA) application to mea-
suring feature importance in machine learning (ML) from a large-
scale database. Too many input features may cause over-��ing,
therefore a feature selection is desirable. Some ML algorithms have
feature selection embedded, e.g., lasso penalized linear regression
or random forests. Others do not include such functionality and
are sensitive to over-��ing, e.g., unregularized linear regression.
�e la�er algorithms require that proper features are chosen before
learning.

�erefore, we propose a novel stability selection (SS) approach
using GA-based feature selection. �e proposed SS approach iter-
atively applies GA on a subsample of records and features. Each
GA individual represents a binary vector of selected features in the
subsample. An unregularized logistic linear regression model is
then trained and tested using GA-selected features through cross-
validation of the subsamples. GA �tness is evaluated by area under
the curve (AUC) and optimized during a GA run.

AUC is assessed with an unregularized logistic regression model
on multiple-subsampled healthcare records, collected under the
Healthcare Cost, and Utilization Project (HCUP), utilizing the Na-
tional (Nationwide) Inpatient Sample (NIS) database.

Reported results show that averaging feature importance from
top-4 SS and the SS using GA (GASS), improves these AUC results.
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Aleš Zamuda, Christine Zarges, Gregor Stiglic, and Goran Hrovat. 2017.
Stability Selection using a Genetic Algorithm and
Logistic Linear Regression on Healthcare Records. In Proceedings of GECCO
’17 Companion, Berlin, Germany, July 15-19, 2017, 2 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3076077

1 INTRODUCTION
�is paper proposes a novel stability selection approach to esti-
mate feature importance, which uses a Genetic Algorithm [3] and
unregularized logistic linear regression in combination with top-k
stability selection [9].

Namely, as Machine Learning (ML) advances rapidly at all �elds,
e.g., healthcare, it is used to help people make decisions at more
and more tasks. An example of such a task is diagnose prediction,
where a diagnose is predicted from available data, e.g., age or tumor
size [6]. Data is therefore the main requirement from which ML
models are created. �e main question arising is how much and
which features we need to predict the outcome as accurately as
possible. It is desirable to have as much data as we can, however,
we need to carefully decide which features to include [4].

�e big problem in ML is over-��ing [5], where the learned
model performs well on the data used for learning and poorly on
new data that is actually used in practice. Selecting only proper
data or features, e.g., age or gender, is also desirable to shorten the
training time and in some cases to make learned models easier to
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interpret. Many algorithms were developed to assist selecting the
best features for a given problem [2, 8].

When acquiring the data it is therefore useful to know, which
features are more and which are less important. To estimate feature
importance, many algorithms are available, e.g., Random Forests [1]
and Stability Selection (SS) [7]. �e la�er feature selection algo-
rithm, where feature importance can be assessed, works as ensem-
ble of many feature selection runs and uses some other feature
selection algorithm internally. �ereby, the proposed approach in
this paper (see Algorithm 1) provides an important contribution to
advances in ML by improving SS and its applicative performance
(see Table 1), ordered by combined scores (see Table 2).

Algorithm 1 GASS combined with top-k SS.

Require: MAX FES (maximum number of function evaluations
allocated to each GA run), NP (GA population size), s (number
of SS subsamples), k (top-k SS argument), data (data records).

Ensure: SGASS+SS(k) stability scores for all features
1: for s = 1 to Ns do
2: Fs = subsample of features;
3: Is = subsample of data with only Fs features;
4: generate uniformly at random and evaluate initial GA binary

coded population xi,0, ∀i ∈ {1, 2, ...,NP};
5: for GA generation loop д (while FES < MAX FES) do
6: for GA iteration loop i (for each individual xi,д of the д-th

population) do
7: GA individual o�spring xi,д+1 evolution (mutation,

crossover, selection), where j1, j2, ∈ [1,NP] are two
parent individuals:

8: ui,д+1 = binary crossover(xj1,д , xj2,д);
9: vi,д+1 = binary mutation(ui,д+1);

10: GA �tness evaluation of vi,д+1 using cross-validation;
11: end for
12: GA selection: propagate ��est individuals stochastically

proportional;
13: end for
14: xbest = the best individual obtained in GA;
15: Ŝ(Is) = features from xbest;
16: end for
17: Calculate top-k SS scores for all p features on the data;
18: for i = 1 to p do

19: SGASS(xi ) =
∑Ns
s=1 1{xi ∈Ŝ (Is)}∑Ns
s=1 1{xi ∈Fs }

;
20: SSS(k)(xi ) = score of feature xi , calculated with top-k SS;
21: SGASS + SS(k)(xi ) =

SSS(k)(xi )+SGASS(xi )
2 ;

22: end for
23: return descending sorted SGASS+SS(k)(xi ),∀i ∈ {1, 2, ...,p};
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Table 1: Logistic linear regression classi�cation AUC statis-
tics for di�erent SS methods, over 100 random subsamples.

Selected features Average Median Min Max Std. dev.
GASS 0.8920 0.8923 0.8852 0.8996 0.0027
top-4 SS 0.8895 0.8896 0.8803 0.8965 0.0028
top-3 SS 0.8895 0.8896 0.8803 0.8965 0.0028
top-2 SS 0.8895 0.8896 0.8803 0.8965 0.0028
GASS + top-4 SS 0.8929 0.8930 0.8875 0.8998 0.0026
All features 0.8685 0.8683 0.8575 0.8771 0.0036
top-1 SS 0.8317 0.8321 0.8192 0.8422 0.0045

Table 2: SS results: top 20 feature importances from the top-
4 SS, utilized GASS, and the proposed GASS + top-4 SS.

# Feature Description top-4 GASS GASS +
SS top-4 SS

1 AGE Age in years 1.00 1.00 1.00
2 272.4 Other and unspeci�ed hyperlipidemia 1.00 1.00 1.00
3 250.00 Diabetes mellitus without mention of complication,

type II or unspeci�ed type, not stated as uncontrolled
1.00 1.00 1.00

4 V27.0 Outcome of delivery, single liveborn 1.00 1.00 1.00
5 403.90 Hypertensive chronic kidney disease, unspeci�ed,

with chronic kidney disease stage I through stage IV,
or unspeci�ed

1.00 1.00 1.00

6 272.0 Pure hypercholesterolemia 1.00 1.00 1.00
7 585.9 Chronic kidney disease, unspeci�ed 1.00 1.00 1.00
8 585.6 End stage renal disease 1.00 1.00 1.00
9 403.91 Hypertensive chronic kidney disease, unspeci�ed,

with chronic kidney disease stage V or end stage
renal disease

0.76 1.00 0.88

10 530.81 Esophageal re�ux 0.75 1.00 0.88
11 414.01 Coronary atherosclerosis of native coronary artery 0.50 1.00 0.75
12 278.00 Obesity, unspeci�ed 0.50 1.00 0.75
13 278.01 Morbid obesity 0.50 1.00 0.75
14 786.59 Other chest pain 0.50 1.00 0.75
15 585.3 Chronic kidney disease, Stage III (moderate) 0.50 1.00 0.75
16 401.0 Malignant essential hypertension 0.50 1.00 0.75
17 402.90 Unspeci�ed hypertensive heart disease without heart

failure
0.50 1.00 0.75

18 401.1 Benign essential hypertension 0.50 1.00 0.75
19 402.91 Unspeci�ed hypertensive heart disease with heart

failure
0.50 1.00 0.75

20 404.91 Hypertensive heart and chronic kidney disease, un-
speci�ed, with heart failure and with chronic kidney
disease stage I through stage IV, or unspeci�ed

0.50 0.97 0.74
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