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ABSTRACT
Bet-and-run initialisation strategies have been experimentally shown

to be bene�cial on classical NP-complete problems such as the trav-

elling salesperson problem and minimum vertex cover. We analyse

the performance of a bet-and-run restart strategy, where k inde-

pendent islands run in parallel for t1 iterations, a�er which the

optimisation process continues on only the best-performing island.

We de�ne a family of pseudo-Boolean functions, consisting of a

plateau and a slope, as an abstraction of real �tness landscapes with

promising and deceptive regions. �e plateau shows a high �tness,

but does not allow for further progression, whereas the slope has a

low �tness initially, but does lead to the global optimum. We show

that bet-and-run strategies with non-trivial k and t1 are necessary

to �nd the global optimum e�ciently. We show that the choice of

t1 is linked to properties of the function. Finally, we provide a �xed

budget analysis to guide selection of the bet-and-run parameters to

maximise expected �tness a�er t = k · t1 + t2 �tness evaluations.

CCS CONCEPTS
•�eory of computation → Optimization with randomized
search heuristics; •Computing methodologies → Random-
ized search;
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1 INTRODUCTION
A standard reaction to a malfunctioning desktop PC is to restart

it. Nowadays, stochastic search algorithms and randomised search

heuristics are frequently restarted as well: If a run does not con-

clude within a pre-determined limit or if the solution quality is

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’17, Berlin, Germany

© 2017 Copyright held by the owner/author(s). 978-1-4503-4920-8/17/07. . . $15.00

DOI: h�p://dx.doi.org/10.1145/3071178.3071329

end of
time budget

choose
best-of-init

start
k

ru
n
s

Phase 1
of length t1

Phase 2
of length t2 = t− k·t1

t1 t1+t2

Figure 1: �e bet-and-run restart strategy starts with k inde-
pendent runs and total time budget t . A�er time t1 all runs
except for the best one are terminated (marked with ). �e
best run (markedwith ) continues for t2 time steps until the
total time budget is used up. (Figure from [5] with approval)

unsatisfactory, we restart the algorithm. �is was shown to help

avoid heavy-tailed running time distributions [6].

Some theoretical results exist on how to construct optimal restart

strategies. For example, Luby et al. [12] showed that, for Las Vegas

algorithms with known run time distribution, there is an optimal

stopping time in order to minimise the expected running time. �ey

also showed that, if the distribution is unknown, there is a universal

sequence of running times which is the optimal restarting strategy

up to constant factors. While these results can be used for every

problem se�ing, they only apply to Las Vegas algorithms.

Fewer results are known for the optimisation case. Marti [13]

and Lourenço et al. [11] present practical approaches, and a recent

theoretical result is presented by Schoenauer et al. [14]. Particularly

for the satis�ability problem, several studies make an empirical

comparison of a number of restart policies [1, 7].

Many modern optimisation algorithms, even when they work

mostly deterministically, have some randomised component, for

example by choosing a random starting point. �us, the initial

solution o�en strongly in�uences the quality of the outcome. It

follows that it is natural to do several runs of the algorithm. Two

very typical uses for an algorithm with a total time budget t are

to (a) use all of time t for a single run of the algorithm (single-run

strategy), or (b) to make a number of k runs of the algorithm, each

with running time t/k (multi-run strategy).

Based on these two classical strategies, Fische�i and Monaci [4]

investigated the use of the bet-and-run strategy described in Algo-

rithm 1 and illustrated in Figure 1. Note that the multi-run strategy
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of restarting from scratch k times is a special case by choosing

t1 = t/k and t2 = 0, and the single-run strategy corresponds to

k = 1. Also note that in the �rst phase the k runs (each using a

time budget t1) do not have to be run in parallel in practice.

Algorithm 1 Bet-and-Run

Phase 1: Perform k runs of the algorithm for some (short) time

limit t1 with t1 ≤ t/k .

Phase 2:

Identify best run b among the k , breaking ties at random.

Use remaining time t2 = t − k · t1 to continue b.

Fische�i and Monaci [4] experimentally studied such a bet-and-

run strategy for mixed-integer programming. �ey explicitly in-

troduce diversity in the starting conditions of the used MIP solver

(IBM ILOG CPLEX) by directly accessing internal mechanisms. In

their experiments with k = 5, bet-and-run was typically bene�cial.

Recently, Friedrich et al. [5] investigated a comprehensive range

of bet-and-run strategies on the travelling salesperson problem

and the minimum vertex cover problem. �eir best strategy was

Restarts
40

1%
, which in the �rst phase does 40 short runs with a time

limit that is 1% of the total time budget and then uses the remaining

60% of the total time budget to continue the best run.

From a theoretical point of view, the initialisation can have a

small bene�cial e�ect even on very easy functions. Sudholt [15]

showed that among all evolutionary algorithms initialising µ solu-

tions uniformly at random and then only using standard bit muta-

tion to generate new solutions, the best algorithms for OneMax

and LeadingOnes from this class pick the best from the µ > 1

initial individuals and then run a simple (1+1) EA from there. �is

strategy decreases the expected running time, compared to the

classic (1+1) EA, by an additive term of small order. de Perthuis de

Laillevault et al. [2] narrowed down the optimal choice of µ for

OneMax and proved a speedup by an additive term of Θ(
√
n logn).

In relative terms, this speedup is not very signi�cant as the expected

running time is of much larger order Θ(n logn), hence the relative

advantage disappears as the problem size increases. In contrast to

this, We consider a function class where much larger improvements

are possible.

�is article is structured as follows. First, we cover the prelim-

inaries in Section 2 and introduce fundamental properties in Sec-

tion 3. �en, we show that parallel runs are necessary in Section 4,

and dig deeper into the choice of parameters in Section 5. Lastly,

we provide a �xed budget analysis to guide parameter selection for

practical cases in Section 6.

2 PRELIMINARIES
We consider two algorithms augmented by the above bet-and-run

strategy, Random Local Search (RLS, Algorithm 2) and the (1+1) evo-

lutionary algorithm ((1+1) EA, which follows the scheme of Algo-

rithm 2, but �ips each bit in y independently with probability 1/n).

We analyse the performance of these two algorithms and their aug-

mented variants and are particularly interested in the optimisation

time, i. e., the number of �tness evaluations (as opposed to the num-

ber of iterations) needed to sample a globally optimal solution. We

also consider the expected �tness value a�er t �tness evaluations.

Algorithm 2 RLS

Choose x ∈ {0, 1}n uniformly at random

repeat
y ← x . Flip one bit in y chosen uniformly at random

if f (y) ≥ f (x) then x ← y
until stop

We consider a �tness function composed of a plateau and a slope,

de�ned by a parameter bn/2c + 1 < h < n.

fh (x) =
{
|x |1 if |x |1 > n/2
h otherwise

Note that bn/2c+1 is the lowest �tness value on the slope, hence

bn/2c + 1 < h ensures that the Hamming distance between any

individual on the plateau and any individual with at least the same

�tness on the slope is at least 2. �e condition h < n ensures that

the global optimum is 1
n

, the highest point on the slope.

#onesn/2
0

h

n

hn/2 n

plateau
s
lo

p
e

Figure 2: Sketch of the function fh .

�e function is a crude abstraction of more realistic �tness land-

scapes that contain seemingly promising regions and less promising

regions. Here the plateau has a relatively high �tness, compared

to the bo�om part of the slope, thus it seems to be a promising

region. However, no further progress is possible from the plateau

(apart from very rare, large mutations), hence the plateau turns out

to be deceptive. �e slope has a low �tness at �rst, but it allows

individuals to hill-climb to �tness values higher than the plateau,

eventually reaching the global optimum.

Deceptivity is one of the features of real-world problems that

have been identi�ed in the past as “reasons” for di�culties of evo-

lutionary algorithms—see [16] for an overview on di�culties in

optimisation, which furthermore include premature convergence,

ruggedness, causality, neutrality, epistasis, and robustness. Weise

et al. [16] state that “there are no e�cient countermeasures against

deceptivity. Using large population sizes, maintaining a very high

diversity, and utilizing linkage learning [. . . ] are, maybe, the only

approaches which can provide at least a small chance of �nding

good solutions.” In this article, we prove mathematically that bet-

and-run can be an e�ective countermeasure.

Note that we designed this function to facilitate a theoretical

analysis. Our analyses can be easily generalised to more realistic

classes of functions with slopes, valleys, peaks, and so on, however,

this is beyond the scope of this article. What ma�ers here is the

�tness a�er t1 steps.
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3 FUNDAMENTAL PROPERTIES
In this section, we prove some useful properties of initialisation

using random sampling of individuals from {0, 1}n , as well as some

bounds on the progress made by the RLS and (1+1) EA algorithms

on the slope portion of fh . Note that the slope matches the function

OneMax(x) :=
∑n
i=1

xi , which simply counts the number of 1-bits.

Some results refer to OneMax for simplicity.

3.1 Initialisation
Search points chosen uniformly at random will have close to n/2
bits set to 1. Hence there is a good chance that a population will

contain some points on the plateau, and some points on the slope.

We make this precise in the following lemmas, which will be used

in subsequent theoretical analyses.

We �rst consider the probability that random initialisation pro-

duces an individual on the slope portion of fh .

Lemma 3.1. If a point x is sampled uniformly from {0, 1}n ,

P(|x |1 > n/2) = 1/2 − Θ(1/
√
n).

Proof. |x |1 is binomially-distributed with parameters n and

p = 1/2.

If n is odd, the probability of sampling a point on the slope is

exactly 1/2 by symmetry (inverting all bits in any plateau point

yields a unique slope point).

If n is even, individuals with |x |1 = n/2 are on the plateau. In this

case, the probability of sampling a point on the slope is reduced by

P(|x |1 = n/2)/2 =
( n
n/2

)
2
−1−n = n!

(n/2)!(n/2)! 2
−1−n = Θ(1/

√
n). �

With k > 1, multiple points are sampled independently to ini-

tialise k runs in the bet-and-run strategy. When k is su�ciently

large, some key points are sampled with high probability.

Lemma 3.2. Let k be the number of points sampled uniformly at

random from {0, 1}n , then:
(1) At least one point with |x |1 ≤ n/2 (i.e. on the plateau) is sampled

with probability at least 1 − 2
−k

,

(2) At least one point with |x |1 ≥ n/2 + Ω(
√
n) is sampled with

probability at least 1 − (3/4)k ,
(3) If k ≤ poly(n), no points with |x |1 ≥ n/2+

√
n logn are sampled

with probability 1 − n−Ω(logn)
.

Proof. �e �rst statement follows from the fact that for a search

point x chosen uniformly at random, P(|x |1 ≤ n/2) ≥ 1/2. �e

probability that this applies to at least one search point is 1 − 2
−k

.

For the second statement, Lemma 1 in [10] shows that for a

search point x chosen uniformly at random,

P
(
|x |1 ≥ n/2 + π/(4e) ·

√
n
)
≥ 1/4.

�e probability that at least one such point is sampled is 1− (3/4)k .

For the �nal statement, we note that the expected number of

1-bits in a randomly sampled point is µ = n/2, and use a Cherno�

bound with δ = 2 log(n)/
√
n, to bound

P(|x |1 ≥ (1 + δ )µ) ≤ e−δ
2µ/3 = e−4 log

2 n/6 = n−Ω(logn)

and then apply a union bound to show that for any k ≤ poly(n), i.e.,

k ≤ nc3
for any constant c3, no point with at least n/2 +

√
n logn

1-bits is sampled with probability at least(
1 − P(|x |1 ≥ n/2 +

√
n logn)

)nc3

≥ 1−nc3 ·n−Ω(logn) = 1−n−Ω(logn).

�

Evolving an individual on the slope, from a population contained

on the plateau, requires an exponential amount of time if using

standard bit mutation, and is impossible if using RLS.

Lemma 3.3. Consider RLS or the (1+1) EA with or without bet-and-

run initialisation. If all current search points are on the plateau, the

expected time to evolve a point of greater or equal �tness is at least

(h − n/2)! if using the Standard Bit Mutation operator, and in�nite if

using Random Local Search.

Proof. For Random Local Search, we note that it is impossible

to escape from the plateau by applying local mutations, as all non-

plateau neighbours of any point on the plateau have strictly worse

�tness than the plateau.

In case of the (1+1) EA, any number of bits can be �ipped in

a single iteration. In the best case, �ipping h − n/2 bits (to go

from an individual with |x |1 = n/2 to |x |1 = h) is required; the

probability that such a mutation occurs is at most

( n
h−n/2

)
n−h+n/2 ≤

1/(h−n/2)!, and thus the expected waiting time for such a mutation

to occur is at least (h − n/2)!. �

3.2 Progress Estimates
We further provide estimates for the progress on the slope.

Lemma 3.4. Suppose |x0 |1 ≥ bn/2c + 1, and let T>h be the �rst

time of RLS on OneMax, starting in x0, hi�ing a OneMax-value

larger than h, for 1/2 < h/n < 1 constant. �en

P(T>h ≤ n · ln(n/(2n − 2h)) + n3/4) ≥ 1 − e−Ω(
√
n).

Proof. In the following, H (n) :=
∑n
i=1

1/i denotes the n-th

harmonic number. We will show the following inequalities for a

suitable value δ = Ω(n3/4) speci�ed later:

P
(
T>h ≤ n · ln(n/(2n − 2h)) + n3/4

)
≥ P

©­«T>h ≤
h∑

i= bn/2c+1

n

n − i + δ
ª®¬ (1)

≥ 1 − exp
©­«−δ4 ·min


δ∑n−h

i= bn/2c+1

n2

(n−i)2
,
n

h

ª®¬ = 1 − e−Ω(
√
n).

(2)

�e last equality follows from

∑n−h
i= bn/2c+1

n2

(n−i)2 ≤
n3

(n−h)2 = O(n)
(using h/n < 1 constant) and δ = Ω(n3/4). Inequality (2) follows

from the upper tail bound for �tness levels [17, �eorem 2] as on

OneMax the probability of improving a �tness of i is (n − i)/n.

To show (1), note that

h∑
i= bn/2c+1

n

n − i =
dn/2e−1∑
i=n−h

n

i
≤ n · (H (bn/2c) − H (n − h − 1)).
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Using H (n) = ln(n) + γ +O(1/n), for γ ≈ 0.5772156649 the Euler-

Mascheroni constant, we get that

n · (H (bn/2c) − H (n − h − 1)) = n ·
(
H (bn/2c) − H (n − h) + 1

n − h

)
≤ n · (ln(n/2) − ln(n − h) +O(1/n))
= n · ln(n/(2n − 2h)) +O(1).

De�ning δ = n3/4 −O(1), we get

n · ln(n/(2n − 2h)) + n3/4 ≥
h∑

i= bn/2c+1

n

n − i + δ

which proves (1) and the claim. �

�e same method can be applied to the (1+1) EA. �e proof is

ommited due to space restrictions.

Corollary 3.5. Suppose |x0 |1 ≥ bn/2c+1, and letT>h be the �rst

time of the (1+1) EA on OneMax, starting in x0, hi�ing a OneMax-

value larger than h, for 1/2 < h/n < 1 constant. �en

P(T>h ≤ en · ln(n/(2n − 2h)) + n3/4) ≥ 1 − e−Ω(
√
n)

Lemma 3.6. Suppose bn/2c + 1 ≤ |x0 |1 ≤ bn/2c + O(
√
n logn),

and letT≥h be the �rst time of RLS on OneMax, starting in x0, hi�ing

a OneMax-value of at least h, for 1/2 < h/n < 1 constant. �en

P(T≥h ≥ n · ln(n/(2n − 2h)) − n3/4) ≥ 1 − e−Ω(
√
n)

Lemma 3.6 can be proven similarly to Lemma 3.4, using the lower

tail bound for �tness levels [17, �eorem 2]. �e proof is omi�ed

due to space restrictions.

4 PARALLEL RUNS ARE NECESSARY
We now prove that for h = 3n/4, a bet-and-run strategy achieves

a polynomial running time on fh with high probability if t1 and k
are su�ciently large, while simple iterated random sampling (i.e.,

t1 = 1) is ine�cient with high probability. �ese results hold for

both RLS and (1+1) EA.

Theorem 4.1. If t1 = 1, the expected running time of the (1 + 1)
EA, initialised with the best of k randomly-sampled points, on fh (x)
with h = 3n/4 is at least nΩ(n) for any polynomial choice of k .

�e expected running time of RLS on fh (x)withh = 3n/4 is in�nite
for any choice of k when t1 = 1. If k is polynomial w.r.t. n, RLS is not

able to �nd the global optimumwith probability at least 1−2
−k −o(1).

Proof. �e algorithm chooses the best of k points sampled uni-

formly at random to evolve further. We note that by the symmetry

of the binomial distribution, a point on the plateau is among the

initial samples with probability at least 1−2
−k

; unless a slope point

with at least 3n/4 1-bits is sampled, a plateau point will be chosen

if one is sampled.

By Lemma 3.2, with high probability, no points with |x |1 ≥
n/2+

√
n logn are sampled for any polynomial k that is polynomial

with respect to n. �is means that it is highly unlikely that an

individual with at least 3n/4 1-bits is sampled.

Combined, the initialisation process produces an individual on

the plateau with probability (1 − 2
−k )(1 − n−Ω(logn)). When ini-

tialised on the plateau, by Lemma 3.3, the expected optimisation

time for the (1+1) EA is at least nΩ(n).

By the law of total expectation, the expected running time is

E(T ) ≥ (1 − 2
−k )(1 − n−Ω(logn))nΩ(n) = nΩ(n)

for the (1+1) EA with iterated random sampling, and in�nite for RLS

with iterated random sampling, where any polynomial number of

independent uniform samples k are used to initialise the algorithm.

�

As an interesting consequence, we note that for h = 3n/4, k = 1

would perform be�er than any other polynomial choice of k when

t1 = 1: increasing the number of samples performed during initial-

isation increases the probability that a plateau individual will be

sampled and accepted.

On the other hand, if, in addition to sampling a modest number

of initial search points, those samples were allowed to evolve in

parallel for a su�cient number of iterations, it would be possible for

islands initialised on the slope to climb it and discover individuals

of higher �tness than the plateau.

Theorem 4.2. A bet-and-run strategy with k ≥ c logn, where c

is an appropriately-chosen constant, and t1 = en ln(2) + n3/4
, using

either RLS or the (1+1) EA on the islands, is able to construct the

optimum of f
3n/4 in time O(n logn + kn) with high probability.

Proof. Using Lemma 3.2, we note that there exists a constant

c such that with high probability, when k = c logn, at least one

island is initialised with |x |1 ≥ n/2 + Ω(
√
n) one bits. We focus on

the progress made on this island during the �rst t1 iterations.

For RLS, it is impossible for the island to construct a plateau

individual when initialised with |x |1 > bn/2c + 1, so the island

remains on the slope for t1 iterations, and follows the climbing

behaviour analysed in Lemma 3.4. Se�ing t1 ≥ n ln(2) + n3/4
is

therefore su�cient for the island to construct an individual with

higher-than-plateau �tness in t1 iterations with high probability.

If the islands are running the (1+1) EA, per Corollary 3.5, a�er

t1 = en ln(2) + n3/4
iterations, an island which is initialised on the

slope, and does not revert to the plateau, will with high probability

have a best-so-far individual with �tness higher than 3n/4. Unlike

RLS, it is possible for (1+1) EA islands to revert to the plateau at any

point prior to reaching an individual with �tness greater than h, by

�ipping su�ciently many 1-bits bits in a single mutation. For an

island initialised with |x |1 > n/2 + Ω(
√
n), constructing a point on

the plateau will require �ipping at least Ω(
√
n) 1-bits; while at any

time when such a mutation would be accepted, there are no more

than 3n/4 1-bits in the current individual. �us, the probability

that such a mutation occurs in one iteration and is accepted is at

most (3/4)Ω(
√
n)

. Taking a union bound over the entire �rst phase

of the bet-and-run strategy, the probability that the island we are

focusing on remains on the slope is at least (1 − (3/4)Ω(
√
n))t1 ≥

1 −O(n) · (3/4)Ω(
√
n) = 1 − 2

−Ω(
√
n)

.

�us, with appropriate choices of k and t1, a be�er-than-plateau

individual will exist on at least one island a�er t1 iterations with

high probability. �is individual is chosen as the winner by the bet-

and-run strategy, and given that reverting to the plateau is no longer

possible for either algorithm, the 1
n

optimum is found in at most

an additional O(n logn) iterations with high probability, following

well-known results for OneMax [17]. �us, by se�ing k = c logn,

where c is a su�ciently large constant, and t1 = en ln(2) + n3/4
,
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a�er combinedO(kt1+n logn) = O(n logn) �tness evaluations, the

global optimum will have been constructed with high probability.

�

5 ON THE CHOICE OF PARAMETERS
How to choose parameter values such as t1? �e answer depends

on the function at hand: t1 should be large enough to allow the

algorithm to detect whether a search point was initialised in a

promising region of the search space. For our function class fh
this depends on the parameter h, which determines both the �tness

of the plateau and the distance the algorithm has to travel up the

slope from the typical initialisation around n/2 ones.

We show that if t1 is too small, i. e., smaller than the expected

time to climb up a distance of h then the algorithm is ine�cient.

For simplicity we focus on RLS only, however the same e�ect also

occurs for the (1+1) EA.

Theorem 5.1. Consider RLS with a bet-and-run strategy using

parameters k ≤ poly(n) on fh . If t1 ≤ (1 − ε)n ln(n/(2n − 2h)) for
any constant ε > 0, then, with probability 1 − 2

−k − e−Ω(
√
n)
, the

algorithm fails to �nd a global optimum.

Proof. Note that once an island reaches the plateau, RLS can

never escape. So we only have to consider islands that initialise on

the slope. For n large enough (otherwise the claim is trivial),

t1 ≤ (1 − ε)n ln(n/(2n − 2h)) < n ln(n/(2n − 2h)) − n3/4.

By Lemma 3.6, the probability that any island initialised on the slope

reaches a �tness of at least h in t1 generations is e−Ω(
√
n)

. Taking

the union bound over at most k islands on the slope, the probability

is still only of order k · e−Ω(
√
n)

. As k ≤ poly(n) = nO (1) = eO (logn)

this simpli�es to eO (logn) · e−Ω(
√
n) = e−Ω(

√
n)

.

If no island reaches �tness h at time t1, an individual on the

plateau will survive, and all other islands will be removed. By

Lemma 3.2, the probability of initialising on the plateau is at least

1 − 2
−k

. Taking a union bound over failure probabilities e−Ω(
√
n)

and 2
−k

proves the claim. �

If t1 is large enough, we can guarantee that the global optimum

is found with high probability:

Theorem 5.2. Consider RLS with a bet-and-run strategy using

parameters k ≤ poly(n) on fh . If t1 ≥ (1 + ε)n ln(n/(2n − 2h)) for
any constant ε > 0 then with probability at least 1− (3/4)k −O(1/n)
the algorithm �nds a global optimum in time O(kn logn).

Proof. By Lemma 3.2 with probability 1 − (3/4)k there is at

least one island initialised on the slope, with a su�cient distance

to the plateau such that it can never reach the plateau. Fix such an

island, then for n large enough (otherwise the claim is trivial),

t1 ≥ (1 + ε)n ln(n/(2n − 2h)) ≥ n · ln(n/(2n − 2h)) + n3/4.

By Lemma 3.4 the island has reached a �tness larger than h a�er t1

steps, with probability 1−e−Ω(
√
n)

. �is means that this, or another

island on the slope will survive a�er time t1. �e time bound follows

from the fact that RLS optimises OneMax and hence the slope in

expected time O(n logn) with high probability 1 − O(1/(kn)) [3]

(the failure probability can be as small as an inverse polynomial of

arbitrarily large degree), and using a union bound over k islands

again, so at most O(kn logn) function evaluations are needed with

probability at least 1 −O(1/n). Adding all failure probabilities and

absorbing e−Ω(
√
n)

in the term O(1/n) proves the claim. �

6 EXPECTED FITNESS
As seen in the previous section, if t1 is too small, RLS with a bet-

and-run strategy is trapped on the plateau with high probability,

resulting in a �tness ofh. If t1 is large enough to ensure that the best

island a�er t1 steps is on the slope, RLS with a bet-and-run strategy

optimises fh in timeO(kn logn). However, if one is given an overall

budget of t steps with the goal of maximising the expected �tness

a�er t steps, choosing too large t1 will waste computation time in

Phase 1 of the algorithm. It is therefore interesting to consider the

expected �tness for some budget t = k · t1 + t2 – such analysis is

known as �xed budget analysis [9]. We will use this perspective to

show that too large values for t1 lead to a decrease in the expected

�nal �tness.

6.1 A Single Lineage of RLS
Let us �rst consider a single lineage of RLS on fh (x) in the �xed

budget se�ing. We consider three di�erent cases and denote the

initial search point by x0.

(1) RLS is initialised on the plateau, i. e., |x0 |1 ≤ n/2. �is happens

with probability Θ(1/
√
n) (following similar arguments as in

Lemma 3.1). In this case, RLS will stay on the plateau forever.

(2) RLS is initialised on the le�-most point of the slope, i. e., |x0 |1 =
bn/2c + 1. �is happens with probability Θ(1/

√
n) (following

similar arguments as in Lemma 3.1). In this case, the �rst

iteration will determine if we continue on the slope or reach

the plateau: Flipping a 1-bit will lead to a point on the plateau;

�ipping a 0-bit ensures that RLS can climb up the slope.

(3) RLS is initialised further up on the slope, i. e., |x0 |1 > bn/2c +
1. �is happens with probability Θ(1/

√
n) (following similar

arguments as in Lemma 3.1). In this case, RLS will climb up

the slope and eventually reach the optimum.

We consider Case (1) and (3) in more detail in Lemma 6.1 and

6.3 and use these two results to derive a statement for Case (2) in

Lemma 6.4. For the sake of simplicity we assume that n is even.

�e case for odd n can be proved similarly.

Lemma 6.1 (Case 1). Let xt be the search point a�er t iterations
of a single lineage of RLS. �e expected �tness value of xt conditional
on initialising on the plateau is:

E (f (xt ) | |x0 |1 ≤ n/2) = h

for all t ≥ 0 and n/2 + 1 < h < n.

Proof. For all x ∈ {0, 1}n with |x |1 ≤ n/2, we have fh (x) =
h > n/2 + 1. For y ∈ {0, 1}n with |y |1 = n/2 + 1 (a le�most point

on the slope), we have f (y) = n/2 + 1 < h = fh (x). Since RLS only

performs 1-bit �ips, it will be trapped on the plateau forever. �

Before examining the other two cases, we consider the expected

�tness conditional on initialising with exactly i bits safely on the

slope, i. e., i > n/2 + 1. Note, that i needs to be an integer, however,

for the sake of readability we omit b. . .c in the following.
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Lemma 6.2. �e expected �tness of one lineage of RLS starting in

x0 with i = n/2 + д(n) ≤ n 1-bits for some д(n) : N+ → R+ and

д(n) ≥ 2 for all n, a�er t iterations, is

E(f (xt ) | |x0 | = i) = n − (n/2 − д(n)) · (1 − 1/n)t

Proof. As discussed before fh (x) is equivalent to the well-

known OneMax problem on the slope. We therefore follow the

line of thought of �eorem 5 in [9] and observe that

E(f (xt ) | |x0 | = i) = i + (n − i)
(
1 − (1 − 1/n)t

)
holds as a bit initially set to 0 has the value 1 at time t if and only

if there is a point of time when this speci�c bit is �ipped. Using

i = n/2 + д(n) a straightforward calculation leads to

E(f (xt ) | |x0 | = i)
= n/2 + д(n) + (n − (n/2 + д(n)))

(
1 − (1 − 1/n)t

)
= n/2 + д(n) + (n/2 − д(n))

(
1 − (1 − 1/n)t

)
= n/2 + д(n) + (n/2 − д(n)) − (n/2 − д(n)) · (1 − 1/n)t

= n − (n/2 − д(n)) · (1 − 1/n)t �

Using Lemma 6.2 we can now derive bounds on the expected

�tness assuming that RLS is initialised in some point that high

enough on the slope.

Lemma 6.3 (Case 3). Let xt be the search point a�er t iterations of
a single lineage of RLS. �e expected �tness value of xt for all t ≥ 0

conditional on initialising safely on the slope is:

n − (n/2 − 2) · (1 − 1/n)t ≤ E(f (xt ) | |x0 |1 > n/2 + 1)

≤ n −
(
n/2 −

√
n logn

)
· (1 − 1/n)t + n · n−Ω(logn)

Proof. We need to consider the conditional expectation for all

i > n/2 + 1. For the lower bound we assume that |x0 |1 = n/2 + 2,

the lowest point on the slope that ensures that RLS cannot move

onto the plateau. Using Lemma 6.2 with д(n) = 2 we obtain:

E (f (xt ) | |x0 |1 > n/2 + 1) ≥ E (f (xt ) | |x0 |1 = n/2 + 2)
= n − (n/2 − 2) · (1 − 1/n)t

From the proof of Lemma 3.2 we know that |x0 |1 < n/2 +
√
n logn

with probability 1 − n−Ω(logn)
. Using Lemma 6.2 with д(n) =√

n logn we get

E (f (xt ) | |x0 |1 > n/2 + 1)

=
(
1 − n−Ω(logn)

)
· E

(
f (xt ) | n/2 + 1 < |x0 |1 ≤ n/2 +

√
n logn

)
+ n−Ω(logn) · E

(
f (xt ) | |x0 |1 > n/2 +

√
n logn

)
≤ E

(
f (xt ) | |x0 |1 = n/2 +

√
n logn

)
+ n · n−Ω(logn)

= n −
(
n/2 −

√
n logn

)
· (1 − 1/n)t + n · n−Ω(logn) �

Finally, we consider the borderline case where |x0 |1 = n/2 + 1.

Lemma 6.4 (Case 2). Let xt be the search point a�er t iterations
of a single lineage of RLS. �e expected �tness value of xt conditional

on initialising on the le�most point on the slope is:

n/2 + h/2 − (n/4 − 1) · (1 − 1/n)t−1 − 1/2
≤ E (f (xt ) | |x0 |1 = n/2 + 1) ≤

n/2 + h/2 − (n/4 − 2) · (1 − 1/n)t−1

Proof. For |x0 |1 = n/2 + 1, the probability to move onto the

plateau in the next step is (n/2+1)/n = 1/2+1/n and the probability

to walk up the slope is (n/2 − 1)/n = 1/2 − 1/n. �us, we have

E (f (xt ) | |x0 |1 = n/2 + 1)
= (1/2 + 1/n) · E (f (xt ) | |x1 |1 = n/2)

+ (1/2 − 1/n) · E (f (xt ) | |x1 |1 = n/2 + 2)

= (1/2 + 1/n) · h + (1/2 − 1/n) ·
(
n − (n/2 − 2) · (1 − 1/n)t−1

)
= n/2 + h/2 − (n/4 − 3/2 + 2/n) · (1 − 1/n)t−1 + h/n − 1

�is can easily be bounded above and below by the terms stated in

the lemma. �

We can now use the above results to derive the desired �xed

budget result.

Theorem 6.5. Let x0 be uniformly at random from {0, 1}n .

n

2

+
h

2

−
(n

4

− 1

)
·
(
1 − 1

n

)t
≤ E(f (xt ))

≤ n

2

+
h

2

−
(
n

4

− 1

2

√
n logn

)
·
(
1 − 1

n

)t
+ Θ(
√
n)

Proof. �e result can easily be obtained by combining the re-

sults from Lemma 6.1, 6.3 and 6.4. �e calculations are omi�ed due

to space restrictions. �

One could argue that the result in �eorem 6.5 is somewhat

misleading as it combines two very di�erent types of RLS runs on

fh (x): If RLS is initialised on the plateau, the observed �tness does

not change at all, but our bounds on the expected �tness increase

with increasing t (until a certain point) due to the in�uence of the

behaviour on the slope. Similarly, the relatively high value on the

plateau has a signi�cant in�uence on the initial �tness value and

thus, if RLS is initialised on the slope the observed �tness values may

be much lower than the above expectation. Finally, if the plateau

is not very high, the expected �tness is always much smaller than

the optimal �tness value. We therefore argue that the results as

presented in Lemmas 6.1, 6.3 and 6.4 together with the probabilities

for the corresponding events may be a more appropriate way to

extend �xed budget analysis to multimodal problems as it makes a

more precise statement about the expected �tness.

We remark that this is somewhat similar to the discussion of

limitations of running time analysis: An expected exponential opti-

misation time (or in the case for RLS an in�nite optimisation time)

for some function can be misleading if the worst case is very un-

likely and thus, the optimisation time is in fact polynomial with

high probability. In such cases, we usually use more meaningful

statements such as “the optimisation time is T with probability

p” instead of the expected optimisation time [8]. We argue that a

similar approach should be taken in the context of �xed budget

analysis where appropriate.
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6.2 Bet-And-Run Strategy
We now use the results of the previous section to derive bounds

on the expected �tness for RLS with a bet-and-run strategy us-

ing parameters t = k · t1 + t2. We restrict our investigations to

the case where t1 is large enough to optimise fh in polynomial

time with high probability and demonstrate how the expected �t-

ness decreases with increasing t1 once t1 grows beyond a certain

threshold.

Theorem 6.6. Consider RLS with a bet-and-run strategy using

parameters c logn ≤ k ≤ poly(n) on fh for a large enough con-

stant c > 0 and t1 ≥ (1 + ε)n ln(n/(2n − 2h)) for any constant ε > 0.

�en, the expected �tness a�er t = k · t1 + t2 steps is

n −
(n

2

− d
√
n
)
·
(
1 − 1

n

)t−(k−1)·t1

−
(

3

4

)k
· n ≤ E(f (xt ))

≤ (1 + δ ) ·
(
n −

(n
2

−
√
n logn

)
·
(
1 − 1

n

)t−(k−1)·t1

)
+ o(1)

for all t ≥ 0 and d,δ > 0 constant.

Proof. We �rst observe that for an overall budget of t = k ·t1+t2
a single island will get t1 + t2 steps and thus, we need to bound the

progress that can be made in this many steps.

According to Lemma 3.4 and �eorem 5.2, the best island a�er

t1 ≥ (1 + ε)n ln(n/(2n − 2h)) steps will be on the slope with proba-

bility 1 − e−Ω(
√
n)

. In this case, the expected �tness a�er t steps is

at least E(f (xt1+t2
) | |x0 |1 > n/2 + 1), i. e., the expected �tness of

an individual initialised on the slope a�er t1 + t2 steps. Otherwise,

the �tness will be h.

According to Lemma 3.2, there will be at least one point with

|x0 |1 ≥ n/2 + d
√
n (d > 0 some appropriately chosen constant)

with probability 1 − (3/4)k . �us, following the line of thought of

Lemma 6.3, we get n −
(
n/2 − d

√
n
)
· (1 − 1/n)t1+t2 − (3/4)k · n as

lower bound on the expected �tness a�er t1 + t2 steps. Note, that

the other failure cases are dominated by the (3/4)k · n term.

For the upper bound, we need to consider the island with

the best �tness a�er t1 steps. According to Lemma 6.3 the ex-

pected �tness for an island on the slope a�er t1 steps is at most

n −
(
n/2 −

√
n logn

)
· (1 − 1/n)t1 +n · n−Ω(logn)

. �e probability to

deviate from this by more than a factor of (1+δ ), δ > 0 an arbitrary

constant, in k independent runs is e−Ω(
√
n)

using Lemma 3.6 and

similar arguments as in the proof of �eorem 5.1 (details omi�ed).

To get an upper bound for the complete budget, we use the same

argument for t1 + t2 steps. Failure cases can be accounted for in a

similar way as for the lower bound.

Using t1+t2 = t1+ (t −k ·t1) = t −(k−1) ·t1 yields the result. �

To make the result more tangible we visualise the two bounds

from �eorem 6.6 in Figure 3 using n = 100, t = 1000 and k = 10.

We see that the expected �tness a�er t steps decreases with increas-

ing t1, showing that too large t1 can waste �tness evaluations.

6.3 Experimental Supplements
As our proofs do not reveal which bet-and-run con�guration is

the one that performs best, we conduct experiments to show the

e�ect the plateau height h has on the performance landscape (see

 84

 86

 88

 90

 92

 94

 96

 98

 100

 10  20  30  40  50  60  70  80  90  100

E(
f(x

t))

t1

lower bound
upper bound

Figure 3: Visualisation of bounds from�eorem 6.6.

Figure 4). Note that in our setup with n = 100 in the experiments

requires h ≥ 52 so that we have a local minimum that cannot

be crossed by RLS. We include h = 50 nevertheless to show the

situation when no such local optima exist.

We can observe signi�cant qualitative changes. First, when

h = 52, the best choice is to do several short runs in the �rst phase.

�is recommendation still holds as the total budget increases, and

in fact many more bet-and-run con�gurations turn out to perform

similarly well. Second, when h = 62.5, there are three regions of

best performing con�gurations (the two visible “bumps” and a thin

ridge along k = 1), of which two merge to a major ridge as the total

computation budget increases. For h = 75 and h = 87.5, there is the

thin ridge along k = 1, and only one major region that increases in

size with increasing total budget.

Interestingly, when the total budget is only n, the best bet-and-

run con�guration for the three rightmost cases is the one where

only a single run is performed; small ridges along k = 1 are present

and just visible in the plots. When h = 52, the best strategy is

to have several short runs and to proceed with Phase 2 from the

best of these short runs. �is recommendation does not hold for

the other three plateau heights, where performing several short

runs in Phase 1 o�en results in the worst performance. Instead,

either several long runs should be performed when the total budget

increases (h = 87.5 or h = 75) or even a wide range of bet-and-run

con�gurations performs well (h = 62.5).

In summary, we can see that the choice of the best-performing

k-t1-combination depends on the problem and the overall budget.

7 CONCLUSIONS
In this article, we have proven mathematically that bet-and-run

can be an e�ective countermeasure when a problems with promis-

ing and deceptive regions are encountered. We conjecture that a

similar result holds for functions where the deceptive area is not a

plateau, but a slope towards a local optimum. However, in this case

parameterisation and bene�t will depend not only on the o�set h,

but also on the gradient of the slope.

We also show that the choice of t1 is linked to properties of the

function, and we provide a �xed budget analysis to guide the selec-

tion of parameters. A natural next step is to extend our analyses

from bimodal functions to multi-modal ones. In addition, we plan

to characterise the progress variance of individual runs (in Phase 1)

theoretically, so that this can be exploited in proofs and in practice.



GECCO ’17, July 15-19, 2017, Berlin, Germany Andrei Lissovoi, Dirk Sudholt, Markus Wagner, and Christine Zarges

h = 50 h = 52 h = 62.5 h = 75 h = 87.5

1
0
0

e
v
a
l
u

a
t
i
o

n
s

2
0
0

e
v
a
l
u

a
t
i
o

n
s

4
0
0

e
v
a
l
u

a
t
i
o

n
s

1
6
0
0

e
v
a
l
u

a
t
i
o

n
s

Figure 4: RLS: e�ect of k and t1 on average �tness achieved on fh (x) given various computation budgets and various plateau
heights. n = 100, resulting in minimal �tness of 50 and maximum �tness of 100. We consider 30 values of k and t1 each, spaced
out logarithmically. Shown are the averages of 1000 independent runs. As we can see, the choice of the best-performing
k-t1-combination depends on the problem and the overall budget. Note that the yellow plummeting face is a plotting artefact.
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