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Charles C. Newey∗, Owain D. Jones†and Hannah M. Dee‡
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Abstract

Shadows have long been a challenging topic for computer vision. This
challenge is made even harder when we assume that the camera is mov-
ing, as many existing shadow detection techniques require the creation and
maintenance of a background model. This paper explores the problem of
shadow modelling from a moving viewpoint (assumed to be a robotic plat-
form) through comparing shadow-variant and shadow-invariant image fea-
tures — primarily colour, texture and edge-based features. These features
are then embedded in a segmentation pipeline which provides predictions
on shadow status, using minimal temporal context. We also release a pub-
lic dataset of shadow-related image sequences, to help other researchers
further develop shadow detection methods and to enable benchmarking
of techniques.

1 Introduction

Shadows pose a problem for computer vision research. Shadows are dark but not
opaque, they move (and are attached to ‘interesting’ objects), they share shape
and motion characteristics with their ‘parent’ objects, and, because of varying
illumination conditions, they don’t necessarily have a consistent brightness or
colour. This combination of factors means that shadows can confuse object
detections, they can cause false positives in motion detection, they can adversely
affect illumination conditions in a scene causing errors in white-balancing or
colour-correction algorithms, they can cause background elimination algorithms
to fail, and more. Shadows, then, are generally problematic for any vision-based
computer or robotic scene analysis system. They are particularly troublesome
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for systems that are unable to rely upon additional 3D information to determine
if an object is tangible (as shadows themselves are not).

When we consider vision from a moving platform, such as we find in robotic
agents, it becomes clear that systems which see shadows as objects could be
problematic. We would not want a robotic vehicle, for example, to brake sud-
denly having perceived a sharp shadow on a road as a cliff. In other robotic
applications we wish to recover the 3D structure of the world for manipulation
or reasoning purposes, and again the existence of spurious objects caused by
shadows could cause practical issues for robot performance. The problem is
confounded when the viewpoint moves, as much vision based shadow detection
work relies on building pixel-based models over time to represent the colour of
a surface both shaded and unshaded. Without a static viewpoint, these mod-
els cannot be constructed easily as a pixel at two different times will not be
guaranteed to refer to the same real-world surface.

This paper is a contribution to the ongoing search for features and methods
which can be used on a mobile robot and which can handle real-world shadows.
The problem of shadows is one of either shadow detection or shadow blindness.
With shadow detection one aims to find the shadows in the scene, which enables
them to then be used in further processing. With shadow blindness the aim is
to obtain a representation in which shadows effectively disappear stopping them
from being mistakenly seen as objects.

In this paper we provide an investigation into image features which do not
change under shading, and then use brightness-based methods within image
regions represented by these features to detect shadows themselves. Thus our
results are relevant to those seeking both shadow blindness (we seek features that
are invariant to shadow) and shadow detection (once found, we use brightness
information in regions selected by these invariant features). We work with
recorded video from moving positions (some robotic) rather than a live feed
from a robot, as this enables full evaluation and benchmarking of any methods
produced. No public video dataset exists in this domain, and so we release our
datasets to accompany this paper and invite other researchers to report their
results on our videos, using them as a benchmark set.

2 Background and Previous Work

There has been considerable work within computer vision on the problem of
shadow detection, but the vast majority of early work has focused on the use of
background models as shown by Sanin, Sanderson, and Lovell (2012), Dee and
Santos (2011) and Leone and Distante (2007). Background models are only of
use on video recorded from a static viewpoint, as they use contextual information
from the temporal dimension to build up a model of what is unchanging and
therefore ‘uninteresting’ in an image. A mobile viewpoint makes the modelling
of standard background appearance based upon (for example) pixel statistics
very difficult indeed.
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Another key strand of successful shadow detection work has concentrated on a
fine-grained analysis of colours and their distributions in single images. This
work is exemplified by Lalonde, Efros, and Narasimhan (2010), who combine
edge features with a Conditional Random Field (CRF) to classify edges in con-
sumer photographs. This kind of approach does not exploit temporal infor-
mation, but instead looks at the fine-grained detail of edges and uses iterative
smoothing to obtain edges which are consistent with the data yet continuous. A
related method is presented by Huang, Hua, Tumblin, and Williams (2011) who
consider a physically inspired model of simplified illumination assuming that the
sun and the sky have a different effect on shading, particularly at the penum-
bra. Notably, this work uses edges in a similar way to Lalonde et al. (2010) who
have inspired the work we present later on edge normals. Using paired regions,
R. Guo, Dai, and Hoiem (2013) take high-resolution single images and use a
graph-based technique to find pairs of regions that match. Their insight is that
a single region is very difficult to classify as shaded or not, but given the same
surface in both shaded and unshaded conditions (by matching pairs of regions)
it becomes tractable to determine which are shadows.

One of the most influential and useful works in this regard is “Learning to
recognize shadows in monochromatic natural images” (Zhu, Samuel, Masood,
& Tappen, 2010), in which the authors investigate shadow-variant and shadow-
invariant features to determine candidate shadow regions. Zhu et al compare
texton-type features, Gabor filter banks and local binary patterns, and also more
crude measures such as local maxima (usually over a small pixel neighbourhood).
They show that these features can be combined with various machine learning
methods (most notably, a CRF-based model combined with a boosted decision
tree) to achieve a robust single-image shadow classifier.

These approaches are very good at dealing with high-quality images, but are not
generally fast: the CRF step can take seconds with a large image. The speed
of these techniques (and other related methods) preclude their application on a
mobile robotics platform. However an investigation of single-image techniques
such as these is vital, as single-image shadow detection techniques (i.e. tech-
niques that can cope with a lack of temporal context) are the techniques most
likely to be applicable to video captured from an active camera.

Moving away from detailed investigations of single images, the remaining work
in shadow detection aims to find image or video features that are either shadow
variant (that is, they change under shading), or shadow invariant. These fea-
tures might be edge based, patch based, pixel based, region based, or hybrid
features, built up from some combination of these. Our current paper falls into
this set of approaches.

With robotic vision we need a system which is as fast as methods based upon
background subtraction, but robust enough to camera motion to handle a per-
spective which moves through the visual world. In a sense what we seek here
is a “halfway house” between methods which detect shadows in static video
(building strong temporal models at the pixel level), and those which aim to re-
cover, in detail, shadow information from high resolution images. We want the
context-insensitivity of the latter, with the speed and robustness of the former.
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Thus we work with medium resolution videos, but do not make extensive use of
temporal information at the pixel level.

3 Problem Statement and Hypotheses

Shadows are caused by an occlusion (the casting object, or caster) coming be-
tween a surface (the screen) and a light source. This results in less light arriving
on the screen. The shadow body (umbra) is the region of the screen totally oc-
cluded from the light source by the caster. If the light source is a point, then this
is all the shadow there is. If the light source is extended (and most real-world
light sources are) some shaded screen regions are only partially occluded from
the light source. These are known as the penumbra. Drawing on previous work
we can make some observations about the visual character of shadows:

• The penumbra appears as a gradual, blurred region between umbra and
unshaded screen.

• The shadow is (often, but not always) a similar colour to the screen, only
darker.

• The shadow has the same texture as the screen.

From these observations we form two hypotheses about the visual analysis of
shadows, and shadow detection. Identifying object, screen, and shadow remains
challenging. In certain situations it might be impossible without further knowl-
edge (for example, our robot might end up in the real-world equivalent of an
optical illusion, if we have a scene in which several different shades of the same
textured surface are present). But nonetheless we can begin to specify what
visual features will be useful for shadow detection in general.

3.1 Hypothesis 1: We can find some texture measure that
is unchanged by shadow

The visual appearance of a surface arises from the reflection of light from the
surface; the character of the surface and the character of the light both influence
this. Some statistical texture measures may be invariant to illumination change,
in particular there may be some texture measure which is invariant to the illu-
mination change due to shadows. That is, while local illumination may change
(i.e. it is a shadow-variant feature), local texture may not (i.e. it is a shadow-
invariant feature). Note that, in Figure 1, the textured surface retains its visual
qualities even under considerable shading under the umbra and penumbra.
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3.2 Hypothesis 2: Shadow edges and object edges have
different visual characteristics

Due to penumbral effects, shadow edges are different to object edges. There will
be a gradual transition between the brightness of the screen and the darkness of
the shaded screen. By investigating brightness along a line normal to detected
edges in an image, we hypothesise that it will be possible to distinguish shadow
and non-shadow edges by some measure of their “fuzziness”. The width of a
shadow’s penumbra is directly related to the size of the light source, and so this
particular hypothesis will not hold if we have point light sources.

Figure 1: A visual representation of our hypotheses. Textured regions B and A
retain their texture, even though other visual properties change under shading.
Edge normals across shadows are more gradual than edge normals across objects,
due to penumbra effects.

4 Segmenting Shadows Using Texture

In this section we present our texture-based shadow segmentation method. The
key idea here is that given the right texture measures, a texture segmentation
should be blind to shadows and just give us pixel sets that correspond to the
visible surfaces in the scene. We can then use the brightness domain within
these pixel sets (surfaces) to determine which areas of a surface are shaded and
which are not. Figure 2 provides an overview of this technique.

The remainder of this section considers each step in this method in turn: feature
selection, clustering methods, texture segmentation, brightness thresholding and
final shadow/non-shadow classification.
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Figure 2: A graphical overview of our texture segmentation approach.

4.1 Texture Features for Shadow Invariance

Statistical and other models of surface texture enable vision researchers to clas-
sify texture independently of colour. For our purposes we seek features which
show strong invariance under shading: we are looking for shadow-blind tex-
ture measures. This relates to our Hypothesis 1 : we can find some texture
measure which is unchanged by shadow. That said, we also need to consider
ease of clustering, speed of calculation and overall effectiveness. Among the
features considered were Gabor filters (as used in Jain and Farrokhnia (1990)
and Li and Staunton (2008)), Local Binary Patterns (LBPs) (Z. Guo, Zhang,
& Zhang, 2010), and Grey-Level Co-Occurrence Matrices (GLCMs). We also
considered Haralick features (Haralick, Shanmugam, & Dinstein, 1973), which
are summary statistics calculated on GLCMs. Gabor filters and LBPs already
have some form of pedigree in the realm of shadow research.

The easiest way of testing the shadow invariance of various texture features was
to extract texture features for two sets of images of the same scene (one set
without shadow, one set with shadow), and compare them statistically. In this
manner, the difference between these feature sets will give a straightforward
indication as to the degree of shadow-invariance of each feature. This posed a
computational challenge, as not only would different features have to be tested,
but different configurations of the same features would need to be tested too (for
example, different neighbourhood sizes in a Local Binary Pattern, or different
radii for Gaussian blur kernels). This provided a large parameter space to
search.

Grey Level Co-occurrence Matrices were rejected as a possible feature early on:
they provide large, sparse matrices which capture texture variation well but
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the features become extremely memory-intensive, and are prohibitively slow
to cluster. Gabor filters are CPU-intensive, and exhibit harmonic noise which
can cause interference when clustering. After eliminating Gabor filters and
GLCMs as features, a search was conducted for the optimal parameter set for
LBPs.1 LBPs are defined by two crucial parameters — the neighbourhood size
and the number of samples taken from that neighbourhood. With an LBP, the
neighbourhood around a central pixel is sampled, then thresholded using the
value of that central pixel. This gives a binary feature which encodes the pat-
tern of light and dark in that neighbourhood. We used an automated testing
framework to exhaustively search different combinations of parameters (across
multiple datasets) by iteratively comparing LBPs with different parameters —
each set of LBPs were generated on a set of pairs of the same scene (one im-
age under partial shadow and image non-shadowed). The features were then
analysed to determine which feature sets were the most similar (and therefore,
the most shadow-invariant). This process determined that the most shadow-
invariant combination of parameters for LBPs is a neighbourhood of 5 and a
sample size of 15.

4.2 Clustering and Unsupervised Texture Segmentation

In texture segmentation the aim is to divide an image into regions which con-
tain coherent clusters. There are a number of techniques and methods for this,
many of which involve a feature extraction phase and then a clustering phase.
Clusters are then mapped back into the image domain by labelling each pixel
or block with the nearest cluster centre. This is often followed by some clus-
ter “smoothing” or normalisation step to reduce noise. Previous work in this
domain includes online segmentation methods such as by Manjunath and Chel-
lappa (1991), Jain and Farrokhnia (1990) and Kim and Hong (2009). For the
sake of simplicity and speed (considering that a typical image will contain sev-
eral hundred thousand individual pixels), an optimised version of the K-means
algorithm was used (mini-batch with K-means++) devised by Sculley (2010)
and Arthur and Vassilvitskii (2007). Mini-batch K-Means is an extension of K-
means for large datasets, through training on subsets of the data. The original
K-means algorithm can take a long time to converge with large datasets, but
by running with random subsamples mini-batch K-means can converge much
more quickly. We run this with a fairly large initial K value, to account for the
unknown number of textures in an image. Using a large K may result in overly
complex texture segmentation; for our work we found that by keeping K below
approximately 20 we obtained reasonable segmentations.

Using K-means clustering to determine texture classes was reasonably effective,
and resulted in a segmentation which separated scenes into their component
surfaces with a small amount of noise. The assumptions that we make here are
that each surface exists in the scene in both shaded and unshaded states, and
that we have been able to separate the image into the scene’s component surfaces
using our shadow-invariant features and subsequent clustering stage. If these

1Circular LBPs were used in these experiments.
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assumptions hold, each texture class will have bimodal distribution of brightness
values. From there, an Otsu threshold was applied to each individual texture
class — working from the assumption that different textures will have different
brightness and illumination properties. This yielded results like Figure 3a, in
which the shadow is well identified, but it appears that small-scale local minima
were causing false positives. Thus we tidy up the final segmentation with two
post-processing steps: local maxima filtering and variance filtering. The local
maxima filter works on the assumption that shadows have smaller local maxima
than non-shadow regions — therefore, local brightness maxima make useful
features. Passing a 3 × 3 pixel maximum filter over the image replaces all
pixel brightness values in a given area with their local maximum. The variance
threshold has a similar effect on false positive shadow detections — candidate
shadow regions below a certain variance threshold (experiments indicated that
a 3×3 filter was most effective) are marked as non-shadow, thus removing false
detections on “grainy” textures.

This gives us two methods to compare, then; a simple K-means and Otsu-based
algorithm, and a more complex K-means-based algorithm, using both Otsu and
variance thresholds. As can be seen in Section 6.4 (specifically Table 3), the
algorithm using the variance threshold is generally far more effective, outper-
forming the standard algorithm by up to 34% (for example, on the tarmac
dataset). For example visualisations of the various algorithms, see fig. 3 and
fig. 4.

(a) An example frame of the simplest
K-means texture segmentation shadow
detection using an Otsu threshold.
Note the false positives caused by small
variations on the brick texture.

(b) An example frame produced by
the K-means-based shadow detection
— using local maxima for the bright-
ness threshold. Note the reduced false
positive rate.

Figure 3: Two frames showing the progression of the K-Means/Otsu algorithm.

In addition to experimenting with several different texture features, the optimal
combinations of parameters for each feature type (and various other parts of each
algorithm) had to be discovered. This was achieved by implementing a simple
framework in Python to iteratively test various settings for each parameterised
part of each algorithm, and quantitatively evaluate the results using various
different metrics (including Adjusted Rand Index and others). This quantitative
examination of each parameter combination made it simple to determine the
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(a) Top: An input image. Bottom: An
example failure mode of the K-means-
based shadow detection on tarmac.

(b) Top: An input image. Bottom: A
reduced false positive rate after a vari-
ance threshold is applied — no shad-
ows are detected in the frame, hence
the blank appearance.

Figure 4: A comparison of the failure modes of the K-means algorithm, before
and after rectification.

optimal settings for numerous parameters at once — for example, k in K-means,
the Gaussian blur radius, LBP neighbourhood and sample rate, and so on. After
running several hundred experiments with this automated testing framework,
it appeared that (certainly on the datasets used for this paper) the optimal
parameters for LBPs were a neighbourhood of 5 pixels and a sample rate of
15 (along with a Gaussian blur of radius 8). For many of the relatively simple
image sequences used, it appeared that a small k was sufficient (8-10).

In addition to the above unsupervised K-means methods for texture and shadow
segmentation, supervised learning techniques were trialled using the same tex-
ture feature set. Decision tree techniques are well-known for being tolerant to
noisy data, they can cope to an extent with high-dimensional features, and they
perform reasonably well on large datasets — an ideal property as in this case,
millions of individual pixels will have to be classified in each image sequence.
Decision trees are also straightforward to understand which is a useful property,
enabling inspection of the rules learned post-training. Using the default deci-
sion tree in Scikit-Learn (Pedregosa et al., 2011) yielded some positive results,
but the trees learned were extremely complex — in fact, attempting to visualise
them was impractical, as the trees were often several hundred nodes deep — a
very clear indication of overfitting. After applying some complexity restrictions
and post-pruning the trees, however, it became possible to visualise and under-
stand the rules (as in Figure 5).
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Figure 5: A small sample of a generated set of decision tree rules. This method
still yields a complex set of learned rules (even after applying complexity re-
strictions), but performance is rather good on unseen testing data.

5 Edges of Shadows and Objects

Work by Lalonde et al. (2010) has shown that edges can be used to determine
shadow boundaries in images. Their method works well for the specific case of
detecting ground shadows in outdoor photographs, but does not generalize well
for other environments or shadow types, due to their use of a scene model in
which all shadows not belonging to the ground plane are discarded. It is also
too computationally expensive to implement in a real-time image processing
pipeline such that it could be used on a mobile robotics platform.

In this section we investigate methods which take Lalonde et al.’s central idea of
training a collection of decision trees to classify edges as shadow or background
(edges detected in non-shaded image regions), in a simplified manner which
should be possible to run in real-time and does not rely on a scene layout
model. We can see that pixels across a shadow boundary may have a distinctive
profile. Often they have a greater but more gradual difference in luminance than
the harder edges of objects. An example of this is shown in Figure 6, which
compares the changes in luminance across all edges on shadow boundaries to
edges entirely within shadowed or non-shadowed region of the sample image.
Whilst subtle, there is still a perceptible difference in how the luminance signal
changes across the shadow edges. Our hypothesis is that by measuring the
differences in values across an edge within several different colour spaces, we
can train a Random Forest of decision tree learners to classify shadow edges.
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Figure 6: Top left: The brightness profile across lines normal to a shadow
edge; Top right: The brightness profile of non-shadow edges. Both of these
plots have the mean brightness profile superimposed in black. Bottom: the
image from which edge normals were drawn, with normals superimposed in
blue. These show that the profiles of shadow edges are demonstrably different
to edges detected in non-shadow “background” regions.

5.1 A Detection Method Based Upon Edges

An outline of the proposed shadow versus background edge classification method
is shown in Figure 7. Essentially, we detect all edges in the scene, which gives
us a set of edges containing object edges, spurious edges and shadow edges.
We investigate the particular character of edges generated as a result of cast
shadows, classifying them with a Random Forest technique (Breiman, 2001).

First, to detect strong edges in the image, Canny edge detection (Canny, 1986) is
applied to a grey-scale copy of the input image with a lower hysteresis threshold
of 0.3 and an upper threshold of 0.6. These thresholds have been selected
empirically for our image sets, as they were shown to filter weak edges caused
by textured surfaces, whilst preserving the edges of shadow boundaries in the
candidate images. Afterwards, a list of of edge normals is generated: To generate
a list of normals to inspect, a contour-finding algorithm (Suzuki & Be, 1985)
is applied to the edges image to create a list of contour points. Normals are
selected at the centre of two points. To ensure complex contours aren’t over-
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Image input

Figure 7: A graphical overview of our edge classification approach.

sampled, a minimum distance of 5 pixels between candidate normals is enforced.
Pixel values along each normal provide us with the profile of the edge to which
that normal belongs.

A fixed number of pixels (20) across each normal in the input image are sam-
pled in RGB and HSV colour spaces – the sample size of 20 was empirically
derived and found to best capture the difference in pixel intensity profiles be-
tween shadow and non-shadow regions of all the images within the kondo image
set. It should be noted that the pixel values from the input images interpolates
values when the sample line overlaps two or more pixels. Colour ratios and dif-
ferences in luminosity for either side of the edge, as well as the colour ratios and
differences between the two sides of the edge, are calculated for both HSV and
RGB colour spaces and stored as a feature vector per normal sampled. 30 dif-
ferent features are generated in total. These feature vectors are then given to a
Random Forest classifier, which classifies them either as background or shadow.
Labels for training the classifier are taken from the ground truths of the image
sets – edge normals detected in the input image are labelled as shadow if they
are contained within a shadow region in the ground truth. Whilst generating
the feature vectors for training, a 1 : 4 ratio of shadow (positive) to background
(negative) examples was maintained, such that the classifier would not over- or
under-fit the training data.
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6 Results

6.1 Datasets for Shadow Modelling

A number of existing datasets exist for the problem of shadow characterisation,
particularly with regard to texture analysis and shadow detection. Among these
were the CDNet Change Detection datasets by Goyette, Jodoin, Porikli, Konrad,
and Ishwar (2012) and Wang et al. (2014), which include several datasets with
shadow ground-truth. Better yet, some of the datasets also included artificially-
applied jitter, which can be a useful surrogate for camera motion. However,
for our purposes these datasets were lacking: after performing various texture
analyses on the input video sets, it became clear that the spatial resolution
of much of the input data was poor. This is mainly due to the footage being
captured from a surveillance camera and therefore being a large distance from
the target object. This poor spatial resolution meant that any texture features
extracted were at a very coarse scale.

Other key shadow datasets have the opposite problem: they exist as high reso-
lution single frames, which provide an excellent level of spatial resolution but no
temporal consistency. Some of these single image datasets come with edge-level
ground truth, such as the dataset released by Lalonde et al. (2010). Whilst
these could be of use for the work we describe later on shadow edge detection,
we would like to have the whole shadow (and not just the edge).

Figure 8: A sample frame from the CDNet ‘shadow’ dataset. Note the par-
ticularly poor spatial resolution (which precludes the use of texture analysis
techniques).

Our eventual aim is shadow detection from a mobile robot, so we have created a
set of datasets of increasing “difficulty” which conclude with actual robotic
footage. These datasets share some key features: moving shadows and/or
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cameras, reasonable resolution both spatially and temporally, and pixel level
“ground truth” These are summarised in Table 1.

Dataset Frames Image Size Ground truth
Blender 250 720 × 480 3D simulation
Static: Bobbly Slabs 238 480 × 270 Threshold/manual
Static: Bricks 343 480 × 270 Threshold/manual
Static: Smooth Slabs 361 480 × 270 Threshold/manual
Static: Tarmac 340 480 × 270 Threshold/manual
Active: Grass Path 286 480 × 270 Threshold/manual
Active: Seafront Gravel 229 480 × 270 Threshold/manual
Active: Seafront Path 215 480 × 270 Threshold/manual
Kondo 32 960 × 720 Manual

Table 1: A summary of the datasets we use in this paper.

The first dataset we present is simulated, thus not of use in all shadow work
due to the lack of texture. It has some key characteristics (strangely shaped
casting objects, unusual viewpoints) and pixel perfect ground truth. We call
this dataset “Blender”.

We present two high resolution sets of videos with a range of textured surfaces:
one with a static camera (for the development of online texture segmentation
techniques), and another with an active camera (for the testing of shadow de-
tection techniques in a ‘realistic’ situation). The data comprised of several short
video clips (10–15 seconds each) at a high resolution (1920 × 1080), which was
then downscaled to 480 × 270 so that the dataset could be processed in a rea-
sonable time frame by the various algorithms.

Our final dataset is exceedingly challenging, using a low-quality web camera
fixed to a Kondo bipedal walking robot. The poor resolution and low frame
rate (and low illumination conditions) pose an extremely difficult set of circum-
stances under which to attempt to detect shadows. The Kondo KHR-2HV is a
toy bipedal robot with a rolling gait. This tabletop robot does not come with a
camera or indeed any vision capability. In order to capture a realistic bipedal
robot dataset we mounted a consumer grade webcam (HP Webcam HD 2300)
to the Kondo’s “head” and recorded the output.

For Static, Active and Kondo our ground truth was obtained by interactively ap-
plying a threshold to the video, and then refined using several other techniques.
With data at this scale (thousands of individual frames), it was impractical to
hand-annotate the input video in a pixel-wise fashion but working in a frame-
wise fashion we were able to separate shadow from background in most cases,
and tidy up holes using morphological operations in post processing. Each frame
has been checked by eye and hand edited to make the classification more robust
if necessary. The “Blender” video ground truth comes from within the Blender
software itself and is pixel perfect. It is worth noting here that all datasets
come with shadow/background/object ground truth; we have additional ground
truths which identify the penumbra for Kondo and for Blender.
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(a) blender (b) bobbly-slabs (c) bricks

(d) smooth-slabs (e) tarmac (f) grass-path

(g) seafront-gravel (h) seafront-path (i) kondo

Figure 9: Some example frames from the static and active datasets captured
for this paper. Note that we have a range of difficulties present in our static and
active datasets, too, e.g. in the grass image, the shadow is barely discernible.

All of these datasets are used in this paper for offline shadow processing, and
are intended for use as a testbed for shadow detection systems to be introduced
into robots at a later date. By providing video files and hand-crafted ground
truth we lay the foundations for comparison between methods.

Our datasets are all available for public use at http://dx.doi.org/10.5281/

zenodo.59019. We ask that if researchers choose to use these, they cite this
paper.

6.2 Quantifying Classification Effectiveness

There are two classification metrics which have been predominantly used in the
analysis of shadow segmentation methods. The first of these is known as the
Jaccard index, and it is a function of true positive, false positive, and false
negative classifications — as given by Equation (1). The second, the Rand
index (Equation (2)), considers true negatives (as well as true positive, false
positive, and false negatives). This produces a slightly different metric that
is perhaps more effective for describing datasets where large numbers of true
negatives are likely (such as correct classifications of a large non-shadow region
in an image). We report both in this paper for completeness, however the Rand
index is probably the more robust measure in a situation where classifications
are likely to result in a large number of true negatives. For both measures, a
score of 1 is perfect and a score of 0 is the worst that can be achieved.
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J =
TP

TP + FP + FN
(1)

R =
TP + TN

TP + TN + FP + FN
(2)

6.3 A Baseline Method

Before investigating texture based methods, it is worth trying some simple tech-
niques to call baseline. For this we present global threshold-based methods, by
frame and by sequence. Whilst these might be considered very basic, we present
these partly because they show the effect of some early shadow detection meth-
ods, but mainly because they serve to illustrate the comparative difficulty of our
presented datasets. We use two thresholding techniques: a simple static thresh-
old over the complete sequence which classifies every pixel below the threshold
as shadow, and an Otsu’s threshold (Otsu, 1979) calculated per-frame. Note
that Otsu’s method assumes that the grey level histogram has two peaks, and
chooses a threshold to maximise the difference between these; as mentioned ear-
lier, many authors use some variation on Otsu’s method in shadow detection.

Brightness threshold Otsu
Image Set 50 100 200 threshold

J R J R J R J R

Blender 0.38 0.99 0.17 0.97 0.08 0.93 0.09 0.93
Static: Bobbly 0.17 0.87 0.68 0.93 0.17 0.27 0.44 0.80
Static: Bricks 0.03 0.90 0.79 0.98 0.10 0.10 0.50 0.90
Static: Smooth 0.08 0.86 0.63 0.94 0.16 0.21 0.66 0.92
Static: Tarmac 0.19 0.95 0.19 0.82 0.05 0.07 0.12 0.66
Active: Grass 0.00 0.80 0.13 0.82 0.20 0.20 0.36 0.69
Active: Gravel 0.26 0.63 0.84 0.92 0.60 0.67 0.88 0.94
Active: Path 0.13 0.70 0.79 0.93 0.52 0.68 0.88 0.96
Kondo 0.10 0.39 0.10 0.24 0.09 0.13 0.11 0.37

Combined 0.14 0.84 0.46 0.88 0.20 0.42 0.44 0.83

Table 2: Baseline results of näıve thresholding and frame-based Otsu’s thresh-
olding. Underlined text indicates the best static threshold for a dataset accord-
ing to Jaccard and bold text indicates the best according to the Rand index.

From Table 2 we can see that there are questions about the variability between
the datasets - for some of the static datasets, a simple fixed threshold works
surprisingly well. Note the divergence between Jaccard and Rand indices on
some of the datasets. This illustrates the way that the Jaccard index tends to
neglect true negatives. In the majority of datasets used here, the predominant
part of the image will be non-shadow — meaning that a large part of (correct)
classifications will be largely ignored by the Jaccard index, distorting the overall
scores.
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6.4 Results for Texture-Based Shadow Segmentation

Considering the texture-based methods, our first methods used a regime in
which each machine learning model was trained on each image sequence sepa-
rately — this is due to different illumination conditions, different textures, and
other features being different between each sequence. This meant that there was
a potential for overfitting the learning model to each image sequence (which ob-
viously improved performance on the image sequence the model was trained on),
but it also meant that the resultant model may not generalise to other image
sequences under different circumstances. For example, a model trained on one
of the tarmac sequences might not necessarily generalise to the grass sequences
and so forth.

The models were trained with a 30%/70% training/testing split on each se-
quence, which yielded both a reasonably large amount of (randomly selected)
training data, while still remaining small enough to complete processing within
reasonable time. As can be seen in Table 3, the algorithms generally perform
well in terms of accuracy — particularly the decision tree approach; in some
cases, reaching up to 90% accuracy.

K-Means and K-Means, LBP Decision
Image Set LBP and Variance Tree

J R J R J R

Blender 0.000 0.946 0.000 0.948 0.531 0.516
Static: Bobbly 0.415 0.823 0.415 0.547 0.938 0.880
Static: Bricks 0.698 0.915 0.688 0.524 0.856 0.774
Static: Smooth 0.435 0.901 0.469 0.546 0.946 0.900
Static: Tarmac 0.205 0.664 0.189 0.513 0.851 0.769
Active: Grass 0.389 0.718 0.068 0.797 0.793 0.694
Active: Gravel 0.893 0.943 0.893 0.943 0.932 0.874
Active: Path 0.865 0.971 0.878 0.991 0.949 0.906
Kondo 0.000 0.297 0.000 0.500 0.549 0.525

Mean 0.433 0.798 0.400 0.701 0.816 0.760

Table 3: Results for texture-based shadow segmentation, using LBP, K-means,
and decision trees. Underlined text indicates best performing method according
to the Jaccard index, bold text the best performing method according to the
Rand.

6.4.1 Cross-Validated Results

Further experiments used a 90%/10% training/testing split on each sequence,
using a K-fold learning model (K = 10) — see Table 4. This training-testing
regime shows that the selection of training data from within a dataset does not
unduly affect the results. We also experimented with training on the start of the
dataset, and testing on the end of the dataset (taking 30% of frames training
data, as before). These results are also shown in Table 4. By training on the
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start of a sequence and testing on the end, we simulate the idea of a robot being
trained on some marked up data, and then being left to classify the rest of a
stream.

10-Fold Cross- Train-start
Image Set Validation Score test-end

J R J R

Blender 0.963 0.717 0.970 0.753
Static: Bobbly 0.934 0.696 0.776 0.009
Static: Bricks 0.952 0.710 0.951 0.693
Static: Smooth 0.958 0.791 0.934 0.705
Static: Tarmac 0.975 0.700 0.937 0.174
Active: Grass 0.872 0.482 0.879 0.493
Active: Gravel 0.935 0.760 0.930 0.742
Active: Path 0.975 0.902 0.966 0.871
Kondo 0.859 0.135 0.875 0.143

Table 4: 10-fold cross validated Jaccard and Rand scores for the most successful
algorithm (näıve decision trees), tested on each dataset.

6.4.2 Performance on Unseen Data

Finally, to test the algorithm’s performance on unseen data, a näıve decision
tree classifier was trained on a mixture of 180 images from six different datasets,
and then tested on the seventh, held out dataset. In this way we test the ability
of the classifier to adapt to unseen data, whilst training on a broader range of
shadow images. This is shown in Table 5. The training regimen shown here is
an attempt to simulate the training of a robot on labelled data, then testing in
a new environment.

Jaccard Rand
Held–Out Dataset Score Score

J R

Static: Bobbly 0.929 0.693
Static: Bricks 0.952 0.714
Static: Smooth 0.953 0.776
Static: Tarmac 0.967 0.702
Active: Grass 0.864 0.450
Active: Gravel 0.932 0.748
Active: Path 0.946 0.794

Table 5: Results from a decision-tree classifier trained on the first 30 frames
from 6 different datasets, and then tested on the entirety of the 7th dataset.
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6.4.3 Comments on Speed and Performance

Generally, processing time was reasonably slow (averaging approximately 0.2
seconds per 270 × 480 image), but this is may have been due to the choice of
development language — Python. While the algorithms were generally devel-
oped using Scikit-Learn and Numpy, they were developed with an exploratory
attitude, rather than with an eye on performance. Properly-designed, optimised
Python code may well perform considerably better.

In terms of throughput and CPU performance, the training and testing processes
using the various machine learning techniques took broadly the same amount
of time as the K-means methods — approximately 0.21 seconds per image, on
average (including both training and testing) on a single 3.40GHz Intel core.

Overall, results were surprisingly good — indeed, it appears that texture is a
potentially valuable additional heuristic for identifying shadow regions in im-
ages.

6.5 Results from Edge-Based Method

The Weka Data Mining and Machine Learning software version 3.6 (various,
2016) provided the Random Forest classifier, as well as the tools necessary to
train and test such a classifier. Weka’s Random Forest classifier has several
parameters to alter its behavior; these were kept at their defaults: no limit on
decision tree depth or number of features used per tree, with 100 trees generated
per forest, and a seed value of 1.

Edge feature performance was tested on each sequence individually (within se-
quences). A more generalized classifier was also trained on 50 images taken at
random from each image set (across sequences; 432 images in total), to test how
well this method performed across the differing environments of each image set.
All of the tests used 10-fold cross validation. Results are presented in Table 6.

The Jaccard and Rand indexes in the results show that the implementation of
this method performed poorly, with scores lower than our baseline thresholding
methods. However, the generalized classifier performed surprisingly well on the
seafront-gravel image set. The performance is shown to be highly variable,
dependent on the characteristics of the image set. This could be due to the
features used – indicating that chrominance and luminosity ratios do not capture
the differences between shadow and object edges. How accurately shadow edges
are sampled is also very dependent on the performance of Canny edge detection,
which is susceptible to the sensor noise and high-frequency textures within the
images.

The benefit of this approach is that, after an initial model has been trained, the
random forest classifier is very quick to run taking several seconds to classify the
normals collected from an entire image sequence (ranging from several thousand
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Within sequence Across sequences

Image Set J R J R

Blender 0.009 0.688 0.061 0.683
Static: Bobbly 0.000 0.747 0.103 0.675
Static: Bricks 0.000 0.705 0.002 0.705
Static: Grass 0.144 0.624 0.169 0.616
Kondo 0.037 0.729 0.282 0.648
Active: Gravel 0.182 0.308 0.631 0.644
Active: Path 0.383 0.655 0.419 0.615
Active: Smooth 0.350 0.667 0.259 0.640
Active: Tarmac 0.011 0.658 0.067 0.636

Table 6: Random Forest “Edges” classifier tested on each image sequence
individually; and across all sequences. These results are after 10-fold cross-
validation. Underlined text indicates best performing method according to the
Jaccard index, italic text the best performing method according to Rand.

feature instances to several hundred thousand). Canny edge detection, contour
finding and normal sampling are all computationally cheap. Future work could
improve the classification accuracy of this method by improving the edge de-
tection and using a feature space which better encodes the different profiles of
shadow versus non-shadow edges. This method could then be used to accelerate
our texture segmentation based method, providing regions of interest within the
input images.

7 Conclusions and Future Directions

This paper has investigated edge and feature representations for shadow detec-
tion, within a machine learning/classification framework. We have concentrated
on edge features and texture features, with lower level image statistics (variance
and so on) used to reduce noise. We hypothesised that there would be shadow
invariant texture classes, which we could then use as part of a shadow detector;
this paper has shown that that is possible. We also hypothesised that the edges
of shadows would have different visual characteristics to object edges. This has
been less convincingly shown, as we have not found a reliable classifier to dis-
tinguish between object and shadow edges across datasets. In short: Texture
features work more reliably than edge features, however both show promise.

We have not exploited any temporal consistency in this work. By concentrating
on a thorough evaluation of input features, limiting our search to those which
could work near real-time, we restrict ourselves to features that will be of use
in active and/or robotic shadow vision. In future work we plan to experiment
with iterative clustering methods, seeding the clustering stage at the start of
each frame with the cluster centres from the current frame. This should speed
up the texture segmentation step. It also has a clear motivation: assuming that
we are dealing with video from a moving camera we can expect the surfaces in

20



the scene to change location between frames but not change entirely.

The systems and techniques presented here use spatial coherence and texture
measures to distinguish between regions and edges that include or abut shadows.
These measures and the resulting segmentations could form part of a reasoning
system which deals with shadows. To date, reasoning systems that have shadows
as part of their logic either assume the vision is completed, or use a cut-down
environment so that Otsu’s method alone is good enough to obtain a shadow
segmentation, as noted by Fenelon, Santos, Dee, and Cozman (2013). Whilst
this paper does not provide a complete pixels-to-predicates solution for shadow
reasoning, we provide a thorough evaluation of the opening stages of such a
process and hopefully bring the prospect of fully automated shadow detection
and reasoning a little closer.

By introducing a new dataset for shadow detection and releasing this for other
authors to use in their experimentation, we hope to encourage more work in this
domain, and also to enable authors to benchmark against our public dataset.

8 Resources and code

As mentioned earlier in the paper, we release the dataset upon which this work
is based for other researchers to exploit. We also release the associated code, to
enable replication of our results.

• Shadow detection dataset;
https://zenodo.org/record/59019

• Texture based shadow exploration;
https://github.com/charlienewey/sdmr-paper-code

• Edge-based shadow exploration;
https://github.com/erinaceous/shadows-edges

We welcome reuse, but request that if any of these resources are used authors
cite the current paper.
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