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Converging expansions for Lipschitz

self-similar perforations of a plane sector

Martin Costabel, Matteo Dalla Riva, Monique Dauge and Paolo

Musolino

Abstract. In contrast with the well-known methods of matching asymptotics

and multiscale (or compound) asymptotics, the “functional analytic approach”

of Lanza de Cristoforis (Analysis 28, 2008) allows to prove convergence of ex-

pansions around interior small holes of size ε for solutions of elliptic boundary

value problems. Using the method of layer potentials, the asymptotic behavior

of the solution as ε tends to zero is described not only by asymptotic series in

powers of ε, but by convergent power series. Here we use this method to inves-

tigate the Dirichlet problem for the Laplace operator where holes are collapsing

at a polygonal corner of opening ω. Then in addition to the scale ε there appears

the scale η = επ/ω. We prove that when π/ω is irrational, the solution of the

Dirichlet problem is given by convergent series in powers of these two small

parameters. Due to interference of the two scales, this convergence is obtained,

in full generality, by grouping together integer powers of the two scales that

are very close to each other. Nevertheless, there exists a dense subset of open-

ings ω (characterized by Diophantine approximation properties), for which real

analyticity in the two variables ε and η holds and the power series converge un-

conditionally. When π/ω is rational, the series are unconditionally convergent,

but contain terms in log ε.

Mathematics Subject Classification (2010). 35J05, 45A05, 31A10, 35B25,

35C20, 11J99.

Keywords. Dirichlet problem, corner singularities, perforated domain, double

layer potential, Diophantine approximation.
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Introduction

Domains with small holes are fundamental examples of singularly perturbed do-

mains. The analysis of the asymptotic behavior of elliptic boundary value problems

in such perforated domains as the size of the holes tends to zero lays the basis for

numerous applications in more involved situations that can be found in the classical

monographs [18], [25], [20] and the more recent [1]. The two methods that are most

widely spread are the matching of asymptotic expansions as exposed by Il’in [18],

and the method of multiscale (or compound) expansions as in Maz’ya, Nazarov, and

Plamenevskij [25] or Kozlov, Maz’ya, and Movchan [20]. Ammari and Kang [1] use

the method of layer potentials to construct asymptotic expansions. When the holes

are shrinking to the corner of a polygonal domain, one encounters the class of self-

similar singular perturbations, a case that has been treated by Maz’ya, Nazarov, and

Plamenevskij [25, Ch.2] with the method of compound expansions, and by Dauge,

Tordeux, and Vial [13] with both methods of matched and compound expansions.

The common feature of these methods is their algorithmic and constructive nature:

The terms of the asymptotic expansions are constructed according to a sequential or-

der. At each step of the construction, remainder estimates are proved, but there is no

uniform control of the remainders, and this does therefore not lead to a convergence

proof.
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Another method appeared recently, based on the “functional analytic approach”

introduced by Lanza de Cristoforis [21]. This method has so far mainly been ap-

plied to the Laplace equation on domains with holes collapsing to interior points.

The core feature is a description of the solution as a real analytic function of one

or several variables depending on the small parameter ε that characterizes the size

of the holes. This is proved by a reduction to the boundary via integral equations,

and after a careful analysis of the boundary integral operators the analytic implicit

function theorem can be invoked, providing the expansion of the solutions into con-

vergent series. Analytic functions of several variables appear for example in [22, 9],

where the two-dimensional Dirichlet problem leads to the introduction of the scale

1/ log ε besides ε, or in [10], where a boundary value problem in a domain with

moderately close holes is studied and the size of the holes and their distance are

defined by small parameters that may be of different size.

Our aim in this paper is to understand how this method would apply to the

Dirichlet problem in a polygonal domain when holes are shrinking to the corner

in a self-similar manner. In the limit ε → 0, the singular behavior of solutions at

corners without holes will combine with the singular perturbation of the geometry.

In contrast to what happens in the case of holes collapsing at interior points or at

smooth boundary points [3], we find that the series expansions in powers of ε that

correspond to the asymptotic expansions of [13] are only “stepwise convergent”.

For corner opening angles ω that are rational multiples of π, the series will be un-

conditionally convergent, but in general for irrational multiples of π, certain pairs of

terms in the series may have to be grouped together in order to achieve convergence.

This is a peculiar feature similar to, and in the end caused by, the stepwise conver-

gence of the asymptotic expansion of the solution of boundary value problems near

corners when the data are analytic [4, 11].

0.1. Geometric setting

We consider perforated domains where the holes are shrinking towards a point of

the boundary that is the vertex of a plane sector. For the sake of simplicity, we try

to concentrate on the essential features and avoid unnecessary generality. Therefore

we consider only one corner, but we admit several holes.

We denote by t = (t1, t2) the Cartesian coordinates in the plane R2, and by

(ρ = |t|, ϑ = arg(t)) the polar coordinates. The open ball with center 0 and radius

ρ0 is denoted by B(0, ρ0). Let the opening angle ω be chosen in (0, 2π) and denote

by Sω the infinite sector

Sω = {t ∈ R2, ϑ ∈ (0, ω)}. (0.1)

The case ω = π is degenerate and corresponds to a half-plane.

The perforated domains Aε are determined by an unperforated domain A, a

hole pattern P and scale factors ε, about which we make some hypotheses.

The unperforated domain A satisfies the following assumptions, see Fig.1 left,

1. A is a subset of the sector Sω and coincides with it near its vertex:

∃ρ0 > 0 such that B(0, ρ0) ∩ A = B(0, ρ0) ∩ Sω, (0.2)

2. A is bounded, simply connected, and has a Lipschitz boundary,
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3. Sω \ A has a Lipschitz boundary,

4. ∂A ∩ ∂Sω is connected.

The hole pattern P satisfies, see Fig.1 right,

1. P is a subset of the sector Sω and its complement Sω \ P coincides with Sω at

infinity:

∃ρ′0 > 0 such that P ⊂ Sω ∩ B(0, ρ′0). (0.3)

2. P is a finite union of bounded simply connected Lipschitz domains Pj , j =
1, . . . , J ,

3. Sω \ P has a Lipschitz boundary,

4. For any j ∈ {1, . . . , J}, ∂Pj ∩ ∂Sω is connected.

Sω

A

Unperforated domain A

Sω

P

P

P

Hole pattern in plane sector Sω

FIGURE 1. Limit domain A and hole pattern P.

Let ε0 = ρ0/ρ
′
0. The family of perforated domains

(
Aε
)
0<ε<ε0

is defined by,

see Fig.2,

Aε = A \ εP, for 0 < ε < ε0. (0.4)

The family εP can be seen as a self-similar collection of holes concentrating at the

vertex of the sector. Here, in contrast with [9] we do not assume that 0 belongs to P.

We do not even assume that 0 does not belong to ∂P.

Our assumptions (0.2), (0.3) exclude some classes of self-similar perturbations

of corner domains that are also interesting to study and have been analyzed using

different methods, see [13]. For example, condition (2) in (0.3) excludes the case

of the approximation of a sharp corner by rounded corners constructed with circles

of radius ε. Condition (3) in (0.3) excludes holes touching the boundary in a point.

The Lipschitz regularity conditions (2) and (3) in (0.2), (0.3) are essential for our

boundary integral equation approach. On the other hand, the condition that A is

simply connected and the related connectivity conditions (4) in (0.2), (0.3) are not

essential, they are merely made for simplicity of notation.

0.2. Dirichlet problems and mutiscale expansions

We are interested in the collective behavior of solutions of the family of Poisson

problems {
∆uε = f in Aε,

uε = 0 on ∂Aε.
(0.5)
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Sω

Aε

Sω

Aε

FIGURE 2. Perforated domain Aε for two values of ε.

We assume that the common right hand side f is an element of L2(A), which, by

restriction to Aε, defines an element of L2(Aε) and provides a unique solution uε ∈
H1

0 (Aε) to problem (0.5).

If moreover f is infinitely smooth on A in a neighborhood of the origin, then

a description of the ε-behavior of uε can be performed in terms of multiscale as-

ymptotic expansions. We refer to [25, 13] which apply to the present situation. As

a result of this approach, cf [13, Th. 4.1 & Sect. 7.1], uε can be described by an

asymptotic expansion containing two sorts of terms:

• Slow terms uβ(t), defined in the standard variables t
• Rapid terms, or profiles, Uβ( tε ), defined in the rapid variable t

ε .

Here the exponent β runs in the set N+ π
ωN = {ℓ+ k πω , k, ℓ ∈ N}.

If πω is not a rational number, uε can be expanded in powers of ε

uε(t) ≃
∑

β∈N+ π
ωN

εβ uβ(t) +
∑

β∈N+ π
ωN

εβ Uβ( tε ) . (0.6)

The sums are asymptotic series, which means the following here: Let (βn)n∈N be

the strictly increasing enumeration of N+ π
ωN and define the N th partial sum by

u[N ]
ε (t) =

N∑

n=0

εβn uβn(t) +

N∑

n=0

εβn Uβn( tε ) . (0.7)

Then for all N ∈ N there exists CN such that for all ε ∈ (0, ε1]
∥∥uε − u[N ]

ε

∥∥
H1(Aε)

≤ CN ε
βN+1 (0.8)

where we have chosen ε1 < ε0.

If π
ω is a rational number, the terms corresponding to β in the intersection

β ∈ N ∩ π
ωN∗ contain a log ε and the estimate (0.8) has to be modified accordingly.

0.3. Convergence analysis

If we want to have convergence of the series (0.6), it is not enough that the right

hand side f belongs to L2(A) and not even that it is infinitely smooth near the

origin, but in addition its asymptotic expansion (Taylor series) at the origin needs to

be a convergent series converging to f . Thus we have to assume, and we will do this

from now on, that f has an extension as a real analytic function in a neighborhood
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of the origin. More specifically, we assume that there exist two positive constants

Mf and C so that f ∈ L2(A) and

f(t) =
∑

α∈N2

fα t
α1
1 tα2

2 , ∀t ∈ B(0,M−1
f ) ∩ A, with |fα| ≤ CM

|α|
f . (0.9)

A simple special case would be a right hand side f ∈ L2(A) that vanishes in a

neighborhood of the origin. Likewise, one could consider, as in [22, 9, 3], a variant

of the boundary value problem (0.5) that is driven not by a domain force f , but by a

given trace on the boundary.

In the present work we address the question of the convergence of the se-

ries (0.6) under the assumption (0.9). In the above references [25, 13] the recursive

construction of the terms uβ and Uβ of (0.6) is performed without control of the

constants CN in function of N , thus without providing any information on the con-

vergence of the asymptotic series. We will exploit the “functional analytic approach”

to obtain this convergence.

It follows from general properties of power series that convergence of (0.6) in

the sense that

lim
N→∞

∥∥uε − u[N ]
ε

∥∥ = 0

in some norm and for some ε = ε1 > 0 implies that the series converges absolutely

and unconditionally for any ε ∈ (−ε1, ε1). It will follow from our analysis that there

exists a set Λs of real irrational numbers (super-exponential Liouville numbers, see

Definition B.1) with the property that whenever the opening angle ω does not belong

to πΛs, then such an ε1 > 0 does indeed exist. For ω ∈ πΛs on the other hand, in

general the series (0.6) does not converge for any ε 6= 0. It is known from classical

number theory that both Λs and its complement are uncountable and dense in R and

Λs is of Lebesgue measure zero and even of Hausdorff dimension zero. The series

can be made convergent, however, for any ω ∈ (0, 2π) by grouping together certain

pairs of terms in the sums for which βn+1 − βn is small. This situation can also be

expressed by the fact that there exists a subsequence (Nk)k∈N of N such that for any

ε ∈ (−ε1, ε1)

lim
k→∞

∥∥uε − u[Nk]
ε

∥∥ = 0 .

We call this kind of convergence “stepwise convergence”, and the main result of this

paper is the construction of a convergent series in this sense.

Our analysis relies on four main steps, developed in the four sections of this

paper.

STEP 1. We set ũε = uε − u0
∣∣
Aε

, where u0 ∈ H1
0 (A) is the solution of the

limit problem {
∆u0 = f in A,

u0 = 0 on ∂A .
(0.10)

Doing this, we reduce our investigation to the harmonic function ũε, solution of the

problem {
∆ũε = 0 in Aε,

ũε = −u0 on ∂Aε,
(0.11)
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Since u0 is zero on ∂A, the trace of u0 on ∂Aε can be nonzero only on the boundary

of the holes ε∂P. In order to analyze this trace, we expand u0 near the origin in

quasi-homogeneous terms with respect to the distance ρ to the vertex according to

the classical Kondrat’ev theory [19]. The investigation of the possible convergence

of this series is far less classical, see [4], and it may involve stepwise convergent

series. This issue is also related to the stability of the terms in the expansion with

respect to the opening, cf [6, 7]. We provide rather explicit formulas for such expan-

sions in complex variable form.

STEP 2. We transform problem (0.11) into a similar problem on a perforated

domain for which the holes shrink to an interior point of the limit domain, a situ-

ation studied in [22, 9, 10]. To get there, we compose two transformations that are

compatible with the Dirichlet Laplacian,

• A conformal map of power type,

• An odd reflection.

In this way the unperturbed sector domain A is transformed into a bounded simply

connected Lipschitz domain B that contains the origin, and the hole pattern P is

transformed into another hole pattern Q that is a finite union of simply connected

bounded Lipschitz domains Qj . The small parameter is transformed into another

small parameter η by the power law

η = επ/ω,

and the new perforated domains Bη have the form

Bη = B \ ηQ, η ∈ (0, η0).

The boundary of Bη is the disjoint union of the external part ∂B and the boundary

η∂Q of the holes ηQ. The holes shrink to the origin 0, which now lies in the interior

of the unperforated domain B.

In this way problems (0.11) are transformed into Dirichlet problems on Bη
{

∆vη = 0 in Bη,

vη = µη on ∂Bη .
(0.12)

The family of Dirichlet traces µη are determined by the trace of u0 on the family

of boundaries ε∂P of the holes. They have a special structure due to the mirror

symmetry.

STEP 3. We study analytic families of model problems of this type where µη
depends on η as follows

{
µη(x) = ψ(x) if x ∈ ∂B,

µη(x) = Ψ(xη ) if x ∈ η∂Q.
(0.13)

Here we have a clear separation between the external boundary ∂B where µη does

not depend on η, and the internal boundary η∂Q of ∂Bη that is the boundary of

the scaled holes ηQ. Via representation formulas involving the double layer poten-

tial, we transform the problem (0.12) with right hand side (0.13) into an equivalent
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system of boundary integral equations (3.29) with a matrix of boundary integral op-

erators M(η) depending analytically on η in a neighborhood of zero and such that

M(0) is invertible, see Theorem 3.12.

The crucial property making this possible is the homogeneity of the double

layer kernel, which allows to write M(η) in such a form that its diagonal terms are

independent of η and the off-diagonal terms vanish at η = 0. The problem corre-

sponding to the boundary integral operator M(0) can be interpreted as a decoupled

system of Dirichlet problems, one (in slow variables x) on the unperturbed domain

B and a second one (in rapid variables X = x
η ) on the complement R2 \ Q of the

holes at η = 1.

STEP 4. From the formulation via an analytic family of boundary integral

equations in Step 3 follows that there exists η1 > 0 such that the solutions vη of

problems (0.12)-(0.13) depend on the data ψ ∈ H1/2(∂B) and Ψ ∈ H1/2(∂Q) via

a solution operator L(η) that is analytic in η for η ∈ (−η1, η1) and, therefore, is

given by a convergent series around 0

L(η) =
∞∑

n=0

ηnLn, |η| ≤ η1 . (0.14)

Combining this with the results of Steps 1 and 2, we obtain expansions of

the solutions uε of problem (0.5) in slow and rapid variables similar to (0.6) that

are not only asymptotic series as ε → 0 like in (0.8), but convergent for ε in a

neighborhood of zero. The convergence is shown in weighted Sobolev norms and it

is, in general, “stepwise” in the same sense as had been known for the convergence

of the expansion in corner singular functions of the solution u0 of the unperturbed

problem (0.10). The main results on this kind of convergent expansions are given in

Theorems 4.5, 4.6 and 4.7.

While the series in powers of ε are, under our general conditions, not uncondi-

tionally convergent due to the interaction of integer powers coming from the Taylor

expansion of the right hand side f in our problem (0.5) and the powers of the form

kπ/ω, k ∈ N, coming from the corner singularities, there are two situations where

the convergence is, in fact, unconditional.

The first such situation is met when the opening angle ω is such that π/ω is either

a rational number or, conversely, is not approximated too fast by rational numbers,

namely not a super-exponential Liouville number as defined in Definition B.1. In

this case, the right hand side f can be arbitrary, as long as it is analytic in a neigh-

borhood of the corner, see Corollaries 4.9 and 4.10.

The second situation where we find unconditional convergence is met for arbitrary

opening angles ω when the right hand side f in (0.5) vanishes in a neighborhood of

the corner: Then we have the converging expansion in L∞(Ω)

uε(t) = u0(t) +
∑

β∈π
ωN∗

εβ uβ(t) +
∑

β∈π
ωN∗

εβ Uβ( tε ). (0.15)

Thus both parts of this two-scale decomposition of uε are given by functions that

are real analytic near zero in the variable η = επ/ω, see Corollary 4.8.
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1. Unperturbed problem on a plane sector

We are going to analyze the solution u0 of problem (0.10) when the right hand side

satisfies the assumption (0.9). We represent u0 as the sum of three series converging

in a neighborhood of the vertex:

u0 = uf + u∂ + urm

where

1. uf is a particular solution of ∆u = f ,

2. u∂ is a particular solution of ∆u = 0, with u∂ + uf = 0 on the sides ϑ = 0
or ω,

3. urm is the remaining part of u0.

We use the complex variable form of Cartesian coordinates

ζ = t1 + it2, ζ̄ = t1 − it2 i.e. ζ = ρeiϑ. (1.1)

In particular, instead of (0.9), we write the Taylor expansion at origin of f in the

form

f(t) =
∑

α∈N2

f̃α ζ
α1 ζ̄α2 in B(0,M−1

f ), with |f̃α| ≤ CMM
|α|, (M >Mf ).

(1.2)

1.1. Interior particular solution

The existence of a real analytic particular solution to the equation ∆u = f is a

consequence of classical regularity results (cf. Morrey and Nirenberg [27]). Never-

theless, we can also provide an easy direct proof by an explicit formula using the

complex variable representation (1.2): It suffices to set

uf (t) =
∑

α∈N2

f̃α
4(α1 + 1)(α2 + 1)

ζα1+1ζ̄α2+1 in B(0,M−1
f ). (1.3)

to obtain a particular real analytic solution to the equation ∆u = f in B(0,M−1
f ).

1.2. Lateral particular solution

Set ρ1 = min{ρ0,M−1} for a chosen M > Mf . In the finite sector A ∩ B(0, ρ1),
the difference ũ ≡ u0 − uf is a harmonic function and its traces on the sides ϑ = 0
and ϑ = ω coincide with −uf . Denote by g0 and gω the restriction of −uf on the

rays ϑ = 0 and ϑ = ω. These two functions are analytic in the variable ρ:

g0 =
∑

ℓ∈N∗

g0ℓρ
ℓ, gω =

∑

ℓ∈N∗

gωℓ ρ
ℓ, |g0ℓ |+ |gωℓ | ≤ Cρ−ℓ1 . (1.4)

The constant ρ1 > 0, which is a lower bound for the convergence radius of the

power series (1.4), is by construction less than M−1
f , where Mf is the constant

in the assumption (0.9) on the analyticity of the right hand side f . Note that, by

construction, g0 and gω vanish at the origin.
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As a next step in the analysis of u0, we now construct a particular solution u∂
of the problem satisfied by ũ

{
∆u∂(t) = 0 ∀t ∈ A ∩ B(0, ρ1) ,

u∂(t) = −uf(t) ∀t ∈ (T0 ∪ Tω) ∩ B(0, ρ1) .
(1.5)

This solution uses the convergent series expansion (1.4) and will be given as a con-

vergent series, too.

Following [4], for any positive integer ℓ ∈ N∗ we can write explicit particular

solutions wℓ to the Dirichlet problem in the infinite sector Sω




∆wℓ(t) = 0 ∀t ∈ Sω ,

wℓ(t) = g0ℓρ
ℓ ∀t ∈ T0 ,

wℓ(t) = gωℓ ρ
ℓ ∀t ∈ Tω ,

(1.6)

where T0 and Tω are the two sides of the sector Sω.

The idea is then to give estimates of thewℓ that show convergence of the series

u∂ =
∑

ℓ∈N∗
wℓ .

There exists always a (quasi-)homogeneous solution of degree ℓ. The har-

monic functions that are homogeneous of degree ℓ are

Im ζℓ and Re ζℓ

They are given in polar coordinates by ρℓ sin ℓϑ and ρℓ cos ℓϑ. The determinant of

their boundary values is sin ℓω. If this is zero, we cannot solve (1.6) in homogeneous

functions (except in the smooth case, i.e. when ω = π, where we find that wℓ =
bℓ Re ζ

ℓ with bℓ = g0ℓ is a solution), but we need the quasihomogeneous function

Im(ζℓ log ζ) .

We find the solution

(i) If sin ℓω 6= 0, i.e. if ℓω 6∈ πN





wℓ(t) = aℓ Im ζℓ + bℓ Re ζ
ℓ

with aℓ =
gωℓ − g0ℓ cos ℓω

sin ℓω
and bℓ = g0ℓ .

(1.7)

In this case the solution to (1.6) is unique in the space of homogeneous functions of

degree ℓ.
(ii) If sin ℓω = 0, i.e. if ℓω = kπ with k ∈ N, so cos ℓω = (−1)k,






wℓ(t) = aℓ Im(ζℓ log ζ) + bℓ Re ζ
ℓ

with aℓ =
gωℓ − g0ℓ cos ℓω

ω cos ℓω
and bℓ = g0ℓ .

(1.8)

We draw the following consequences according to whether π
ω is rational or

not:

(a) If πω ∈ Q, then the coefficients aℓ and bℓ in (1.7)-(1.8) are controlled since

sin ℓω spans a finite set of values: There exists C′ such that

|aℓ|+ |bℓ| ≤ C′ρ−ℓ1 , ℓ ∈ N∗ . (1.9)
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(b) If π
ω 6∈ Q, estimating aℓ is hindered by the possible appearance of small

denominators sin ℓω. In Appendix B we show that there exists a dense set of angles

ω such that sin ℓω takes such small values that the series with wℓ defined by (1.7)

will not converge, in general. The criterion is that π/ω belongs to the set Λs of

super-exponential Liouville numbers, defined in Definition B.1 by their very fast

approximability by rational numbers. We can restore the control ofwℓ by modifying

it as proposed in [4, 11]. For this, we “borrow” a term from the expansion (1.15)

of urm in Section 1.3 below, namely a solution of the problem with zero lateral

boundary conditions, a Laplace-Dirichlet singularity

Im ζkπ/ω (harmonic in Sω, zero on T0 and Tω).

Using this with k = ⌊ℓω/π⌉ ∈ N∗ such that |ℓω − kπ| is minimal, we introduce a

variant of wℓ from (1.7) by defining

w̃ℓ(t) = aℓ
(
Im ζℓ − Im ζkπ/ω

)
+ bℓ Re ζ

ℓ

with aℓ and bℓ as in (1.7). We note that

aℓ
(
Im ζℓ − Im ζkπ/ω

)
= (gωℓ − g0ℓ cos ℓω) Im

ζℓ − ζkπ/ω

sin ℓω
.

The quotient on the right is stable because it can be expressed by divided differences:

ζℓ − ζkπ/ω

sin ℓω
=

ζℓ − ζkπ/ω

ℓ− kπ/ω

ℓ − kπ/ω

sin ℓω − sin kπ
.

For fixed ℓ, this is continuous in ω, even if ℓω → kπ, and we recover the logarithmic

term from (1.8):

lim
ℓω→kπ

Im
ζℓ − ζkπ/ω

sin ℓω
= Im(ζℓ log ζ)

1

ω cos ℓω
.

For fixed ω, we find a bound for the coefficient uniformly in ℓ if |ℓω − kπ| ≤ π/2:
∣∣∣∣
ℓ− kπ/ω

sin ℓω

∣∣∣∣ =
1

ω

∣∣∣∣
ℓω − kπ

sin(ℓω − kπ)

∣∣∣∣ ≤
π

2ω
.

The stable variant of (1.7), which contains the logarithmic expressions (1.8), is

therefore




w̃ℓ(t) = ãℓ Im
ζℓ − ζkπ/ω

ℓ− kπ/ω
+ bℓ Re ζ

ℓ

with ãℓ = (gωℓ − g0ℓ cos ℓω)
ℓ− kπ/ω

sin ℓω
and bℓ = g0ℓ .

(1.10)

We need this variant only when |ℓω − kπ| is small. We fix a threshold

0 < δω <
1
2 min{ω, π} (1.11)

and replace wℓ by w̃ℓ if there exists k ∈ N∗ such that |ℓω − kπ| ≤ δω.

The bounds on δω imply on one hand that in this definition k is defined

uniquely by ℓ, but ℓ is also uniquely determined by k. On the other hand, we can
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check that the coefficients aℓ and ãℓ are uniformly controlled: There exists C′ inde-

pendent of ℓ such that

|a♭ℓ| ≤ C′ρ−ℓ1 , where a♭ℓ =
{ aℓ

ãℓ
if dist(ℓω, πN)

{ > δω ,

≤ δω .
(1.12)

Thus, choosing for each value of ℓ solutions wℓ or w̃ℓ, cf (1.7)-(1.12), we obtain

a convergent series expansion for a particular solution u∂ of the (partial) Dirichlet

problem (1.5).

1.3. Remaining boundary condition and convergence

Let us write in A ∩ B(0, ρ1):

u0 = uf + u∂ + urm . (1.13)

Now the function urm resolves the remaining boundary condition (here we choose

ρ′1 ∈ (0, ρ1))





∆urm(t) = 0 ∀t ∈ A ∩ B(0, ρ′1) ,

urm(t) = 0 ∀t ∈ (T0 ∪ Tω) ∩ B(0, ρ′1) ,

urm(t) = g(t) ∀t ∈ Sω , |t| = ρ′1 ,

(1.14)

where

g(t) ≡ u0(t)− uf(t)− u∂(t) for |t| = ρ′1 .

Denoting by Π the arc ϑ ∈ (0, ω), ρ = 1, we can see that the trace g belongs to

H
1/2
00 (ρ′1Π). By partial Fourier expansion with respect to the eigenfunction basis(
sin kπ

ω ϑ
)
k∈N∗

we find

g(t) =
∑

k≥1

gk sin
kπ

ω
ϑ, t ∈ ρ′1Π,

with a bounded1 sequence
(
gk
)
k∈N∗

, and we deduce the representation

urm(t) =
∑

k≥1

gk

( ρ
ρ′1

)kπ/ω
sin

kπ

ω
ϑ, t ∈ A ∩ B(0, ρ′1).

Setting ckπ/ω = gk(ρ
′
1)

−kπ/ω , we find that the expansion for the remaining term

can be written as the converging series

urm(t) =
∑

γ∈π
ωN∗

cγ Im ζγ , t ∈ A ∩ B(0, ρ′1), (1.15)

with the estimates

|cγ | ≤ C(ρ′1)
−γ . (1.16)

The collection of formulas and estimates (1.3), (1.7)-(1.12), and (1.15)-(1.16) moti-

vates the following unified notation.

1In fact the sequence
(
√

k gk
)

k∈N∗
belongs to ℓ2(N∗).
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Notation 1.1. Let A be the set of indices (here N2
∗ denotes N2 \ {(0, 0)})

A = N2
∗ ∪

π
ωN∗,

and let A0 be the subset of A of elements of the form (ℓ, 0) with ℓ ∈ N∗ such that

there exists

k ∈ N∗ with |ℓω − kπ| ≤ δω (see (1.11)). (1.17)

For any γ ∈ A, we define the function t 7→ Zγ(t) as follows

1. If γ ∈ π
ωN∗, set Zγ(t) = ζγ ,

2. If γ = (α1, α2) ∈ N2
∗ and γ 6∈ A0, set Zγ(t) = ζα1 ζ̄α2 ,

3. If γ = (ℓ, 0) ∈ A0, let k be the unique integer such that (1.17) holds. Set




Zγ(t) = ζℓ log ζ if ℓ = kπ
ω ,

Zγ(t) =
ζℓ − ζkπ/ω

ℓ− kπ/ω
if ℓ 6= kπ

ω .
(1.18)

We are ready to prove the main result of this section:

Theorem 1.2. Let u0 be the solution of the unperturbed problem (0.10) with right

hand side f ∈ L2(A) satisfying (0.9). We can represent u0 as the sum of a conver-

gent series in a neighborhood of the vertex 0

u0(t) = Im
∑

γ∈A

aγZγ(t), t ∈ A ∩ B(0, ρ1) (1.19)

where the set A and the special functions Zγ are introduced in Notation 1.1, and

the coefficients aγ satisfy the analytic type estimates: for all M > ρ−1
1 there exists

C such that

|aγ | ≤ CM |γ|, γ ∈ A, (1.20)

where |γ| = α1 + α2 if γ = (α1, α2) ∈ (N∗)
2, and |γ| = γ if γ ∈ π

ωN∗. The

coefficients aγ are real if γ ∈ π
ωN∗ or if γ = (ℓ, 0) ∈ N2

∗.

Proof. We start from the representation (1.13) of u0 in the three parts uf , u∂ and

urm.

1) uf has the explicit expression (1.3) that can be written as∑
α1∈N∗

∑
α2∈N∗

bαζ
α1 ζ̄α2 with suitable estimates for the coefficients bα:

|bα| ≤ CM |α|.

We notice that the set of indices (N∗)
2 has an empty intersection with A0. So

uf (t) =
∑

γ∈(N∗)2

bγZγ(t).

Since uf is real, we can set aγ = ibγ and get

uf(t) = Im
∑

γ∈(N∗)2

aγZγ(t).

2) u∂ is equal to
∑

ℓ∈N∗
w♭ℓ with

i) w♭ℓ = wℓ with wℓ given by (1.7) if (ℓ, 0) 6∈ A0,

ii) w♭ℓ = wℓ with wℓ given by (1.8) if ℓ = kπ
ω for some k ∈ N∗,
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iii) w♭ℓ = w̃ℓ with w̃ℓ given by (1.10) if (ℓ, 0) ∈ A0 and ℓ 6= kπ
ω , where k is the

integer such that (1.17) holds.

We parse each of these three cases

i) (ℓ, 0) 6∈ A0: Then Z(ℓ,0) = ζℓ and Z(0,ℓ) = ζ̄ℓ. We use formula (1.7) to

obtain

wℓ = Im(aℓZ(ℓ,0) + ibℓZ(0,ℓ)) (1.21)

The coefficients a(ℓ,0) = aℓ and a(0,ℓ) = ibℓ satisfy the desired estimates, because

(ℓ, 0) 6∈ A0 implies | sin ℓω| ≥ sin ω
2 .

ii) There exists k ∈ N∗ such that ℓ = kπ
ω : Then Z(ℓ,0) = ζℓ log ζ and Z(0,ℓ) =

ζ̄ℓ. We use formula (1.8) to obtain the representation (1.21) again.

iii) (ℓ, 0) ∈ A0 and ℓ 6= kπ
ω , with the integer k for which (1.17) holds. Now

we start from formula (1.10) and find once more the representation (1.21) with aℓ
replaced by ãℓ.

3) Finally urm given by (1.15) is already written in the desired form. �

Remark 1.3. 1) Examining the structure of the terms in (1.19) we can see that a real

valued basis for the expansion of u0 is the union of

• ImZγ if γ ∈ π
ωN∗ or if γ = (α1, α2) ∈ N2

∗ with α1 > α2,

• ReZγ if γ = (α1, α2) ∈ N2
∗ with α1 ≤ α2.

2) The traces of the function ImZkπ/ω are zero on ∂Sω for all k ∈ N∗. If we

write the expansion (1.19) in the form

u0 =
∑

k∈N∗

akπ/ω ImZkπ/ω +
∑

ℓ∈N∗

(
Im

∑

γ∈N
2

|γ|=ℓ

aγZγ

)
(1.22)

we obtain terms ImZkπ/ω , or packets of terms Im
∑

|γ|=ℓ aγZγ that have zero

traces on ∂Sω.

Remark 1.4. If ω = π, then u0 has a converging Taylor expansion at the origin.

Remark 1.5. If f = 0 in a neigborhood of the origin, then in the above construction

we find that uf and u∂ vanish identically, hence u0 = urm. For the latter we have the

convergent expansion (1.15), and therefore u0 has an expansion in terms of Im ζk
π
ω ,

k ∈ N∗ , that is convergent in a neighborhood of the origin.

Remark 1.6. The definition of A0 depends on the choice of the threshold δω, see

(1.11). This influences which pairs of terms ζℓ and ζkπ/ω are grouped together into

Zγ in the sum (1.19), but changing A0 does not change the sum. One can also omit

a finite number of indices from A0 without changing the sum. From Appendix B

follows that we can even set δω = 0 and therefore reduce A0 to the empty set if π/ω
is irrational, but not a super-exponential Liouville number. The resulting series in

which no pairs of terms are regrouped will then converge, with a possibly smaller

convergence radius than ρ1 if π/ω is an exponential, but not super-exponential Li-

ouville number. The full convergence radius ρ1 is retained if π/ω is not an expo-

nential Liouville number, in particular if it is not a Liouville number. If π/ω is a

super-exponential Liouville number, then there exist right hand sides f such that the

unmodified series does not converge for t 6= 0.
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1.4. Residual problem on the perforated domain

Setting ũε = uε − u0 with uε and u0 the solutions of problems (0.5) and (0.10),

respectively, we obtain that ũε solves the residual problem

{
∆ũε = 0 in Aε,

ũε = −u0 on ∂Aε,
(1.23)

By construction, u0 is zero on ∂A, therefore on ∂Aε ∩ ∂A. Thus the trace of u0 on

∂Aε can be nonzero only on the part ε∂P ∩ Sω of the boundary of the perforations,

compare Fig.2. The converging expansion (1.19) allows us to interpret traces of u0
on ε∂P ∩ Sω as a series of traces on ∂P ∩ Sω with coefficients depending on ε.
To describe this dependence, we recall Notation 1.1 and introduce corresponding

combinations of powers of ε.

Notation 1.7. Let A and A0 be the sets of indices introduced in Notation 1.1. For

any γ ∈ A we define the function ε 7→ Eγ(ε) as follows

1. If γ ∈ π
ωN∗, set Eγ(ε) = εγ ,

2. If γ = (α1, α2) ∈ N2
∗ and γ 6∈ A0, set Eγ(ε) = ε|γ|,

3. If γ = (ℓ, 0) ∈ A0, let k be the unique integer such that (1.17) holds. Set






Eγ(ε) = εℓ log ε if ℓ = kπ
ω ,

Eγ(ε) =
εℓ − εkπ/ω

ℓ− kπ/ω
if ℓ 6= kπ

ω .
(1.24)

The functions Zγ (1.18) are pseudo-homogeneous in the following sense.

Lemma 1.8. Let γ ∈ A and T ∈ Sω.

• If γ 6∈ A0, then

Zγ(εT ) = ε|γ|Zγ(T ) = Eγ(ε)Zγ(T ) .

• If γ = (ℓ, 0) ∈ A0, let k be the unique integer such that (1.17) holds. We set

γ′ = kπ
ω and we have

Zγ(εT ) = ε|γ|Zγ(T ) + Eγ(ε)Zγ′(T ) .

Corollary 1.9. Under the conditions of Theorem 1.2, using the packet expansion

(1.22), we find

u0(εT ) =
∑

γ∈π
ωN∗

aγε
γ ImZγ(T )

+
∑

ℓ∈N∗

εℓ
(
Im

∑

γ∈N
2

|γ|=ℓ

aγZγ(T )
)
+
∑

γ∈A0

aγEγ(ε) ImZγ′(T ). (1.25)

Each of the terms or packets has zero trace on ∂Sω.
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2. From a perforated sector to a domain with interior holes

In this section, we transform the residual Dirichlet problem (1.23) into a problem on

a perforated domain with holes shrinking towards an interior point, so that to be able

to use integral representations for its solution. A suitable transformation is obtained

as the composition of two operations, see Fig.3:

• A conformal map Gκ: ζ 7→ z = ζκ with κ = π
ω that transforms the sector Sω

into the upper half-plane Sπ = R× R+,

• The odd reflection operator E that extends domains and functions from Sπ to

R2.

Sω

P

P

P

Hole pattern in plane sector Sω

Sπ

Conformal map to half-space Sπ

Sπ

Q∁

Q
×
1 Q

×
2

Q
+
1

Q
−
1

Extension by symmetry from Sπ to R2

FIGURE 3. Conformal map and symmetry acting on hole pattern P.

We introduce these two operations and list some of their properties before

composing them in view of the transformation of problem (1.23).

2.1. Conformal mapping of power type

Let ω ∈ (0, 2π) and κ > 0 be chosen so that κω < 2π. The conformal map Gκ:

ζ 7→ z = ζκ transforms Cartesian coordinates t into Cartesian coordinates x with

ζ = t1 + it2 and z = x1 + ix2

and polar coordinates (ρ, ϑ) into (r, θ) with

r = ρκ and θ = κϑ.
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Lemma 2.1. Assume that Ω ⊂ Sω and that Ω and Sω\Ω have a Lipschitz boundary.

Then GκΩ ⊂ Sκω and, moreover, GκΩ and Sκω \ GκΩ have a Lipschitz boundary.

A function u defined on such a domain Ω ⊂ Sω is transformed into a function

G∗
κu defined on GκΩ through the composition

G∗
κu = u ◦ G−1

κ = u ◦ G1/κ .

If ∂Ω is disjoint from the origin, then for any real s, the transformation G∗
κ

defines an isomorphism from the standard Sobolev space Hs(Ω) onto Hs(GκΩ).
If, on the contrary, 0 ∈ ∂Ω, there is no such simple transformation law for stan-

dard Sobolev spaces. Nevertheless, weighted Sobolev spaces of Kondrat’ev type can

be equivalently expressed using polar coordinates and support such transformation:

For real β and natural integer m, the space Km
β (Ω) is defined as

Km
β (Ω) = {u ∈ L2

loc(Ω), ρβ+|α|∂αt u ∈ L2(Ω), ∀α ∈ N2, |α| ≤ m}. (2.1)

We have the equivalent definition in polar coordinates

Km
β (Ω) = {u ∈ L2

loc(Ω), ρβ(ρ∂ρ)
α1∂α2

ϑ u ∈ L2(Ω), ∀α ∈ N2, |α| ≤ m}.

Lemma 2.2. The conformal map Gκ defines an isomorphism

G∗
κ : Km

β (Ω) onto Km
1+β
κ −1

(GκΩ).

The proof is based on the formulas

ρ∂ρ = κ r∂r and ρdρdϑ = r
2
κ−2rdrdθ.

Details are left to the reader.

A relation between standard Sobolev spaces Hs for real positive s and the

weighted scale Km
β is the following [12, Appendix A]

Km
β (Ω) ⊂ Hs(Ω) if m ≥ s and β < −s. (2.2)

Coming back to the solution u0 of problem (0.10), we check that as a conse-

quence of (1.19) and of Lemma 2.2, there holds:

Lemma 2.3. Let m ≥ 1 be an integer. Then the solution u0 of problem (0.10)

satisfies

u0 ∈ Km
β (A) ∀β such that 1 + β > −min{πω , 2}. (2.3)

Let κ > 0. Then

Gκu0 ∈ Km
β′ (GκA) ∀β′ such that 1 + β′ > − 1

κ min{πω , 2}. (2.4)

2.2. Reflection and odd extension

We first denote by R the mapping from R2 to itself defined as the reflection across

the x1 axis

R(x1, x2) ≡ (x1,−x2) ∀x = (x1, x2) ∈ R2 .

Then if Ω is a subset of R2 and g a function defined on Ω, we denote by R∗[g] the

function on R(Ω) defined by

R∗[g](x) = g(R(x)) ∀x ∈ R(Ω) .
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Let Ω be a subdomain of the half-plane Sπ. Let us set

Γ = interior (∂Ω ∩ ∂Sπ).

We denote by E(Ω) the symmetric extension of Ω across the x1 axis

E(Ω) = Ω ∪R(Ω) ∪ Γ. (2.5)

Since we want to stay within the category of Lipschitz domains, we need

here the assumption that both Ω and its complement in Sπ are Lipschitz. Note that

whereas for a Lipschitz domain its complement in R2 is automatically Lipschitz,

too, this is not the case, in general, for the complement in Sπ. This is the reason why

we had to make corresponding assumptions in Subsection 0.1, see assumptions (2)

and (3) on the domain A and the perforations P. Under these assumptions E(Ω) is

a Lipschitz domain. Since the proof of this fact is rather technical, we present it in

Appendix A, Lemma A.1.

If g is a function defined on Ω, the odd extension of g to E(Ω) is defined as

E∗[g](x) ≡





g(x) ∀x ∈ Ω

−g(R(x)) ∀x ∈ R(Ω)

0 ∀x ∈ Γ .

Let us denote by H1
0,Γ(Ω) the following subspace of H1(Ω)

H1
0,Γ(Ω) = {u ∈ H1(Ω), u

∣∣
Γ
= 0}.

Lemma 2.4. Assume that Ω ⊂ Sπ and that Ω and Sπ \Ω have a Lipschitz boundary.

Then the odd extension E∗ defines a bounded embedding

E∗ : K2
β(Ω) ∩H

1
0,Γ(Ω) −→ K2

β(E(Ω)) ∀β ∈ R.

Proof. If u belongs to K2
β(Ω)∩H

1
0,Γ(Ω), the jumps of E∗[u] and of ∂2E∗[u] across

Γ are zero. Hence for all multiindices α, |α| ≤ 2, the partial derivative ∂αE∗[u] has

no density across Γ and

‖r|α|+β∂αE∗[u]‖2
L2(E(Ω))

= 2‖r|α|+β∂αu‖2
L2(Ω)

.

�

2.3. Transformation of the residual problem

We come back to our main setting, with unperforated domain A, hole pattern P,

and family of perforated domains Aε. We denote by T and T ∗ the composition of

the conformal map Gπ/ω and the odd extension acting on domains and functions

respectively

T = E ◦ Gπ/ω and T ∗ = E∗ ◦ G∗
π/ω . (2.6)

Then we denote

B = T (A), Q = T (P).

As a consequence of assumptions on A and P, and of Lemmas 2.1 and A.1, B is a

bounded simply connected Lipschitz domain containing the origin, and Q is a finite

union of bounded simply connected Lipschitz domains.



Converging expansions 19

The perforated sector Aε is transformed by T into the perforated domain Bη

with

η = επ/ω and Bη = B \ ηQ. (2.7)

We note that the boundary of Bη is the disjoint union of ∂B and η∂Q, see Fig.4:

∂Bη = ∂B ∪ η∂Q. (2.8)

Bη Bη

FIGURE 4. Transformed perforated domain Bη for two values of η.

The residual problem (1.23) on Aε is transformed into the Dirichlet problem

on Bη {
∆vη = 0 in Bη,

vη = −T ∗[u0] on ∂Bη,

where we have set vη = T ∗[ũε]. We note that vη belongs to H1(Bη) and that its

trace is zero on ∂B. We analyze now the structure of the trace of T ∗[u0] on η∂Q. We

take advantage of the converging expansion (1.19) and of the pseudo-homogeneity

of its terms.

We recall from Notation 1.1 that the set of indices A is the union of π
ωN∗

and N2
∗, and from Notation 1.7 that the pseudo-homogeneous functions Eγ(ε) are

defined as ε|γ| if γ does not belong to the set of exceptional indices A0, and by a

divided difference or a logarithmic term in the opposite case.

Theorem 2.5. Let u0 be the solution of the unperturbed problem (0.10) with right

hand side f ∈ L2(A) satisfying (0.9). The residual problem (1.23) on Aε is trans-

formed by the transformation T (2.6) into the Dirichlet problem on Bη , with η =

επ/ω: 



∆vη = 0 in Bη,

vη = 0 on ∂B,

vη = −T ∗[u0] on η∂Q .

(2.9)

The trace of T ∗[u0] can be written as a convergent sum for ε ∈ (0, ε1] for some

positive ε1

T ∗[u0](ηX) =
∑

γ∈A

Eγ(ε)Ψγ(X), X ∈ ∂Q , (2.10)
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where the set A and the functions Eγ are introduced in Notations 1.1 and 1.7. There

exists a positive number τ ∈ (0, 1/2) such that the convergence takes place in the

trace Sobolev space Hτ+1/2(∂Q): There exist positive constants C and M such

that

‖Ψγ ‖Hτ+1/2(∂Q) ≤ CM |γ|, γ ∈ A . (2.11)

Proof. We use the expansion of u0(εT ) as written by packets in (1.25). Applying

the transformation T ∗ we find

T ∗[u0](ηX) =
∑

γ∈π
ωN∗

aγε
γT ∗[ImZγ ](X)

+
∑

ℓ∈N∗

εℓT ∗
[
Im

∑

γ∈N
2

|γ|=ℓ

aγZγ

]
(X) +

∑

γ∈A0

aγEγ(ε)T
∗[ImZγ′ ](X).

(2.12)

We define for γ ∈ A

Φγ =





aγ ImZγ if γ ∈ π
ωN∗,

Im
∑
γ̃∈N2, |γ̃|=ℓ aγ̃Zγ̃ if γ = (0, ℓ), ℓ ∈ N∗,

aγ ImZγ′ if γ = (ℓ, 0) ∈ A0,

0 for remaining γ’s ,

(2.13)

and set

Ψγ = T ∗[Φγ ], ∀γ ∈ A. (2.14)

Thus (2.12)-(2.14) imply (2.10).

Let us prove estimates (2.11). Let us choose β < −1 such that 1 + β >
−min{πω , 2}, cf (2.3). Relying on the explicit form of the functions Φγ and on the

boundedness of the domain P, we find that there exist constants C and M such that

‖Φγ‖K2
β(P)

≤ CM |γ|, γ ∈ A . (2.15)

Let β′ = ω
π (1 + β)− 1. Then β′ < −1 and by Lemma 2.2 the conformal map G∗

π/ω

is bounded fromK2
β(P) to K2

β′(Gπ/ωP). Then by Lemma 2.4, the odd extension E∗

is bounded from K2
β′(Gπ/ωP) to K2

β′(Q). If we choose τ such that

τ ≤ −(1 + β′) and τ ∈ (0, 12 ),

we find that by (2.2), the spaceK2
β′(Gπ/ωP) is continuously embedded inHτ+1(Q).

The trace theorem for Lipschitz domains then yields the continuity of the trace from

Hτ+1(Q) to Hτ+1/2(∂Q). Hence there exists C′ such that

‖Ψγ‖Hτ+1/2(∂Q) ≤ C′‖Φγ‖K2
β(P)

, ∀γ ∈ A .

Combining this with the previous estimate of ‖Φγ‖K2
β(P)

gives estimates (2.11).

We finally notice that estimates (2.11) imply the convergence of the series

(2.10) for ε ∈ [0, ε1] if ε1 is chosen such that ε1M < 1. �

Remark 2.6. From the proof one finds a bound for the regularity index τ

τ < min{ 1
2 ,

2ω
π } . (2.16)
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This inequality, which is restrictive for small angles ω < π
4 , is mainly due to the use

of the embedding (2.2) of the weighted Sobolev spaces into unweighted Sobolev

spaces. It is needed only in the special situation where the boundary of the holes

touches the origin. If, conversely, 0 6∈ ∂P, then we can use the trace theorem directly

without passing by the embedding (2.2), and the statement of the theorem is true for

all τ ∈ (0, 1/2).

3. Symmetric perforated Lipschitz domains

In this section we investigate the asymptotic behavior of the solution of a Dirich-

let problem in a symmetric Lipschitz domain with small holes. The analysis here

performed will allow to study the behavior of the solution of problem (2.9).

More precisely, we will consider the case where the domain and its holes are

symmetric with respect to the horizontal axis and the boundary data are antisym-

metric. We use the technique with which the behavior of harmonic functions in

perforated planar domains was studied in Lanza de Cristoforis [22] and in Dalla

Riva and Musolino [9]. As in [9], we employ boundary integral equations, but there

are some differences in the assumptions: In [9], perforations were of class C1,α and

connected, whereas we consider here perforations with Lipschitz boundaries and a

finite number of connected components. This generalization is naturally implied by

the construction of the perforation Q from P by the conformal transformations and

reflections described in the previous sections, because even for a smooth and con-

nected hole P in the sector Sω, the resulting perforationQ in R2 may have corners or

several connected components. On the other hand, our symmetry assumptions will

allow to simplify notably the treatment of the problem. In particular, we find that we

do not have to deal with the logarithmic behavior which arises in the general setting

for two-dimensional perforated domains.

3.1. Some notions of potential theory on Lipschitz domains

We collect here some known results about harmonic double layer potentials on Lips-

chitz domains in the plane. Main references for these facts are the paper by Costabel

[5] and the books by Folland [14] and McLean [26].

We assume that Ω ⊂ R2 is a bounded Lipschitz domain (a role that will

mainly be played by the perforated domain B \ ηQ). Furthermore, Ω will be con-

nected, but its complement Ω∁ = R2 \Ω may be not connected. Let Ω∁
(1), . . . ,Ω

∁
(m)

be the bounded connected components of Ω∁ and Ω∁
(0) the unbounded connected

component of Ω∁. Thus the boundary ∂Ω has the m + 1 connected components

∂Ω∁
(0), . . . , ∂Ω

∁
(m).

Let E be the function from R2 \ {0} to R defined by

E(x) ≡ −
1

2π
log |x| ∀x ∈ R2 \ {0}.

As is well known,E is a fundamental solution of −∆ on R2.
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If φ is an integrable function on ∂Ω, we define the double layer potential

D∂Ω[φ] by setting

D∂Ω[φ](x) ≡ −

∫

∂Ω

φ(y)n(y) · ∇E(x− y) dsy ∀x ∈ R2 \ ∂Ω ,

where ds denotes the length element on ∂Ω and n denotes the outward unit normal

to Ω, which exists almost everywhere on ∂Ω. In R2 \ ∂Ω, the double layer potential

D∂Ω[φ] is a harmonic function, vanishing at infinity. By Costabel [5, Thm. 1], if

τ ∈ [−1/2, 1/2] and φ ∈ H1/2+τ (∂Ω) then

D∂Ω[φ]
∣∣
Ω
∈ H1+τ (Ω) , D∂Ω[φ]

∣∣
Ω∁

∈ H1+τ
loc (Ω∁) . (3.1)

We denote by γ0 and γ∁0 the interior and exterior traces on ∂Ω, respectively, and

by γ1 and γ∁1 the interior and exterior normal derivatives on ∂Ω, respectively, (both

taken with respect to the exterior normal n). Then we have the jump relations [5,

Lem. 4.1]

γ∁0D∂Ω[φ]− γ0D∂Ω[φ] = φ , γ1D∂Ω[φ] = γ∁1D∂Ω[φ] ,

for all φ ∈ H1/2+τ (∂Ω). We introduce the boundary operators K∂Ω and W∂Ω by

setting

K∂Ω[φ] ≡
1

2

(
γ0D∂Ω[φ] + γ∁0D∂Ω[φ]

)
, W∂Ω[φ] ≡ −γ1D∂Ω[φ] = −γ∁1D∂Ω[φ]

for all φ ∈ H1/2+τ (∂Ω). As a consequence,

γ0D∂Ω[φ] = − 1
2φ+K∂Ω[φ] , γ∁0D∂Ω[φ] =

1
2φ+K∂Ω[φ] , ∀φ ∈ H1/2+τ (∂Ω) .

(3.2)

Thus the boundary integral operator associated with the Dirichlet problem in Ω is

− 1
2I + K∂Ω, whose mapping properties we therefore want to summarize in the

sequel.

From Costabel and Wendland [8, Remark 3.15] (see also Steinbach and Wend-

land [28] and Mayboroda and Mitrea [24]), we deduce the validity of the following.

Lemma 3.1. For any τ ∈ [−1/2, 1/2], the operators ± 1
2I+K∂Ω : H1/2+τ (∂Ω) →

H1/2+τ (∂Ω) are Fredholm operators of index 0.

The kernels and cokernels of ± 1
2I+K∂Ω are also known; they are independent

of τ . They are described in terms of the characteristic functions of the connected

components of ∂Ω. Here, if O is a subset of ∂Ω we denote by χO the function from

∂Ω to R defined by

χO(x) ≡

{
1 if x ∈ O ,

0 if x ∈ ∂Ω \ O .

The value of the double layer potential of a constant density is well known.

D∂Ω[χ∂Ω](x) =

{
0 if x ∈ Ω∁

−1 if x ∈ Ω
hence K∂Ω[χ∂Ω] = − 1

2χ∂Ω .
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Applying this to the components Ω∁
(j), j = 1, . . . ,m, we see that the characteristic

functions χ∂Ω∁
(j)

generate double layer potentials that vanish in Ω and that they are

therefore in the kernel of the operator − 1
2I +K∂Ω. In fact, by arguing as in Folland

[14, Ch. 3] one can prove the following.

Lemma 3.2. Let

V± ≡

{
φ ∈ H1/2(∂Ω): ± 1

2φ+K∂Ω[φ] = 0

}
.

Then V+ has dimension 1 and consists of constant functions on ∂Ω. The space V−

has dimension m and is generated by {χ∂Ω∁
(j)
}mj=1.

In order to characterize the range of the double layer potential operator, we use

the description of the mapping properties of the operator of the normal derivative of

the double layer potential W∂Ω = −γ1D∂Ω as given in McLean [26, Thm. 8.20].

Lemma 3.3. The operator W∂Ω is a bounded selfadjoint operator from H1/2(∂Ω)
to its dual space H−1/2(∂Ω). The kernel of W∂Ω consists of locally constant func-

tions in H1/2(∂Ω). Its dimension is m+ 1, and it is generated by {χ∂Ω∁
(j)
}mj=0.

For a bounded selfadjoint operator, the kernel determines the range, the lat-

ter being the orthogonal complement of the former. We thus obtain the following

description of the range of the double layer potential operator.

Corollary 3.4. Let τ ∈ [−1/2, 1/2]. Let u ∈ H1+τ (Ω) be such that ∆u = 0 in Ω.

Then there exists µ ∈ H1/2+τ (∂Ω) such that u = D∂Ω[µ]
∣∣
Ω

if and only if

〈
γ1u , χ∂Ω∁

(j)

〉
= 0 ∀j ∈ {1, . . . ,m} . (3.3)

Here we use the brackets
〈
·, ·
〉

to denote the natural duality between a Sobolev

space Hs(∂Ω) andH−s(∂Ω). Thus the condition in (3.3) means that the integral of

the normal derivative

∂nu = n · ∇u

of u over each component of ∂Ω vanishes. The condition for j = 0 is implied by

the others, because by Green’s formula any harmonic function u in Ω satisfies

m∑

j=0

〈
γ1u , χ∂Ω∁

(j)

〉
=

∫

∂Ω

∂nu ds = 0 .

Remark 3.5. The function µ represents u as a double layer potential if and only if µ
is a solution of the boundary integral equation

− 1
2µ+K∂Ω[µ] = γ0u on ∂Ω . (3.4)

This follows from the jump relation (3.2) and from the uniqueness of the solution

of the Dirichlet problem. Thus Corollary 3.4 can be seen as a statement on the

solvability of the boundary integral equation (3.4), and conditions (3.3) characterize

the cokernel of the operator − 1
2I +K∂Ω.
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3.2. The double layer potential for symmetric planar domains

We now come back to the geometric situation found at the end of Section 2. This

means that in this subsection Ω = Bη = B \ ηQ, where B is a simply connected

bounded Lipschitz domain in R2 containing the origin, η ∈ (0, η0) is a small pos-

itive real number, and Q is a finite union of bounded simply connected Lipschitz

domains such that η0Q is contained in B. In addition, B and Q are symmetric with

respect to reflection at the horizontal axis. From Subsection 2.2 we recall the nota-

tion for the reflection and the corresponding pullback

R(x1, x2) ≡ (x1,−x2) ∀x = (x1, x2) ∈ R2 and R∗[g] = g ◦ R .

Thus we assume

B = R(B) and Q = R(Q) .

The symmetry of Q implies that there exist two natural numbersm× and m#, such

that Q has m = m× + 2m# > 0 connected components

Q
×
1 , . . . ,Q

×
m× ,Q

+
1 , . . . ,Q

+
m# ,Q

−
1 , . . . ,Q

−
m# ,

satisfying

Q
×
i = R(Q×

i ) ∀i ∈ {1, . . . ,m×} ,

Q
+
j = R(Q−

j ) and Q
+
j ⊂ Sπ ≡ R× R+ ∀j ∈ {1, . . . ,m#} .

(3.5)

See Figure 3 for an example with m× = 2 and m# = 1.

We introduce the following definition.

Definition 3.6. Let τ ∈ [−1/2, 1/2]. If ∂Ω = R(∂Ω), then H
1/2+τ
odd (∂Ω) denotes

the closed subspace of H1/2+τ (∂Ω) defined by

H
1/2+τ
odd (∂Ω) ≡

{
g ∈ H1/2+τ (∂Ω) : g = −R∗[g] on ∂Ω

}
.

The mapping properties of the boundary integral operator− 1
2I+K∂Bη on odd

functions can be summarized as follows.

Lemma 3.7. Let τ ∈ [−1/2, 1/2] and η ∈ (0, η0).

(i) The operator − 1
2I + K∂Bη defines a Fredholm operator of index zero from

H
1/2+τ
odd (∂Bη) to itself.

(ii) If m# = 0, this operator is an isomorphism. More generally, its kernel has

dimensionm# and is generated by the functions {χη∂Q+
j
−χη∂Q−

j
}m

#

j=1, where

(χη∂Q+
j
− χη∂Q−

j
)(x) =





+1, x ∈ η∂Q+
j ,

−1, x ∈ η∂Q−
j ,

0, x ∈ ∂Bη \ (η∂Q
+
j ∪ η∂Q−

j ) .

(iii) If u ∈ H1+τ (Bη) is such that ∆u = 0 in Bη and R∗[u] = −u , then there

exists µ ∈ H
1/2+τ
odd (∂Bη) such that u = D∂Bη [µ]

∣∣
Bη

if and only if

〈
γ1u , χη∂Q+

j

〉
= 0 ∀j ∈ {1, . . . ,m#} . (3.6)
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(iv) If u ∈ H1+τ
loc (Q∁) is such that ∆u = 0 in Q∁, u is harmonic at infinity, and

R∗[u] = −u , then there exists µ ∈ H
1/2+τ
odd (∂Q) such that u = D∂Q[µ]

∣∣
Q∁

if

and only if
〈
γ1u , χ∂Q+

j

〉
= 0 ∀j ∈ {1, . . . ,m#} .

Proof. By the rule of change of variables in integrals, we have D∂Bη

[
R∗[ψ]

]
=

R∗
[
D∂Bη [ψ]

]
, hence

K∂Bη

[
R∗[ψ]

]
= R∗

[
K∂Bη [ψ]

]
∀ψ ∈ H1/2+τ (∂Bη) . (3.7)

Thus K∂Bη maps odd functions to odd functions. By Lemma 3.2 the kernel con-

sists of odd functions in V−, that is, odd linear combinations of the character-

istic functions χη∂Q×

i
and χη∂Q±

j
. This space is generated by χη∂Q+

j
− χη∂Q−

j
,

j = 1, . . . ,m#. If m# = 0, the operator is therefore injective.

Let us now show (iii). For an odd function u, them# conditions (3.6) are equivalent

to the whole set of m× + 2m# conditions (3.3), because the integrals over η∂Q×
i

vanish by symmetry, and the integrals over η∂Q−
j equal the negatives of the inte-

grals over η∂Q+
j . Thus (3.6) is equivalent to the existence of µ ∈ H1/2+τ (∂Bη)

such that u = D∂Bη [µ]
∣∣
Bη

. If µ is not yet odd, we can replace it by its odd part

µ̃ ≡ 1
2

(
µ−R∗[µ]

)
,

which will also represent u, that is u = D∂Bη [µ̃]
∣∣
Bη

. Statement (iii) is proved.

To prove that − 1
2I +K∂Bη is a Fredholm operator of index zero, it remains to show

that its range has codimension m# (we recall that K∂Bη is not compact, in general,

when ∂Bη is a only required to be Lipschitz). We use the observation noted in Re-

mark 3.5. For g ∈ H
1/2+τ
odd (∂Bη), let u ∈ H1+τ (Bη) be its harmonic extension, that

is, the unique harmonic function in Bη satisfying γ0u = g. It is clear that u is an

odd function. The m# conditions (3.6) that guarantee the representability of u as a

double layer potential with a density µ ∈ H
1/2+τ
odd (∂Bη) can be considered as m#

continuous linear functionals acting on g and defining solvability conditions for the

boundary integral equation

(− 1
2I +K∂Bη )[µ] = g .

We have shown that the cokernel of − 1
2I + K∂Bη in H

1/2+τ
odd (∂Bη) has dimension

m#, and thus the remaining statements of (i) and (ii) follow.

Statement (iv) is proved in the same way as (iii) by relying on the characterization

of the cokernel of the operator W∂Q as given by McLean [26, Thm. 8.20]. �

In addition to the boundary integral operators, we will also need mapping

properties of the double layer potential restricted to some subsets of the domain.

The first result is global and concerns the entire interior of ∂B or exterior of

∂Q. For this we use the weighted Sobolev spaces of Kondrat’ev typeKs
β introduced

in Section 2.1 and defined for integer regularity exponent s = m ∈ N in (2.1). For

non-integer s there exist several equivalent ways to define this space (see [12]), the
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shortest (and for us, easiest to use) is by Hilbert space interpolation: If s = m+ τ ,

m ∈ N and τ ∈ [0, 1], then

Ks
β(Ω) =

[
Km
β (Ω),Km+1

β (Ω)
]
τ
.

It is clear that if Ω is a bounded domain with a positive distance to the origin, then the

norm in Ks
β(Ω) is equivalent to the norm in the standard Sobolev spaceHs(Ω), and

the weight exponent β influences only the behavior near the origin and at infinity.

Thus let χ ∈ C∞
0 (R2) be a cutoff function that is equal to 1 on the ball B(0, 1/2)

and 0 outside of B(0, 1) and for R > 0 define

χR(x) = χ( xR ) ;

let further R0, R1 be such that 0 < 2R0 ≤ R1 and let β0, β1 ∈ R be two weight

indices. Then if we define

‖u‖Ks
β0β1

(Ω) ≡ ‖χR0u‖Ks
β0

(Ω)+‖(1−χR0)χR1u‖Hs(Ω)+‖(1−χR1)u‖Ks
β1

(Ω) ,

(3.8)

we see that for any Lipschitz domain Ω the norms ‖u‖Ks
β(Ω) and ‖u‖Ks

ββ(Ω) are

equivalent; for any bounded Ω the norm ‖u‖Ks
β0β1

(Ω) is equivalent to ‖u‖Ks
β0

(Ω),

and for any Ω that has a positive distance to the origin it is equivalent to ‖u‖Ks
β1

(Ω).

With this preparation, we can now prove the boundedness of the double layer repre-

sentation.

Lemma 3.8. For any τ ∈ [−1/2, 1/2], β0 > −2 and β1 < 0, the following opera-

tors are bounded:

D∂B : H
1/2+τ
odd (∂B) → K1+τ

β0
(B) , (3.9)

D∂Q : H
1/2+τ
odd (∂Q) → K1+τ

β0β1
(Q∁) if 0 6∈ ∂Q , (3.10)

D∂Q : H
1/2+τ
odd (∂Q) → K1+τ

β0β1
(Q∁) if 0 ∈ ∂Q and β0 ≥ −1− τ . (3.11)

Proof. In (3.1) we already quoted from [5, Thm. 1] that for a bounded domain Ω,

D∂Ω maps H1/2+τ (∂Ω) boundedly into H1+τ (Ω). This implies that

D∂B : H
1/2+τ
odd (∂B) → H1+τ (B)

is bounded. Let R0 be such that B(0, R0) ⊂ B and let g be the trace of u ≡ D∂B[ψ]
on ∂B(0, R0). Since u is harmonic in B and odd, it can be expanded in a Fourier

series of the form

u(x) =

∞∑

k=1

gk

( r

R0

)k
sin kθ .

Here gk are the Fourier coefficients of g, and the Sobolev norms of g can equiva-

lently be expressed by weighted norms of the sequence gk.

‖g‖2
Hs(∂B(0,R0))

=

∞∑

k=1

k2s|gk|
2 .

It can be verified by explicit computation that for β > −2 and any m ∈ N

‖u‖2
Km

β (B(0,R0))
=
∑

k≥1

ck,m|gk|
2 with c k2m−1 ≤ ck,m ≤ C k2m−1 .
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The constants here depend on R0 and β, but not on u. Thus ‖u‖Km
β (B(0,R0)) is

equivalent to ‖g‖Hm−1/2(∂B(0,R0)). By interpolation it follows that this is also true

for m replaced by 1 + τ . Thus

‖u‖K1+τ
β0

(B(0,R0))
≤ C ‖g‖H1/2+τ(∂B(0,R0))

≤ C ‖u‖H1+τ(B) .

Adding ‖u‖H1+τ(B), we find

‖u‖K1+τ
β0

(B) ≤ C ‖g‖H1/2+τ(∂B) ,

hence (3.9).

For the proof of (3.10), we use a similar argument: Let U = D∂Q[Ψ] in Q∁ and

letG be the trace ofU on some ∂B(0, R1) withR1 chosen such that Q ⊂ B(0, R1).
Then

‖G‖H1/2+τ(∂B(0,R1))
≤ ‖U ‖

H1+τ (Q∁∩B(0,R1))
≤ C ‖Ψ‖H1/2+τ(∂Q) .

Now we write U in B(0, R1)
∁ as a Fourier series, using that it is harmonic in Q∁

and vanishes at infinity (for this we do not even need that U is odd), and prove by

explicit calculation of weighted Sobolev norms and interpolation that for any β < 0
there is an estimate

‖U ‖
K1+τ

β (B(0,R1)
∁)

≤ C ‖G‖H1/2+τ (∂B(0,R1))
.

If 0 ∈ Q, we do not need to estimate U in a neighborhood of 0. If 0 ∈ Q∁, we can

get an estimate of U in a neighborhood of 0 as above for u. Together, this implies

(3.10).

For (3.11), we use the previous estimate outside of a neighborhood of the

origin, but now we additionally have to estimate ‖U‖K1+τ
β0

(Q∁∩B(0,R0))
for some

R0 > 0. We cannot apply the same argument as for u above, because 0 is on the

boundary of Q, and U is not harmonic in a whole neighborhood of 0. Instead we

will use the fact that if β0 ≥ −1− τ then there is a continuous inclusion

H1+τ
odd (Q∁ ∩ B(0, R0)) ⊂ K1+τ

β0
(Q∁ ∩ B(0, R0)) .

For τ 6= 0 this follows from Dauge [12, Theorem (AA.7)]. It is also true for τ = 0
as follows easily from the well known Hardy inequality

‖
U(·)

x2
‖
L2(Q∁)

≤ 2 ‖∂x2U ‖
L2(Q∁)

for all U ∈ H1(Q∁) satisfying U = 0 for x2 = 0. This inclusion together with

the previous estimates that led to (3.10) proves (3.11) and ends the proof of the

lemma. �

Remark 3.9. If τ ∈ (0, 1/2], then one also has bounded mappings

D∂B : H1/2+τ (∂B) → L∞(B) and D∂Q : H1/2+τ (∂Q) → L∞(Q∁) . (3.12)

This follows for D∂B from the Sobolev inclusion H1+τ (B) ⊂ L∞(B) and for D∂Q
from the Sobolev inclusion on Q∁ ∩ B(0, R1) combined with Fourier series (or

simply the maximum principle) on B(0, R1)
∁.
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The second class of results is local in nature and describes the analyticity of

the double layer potential near the origin and near infinity in a form that is suitable

for our situation of a symmetric domain with small perforations. The result can be

considered simply to be a consequence of the analyticity of the fundamental solution

E on R2 \ {0}, and it is similar to the subject studied in Lanza de Cristoforis and

Musolino [23], but there are some particularities related to the symmetry and weak

smoothness of the domains studied here.

Lemma 3.10. Let τ ∈ [−1/2, 1/2].

(i) Let Ω ⊂ R2 be a bounded Lipschitz domain. For positive η sufficiently small so

that ηΩ ⊂ B, we define the restriction D∂B,Ω(η) of the double layer potential

D∂B to ηΩ written in “fast” variables

D∂B,Ω(η)[ψ](X) ≡ D∂B[ψ]
∣∣
ηΩ

(ηX) (X ∈ Ω) ∀ψ ∈ H
1/2+τ
odd (∂B) .

Then there exists η1 > 0 such that the function η 7→ D∂B,Ω(η) has for any

s ∈ R a continuation to η ∈ (−η1, η1) as an analytic function with values in

L
(
H

1/2+τ
odd (∂B), Hs(Ω)

)
.

(ii) Let Ω ⊂ R2 be a bounded Lipschitz domain such that 0 6∈ Ω. For positive η
sufficiently small so that (1/η)Ω ⊂ Q∁, we define the restriction D∁

∂Q,Ω(η) of

the double layer potential D∂Q to (1/η)Ω written in “slow” variables

D∁
∂Q,Ω(η)[Ψ](x) ≡ D∂Q[Ψ]

∣∣
(1/η)Ω

(xη ) (x ∈ Ω) ∀Ψ ∈ H
1/2+τ
odd (∂Q) .

Then there exists η1 > 0 such that the function η 7→ D∁
∂Q,Ω(η) has for any

s ∈ R a continuation to η ∈ (−η1, η1) as an analytic function with values in

L
(
H

1/2+τ
odd (∂Q), Hs(Ω)

)
.

(iii) In addition, D∂B,Ω(0) = 0 and D∁
∂Q,Ω(0) = 0.

Proof. The proofs for (i) and (ii) are similar. Both use the fact that the double layer

potential is analytic outside of the boundary and vanishes at infinity, and for an odd

density it vanishes at the origin. We give the proof of (ii) and leave the proof of (i)

and (iii) to the reader.

Let Ψ ∈ H
1/2+τ
odd (∂Q) and define W = D∂Q[Ψ] in Q∁. We can chooseR0 such that

Q ⊂ B(0, R0) and R1, R2 such that Ω ⊂ B(0, R2) ∩ B(0, R1)
∁. For |X | ≥ R0,

we can expand the harmonic and odd function W in a Fourier series

W (X) =

∞∑

k=1

wk

( R
R0

)−k
sin kθ . (3.13)

Here (R, θ) denote polar coordinates for X , and from the fact that D∂Q maps

H
1/2+τ
odd (∂Q) to H1+τ

odd (Q∁ ∩ B(0, R0)) we deduce the (crude) estimate that the

wk are bounded and satisfy an estimate

sup
k

|wk| ≤ C ‖Ψ‖H1/2+τ(∂Q) .

If η ∈ (0, R1/R0), thenX ∈ (1/η)Ω ⊂ B(0, R2/η)∩B(0, R1/η)
∁ implies |X | >

R0, so that we can use the expansion (3.13) for the restriction of W to (1/η)Ω.
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Writing this in slow variables x = ηX , or in polar coordinates with |x| = r = ηR,

we get

D∁
∂Q,Ω(η)[Ψ](x) =W (

x

η
) =

∞∑

k=1

ηk wk pk(x) with pk(x) =
( r

R0

)−k
sin kθ

By explicit computation for any chosen m ∈ N, we can estimate the Hm norm of

pk

‖pk‖Hm(Ω) ≤ ‖pk‖Hm(B(0,R2)∩B(0,R1)
∁)

≤ C
(R0

R1

)k
k2m−1 ,

with C independent of k. We conclude that D∁
∂Q,Ω(η) has a convergent expansion

D∁
∂Q,Ω(η) =

∞∑

k=1

ηkDk , (3.14)

where theDk are bounded linear operators fromH
1/2+τ
odd (∂Q) toHm(Ω) satisfying

‖Dk‖
L

(
H

1/2+τ
odd (∂Q),Hm(Ω)

) ≤ C
(R0

R1

)k
k2m−1 .

It follows that the expansion (3.14) converges for |η| < R1/R0 and this proves the

analyticity as claimed in (ii). �

3.3. The Dirichlet problem in a symmetric perforated domain

In this subsection we apply the double layer representation to the solution of the

Dirichlet problem in our perforated symmetric domain Bη .

Thus we assume that we are given odd functions ψ ∈ H
1/2+τ
odd (∂B) and Ψ ∈

H
1/2+τ
odd (∂Q), and we denote by u[η, ψ,Ψ] the unique solution in H1+τ (Bη) of the

boundary value problem





∆u = 0 in Bη ,

γ0u = ψ on ∂B ,

γ0u = Ψ(·/η) on η∂Q .

(3.15)

We would like to represent u[η, ψ,Ψ] as a double layer potential. It is clear that

u is an odd function. The conditions (3.6) will, however, not be satisfied, in gen-

eral, if the number m# of “paired holes” is non-zero. As a remedy for this prob-

lem, we introduce harmonic functions Ξ1, . . . ,Ξm# that span a complement of the

range of the double layer potential operator. We define Ξj as the unique function in

H1+τ
loc

(
R2 \ (Q+

j ∪ Q
−
j )
)

such that





∆Ξj = 0 in R2 \
(
Q

+
j ∪ Q

−
j

)
,

γ0Ξj = ±1 on ∂Q±
j ,

‖Ξj‖∞ < +∞ .

(3.16)

A simple argument for the existence of such functions Ξj is to use the Kelvin

transformation with origin in Q
+
j that reduces the exterior Dirichlet problem prob-

lem (3.16) to a Dirichlet problem on a bounded domain (see Folland [14, Ch. 2.I]),
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and then invoke the existence and uniqueness of solution of the Dirichlet problem

on a bounded domain.

The uniqueness of Ξj implies in particular that Ξj is odd,

Ξj(X) = −R∗[Ξj ](X) for X ∈ R2 \
(
Q

+
j ∪ Q

−
j

)
. (3.17)

Then by (3.17) and by the harmonicity in R2 \
(
Q

+
j ∪ Q

−
j

)
and at infinity of Ξj it

follows that

lim
X→∞

Ξj(X) = 0 . (3.18)

Concerning the integrals of the normal derivative of Ξj over the boundaries of the

connected components of Q, it follows from the harmonicity that they vanish except

for the components Q±
j , in particular

〈
γ1Ξj , χ∂Q±

k

〉
= 0 ∀k ∈ {1, . . . ,m#} \ {j} . (3.19)

From the harmonicity at infinity and (3.18) follows that ∇Ξj ∈ L2
(
R2 \

(
Q

+
j ∪

Q
−
j

))
and that we can use the Divergence Theorem, which gives

0 <

∫

R2\
(
Q

+
j ∪Q

−

j

) |∇Ξj(X)|2 dX

= −

∫

∂Q+
j

∂nΞj ds+

∫

∂Q−

j

∂nΞj ds = −2
〈
γ1Ξj , χ∂Q+

j

〉
. (3.20)

We can now show the following augmented double layer representation for

the solution u[η, ψ,Ψ] of problem (3.15).

Lemma 3.11. Let τ ∈ [−1/2, 1/2]. Let η ∈ (0, η0). Then the following statements

hold.

(i) If m# = 0, then there exists a unique function µ ∈ H
1/2+τ
odd (∂Bη) such that

u[η, ψ,Ψ] = D∂Bη [µ] in Bη. (3.21)

(ii) If m# > 0, then there exists a unique m#-tuple c = (c1, . . . , cm#) ∈ Rm
#

and a unique function µ ∈ H
1/2+τ
odd (∂Bη) satisfying





u[η, ψ,Ψ] = D∂Bη [µ] +

∑m#

j=1 cjΞj(·/η) in Bη∫
η∂Q+

j
µ ds = 0 ∀j ∈ {1, . . . ,m#} .

(3.22)

Proof. Statement (i) follows from Lemma 3.7 (ii). We now consider statement (ii).

We first note that by (3.20) for each j ∈ {1, . . . ,m#} there exists a unique cj ∈ R

such that
〈
γ1u[η, ψ,Ψ] , χη∂Q+

j

〉
− cj

〈
γ1Ξj(·/η) , χη∂Q+

j

〉
= 0 .

Using (3.19), it follows that the function u[η, ψ,Ψ]−
∑m#

j=1 cjΞj(·/η) satisfies the

conditions of Lemma 3.7 for the existence of a representation as a double layer
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potential. As a consequence, there exists µ̃ ∈ H
1/2+τ
odd (∂Bη) such that

D∂Ωη [µ̃] = u[η, ψ,Ψ]−
m#∑

j=1

cjΞj(·/η) in Bη .

Recalling from Lemma 3.7(ii) that the kernel V−,odd ≡ V− ∩H
1/2+τ
odd (∂Bη) of the

operator− 1
2I+K∂Bη acting on odd functions is spanned by the functions {χη∂Q+

j
−

χη∂Q−

j
}m

#

j=1, we find that among the functions µ ∈ µ̃+V−,odd that satisfy the first

line of (3.22) there is exactly one satisfying the side conditions of the second line of

(3.22). �

With the help of the augmented double layer potential representation (3.22)

we can now rewrite our Dirichlet problem (3.15) as an equivalent boundary integral

equation on ∂Bη . This is still a problem on an η-dependent domain, but it is possi-

ble to interpret it as a system of boundary integral equations in the function space

H
1/2+τ
odd (∂B) ×H

1/2+τ
odd (∂Q) defined on the fixed domain ∂B × ∂Q. Owing to the

special form of the double layer kernel, this system has a simple form that makes it

natural to study the dependence on η in the limit η → 0 and even to extend it in an

analytic way to a neighborhood of η = 0.

The formulation (3.15) of our Dirichlet problem already makes use of the

identification of a function defined on ∂Bη with a pair
(
ψ,Ψ(·/η)

)
of functions, the

first one defined on ∂B and depending on standard or “slow” variables x, the second

one defined on ∂Q and depending on “fast” variables X = x/η. Let Jη denote this

mapping from H
1/2+τ
odd (∂B) × H

1/2+τ
odd (∂Q) to H

1/2+τ
odd (∂Bη), which obviously is

an isomorphism.

Jη[φ,Φ](x) ≡

{
φ(x) on ∂B ,

Φ(x/η) on η∂Q .
(3.23)

The boundary integral equation for (3.15) is obtained from the representation

formula (3.22) by taking traces on ∂Bη. In order to treat simultaneously the case

m# = 0 and the case m# > 0, from now on we will assume that the symbols

c1, . . . , cm# and
∑m#

j=1 cjφj are omitted if m# = 0. In addition we find it conve-

nient to set

H
1/2+τ
odd (∂Q)# ≡

{
µ ∈ H

1/2+τ
odd (∂Q) :

∫

∂Q+
j

µ ds = 0 ∀j ∈ {1, . . . ,m#}
}
.

Clearly, if m# = 0 then H
1/2+τ
odd (∂Q)# = H

1/2+τ
odd (∂Q). We can then write the

trace of (3.22) as the problem of finding µ ∈ Jη
[
H

1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q)#

]

and c ∈ Rm
#

such that

(− 1
2I +K∂Bη )[µ] +

m#∑

j=1

cj γ0 Ξj(·/η) = g on ∂Bη (3.24)
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where g = Jη[ψ,Ψ]. With µ = Jη[φ,Φ] we find a first form of the equivalent

system of boundary integral equations on ∂B× ∂Q.

J−1
η ◦

[
(− 1

2I +K∂Bη ) ◦ Jη[φ,Φ] +
m#∑

j=1

cj γ0 Ξj(·/η)

]
=
(
ψ,Ψ

)
. (3.25)

We will now describe this system in more detail.

Changing variables y 7→ ηY in the double layer integral and using the fact

that

∇E(x) = −
x

2π|x|2

is a function homogeneous of degree −1, we can write

D∂Bη

[
Jη[φ,Φ]

]
= D∂B[φ]−

∫

η∂Q

Φ(y/η)∂n(y)E(· − y) dsy

= D∂B[φ] + η

∫

∂Q

Φ(Y )n(Y ) · ∇E(· − ηY ) dsY in Bη ,

and then express the representation formula (3.22) both in “slow” variables:

u[η, ψ,Ψ] = D∂B[φ]+η

∫

∂Q

Φ(Y )n(Y )·∇E(·−ηY ) dsY +

m#∑

j=1

cjΞj(·/η) in Bη

(3.26)

and in “fast” variables:

u[η, ψ,Ψ](ηX) = D∂B[φ](ηX)

+ η

∫

∂Q

Φ(Y )n(Y ) · ∇E(η(X − Y )) dsY +

m#∑

j=1

cjΞj(X)

= D∂B[φ](ηX)

+

∫

∂Q

Φ(Y )n(Y ) · ∇E(X − Y ) dsY +

m#∑

j=1

cjΞj(X)

= −D∂Q[Φ](X) +D∂B[φ](ηX) +

m#∑

j=1

cjΞj(X) .

(3.27)

We obtain the concrete form of the system (3.25) by taking traces of the equal-

ities (3.26) and (3.27) on ∂B and on ∂Q, respectively. We deduce with (3.15) that

the unique element (φ,Φ, c) of H
1/2+τ
odd (∂B) × H

1/2+τ
odd (∂Q)# × Rm

#

such that
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(3.26) holds is the (unique) solution in H
1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q)# × Rm

#

of

(− 1
2I +K∂B)[φ](x) + η

∫

∂Q

Φ(Y )n(Y ) · ∇E(x− ηY ) dsY

+

m#∑

j=1

cjΞj(x/η) = ψ(x) , x ∈ ∂B,

−(12I +K∂Q)[Φ](X) +D∂B[φ](ηX) +

m#∑

j=1

cjΞj(X) = Ψ(X) , X ∈ ∂Q .

(3.28)

Problem (3.15) is now converted into the equivalent system of boundary integral

equations (3.28), which we can write as an η-dependent family of problems

M(η)



φ

Φ

c


 =

(
ψ

Ψ

)
(3.29)

with a block (2× 3) operator

M(η) ≡

(
M11(η) M12(η) M13(η)

M21(η) M22(η) M23(η)

)

acting fromH
1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q)#×Rm

#

toH
1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q).

In this form (3.28), it is now possible to extend the problem to η = 0 and to an-

alyze the analyticity of its dependence on η. The main result in this section is the

following.

Theorem 3.12. Let τ ∈ [−1/2, 1/2] and let M(η) be defined by (3.28), (3.29).

(i) There exists η1 ∈ (0, η0) such that the operator valued function M mapping

η to

M(η) ∈ L

(
H

1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q)#×Rm

#

, H
1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q)

)

admits a real analytic continuation to (−η1, η1).
(ii) For each η ∈ (−η1, η1), the operator M(η) is an isomorphism.

Proof. We will show first that the matrix elements Mmn(η) are operator functions

of η that can be extended as real analytic functions in a neighborhood of η = 0,

and then that for η = 0 the operator M(0) is an isomorphism. From this it will

follow that M(η) is an isomorphism for η in a neighborhood of 0. Note that our

previous arguments leading to (3.28) already showed that M(η) is an isomorphism

for η ∈ (0, η0).
We will begin by analyzing the dependence of the matrix elements Mmn(η)

on η, in particular at η = 0. Of these, M11, M22 and M23 are independent of η.

The matrix elements

M12(η) :

{
H

1/2+τ
odd (∂Q)# → H

1/2+τ
odd (∂B)

Φ 7→ η
∫
∂Q Φ(Y )n(Y ) · ∇E(· − ηY ) dsY



34 Martin Costabel, Matteo Dalla Riva, Monique Dauge and Paolo Musolino

and

M21(η) :

{
H

1/2+τ
odd (∂B) → H

1/2+τ
odd (∂Q)

φ 7→ D∂B[φ](η · )

depend analytically on η as long as ∂B and η∂Q do not intersect, and both vanish

for η = 0. This follows from Lemma 3.10 by taking traces.

For the remaining matrix element

M13(η) :

{
Rm

#

→ H
1/2+τ
odd (∂B)

c 7→
∑m#

j=1 cjΞj(·/η)

the analyticity and the vanishing at η = 0 follow from the analyticity of Ξj at

infinity. In fact, we could simply make the same argument as for M12, based on

Lemma 3.10(ii), if we could represent Ξj as a double layer potential D∂Q[µ] with

odd density µ. But the Ξj were precisely constructed to be in the complement of

the range of D∂Q, so that this is impossible. One can, however, choose a connected

smooth domain Ω# that satisfies Q ⊂ Ω# and η0Ω# ⊂ B and is symmetric with

respect to the reflection R. Then Ξj will be representable as a double layer poten-

tial D∂Ω#
[µj ] on Ω∁

#, because
∫
∂Ω#

∂nΞj ds = 0 by symmetry and we can apply

Lemma 3.7(iv).

We now turn to the proof that M(0) is an isomorphism. From the description

of the solvability of the exterior Dirichlet problem with data on ∂Q implied by

Lemma 3.7(iv) one can deduce, by taking traces on ∂Q, the unique solvability of the

corresponding augmented boundary integral equation. This follows from the same

arguments that led to the unique solvability of the augmented boundary integral

equation (3.24) on ∂Bη associated with the interior Dirichlet problem in Bη . Taking

into account that the normal vector on ∂Q is by our convention exterior to Q and

therefore interior to Q∁, we find a change in the sign of the operator K∂Q and can

state the following lemma that provides the remaining argument for the completion

of the proof of Theorem 3.12.

Lemma 3.13. Let τ ∈ [−1/2, 1/2]. For any Ψ ∈ H
1/2+τ
odd (∂Q) there exist unique

Φ ∈ H
1/2+τ
odd (∂Q)#, c ∈ Rm

#

such that

(− 1
2I −K∂Q)[Φ] +

m#∑

j=1

cj γ0 Ξj = Ψ on ∂Q . (3.30)

Now if we use the values at η = 0 of the matrix elements of M(η), we find

M(0) =

(
M11 0 0

0 M22 M23

)
.

HereM11 = − 1
2I+K∂B is an isomorphism fromH

1/2+τ
odd (∂B) to itself according to

Lemma 3.7(ii). And the fact that the operator (M22, M23) is an isomorphism from

H
1/2+τ
odd (∂Q)# × Rm

#

to H
1/2+τ
odd (∂Q) is precisely the statement of Lemma 3.13.

Together this shows that M(0) is an isomorphism as claimed, and the proof of the

theorem is complete. �
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4. The convergent expansion

As a consequence of Theorem 3.12, we obtain that the unique solution of the bound-

ary integral system (3.29) depends analytically on η ∈ (−η1, η1). Namely,


φ

Φ

c


 = M(η)−1

(
ψ

Ψ

)
, (4.1)

and the operator function η 7→ M(η)−1 is real analytic for η ∈ (−η1, η1). In-

serting this form of the solution of (3.29) into the representation formula (3.22),

we find that the solution u of the Dirichlet problem (3.15) depends analytically on

η ∈ (−η1, η1), too, and therefore has a convergent expansion in powers of η in a

neighborhood of η = 0. From this, by comparing (3.15) with the form (2.9) of the

Dirichlet data in the residual problem found in Section 2.3, we will obtain a conver-

gent double series for the solution vη of the residual problem. In this way we will

then be able to complete the construction of a convergent expansion of the solution

of the original problem (0.5).

4.1. Analytic parameter dependence for the auxiliary Dirichlet problem (3.15)

In this subsection, we consider the Dirichlet problem (3.15) on the perforated do-

main Bη, where the Dirichlet data are given by (ψ,Ψ) independent of η.

Let us first note that the auxiliary functions Ξj introduced in (3.16) can be

considered in the same weighted Sobolev spaces that appear in Lemma 3.8.

Ξj ∈ K1+τ
β0β1

(Q∁) for all τ ∈ [−1/2, 1/2] , β0 > −2, β1 < 0 . (4.2)

We can now prove the first result about the solution of the boundary value problem

(3.15). It is a global decomposition of the solution into two terms that are analytic

with respect to η if the first one is written in slow coordinates and the second one in

fast variables.

Theorem 4.1. Let τ ∈ [−1/2, 1/2], β0 > −2 with β0 ≥ −1− τ if 0 ∈ ∂Q, β1 < 0.

Then there exists a sequence of bounded linear operators

Ln : H
1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q) → K1+τ

β0
(B)×K1+τ

β0β1
(Q∁) , j ∈ N

such that the solution u[η, ψ,Ψ] of the Dirichlet problem (3.15) in Bη has the fol-

lowing form

u[η, ψ,Ψ](x) = w(x) +W (x/η)

with w ∈ K1+τ
β0

(B) and W ∈ K1+τ
β0β1

(Q∁) given by the convergent series

(
w

W

)
=

∞∑

n=0

ηn Ln

(
ψ

Ψ

)
. (4.3)

There exists η1 > 0 such that for any η ∈ (−η1, η1) the series

L(η) ≡
∞∑

n=0

ηn Ln
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converges in the operator norm of L
(
H

1/2+τ
odd (∂B) ×H

1/2+τ
odd (∂Q) , K1+τ

β0
(B) ×

K1+τ
β0β1

(Q∁)
)
.

Proof. According to the representation formula (3.22) in the form (3.26), we have

u[η, ψ,Ψ](x) = w(x) +W (x/η) with w = D∂B[φ] , W = −D∂Q[Φ] +
m#∑

j=1

cjΞj ,

where (φ,Φ, c) is the solution of our system of boundary integral equations (3.29).

Now we use the solution formula (4.1) of this system, which involves the analytic

resolvent

M(η)−1 =

∞∑

n=0

ηnMn ,

where Mn is a sequence of operators such that, after possibly shrinking η1 > 0,

this series converges for η ∈ (−η1, η1) in the operator norm of L
(
H

1/2+τ
odd (∂B) ×

H
1/2+τ
odd (∂Q) , H

1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q)# ×Rm

#)
. We combine this with the

mapping

D : (φ,Φ, c) 7→ (w,W ) =
(
D∂B[φ],−D∂Q[Φ] +

∑
cjΞj

)
,

which thanks to Lemma 3.8 and (4.2) is known to be continuous fromH
1/2+τ
odd (∂B)×

H
1/2+τ
odd (∂Q)×Rm

#

to K1+τ
β0

(B)×K1+τ
β0β1

(Q∁). This gives the desired representa-

tion (4.3) as a convergent series where we set Ln = DMn. �

Remark 4.2. Replacing Lemma 3.8 by Remark 3.9 in this proof, we conclude that

the series expansions (4.3) for the functions w and W converge also uniformly, the

series for w in L∞(B) and the series for W in L∞(Q∁).

The second result gives a convergent series expansion for the whole solution

u[η, ψ,Ψ] when written in slow variables and thus shows that it is an analytic func-

tion of η in a neighborhood of 0. It is valid outside of a neighborhood of the origin

(“outer expansion”).

Theorem 4.3. Let τ ∈ [−1/2, 1/2] and s ∈ R. Let Ω be a Lipschitz subdomain

of B such that 0 6∈ Ω. If Ω ⊂ B, then s can be any real number. If, however,

∂Ω ∩ ∂B 6= ∅, then we assume s ≤ 1 + τ . Let ηΩ > 0 be such that Ω ∩ ηQ = ∅
for all η ∈ (0, ηΩ). Then there exist η1 ∈ (0, ηΩ) and a real analytic map US from

(−η1, η1) to L
(
H

1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q), Hs(Ω)

)
such that

u[η, ψ,Ψ]
∣∣
Ω
= US(η)

(
ψ

Ψ

)
∀(η, ψ,Ψ) ∈ (0, η1)×H

1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q) .

(4.4)

Moreover,

US(0)

(
ψ

Ψ

)
= w0,ψ

∣∣
|Ω

∀(ψ,Ψ) ∈ H
1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q) , (4.5)
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where w0,ψ is the unique solution in H1+τ (B) of the Dirichlet problem

{
∆w0,ψ = 0 in B ,

γ0w0,ψ = ψ on ∂B .
(4.6)

Proof. We write u[η, ψ,Ψ](x) = w(x) +W (x/η) as in Theorem 4.1 and use the

analytic dependency on η of M(η)−1 : (ψ,Ψ) 7→ (φ,Φ, c) as in the proof of that

theorem. The map (φ,Φ, c) 7→ w
∣∣
Ω

being independent of η, only its range is of

interest. This is contained in H1+τ (Ω) for any Ω ⊂ B, and since w = D∂B[φ] is

harmonic in B, it is contained in C∞(Ω) ⊂ Hs(Ω) for any s if Ω ⊂ B.

For the map (Φ, c) 7→ W (·/η)
∣∣
Ω
= −D∁

∂Q,Ω(η)[Φ] +
∑m#

j=1 cjΞj(·/η) we invoke

Lemma 3.10 (ii) to get the desired analyticity (see also the argument for the analyt-

icity of M13 in the proof of Theorem 3.12 ). �

The third result shows the analytic dependence on η for the solution u[η, ψ,Ψ]
when written in fast variables. It concerns the solution on a subdomain of size η
(“inner expansion”). The proof is similar to the proof of Theorem 4.3, but simpler,

because it is based on the formula

u[η, ψ,Ψ](ηX) = w(ηX) +W (X)

and it therefore simply invokes the harmonicity, hence analyticity of w = D∂B[φ]
near the origin, see Lemma 3.10(i).

Theorem 4.4. Let τ ∈ [−1/2, 1/2] and s ∈ R. Let Ω ⊂ Q∁ = R2 \Q be a bounded

Lipschitz domain. If Ω ⊂ Q∁, then s can be any real number. If ∂Ω∩∂Q 6= ∅, then we

assume s ≤ 1 + τ . Let η̃Ω > 0 be such that ηΩ ⊂ B for all η ∈ (0, η̃Ω). Then there

exist η1 ∈ (0, η̃Ω) and a real analytic map UF from (−η1, η1) to L
(
H

1/2+τ
odd (∂B)×

H
1/2+τ
odd (∂Q), Hs(Ω)

)
such that

u[η, ψ,Ψ](η · )
∣∣
Ω
= UF(η)

(
ψ

Ψ

)

∀(η, ψ,Ψ) ∈ (0, η1)×H
1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q) . (4.7)

Moreover,

UF(0)

(
ψ

Ψ

)
=W0,Ψ

∣∣
Ω

∀(ψ,Ψ) ∈ H
1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q) , (4.8)

where W0,Ψ is the unique solution in K1+τ
β0β1

(Q∁) for β0 ∈ (−2, 0), β1 ∈ (−1, 0) of

the exterior Dirichlet problem

{
∆W0,Ψ = 0 in Q∁ ,

γ0W0,Ψ = Ψ on ∂Q .
(4.9)
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4.2. Convergent expansion of the solution of the original problem

In this subsection, we first insert into the expansion of the solution u[η, ψ,Ψ] of the

Dirichlet problem on the perforated domain Bη obtained in the preceding subsection

the knowledge about the Dirichlet data from Theorem 2.5, namely ψ = 0 and Ψ =
−T ∗[u0]. The latter is given by a convergent series in (2.10). We then have to write

the resulting double series as a series in ε by using η = επ/ω and we have to interpret

the result as a series that converges in function spaces defined on the original domain

Aε, by undoing the conformal map G∗
π/ω. This will give a convergent expansion for

the solution ũε of the residual problem (1.23). The final step is to add the function

u0 as described in Theorem 1.2, in order to find a convergent expansion for the

solution uε of the original problem (0.5).

Corresponding to the three results about the Dirichlet problem in the perfo-

rated domain Bη , Theorems 4.1, 4.3 and 4.4, we prove three different results about

the solution of the original problem (0.5). For the notation describing the conver-

gent series in powers of ε, we refer to Sections 1 and 2, in particular to Notation 1.1

for the definition of the index set A and to Notation 1.7 for the powers and divided

differences of powers of ε abbreviated by the symbol Eγ(ε).
In view of Theorem 2.5 and Remark 2.6, we introduce a maximal regularity

index

τ0 = 1
2 if 0 6∈ ∂P , τ0 = min{ 1

2 ,
2ω
π } if 0 ∈ ∂P . (4.10)

The first result is a globally valid two-scale splitting of the solution uε, where

the slow-variable part and the fast-variable part have separate convergent expan-

sions, when written in their respective variables.

Theorem 4.5. There exist ε1 > 0 such that the solution uε of Problem (0.5) has the

following structure.

uε(t) = u0(t) + u(ε)(t) + U(ε)( tε ) ∀ t ∈ Aε, ε ∈ (0, ε1) . (4.11)

Here u0 is the solution of the limit problem (0.10) on the unperforated corner do-

main A. Its singular behavior near the corner is described by the convergent series

(1.19) in Theorem 1.2.

The functions u(ε)(t) and U(ε)(T ) are defined for t ∈ A and T ∈ P∁, respectively,

and have a convergent series expansion of the following form.
(
u

U

)
=

∑

(n,γ)∈N×A

εnπ/ωEγ(ε)

(
vnγ
Vnγ

)
. (4.12)

Let τ ∈ (0, τ0) and β0 > −1 − π/ω with β0 > −1 − τπ/ω if 0 ∈ ∂P, and let

β1 < −1 + π/ω. The series converges in the weighted Sobolev spaces K1+τ
β0

(A) ×

K1+τ
β0β1

(P∁) , and there exist constants C and M such that

‖vnγ ‖K1+τ
β0

(A) + ‖Vnγ ‖K1+τ
β0β1

(P∁)
≤ CMn+|γ|, (n, γ) ∈ N× A .

The series converge also uniformly, in L∞(A)× L∞(P∁).

Proof. We have uε = u0 + ũε, where ũε solves the residual problem (1.23). After

applying the conformal mapping Gπ/ω and the odd reflection, this was rewritten in

Theorem 2.5 as the problem (2.9), a special case of the boundary value problem
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(3.15). Thus we have the identification ũε = u[η, ψ,Ψ] ◦ Gπ/ω , where ψ = 0 and

Ψ = −T ∗[u0](η·). Combining the convergent expansion (2.10) for T ∗[u0] with

the power series (4.3) for the solution operator of problem (3.15), we thus find a

convergent expansion that has the form (4.12)
(
u

U

)
=

∞∑

n=0

∑

γ∈A

εnπ/ωEγ(ε)Ln

(
0

Ψγ

)
◦ Gπ/ω .

The right choice of weighted Sobolev spaces for the convergence follows from The-

orem 4.1 with the transformation rule of Lemma 2.2. Note that this transformation

rule motivates the use of weighted Sobolev spaces instead of non-weighted spaces.

For the uniform convergence finally, we notice that L∞ remains invariant under the

conformal mappings G∗
κ. �

The second result is a convergent expansion of the whole solution uε writ-

ten in slow (macroscopic) variables. It is valid in any fixed subdomain of Aε that

has a positive distance to the corner and thus is free of holes for sufficiently small

ε. This corresponds to the outer expansion in the method of matched asymptotic

expansions, compare [13, Section 5].

Theorem 4.6. Let Ω be a Lipschitz subdomain of A such that 0 6∈ Ω. Let εΩ > 0 be

such that Ω ∩ εP = ∅ for all ε ∈ (0, εΩ). Then there exists ε1 ∈ (0, εΩ) such that

for ε ∈ (0, ε1) the solution uε of Problem (0.5) has the following expansion in Ω:

uε(t) = u0(t) +
∑

(n,γ)∈N∗×A

εnπ/ωEγ(ε)u
S
nγ(t) , t ∈ Ω . (4.13)

Let τ < τ0. Then the series converges for |ε| < ε1 in H1+τ (Ω), and there exist

constants C and M such that

‖uSnγ ‖H1+τ (Ω) ≤ CMn+|γ|, (n, γ) ∈ N∗ × A .

The series converges also uniformly in Ω.

Proof. In the multiscale decomposition (4.11) uε = u0+u(ε)+U(ε)
(
·
ε

)
, the term

u(ε) has the required expansion according to Theorem 4.5. For U(ε) we write it as

U(ε) =W ◦ Gπ/ω ,

where W is the function defined in Theorem 4.1 in the special case where ψ = 0
and Ψ = −T ∗[u0](η·). The analyticity of W (·/η) with respect to η at η = 0 in

the case of η-independent Ψ has been deduced in the proof of Theorem 4.3 from

Lemma 3.10. We have to combine this, as in the proof of Theorem 4.5, with the ex-

pansion (2.10) for T ∗[u0] and set η = επ/ω, ending up with the expansion required

for (4.13). The coefficient functions uSnγ are the sum of the corresponding terms

of the expansion of u(ε) and of U(ε)(·/ε). For n = 0 both of these terms vanish,

because they correspond to u[η, ψ,Ψ] in (4.4) at η = 0 and ψ = 0, and according to

(4.5)–(4.6), this is zero. Therefore the sum over n in (4.13) starts with n ≥ 1. �

The third result is a convergent expansion of the whole solution uε written

in fast (microscopic) variables. It is valid outside of the holes in a scaled family
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εΩ of subdomains of Aε. This corresponds to the inner expansion in the method of

matched asymptotic expansions, compare [13, Section 5].

Theorem 4.7. Let Ω ⊂ Sω \ P be a bounded Lipschitz domain. Let ε̃Ω > 0 be

such that εΩ ⊂ A for all ε ∈ (0, ε̃Ω). Then there exists ε1 ∈ (0, ε̃Ω) such that for

ε ∈ (0, ε̃1) the solution uε of Problem (0.5) has the following expansion in εΩ:

uε(εT ) =
∑

(n,γ)∈N×A

εnπ/ωEγ(ε)U
F
nγ(T ) , T ∈ Ω . (4.14)

Let τ < τ0. Then the series converges for |ε| < ε̃1 in H1+τ (Ω), and there exist

constants C and M such that

‖UF
nγ ‖H1+τ (Ω) ≤ CMn+|γ|, (n, γ) ∈ N∗ × A .

The series converges also uniformly in Ω.

Proof. As in the proof of Theorem 4.5 we use the identity uε = u0 + ũε ≡
u0 + u[η, ψ,Ψ] ◦ Gπ/ω, where ψ = 0 and Ψ = −T ∗[u0](η·). Together with Theo-

rem 4.4 for u[η, ψ,Ψ](η · ), this gives the desired form (4.14) of the expansion for

the second term ũε(ε·). Here, as in the outer expansion (4.13), the sum over n lacks

the term n = 0. It remains to analyze the first term u0(ε·). Here we need the asymp-

totic behavior (expansion into corner singular functions) of u0 that was described in

(1.22) and used for expanding u0(εT ) into a convergent series in (1.25). With the

notation introduced in (2.13) in the proof of Theorem 2.5, this series can be written

as

u0(εT ) =
∑

γ∈A

Eγ(ε)Φγ(T ) .

This is a series of the form (4.14) with n = 0. Explicitly estimating norms of the

functions Φγ or relying on the estimate (2.15), we see that the series converges in

H1+τ (Ω). �

The fact that the series expansions in the last three theorems are only stepwise

convergent, that is convergent when pairs of powers of ε are grouped together into

the terms Eγ(ε) from Notation 1.7(3), is caused entirely by the corresponding fact

for the expansion of u0 studied in Section 1, see in particular Remarks 1.4–1.6. Thus

if we assume that one of the conditions mentioned in these Remarks is satisfied, we

find convergent power series, and it is then possible to reformulate the statements of

Theorems 4.5–4.7 in terms of analytic functions of ε and επ/ω.

Corollary 4.8. Suppose that the right hand side f vanishes in a neighborhood of

the corner 0. Denote by uε the solution of Problem (0.5).

(i) Let the parameters τ , β0 and β1 be chosen as in Theorem 4.5. Then there exists

η1 > 0 and a real analytic function

(−η1, η1) ∋ η 7→ V [η] =

(
v[η]

V [η]

)
∈ K1+τ

β0
(A) ×K1+τ

β0β1
(P∁)

such that in the two-scale decomposition (4.11) uε = u0+u(ε)+U(ε)( ·
ε ) we have

u(ε) = v[επ/ω] , U(ε) = V [επ/ω] ∀ ε ∈ (0, η
ω/π
1 ) .
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(ii) Let Ω be a Lipschitz subdomain of A such that 0 6∈ Ω and let τ be chosen as in

Theorem 4.6. Then there exists η1 > 0 and a real analytic function

(−η1, η1) ∋ η 7→ uS[η] ∈ H1+τ (Ω)

such that we have uS[0] = u0 and

uε = uS[ε
π/ω] in Ω , ∀ ε ∈ (0, η

ω/π
1 ) .

(iii) Let Ω ⊂ Sω \ P be a bounded Lipschitz domain and let τ be chosen as in

Theorem 4.7. Then there exists η1 > 0 and a real analytic function

(−η1, η1) ∋ η 7→ UF[η] ∈ H1+τ (Ω)

such that we have

uε(εT ) = UF[ε
π/ω](T ) ∀T ∈ Ω , ε ∈ (0, η

ω/π
1 ) .

Proof. As we have seen in Remark 1.5, if f vanishes in a neighborhood of the

corner, then in the series expansion of u0 there appear only exponents that are of

the form kπ/ω with integer k, and the series is unconditionally convergent. In the

resolution of the residual problem in Section 3.3, integer powers of η = επ/ω were

incorporated, so that the final convergent series expansions (4.12), (4.13) and (4.14)

also contain only exponents that are integer multiples of π/ω. It follows that these

series are convergent power series, hence analytic functions, in the variable η =
επ/ω. �

Let now ω be a rational multiple of π, i.e. π/ω = p/q, where p and q are

relatively prime positive integers. In this case, all the exponents of ε appearing in

the convergent series expansions (4.12), (4.13) and (4.14) can be seen to be integer

multiples of 1/q. The expressions Eγ(ε) as defined in Notation 1.7 are now either

integer powers of δ = ε1/q or of the form εℓ log ε with integer ℓ. They can therefore

be expressed via two real analytic functions of one variable. We formulate this ob-

servation for the two-scale decomposition (4.11) of Theorem 4.5 and its convergent

series expansion (4.12) and leave the corresponding reformulations of Theorems 4.6

and 4.7 to the reader.

Corollary 4.9. Let π/ω = p/q. With the notations of Theorem 4.5, there exist

δ1 > 0 and two real analytic functions (we set ε1 ≡ (δ1)
q)

(−δ1, δ1) ∋ δ 7→ V0[δ] ∈ K1+τ
β0

(A) ×K1+τ
β0β1

(P∁)

(−ε1, ε1) ∋ ε 7→ V1[ε] ∈ K1+τ
β0

(A)×K1+τ
β0β1

(P∁)

such that (
u(ε)

U(ε)

)
= V0[ε

1/q] + V1[ε
p] log ε ∀ ε ∈ (0, ε1) .

The third case where we find absolutely convergent expansions in powers of

ε is when ω is not a rational multiple of π but is such that we can choose A0 = ∅.

According to the discussion in Section 1.2 and in Appenix B, this is the case if and

only if πω is not a super-exponential Liouville number. In this case we do not need the

divided differences of Notation 1.7(3), and the terms in the convergent expansions

(4.12), (4.13) and (4.14) are simply monomials in the two variables ε and επ/ω, and
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the series therefore define real analytic functions of two variables. We formulate

again the corresponding result for the two-scale expansion of Theorem 4.5 and leave

the reformulations of Theorems 4.6 and 4.7 to the reader.

Corollary 4.10. Suppose that π/ω is irrational and not a super-exponential Li-

ouville number in the sense of Definition B.1. Then there exist ε1 > 0 and a real

analytic function of two variables (we set η1 = ε
π/ω
1 )

(−ε1, ε1)× (−η1, η1) ∋ (ε, η) 7→ V [ε, η] ∈ K1+τ
β0

(A)×K1+τ
β0β1

(P∁)

such that (
u(ε)

U(ε)

)
= V [ε, επ/ω] ∀ ε ∈ (0, ε1) .

Appendix A. Symmetric extension of Lipschitz domains

In this section we use the objects defined in Section 2.2, in particular the upper half-

plane Sπ and the operation E of symmetric extension of a subset of Sπ by reflection

at the horizontal axis. In general, the symmetric extension of a Lipschitz domain is

not Lipschitz, and therefore the following result is not entirely obvious and merits a

complete proof.

Lemma A.1. Assume that Ω is a bounded subdomain of Sπ and that Ω and Sπ \Ω
have Lipschitz boundaries. Then E(Ω) has a Lipschitz boundary.

Proof. As a characterization of a Lipschitz boundary we use the property that it is

locally congruent to the graph of a Lipschitz continuous function. A simple conse-

quence of this property is that in 2 dimensions, each point of the boundary has a

2-dimensional neighborhood in which the boundary is a simple curve, in particular

it is homeomorphic to an interval.

Let us now first show that ∂Ω ∩ ∂Sπ has no isolated points. Suppose there

were such a point x0 = (x0, 0). We show that then Sπ \ Ω cannot be a Lipschitz

domain, contrary to the hypothesis. Since Ω is Lipschitz, there is a neighborhoodU
of x0 in which ∂Ω coincides with a simple curve Γ0 and such that U ∩ ∂Ω∩ ∂Sπ =
{x0}. This neighborhood can be chosen such that U ∩ ∂Sπ is an interval Γ1. Since

(∂Ω∪∂Sπ)\ (∂Ω∩∂Sπ) is contained in the boundary of Sπ \Ω, the latter coincides

in U with the union of the two curves Γ0 and Γ1 that intersect in the interior point

x0. Such a union is clearly not homeomorphic to an interval.

We will now use the following equivalent reformulation of the above definition

of a Lipschitz boundary ∂Ω in two dimensions: To each of its points there is a

neighborhood U and a convex cone Cαβ with the following property: If the curve

Γ0 = ∂Ω ∩ U is parametrized by an interval,

γ : (t0, t1) → Γ0 ⊂ U ,

then for x = γ(s), y = γ(t) with s < t (we say “x precedes y” or x ≺ y) we have

y ∈ x+Cαβ . Here the cone Cαβ is defined by two angles α, β with α < β < α+π,

Cαβ = {(ρ cos θ, ρ sin θ) : 0 < ρ <∞, α < θ < β} .
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One can observe that the rotation angles ω (modulo 2π) of coordinate axes that

allow the representation of Γ0 as a graph are given by the complement of Cαβ , the

condition being

ω − π
2 ∈ (β − π, α) ∪ (β, α+ π) .

Let now U be such a neighborhood of a point of ∂Ω. If ∂Ω ∩ U is entirely

contained either in the upper half-plane Sπ or in the axis of symmetry ∂Sπ, then

there is nothing to prove, because in this case (after possibly choosing a smaller

neighborhood), the set U ∪ R(U) will be a suitable neighborhood for the boundary

of E(Ω).
The nontrivial case is when U is a neighborhood of a point x0 ∈ ∂Ω ∩ ∂Sπ

and both U ∩ ∂Ω ∩ ∂Sπ and U ∩ ∂Ω ∩ Sπ are non-empty. Since, as we have seen,

x0 is not an isolated point of ∂Ω ∩ ∂Sπ, the structure of ∂Ω ∩ U is (after possibly

choosing a smaller neighborhood) the following:

∂Ω ∩ U = Γ1 ∪ Γ0 ,

where Γ1 is an interval I1 × {0} ⊂ ∂Sπ, and Γ0 is a Lipschitz curve contained in

Sπ. Locally, the boundary of the complement has the form

∂(Sπ \ Ω) ∩ U = Γ′
1 ∪ Γ0 ,

where Γ′
1 is another interval I ′1 × {0} ⊂ ∂Sπ. The intervals have one point in

common, which we can assume to be x0

Γ1 ∩ Γ′
1 = {x0} = Γ0 ∩ ∂Sπ .

Since now Ω and Sπ \ Ω play symmetric roles, it is no restriction to assume that

I1 = [x0 − δ, x0] and I ′1 = [x0, x0 + δ] with some δ > 0. We can also assume that

the two parametrizations of ∂Ω ∩ U and of ∂(Sπ \ Ω) ∩ U are oriented such that in

both cases the segment Γ1 or Γ′
1, respectively, precedes the curve Γ0.

Now from our definition of a Lipschitz boundary, we get a cone Cαβ that sat-

isfies

x,y ∈ ∂Ω ∩ U and x ≺ y =⇒ y − x ∈ Cαβ .

In particular, this holds for x,y ∈ Γ1, and this implies that we have −π < α < 0
and 0 < β < α+ π.

Likewise, there is a cone Cα′β′ that satisfies

x,y ∈ ∂(Sπ \ Ω) ∩ U and x ≺ y =⇒ y − x ∈ Cα′β′ .

Since this holds for x,y ∈ Γ′
1, we must have 0 < α′ < π and π < β′ < α′ + π.

For the curve Γ0 we have both conditions,

x,y ∈ Γ0 and x ≺ y =⇒ y − x ∈ Cαβ ∩ Cα′β′ = Cα′β .

The latter cone Cα′β is contained in the upper half-plane Sπ, and this implies that

the curve Γ0 can be represented as a graph in a coordinate system rotated by a

right angle ω = π/2. This means that there is a Lipschitz continuous function φ :
(0, y0) → R such that

Γ0 = ∂Ω ∩ U ∩ Sπ = {(x, y) ∈ R2 : x = φ(y), 0 < y < y0} .
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Now we can execute our symmetric extension and find that the point x0 ∈ ∂(E(Ω))
has E(U) as a neighborhood in which the boundary

∂(E(Ω)) ∩ E(U) = Γ0 ∪ {x0} ∪ R(Γ0)

is represented as the graph {x = φ̃(y)} of a Lipschitz continuous function φ̃, namely

the even extension of φ, φ̃(y) = φ(|y|)}, −y0 < y < y0, completed by the choice

φ(0) = x0. �

Appendix B. Convergence of the corner expansion for the

Dirichlet problem and Diophantine approximation

In this section, we use the notation of Section 1.2. We find conditions on the open-

ing angle ω for the convergence of the series of particular solutions constructed

according to (1.7)

u∂(t) =
∑

ℓ∈N∗

wℓ(t) =
∑

ℓ∈N∗

(gωℓ − g0ℓ cos ℓω

sin ℓω
Im ζℓ + g0ℓ Re ζℓ

)
, (B.1)

provided the two power series with coefficients g0ℓ and gωℓ have a nonzero conver-

gence radius as in (1.4). We will assume here that the number κ = π
ω is irrational, so

that the coefficients in the sum (B.1) are well defined. As was observed already in

[4, 11], for certain angles ω for which κ is irrational the small denominators sin ℓω
pose a problem for the convergence of the series (B.1), and a procedure for reestab-

lishing the convergence was found. The convergence of the sum depends on the rate

of approximability of κ by rational numbers, a question that has been a classical

subject of number theory for a long time, see for example [16, Chapter XI]. A clas-

sical theorem by Liouville states that irrationals that can be fast approximated by

rationals in a certain way are transcendental, and it was shown by Greenfield and

Wallach in 1972 [15] that these Liouville numbers play a role in the study of global

hypoellipticity of differential operators on manifolds. More recently, Himonas [17]

and Bergamasco [2] introduced a subset of Liouville numbers, the exponential Liou-

ville numbers, in the context of questions of global analytic hypoellipticity. For the

situation in our present paper, it turns out that we need to consider an even smaller

subset of irrationals that have a fast approximation by rationals. We call them super-

exponential Liouville numbers.

Definition B.1. Let a ∈ R \Q. Then a is said to be

(i) a Liouville number if for every n ∈ N∗, there exist p ∈ Z and q ∈ N∗ such that

0 <
∣∣∣a− p

q

∣∣∣ < 1
qn ,

(ii) an exponential Liouville number if there exists c ∈ R, c > 0, and infinitely many

p ∈ Z and q ∈ N∗ such that

0 <
∣∣∣a− p

q

∣∣∣ < e−cq ,
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(iii) a super-exponential Liouville number if for any c ∈ R, c > 0, there exist p ∈ Z

and q ∈ N∗ such that

0 <
∣∣∣a− p

q

∣∣∣ < e−cq .

We denote the sets of Liouville, exponential Liouville and super-exponential Liou-

ville numbers by Λ, Λe and Λs, respectively.

It is clear that Λs ⊂ Λe ⊂ Λ. It is known that Λ is dense in R, uncountable

and of measure zero [16, Theorem 198]. Using the same arguments, one can see that

these properties are valid for Λe and Λs, too. Finally, it is worth noting that each of

these sets is invariant with respect to taking inverses, addition of rational numbers

and multiplication by nonzero rational numbers.

Proposition B.2. Let κ = π/ω be irrational. Let the lateral boundary data g0 and

gω be given by series

g0(ρ) =
∑

ℓ∈N∗

g0ℓρ
ℓ, gω(ρ) =

∑

ℓ∈N∗

gωℓ ρ
ℓ

that converge for |ρ| < ρ0. Then the following two statements are equivalent:

(i) For any such g0 and gω, the series (B.1) for the particular solution u∂ of the

Dirichlet problem in the sector converges for |ζ| < ρ0.

(ii) κ is not an exponential Liouville number.

Likewise, the following two statements are equivalent:

(iii) There exists ρ1 > 0 such that for any such g0 and gω, the series (B.1) for the

particular solution u∂ of the Dirichlet problem in the sector converges for |ζ| < ρ1.

(iv) κ is not a super-exponential Liouville number.

For the proof, we use the following elementary observation about power se-

ries: Let the series
∑
ℓ≥1 aℓ x

ℓ and
∑

ℓ≥1 bℓ x
ℓ have convergence radii ρa and ρb,

respectively. Then the series
∑

ℓ≥1 aℓ bℓ x
ℓ has convergence radius ρaρb or greater,

with equality if, for example, bℓ = ρ−ℓb for all ℓ. Applying this with aℓ = 1/ sin ℓω,

we see that the proof of the proposition is achieved if we prove the following lemma.

Lemma B.3. Let π/ω be irrational and let ρs be the convergence radius of the

power series
∑

ℓ∈N∗

xℓ

sin ℓω
.

Then ρs = 1 if and only if π/ω is not an exponential Liouville number, and ρs > 0
if and only if π/ω is not a super-exponential Liouville number.

Proof. We use Hadamard’s characterization

ρ−1
s = lim sup

ℓ→∞
| sin ℓω|−1/ℓ,

and we freely use that

lim sup
ℓ→∞

(c ℓd)1/ℓ = 1 for any c > 0, d ∈ R.
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Rational approximations of κ = π/ω appear because for all k ∈ N: | sin ℓω| =
| sin(ℓω − kπ)|, and we can choose k such that the difference is minimal:

k = k(ℓ) ≡ ⌊ ℓωπ ⌉ ∈ ( ℓωπ − 1
2 ,

ℓω
π + 1

2 ] =⇒ ℓω − kπ ∈ [−π
2 ,

π
2 ) .

Then, using 2
π ≤ sin x

x ≤ 1 for |x| ≤ π
2 , we get with the k chosen as above,

2
π |ℓω − kπ| ≤ | sin ℓω| ≤ |ℓω − kπ| .

Thus | sin ℓω| ≃ |ℓω − kπ| = kω| ℓk − π
ω | ≃ k | ℓk − π

ω |, implying

lim sup
ℓ→∞

| sin ℓω|−1/ℓ = lim sup
ℓ→∞

| ℓ
k(ℓ) − κ|−1/ℓ .

Therefore the condition ρs = 1 is equivalent to (note that ρs ≤ 1 in any case)

∀M > 1 ∃ℓM : ℓ ≥ ℓM ⇒ | ℓ
k(ℓ) − κ|−1/ℓ ≤M

⇐⇒ ∀M > 1 ∃ℓM : ℓ ≥ ℓM ⇒ | ℓ
k(ℓ) − κ| ≥M−ℓ

⇐⇒ ∀c > 0 the inequality | ℓ
k(ℓ) − κ| < e−cℓ

has only finitely many solutions ℓ ∈ N∗

⇐⇒ ∀c > 0 the inequality | ℓk − π
ω | < e−ck

has only finitely many solutions k, ℓ ∈ N∗

The last condition means, according to Definition B.1, that κ is not an exponential

Liouville number.

Likewise, ρs > 0 is equivalent to

lim sup
ℓ→∞

| ℓ
k(ℓ) − κ|−1/ℓ <∞ ⇐⇒ sup

ℓ
| ℓ
k(ℓ) − κ|−1/ℓ <∞

⇐⇒ ∃c > 0 : ∀ℓ : | ℓ
k(ℓ) − κ| ≥ e−cℓ

⇐⇒ ∃c > 0 : ∀k, ℓ ∈ N∗ : | ℓk − κ| ≥ e−ck .

Again comparing the negation of the last condition with Definition B.1, we see

that this is equivalent to the fact that that κ is not a super-exponential Liouville

number. �

Let us finally note that if κ is a super-exponential Liouville number, one can

give explicit examples for the right hand side f such that the series (B.1) for u∂
diverges for almost all t 6= 0. One such example is f(t) = 1/(ρ0 − t1).
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