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Summary

Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet
to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and
commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is
the most crucial limitation for the commercial viability and economic feasibility of biomass
biorefining. Over the last decade, the targeted genetic engineering of grasses has become more
proficient, enabling rational approaches to modify lignocellulose with the aim of making it more
amenable to bioconversion. In this review, we provide an overview of transgenic strategies and
targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering
efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory
networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical
structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose

Keywords: bioenergy, biomass, degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational

biotechnology, grasses, lignocellulose,
transgenic plants.

engineering of grass cell wall polysaccharides by such strategies could help in realizing an
economically sustainable, grass-derived lignocellulose processing industry.

Introduction

Maize (Zea mays) and sugarcane (Saccharum officinarum)
remain the world’s largest biofuel-producing feedstocks (Chum
et al.,, 2014). These economic important grasses are currently
utilized for respective starch and sucrose-based bioethanol
production via fermentation, and accounted for ~85 billion
litres of bioethanol and ~85% of global bioethanol output in
2016 (Renewable Fuels Association, 2017). These ‘first-genera-
tion’ biofuels offer in most cases an advantage in terms of
carbon footprint compared to fossil fuels. However, with the
increasing demand for agricultural land to satisfy the needs of
a rapidly growing human population, alternative feedstocks for
bioenergy and biorefining are required.

The utilization of abundant, diverse, carbon-neutral, and non-
edible agricultural residues of grasses (Poaceae) including maize
stover, sugarcane bagasse, rice and wheat straw, as well as the
harvestable biomass of dedicated bioenergy crops including
Miscanthus and switchgrass, represent crucial resources to realize
the vision of a low-carbon bioeconomy with biorefining into
biofuels, platform chemicals, and value-added bio-based products
at its core. The opening of several lignocellulosic-based commer-
cial-scale biofuel plants (‘Beta Renewables’, ~50 million Litres of
bioethanol per year (Lyr); 'Project LIBERTY’, ~75 million L/yr;
‘DuPont’, ~110 million Lyr; 'GranBio’, 82 million L/yr; ‘Raizen/
logen’, 40 million L/yr) has been a landmark towards the
establishment of commercially viable processes for ‘second-
generation’ biofuels. These new technology demonstrations will
drive the demand for feedstocks that can fit the quality, as well as
the scale required for these initiatives.

A number of crops have been explored as possible feedstock
for biorefining, taking into account the carbon balance of using

agricultural waste or selecting low-input/high biomass yield
species. Table 1 shows the agronomical and genetic features of
the main grass lignocellulosic feedstocks explored to date. Corn
stover, rice and wheat straw represent the most favourable
agricultural wastes available as biomass resources (Table 1). Yet
focus has generally been on the effective utilization of corn stover
and wheat straw, with less consideration given to rice straw
which is more abundant compared to the other major agricultural
wastes (Table 1) (Binod et al., 2010; Sarkar et al.,, 2012). Until
recently, rice straw was considered a waste stream of rice
production with little or no value and farmers often burning it in
the fields, causing health and environmental problems (Oanh
et al., 2011). However, the potential of utilizing rice as a
biorefining feedstock is increasingly being recognized (Abraham
et al., 2016; Liu et al., 2016; Nguyen et al., 2016). Amongst the
dedicated biomass crops with the highest potential for biorefining
are the fast-growing grasses, in particular, Miscanthus hybrids
such as Miscanthus x giganteus, switchgrass (Panicum virga-
tum), and energy cane (a complex sugarcane hybrid with high
lignocellulose yield) (Table 1). These C4 photosynthesizing grasses
are principally coveted for their perenniality and high field
productivity across temperature and drought environments,
suitability for growth on marginal and erosive land, biodiversity
promoting benefits, high water use efficiency and nutrient
sequestering ability (Byrt et al., 2011; Carroll and Somerville,
2009; Clifton-Brown et al., 2017; Feltus and Vandenbrink, 2012;
Van der Weijde et al., 2013).

Lignocellulosic biomass accounts for ~60%-80% of dry matter
yields in grasses and is primarily composed of secondary cell walls
comprised mainly of cellulose (~25%-55%), hemicellulose
(~20%-50%), and lignin (~10%-35%) (Marriott et al., 2015;
Vogel, 2008). Secondary cell walls provide structural support,
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resist water loss, and protect against mechanical stress and
breakdown by microbes. The complexity of the major structural
and chemical components of secondary cell walls, which features
a variety of chemical linkages within and between the main
polymers, is the basis of lignocellulosic biomass recalcitrance and
plays a key role in impeding the effective utilization of lignocel-
lulose for bioconversion into fermentable sugars and value-added
products on an industrial scale. Efforts to make the deconstruc-
tion of lignocellulosic biomass economically viable and environ-
mentally friendly have concentrated in three main areas: (i)
improved pre-processing (e.g. mechanical, thermochemical); (ii)
improved processing through more efficient enzymes and
microbes capable of tolerating toxic inhibitors, withstanding high
product and by-product concentrations during biomass digestion
and the subsequent fermentation process, and (iii) developing less
recalcitrant feedstocks (Agbor et al., 2011; Alvira et al., 2010;
Balat, 2011; Klein-Marcuschamer et al., 2012; Sarkar et al.,
2012; Sims et al., 2010).

The key lignocellulose processing step in terms of energy and
chemical demand is pretreatment, opening up the structure of
the cell wall matrix, facilitating enzymes to access their substrates
and improving hydrolysis of biomass polysaccharides (Galbe and
Zacchi, 2012). Pretreatments modify the composition and archi-
tecture of the cell wall and can result in the production of
fermentation inhibitors such as formic acid, acetic acid, or
furfural, which often require removal prior to fermentation
(Jonsson et al., 2013; Phitsuwan et al.,, 2013). While a wide
range of pretreatments have been assessed, few have been
implemented in commercial operations. These include the
advanced steam explosion pretreatment technology by ANDRITZ
Inc. and Proesa® for Project LIBERTY and GranBio or Beta
Renewables, respectively, the dilute acid pretreatment technology
by logen for the Raizen project, and the more exploratory ones
such as ionic liquids or the mild alkali pretreatment technology
developed by the National Renewable Energy Laboratory for
DuPont.

Lignocellulose  depolymerisation enzyme discovery and
improvement programmes have resulted in new generations of
commercial enzyme cocktails that have improved the price
competitiveness of cellulosic ethanol (Chandel et al, 2012).
These programmes include: surveying enzymes produced by
microbes isolated from a diverse range of environments including
the rumen, compost heaps, hot springs and tropical forests as
well as from ‘omic’ databases; modification of enzymes through
computational biology and forced evolution; and genetic,
metabolic and protein engineering techniques aimed at designing
industrial microbial strains with proficient cellulolytic and hemi-
cellulolytic activities (Banerjee, 2010).

Another option to increase the efficiency of lignocellulosic
deconstruction and processing is the development of biomass
tailored for these applications. Choices of feedstock species and
breeding for less recalcitrant biomass while maintaining field
performance including grain yield in dual-purpose crops represent
attractive approaches to improve process techno-economics.
Although breeding programmes on C, grasses have been a
time-consuming and immensely complicated task due to screen-
ing of thousands of variants, chromosomal architecture, or
multiplicity of alleles, the availability of modern genomic tools
to deal with these complications opens the possibility of accurate
mapping of genes and/or traits of interest that can be introduced
in breeding strategies (Feltus and Vandenbrink, 2012; Slavov
et al.,, 2013, 2014).

Engineering grass cell wall polysaccharides 1073

Alongside the progress in bioprocessing technologies, enzyme
efficiencies, improved microbial strains, and feedstock choices, a
complementary prospect to expedite biorefining of grass polysac-
charides is via genetic engineering, which is the focus of this
review. Although decoding the genetic and structural features
that underpin cell wall recalcitrance remains complex, there has
been a great deal of interest and progress in this area over the last
10 years. Here, we provide a brief overview of gene targets for
genetic engineering of grass polysaccharides and highlight
outcomes and perspectives of three different engineering strate-
gies (A) reprogramming gene regulatory networks responsible for
the biosynthesis of lignocellulose, (B) remodelling the chemical
structure and substitution patterns of cell wall polysaccharides,
and (C) expressing microbial lignocellulose degrading and/or
modifying enzymes in planta. This review does not encompass all
engineering efforts to date and does not focus directly on lignin
modification or metabolism (covered elsewhere, (Furtado et al.,
2014; Poovaiah et al., 2014; Cesarino et al., 2016)) due to the
expanse of information on lignin biosynthesis genes and the
effects of their manipulation on cell wall properties and
digestibility (Eudes et al., 2014; Mottiar et al., 2016).

The distinct features of grass cell walls

The cell walls of grasses consist of a complex composite
framework composed mainly of polyphenol lignin (~10%—
30%), cellulose (~35%-45%), and hemicellulose (~40%-50%)
(for a review on lignocellulosic cell walls, their constituents and
synthesis, see Marriott et al. (2015)). During the cell cycle in
plants, dividing, expanding, or elongating cells have a distinctive
primary cell wall. In the Poaceae family, the primary wall is thin,
aqueous (~60%-70% water), and flexible, and is composed of
~1%-5% hydroxycinnamic acids (HCAs) such as ferulic acids (FA)
and p-coumaric acids (p-CA), pectins (5%), and a few layers of
cellulosic microfibrils (~20%-30%) embedded in a matrix of
hemicelluloses such as mixed-linkage glucans (MLGs) (~10%—
30%) and highly substituted glucuronoarabinoxylans (GAXs)
(~20%-40%) (O'Neill and York, 2003; Vogel, 2008). Upon
cessation of cell enlargement, an additional and rigid secondary
wall is deposited inside of the primary wall. This secondary cell
wall, while containing negligible amounts of pectin (~0.1%),
minor structural proteins and MLGs, HCAs (~0.5%-1.5%) and a
small proportion of water (~5%), is primarily made up of
hundreds of layers of cellulose microfibrils (~35%-45%) embed-
ded in GAXs (~40%-50%) which in turn are covalently cross-
linked with hydrophobic polyphenol lignin (~20%) (Albersheim
et al., 2011; Ebringerova et al., 2005; Vogel, 2008).

Depending on the tissue, cell type, cell wall layer, develop-
mental stage, and plant taxa, the overall amount, architecture,
and chemical composition of cell walls can vary significantly (Pauly
and Keegstra, 2010). A characteristic feature of grass walls is the
presence of particular polysaccharides such as GAX and MLG not
found in the cell walls of woody biomass. Up to 40%-80% of the
xylose residues of the xylan backbone can be substituted with
O-acetyl groups (Pauly et al., 2013). Another characteristic
feature is the high amount of total FA (~4%) and p-CA (~3%)
as unbound acids or esterified to GAXs and ester- and ether-
linked to lignin in the primary and secondary walls of grasses,
thereby cross-linking these components (De Oliveira et al., 2015;
Ishii, 1997; Lam et al., 2001; Ralph et al., 2004; Saulnier et al.,
1999). Lignin is one of the main carbon components (~20%) of
grass secondary walls and typically polymerized from three

© 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd, 15, 1071-1092
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different 4-hydroxyphenylpropanoids known as monolignols: p-
hydroxyphenyls (H) (~4%-15%), guaiacyl (G) (~35%-49%), and
syringyl (S) (~40%-61%) (Boerjan et al., 2003). Such monolignols
form diverse chemical bonds with each other at multiple positions
(Boerjan et al., 2003), thereby crafting lignin as a heterogeneous
aromatic and hydrophobic polymer that may lack a repeat
structure. Hence, lignin tends to play a critical role in conferring
cell wall rigidity and compactness by filling the voids between and
around the cellulose and hemicellulose complexion, as well as
fortifying the plant cell wall against biotic and abiotic responses.
Collective evidence suggests that lignocellulosic biomass recalci-
trance is dictated by several of the described cell wall compo-
nents, their relative abundances, and interactions within the cell
wall matrix.

Efforts over the past decade have shown that engineering of
grass cell walls using transgenic approaches can help overcome
traits associated with cell wall recalcitrance. Researchers identified
the need to select gene targets based on the different cell wall
polymer targets they act upon, or different functionalities during
cell wall construction or deconstruction, as categorized in
Figure 1. These targets have driven most efforts to alter grass
cell wall characteristics for effective downstream bioconversion,
as reflected in the number of publications on this subject over the
last decade (Tables 2, 3 and 4). We discuss the progress and
perspectives of three different engineering strategies aimed at
tailoring grass cell wall polysaccharides for biorefining
applications.

A. Reprogramming grass cell wall gene
regulatory networks

There are several major plant transcription factor (TF) families,
including basic Helix-Loop-Helix (bHLH), Homeobox (HB), basic-
region leucine zipper (bZIP), Auxin/indole-3-acetic acid (AUX/IAA)
and APETALA2/Ethylene Responsive Factor (AP2/ERF), potentially
implicated in regulating secondary cell wall biosynthesis (Cassan-
Wang et al., 2013; Hirano et al., 2013). Within the secondary cell
wall TF network, two favourable targets for grass cell wall
engineering have been the R2R3-MYB (MYELOBLASTOSIS) and
NAC (NAM, ATAF, CUC) TF family members (Table 2). These
proteins form one of the largest plant-specific TF families and play
a key role in regulating cell wall formation (Dubos et al., 2010;
Olsen et al., 2005). Hence, modified expression of MYB and NAC
TF genes are expected to reprogram cell wall biosynthesis,
providing a route towards improving relevant grass cell wall traits
(Bhatia and Bosch, 2014). TFs are sequence-specific DNA binding
proteins that trans-modify the transcription of target genes
quantitatively, temporally (developmental stage-specific), spatially
(tissue-specific) or in a stimulus-dependent manner. Thus, under-
standing the biological role of TFs is important to fully harness
their potential as a genetic tool for the improvement of grass wall
characteristics. Research efforts have revealed an extensive,
complex, hierarchical, and multilevel regulatory network of
MYB and NAC TF genes in the dicot model species Arabidopsis

(Hussey et al., 2013; Taylor-Teeples et al., 2015). Although some
grass MYB and NAC TFs have been shown to regulate secondary
cell wall biosynthesis (Fornalé et al., 2010; Sonbol et al., 2009;
Valdivia et al., 2013; Zhong et al., 2011), the model of the grass
cell wall transcriptional regulatory network is still not as well
defined (Handakumbura and Hazen, 2012).

There have been relatively few but valuable attempts in the
reprogramming of grass cell wall gene regulatory networks (GRNs)
by transgenic approaches (Table 2). For instance, overexpression
(OX) of PvMYB4 in switchgrass not only reduced lignin content and
ester-linked p-CA:FA ratio by ~50%, but also improved cellulosic
ethanol yield by ~2.5-fold (Shen et al., 2012a, 2013). Conversely,
overexpression of SbMYB60 in sorghum was associated with
increased lignin biosynthesis, resulting in a higher energy content
of the biomass (Scully et al., 2016). However, both overexpression
of PvMYB4 and SbMYB60 altered several plant growth character-
istics, including a significant reduction in plant height (~40% and
~30% respectively). These findings suggest that there is a limit in
the plasticity of grasses to tolerate TF-based manipulations in
biomass composition without significant impediments in cell wall
expansion during plant growth and development. Overexpression
of PvKNT (Knotted1-like) and PVvERFOOT (AP2/ERF) TF genes in
switchgrass enhanced saccharification (Wuddineh et al., 2015,
2016), with the former altering the expression of lignin, cellulose
and hemicellulose biosynthetic genes, as well as the gibberellin
biosynthesis pathway (Wuddineh et al., 2016), while no significant
changes in lignin content and composition were detected for the
latter (Wuddineh et al., 2015). However, as before, transgenic
plants exhibited altered growth phenotypes, with PvKN7-OX lines
often showing inhibited shoot and root elongation while
PVERFO0T7-OX lines showed a ~20%—100% increase in dry biomass
yield. Despite the apparent absence of a direct association with cell
wall regulatory and biosynthetic pathways, the PVERFOO1-OX study
shows that TFs can simultaneously improve enzymatic saccharifi-
cation and biomass yield. Interestingly, transgenic sugarcane
overexpressing the maize transcription factor ZmMYB42 showed
a significant reduction in lignin content (8%-21%) and released
~30% more glucose with minimal phenotypic effects (Poovaiah
et al., 2016). Besides highlighting the potential of using TFs to
increase sugar release by a modest reduction in lignin content, this
study also emphasized the difficulties in predicting outcomes of
modifying gene expression levels, particularly in grasses with large
complex polyploid genomes, and the need to better understand
metabolic fluxes through the cell wall biosynthesis pathways.

Some of our knowledge of grass-specific secondary cell wall-
related TFs comes from the study of the rice TFs, OsMYB103L and
OsSWN1, which were characterized by overexpression and RNA
interference (RNAI) techniques (Chai et al., 2015; Yang et al.,
2014) (Table 2). The expression levels of several cellulose
synthases (CesAs) in OsMYB103L-OX lines were significantly
increased along with cellulose content (~13%). Concordantly,
RNAi of OsMYB103L led to a reduction in cellulose content
(~15%-30%) and expression levels of CESA genes as well as
impaired mechanical strength in leaves (Yang et al, 2014),

Figure 1 Cell wall polymer and associated gene targets for genetic engineering of grass biomass. Cell wall polymer targets were adapted from Rubin
(2008), Harholt et al. (2010a), Scheller and Ulvskov (2010) and Marriott et al. (2015) and used with permission. ABC, ATP-binding cassette transporters;
AX, arabinoxylan; CESAs, cellulose synthase genes; CSL, cellulose synthase-like gene; CWDs, cell wall degrading enzymes; FA, ferulic acid; G, guaiacyl units;
GAUT, a-(1,4) galacturonosyltransferase; GH, glycosylhydrolase; GT, glycosyltransferase; H, p-hydroxyphenyl units; HCAs, hydroxycinnamic acids; MLG,
mixed-linkage glucan; MYB, Myeloblastosis; NAC, NAM,ATAF1,2 and CUC2; p-CA, p-coumaric acid; PME, pectin methylesterase; PMEI, pectin
methylesterase inhibitor; RLK, receptor-like kinase; S, syringyl units; TFs, transcription factors.
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TFs (e.g. MYB); GTs
(e.g. GT61); lignin
biosynthesis genes;
CWDs

Quantity; altered
p-CA:FA ratio

Pectin

Rhamnogalacturonan |

Homogalacturonan

O Galactouronic acid @ Galactose
O Rhamnose é Acetyl
© Arabinose ¢ Methyl

Biosynthesis;
remodelling;
deconstruction

GTs (e.g. GAUT);
methyl- and
acetyltransferases;
GHs, RLKs, PMEs,
PMEIls; CWDs

Quantity; modified
pectin
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N common phenotypes associated with CESA mutants such as
. — 9] . . . . . . .
g | ® T £ g brittle culm13 (bc13) in rice and irreqular xylem (irx1 to irx3) in
— b4 C . .
gl 24 2= 3 f Arabidopsis (Song et al., 2013; Tanaka et al., 2003; Turner and
g kS S % =) e ,;Lj Somerville, 1997). Overexpression of the NAC TF OsSWN7
e @ = i increased lignin content by ~2%-6% and decreased the glucose
o g yield by ~30%, while RNAI lines showed a concomitant decrease
£ " g in lignin content by ~7%-20% and increase in glucose yield by
‘§ § = 3 ~14%-43% (Chai et al., 2015). Both OX and RNA: lines showed
s 5 ¢ E < abnormal developmental phenotypes with most OsSWN7-OX
2 = B < % = 3 lines displaying a semi-dwarfed and nearly sterile phenotype,
= | E ] E g E ; while RNAI lines had a relative normal growth phenotype but
© o = o ¢ O .
=z | = ) = s were sterile.
o
= It is evident that manipulation of cell wall composition and
S sugar release by altering the expression of certain TFs is often
ﬁ accompanied by aberrant plant growth and fitness penalties
° - £ (Table 2). Such phenotypic effects can either be a direct result of
E . f % 2 TF-induced changes in cell wall composition or due to pleiotropic
Y e ® R . £ g effects as a cell wall-associated TF may also be involved in the
.| 2 g f 2 f S Qg £ = regulation of developmental processes or in the response to biotic
1%} o .= = = . . 7
§ o 3 o\oo c = o - 8 ‘g and abiotic stresses (Fornalé et al., 2010; Zhong et al., 2010).
& ;% ° g E % 2 f:CV i 2 Overexpression studies can also lead to metabolic spillover into
é g § S5 g £ 5 g related pathways, and TFs may lose some target specificity when
elgggos £3¢8 £ expressed at high levels (Martin et al., 2012). Such off-target
[ins o) - - .
< ¥ = effects may make TFs perhaps less tractable and more challenging
= 2 as tools for grass cell wall engineering. In this context, TF-based
[} S 9 g g
B o ~ genetic engineering studies require additional supporting data for
1S = ; - . .
gl a r@ g = interpretations. Only a limited number of studies have deepened
Z into the evidence behind gene targets and protein—protein
s EL interactions of grass-specific TFs involved in secondary cell wall
o 3 5 Fi 3 5 @ transcriptional regulation. Shen et al. (2012a) for instance,
= o O v o O = . e . . . . .
g < ° g S S g ;S identified cis-regulatory elements (i.e. TF-binding motifs) such as
2 S % s ?;.3 % s - AC-rich elements of monolignol pathway genes recognized by
- Q . . L .
me T Y 0 z ° S PvMYB4. Chromatin immunoprecipitation (ChIP) followed by
“ “ ) microarray (ChIP-chip) or sequencing (ChlIP-seq) could be key
w w
" § % S § % % techniques to uncover direct or indirect target genes and binding
a ; T ] T ® . .
753 ﬂg S 23 ° sites of TFs (Agarwal et al., 2016; Zhu et al., 2012) to increase
al <= T - < - & our understanding of the network dynamics and functionality for
° ° 3 secondary wall formation. Additionally, yeast one-hybrid (Y1H)
) 3 i’ assays represent powerful complements to ChIP for identifying
S s g = and constructing transcriptional GRNs (Kim et al., 2013; Zhang
“— W = o] o .
s g S S & g et al., 2016), though Y1H assays have their own set of limitations
55|58 s § g (Reece-Hoyes and Walhout, 2012). For a summary of the pros
M - © g and cons of TF-based genetic engineering and advantages and
< challenges of the methodologies used to infer transcriptional
5 regulatory networks, see Zhang, 2003; Broun, 2004; Grotewold,
k= 2008 and Hussey et al., 2013.
5 3 Much of the initial work on the transcriptional regulation of
_ Q a) secondary wall biosynthesis has been based on Arabidopsis, with
S @ 8 é’ g ~45% of the systematic analysis of grass TFs conducted using
m o . . . . . .
2 b ) S £ heterologous studies in transgenic Arabidopsis (Table 2). Given
N [e] c o
A £ , . S .
o | S § g T a the relatively large genome size and TFs family divergence in grass
- = . . . .
§ = species (Du et al., 2012; Pereira-Santana et al., 2015), it remains
g g g ¢ g questionable whether cell wall biosynthesis GRNs are equally
£ £ < b £ conserved and wholly generalizable amongst dicot and monocot
s & & & g z plant species. For example, while MYB58 and MYB63 act as
. % % % % g g lignin-specific transcriptional activators in Arabidopsis (Zhou
2 | = = = 8 > et al., 2009), the putative rice (Oryza sativa) orthologue
"g < | v o % 5 OsMYB58/63 also regulates cellulose biosynthesis (Noda et al.,
ol 3 5 2015). Promoter analysis suggested that differences and similar-
“3 g % © © e é ities in the transcriptional regulation of lignocellulose biosynthesis
% Z % Q C: @ § g genes between rice and Arabidopsis may be due to the distinct
Flrolx T o ¥ T cis-element composition of their promoters (Noda et al., 2015).
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This highlights the importance of characterizing TFs regulating
secondary cell wall biosynthesis in grasses as the functionality of
such TFs cannot be derived solely from functions defined by their
dicotyledonous orthologs. The two genetic grass model systems
Brachypodium distachyon and Setaria viridis could be alternative
complementary resources to mine and validate genes and GRNs
for grasses (Brutnell et al.,, 2015). Moreover, reprogramming
approaches of grass cell wall GRNs have so far mostly been crude
with not much variety in the selection of promoters for TFs to
modify transcription of downstream target genes temporally,
spatially or in a stimulus-dependent manner (Table 2). Therefore,
despite the potential of TF-based genetic engineering strategies
to reprogram grass cell wall GRNs, ample work is still necessary to
fully dissect the roles of grass-specific TFs in cell wall biosynthesis
and to eliminate or at least mitigate against possible plant
phenotype drawbacks.

B. Remodelling grass cell wall polysaccharides
Cellulose

Cellulose is the main component of plant lignocellulosic biomass
and the most abundant terrestrial source of carbon. As a tightly
packed microfibril of linear chains of B-(1,4)-linked glucose
residues predominantly composed of crystalline domains that
exhibit strong intra- and inter-molecular bonding, cellulose has
remarkable structural properties with a tensile strength equivalent
to that of steel (Cosgrove, 1997). The strong inter-chain hydrogen
bonding network that gives cellulose its sturdy structural prop-
erties also makes it resistant to enzymatic hydrolysis, with an
inverse correlation between cellulose crystallinity and the initial
rate of cellulose hydrolysis (Hall et al., 2010). Hence, engineering
approaches rendering crystalline cellulose more amorphous are a
major research focus (for a comprehensive review see: Abramson
et al., 2010). Initial studies, however, showed that such a target
compromised other important plant agronomic traits. Harris et al.
(2012) showed that in Arabidopsis two CESA mutants reduced
the crystallinity of the cellulose microfibrils compared to the wild
type. Lignocellulosic extracts of these mutants showed less
recalcitrance in saccharification assays (49% increase in sugar
release for the double mutant). However, the mutants, in
particular the double mutant, exhibited dwarfed phenotypes. To
this end, it seems that the targeted expression of exogenous cell
wall degrading or modifying enzymes, explained in more detail in
Section C, could provide a better route to alter cellulose
crystallinity without compromising plant performance (Table 4).
Another biotechnological target has been to increase the
amount of cellulose per unit of biomass, increasing the ratio of
more easily fermented glucose monosaccharides (hexoses) com-
pared to pentoses (mainly xylose derived from xylans). As cellulose
is synthesized by hexameric rosette CESA complexes located at the
plasma membrane (Carpita, 2012), increasing the amount and
activity of grass-specific CESA's, such as of OsCESA4, 7 and 9 that
form the CESA complex typical for secondary cell wall biosynthesis
in rice (Tanaka et al., 2003), appears as a logical approach.
Attempts to implement such a strategy in barley (Hordeum vulgare)
resulted in pleiotropic phenotypes and transcript silencing
(Tan et al., 2015). An alternative approach would be to specifically
target the transcriptional regulation of secondary cell wall cellulose
synthases. This could theoretically lead to variations in cellulose
synthesis with consequences on the orientation/organisation of
cellulose microfibrils, possibly improving biorefining capabilities.

However, there are no reports on the existence of such TFs. Overall,
it remains questionable if reducing cellulose crystallinity and
increasing cellulose abundance in grasses by altering the expression
of endogenous genes can be achieved without a significant penalty
on plant growth and performance.

Xylan

The major grass hemicellulose sugar, xylan, varies in the number of
substituents and side chains but is predominantly composed of a
linear backbone of B-(1,4)-linked xylose residues often substituted
with single residues of a~(1,2)-linked glucuronic acid (GlcA)/4-O-
methylglucuronic acid (MeGlcA), a-(1,2)- and/or a-(1,3)-linked
arabinofuranosyl (Araf), as well as less frequent disaccharide side
chains including a-(1,3)-linked Araf substituted with a~(1,3)-linked
Araf or B-(1,2)-linked xylose (Ebringerové and Heinze, 2000). In
addition to sugar substitutions, xylosyl residues of xylan may also be
O-acetylated, and Araf residues on the xylan backbone may be
esterified with FA or p-CA, the former covalently cross-linking with
lignin or adjacent xylan chains to strengthen secondary walls (Faik,
2010) (for a review on the detailed structure of hemicelluloses, see
Scheller and Ulvskov (2010); for a xylan biosynthesis review, see
Rennie and Scheller (2014)). This diverse pattern of possible xylan
substitutions affects xylan conformation and solubility, and conse-
quently grass cell wall architecture, all key determinants of
saccharification yields. It also has implications regarding the need
for complex enzyme mixtures to completely hydrolyse this polysac-
charide to fermentable sugars.

Xylan acetylation is one of the main factors determining the
insolubility and assembly of the xylans in muro. Deacetylation of
maize stover by dilute alkaline extraction improves xylose monomer
yields by ~10% upon pretreatment (Chen et al., 2012). The same
study also showed that deacetylation of maize stover prior to dilute
acid pretreatment results in ~20% higher saccharification yield
compared to the same material acid pre-treated. Studies in
Arabidopsis likewise showed O-acetylation levels to affect the
physicochemical properties of xylan, plant growth and the enzy-
matic degradation of wall polymers (Schultink et al., 2015; Yuan
et al., 2016). The presence of acetyl groups not only appears to be
an impediment to enzymatic degradation but the release of
acetate, mainly derived from deacetylation of xylan and pectins,
may also act as yeast fermentation and enzyme digestion inhibitors
(Helle et al., 2003; Pawar et al., 2016; Selig et al., 2009). Genes
involved in xylan acetylation have not yet been characterized in
grasses and understanding the mechanisms of polysaccharide O-
acetylation or modulating acetyltransferase activities might provide
routes to enhance the conversion efficiency of lignocellulosic
grasses to biorefining.

Given the diverse structural features of xylan, multiple modifying
enzymes such as acetyltransferases and methyltransferases along
with at least five glycosyltransferase (GT) enzyme activities, namely
B-(1,4) xylan synthase, a-(1,2) glucuronyltransferase (GIcAT), a-
(1,2) or a-(1,3) arabinofuranose transferase (AraT) and B-~(1,2)
xylosyltransferase (XylT), are assumed to be involved in the xylan
biosynthetic mechanism within the Golgi apparatus (Faik, 2010).
Concurrently, these enzymes represent added targets and hold
promise for engineering grass cell wall xylan. The importance of
xylan side branches in changing the accessibility of lignocellulolytic
enzymes is demonstrated by the dramatic effect of arabinofura-
nosidase (OsARAF) overexpression in rice, where the arabinose
content decreased by 20%-25% while the glucose content
increased by ~28%-34%, resulting in ~46%-70% improvement
in saccharification efficiency with no visible phenotype (Sumiyoshi
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et al., 2013). Another report explored the significance of xylan
backbone substitutions in transgenic rice via RNAi to suppress
uridine diphosphate (UDP)-arabinopyranose mutase (OsUAMT)
expression, an enzyme that catalyses the formation of UDP-Araf
from UDP-arabinopyranose (UDP-Arap) (Konishi et al., 2017).
Although a reduction of 6%-44% in Araf as well as 25%-80%
reductions in the FA and p-CA contents of the cell wall was
observed, those transgenic rice plants with a >25% reduction in
Araf content were dwarfed and infertile (Konishi et al., 2077).
UAM'’s potential role in the recalcitrance of grass cell walls was
recently investigated using RNAIi to down-regulate the expression
of PWUAM 1 in switchgrass (Willis et al., 2016b). While there was an
up to 39% decrease in cell wall-associated arabinose from stem, a
concurrent increase in cellulose (up to 38%) and lignin (up to 13%)
content was observed in stems of PYVUAM-RNAI transgenic lines.
This potential compensation response to maintain cell wall integrity
may be the reason why enzymatic saccharification efficiency was
unchanged (Willis et al., 2016b). However, it must be noted that
reducing the number of xylan side chains with the aim of reducing
wall cross-linking and recalcitrance might also lead to structural
changes and perhaps a denser cell wall matrix. Indeed, removal of
arabinofuranose side chains decreased arabinoxylan (AX) solubility
(Anders et al., 2012), possibly induced by increased hydrogen
bonding between neighbouring AX chains.

A role in xylan biosynthesis for rice and Miscanthus GTs, mainly
belonging to the GT43 and GT47 families, has been confirmed by
their overexpression in Arabidopsis irx mutants. The complemen-
tation of the mutant phenotypes verified the function of each GT
(Table 3). Other candidate genes with the same function in
grasses have also been identified and characterized. For example,
in wheat, the /RX9 homologue TaGT43_2 and the IRX10
homologue TaGT47_2 have been implicated in the biosynthesis
of AX (Lovegrove et al., 2013). Additionally, two maize GT47
genes (GRMZM2G100143 and GRMZM2G059825) identified via
differential gene expression profiling in internodes undergoing
secondary wall deposition represent likely candidates for involve-
ment in the biosynthetic process of grass cell wall xylan (Bosch
et al.,, 2011). Although modification of cell wall xylan content,
composition and assembly/cross-linking have been explored using
grass-specific and Golgi-localized GT enzymes, less attention has
been paid to enzymatic saccharification benefits that could arise
from such transgenic modifications (Anders et al., 2012; Chiniquy
et al., 2013; Lee et al., 2014; Lovegrove et al., 2013; Zhang
et al., 2014).

Another defining feature of grass cell walls is the presence of
FA substitution that allows cross-linking of AX chains or AXs to
lignin monomers (Buanafina, 2009; Burr and Fry, 2009). Not
surprisingly, an increasing volume of evidence points to the
impact of FA-mediated cross-linking in saccharification yields as
well as in the in vitro wall digestibility of grasses (Grabber et al.,
1998a,b; liyama and Lam, 2001; Jung et al., 1991; Lam et al.,
2003). Studies have shown grass-specific GT61 family members
to be involved in mediating such xylan substitutions. Mutants in
these genes have little or no arabinofuranose side chains, lower
feruloylation and HCAs cross-linking (Anders et al., 2012,
Chiniquy et al, 2012), in many cases exhibiting increased
saccharification, such as xax7 mutant plants (Chiniquy et al.,
2012). Even if the pathway for feruloyl esterification is not fully
understood, it appears to involve acyltransferases from the BAHD
family (Bartley et al, 2013). Overexpression of the BAHD
acyltransferase OsAt70 in rice resulted in increased p-CA ester-
ification and reduced FA esterification, and a ~20%-40%
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increase in saccharification efficiency (Bartley et al, 2013).
Although the properties of xylan have been changed using
transgenic approaches involving GTs (Table 3), one of the
potential caveats of overexpressing GTs is that it might lead to
saturation of catalytically active GTs in the Golgi apparatus,
thereby possibly (i) remodelling xylan formation and/or cross-
linking due to substrate competition and (i) limiting the
availability of other Golgi transmembrane proteins responsible
for different xylan substitution patterns.

Despite at least a third of grass cell wall-related genes having
no or few orthologs in Arabidopsis (Carpita and McCann, 2008),
bioinformatic analysis, transcriptome profiling, and complemen-
tation studies using irx mutants indicate that several members of
the GT43, GT47, and GT61 family have conserved functions in
the xylan biosynthetic process across the dicots and monocots
(Mitchell et al., 2007; Pellny et al., 2012). In this context,
definitive and direct proof of biochemical function of putative
GT43, GT47, GT61, and BAHD grass candidate gene products
remain to a greater part unexplored (Table 3). The mechanisms
that control the chain length and assembly of the xylan backbone
into a functional cell wall are yet unidentified. Discoveries in this
research area are appealing and may boost grass cell wall xylan
engineering efforts for improved biorefining.

Mixed-linkage glucan

Grasses accumulate large amounts (~10%-30%) of non-
branched B-(1,3;1,4)-linked glucose residues, also known as
mixed-linkage glucan (MLG), in their primary cell walls (Vogel,
2008). Because of their high and transient accumulation during
cell elongation in growing tissues, MLGs have primarily been
associated with cell expansion (Carpita and McCann, 2010).
However, a higher abundance of MLGs in mature tissues,
particularly in the vasculature and sclerenchyma (Vega-Sénchez
et al., 2013), and a structural role for MLGs in such tissues (Vega-
Sanchez et al., 2012), suggests a broader role for MLG in grasses.
The amorphous characteristics of MLG, entirely composed of
unbranched and unsubstituted glucose residues yet relatively
soluble with low recalcitrance (Burton and Fincher, 2009), make it
an attractive target for cell wall engineering aimed at reducing
recalcitrance by increasing the amount of easily hydrolysable
glucose polymers as well as the ratio of hexose to pentose sugars.

The biosynthesis of MLG involves cellulose synthase-like pro-
teins CSLF and CSLH (Burton et al., 2006; Doblin et al., 2009).
Recent work has shown that the mutation of a single cellulose
synthase-like gene (CSLF6) resulted in a severe reduction or even
apparent lack of MLG in rice and barley (Taketa et al., 2012;
Vega-Sanchez et al., 2012, 2013), demonstrating that CSLF6 is a
dominant gene for controlling the biosynthesis of MLG. Overex-
pression of the barley CSLF6 gene under control of the consti-
tutive 35S promoter resulted in a 6-fold increase of B-(1,3;1,4)
glucans in leaves but also in high mortality as many transgenic
barley plants did not survive the transformation process or growth
in subsequent generations (Burton et al., 2011). This accentuates
the need of spatiotemporal regulation when targeting the biosyn-
thesis of MLG. Indeed, heterologous expression of the rice CSLF6
MLG synthase in Arabidopsis using a senescence-associated
promoter resulted in up to four times more glucose in the matrix
cell wall fraction (without competing with cellulose accumulation)
and up to 42% increase in saccharification compared to control
lines (Vega-Sanchez et al., 2015) without apparent defects in
growth and development. This provides proof of concept that
increasing the levels of MLG in grasses when using a promoter that
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3 ;" g é ; accessibility of hydrolytic enzymes to their substrates. Indeed, it
238 % S —; appears that the pattern and degree of pectin methyl-esterification
c g o3 3§ are important in determining the cell wall porosity (Willats et al.,
S € g 5 =
- 51| 5 £ S e e " E 2001). It is becoming clear that despite its low content in grass
5 c c A o= 9 . .
§ g =3 g g 2 20T secondary cell walls, pectin polysaccharides can somehow con-
= > > . . . .
= < | d - E-g® % tribute to the cell wall recalcitrance to hydrolysis. Genetic
v .= pust — . . . . .
S 3 s g @ S engineering approaches targeting changes in pectin content and/
: g g ‘;IO I R g % g or its substitution.patt.ern might, therefore, provide intgrest?ng
s |2g|3 3 T x . 2 routes for generating biomass more amenable to saccharification
ElE6138 S £222e% (Latarullo et al., 2016). However, more studies are required to
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establish how pectin modifications affect cell wall recalcitrance in
grasses before such approaches can be implemented.

C. In planta production of cell wall degrading or
modifying enzymes

The three major cost components associated with the biocon-
version of lignocellulosic biomass for use by the biorefining
industry are the production of microbial enzymes, feedstocks, and
their biochemical processing. The in planta production of
lignocellulolytic enzymes is a way of tackling all these three
important aspects at the same time and has concentrated a lot of
research effort. High-level expression of cell wall degrading
(CWD) or modifying enzymes in planta is an attractive strategy to
alter cell wall architecture, reduce exogenous enzyme production
costs, and/or improve plant auto-hydrolysis for biomass saccha-
rification (Table 4). This approach requires a careful consideration
of the strategy for the expression of active enzymes such as the
subcellular or tissue targeting, the number of enzymes with
different functionalities expressed, and the timing of the expres-
sion or activation of the heterologous enzymes.

A range of microbial CWD enzymes including xylanases,
cellobiohydrolases (CBH) sometimes referred to as exoglucanases
(EXG), endoglucanases (ENG) and pB-glucosidase have been
assessed via heterologous production or overexpression in several
transgenic grasses, generally yielding no observable negative
phenotypic differences and several resulting in enhanced saccha-
rification (Table 4). One iconic example led by the industrial
company Agrivida was the expression of an engineered ther-
mostable xylanase gene (iXynB) from Dictyoglomus ther-
mophilum that remains stable in transgenic maize post-harvest
and only activates upon mild thermochemical pretreatment (Shen
et al., 2012b). Subsequent enzymatic saccharification of the
transgenic plants resulted in ~20% higher glucose and xylose
release (Shen et al., 2012b). This transgenic modulation demon-
strates the feasibility and efficiency of expressing thermostable
wall degrading enzymes in planta without causing premature
auto-hydrolysis or limiting biomass yield via negative phenotypic
impacts. Transgenic rice plants expressing a rice exoglucanase
(EXGT) under the control of a senescence-inducible promoter also
exhibited ~4%-8% higher saccharification ability of rice straw
after senescence and successfully eliminated morphological
abnormality or sterility (Furukawa et al, 2014), which was
observed when EXGT was constitutively overexpressed in trans-
genic rice plants (Nigorikawa et al., 2012). In addition to the list
of glycosyl hydrolases (Table 4), an Aspergillus niger ferulic acid
esterase (FAE) has been expressed aimed at altering cell wall
composition and reducing recalcitrance during saccharification.
The targeted expression of this FAE to the Golgi in Festuca
arundinacea had no other impact than reduced cell wall ferulates
(~14%-25%) and an up to 4% increase in in vitro dry matter
digestibility on the transgenic plants (Buanafina et al., 2010). This
effect is likely due to disruption of the ester bonds linking FA to
cell wall polysaccharides. For a complete review on in planta
expression of CWD, please see Furtado et al. (2014), Park et al.
(2016), and Willis et al. (2016a).

Although most in planta CWD enzyme expression studies have
assessed the effect of a single gene encoding for single enzyme
activity, complete depolymerisation of lignocellulose requires a
suite of CWD enzymes including cellulases, hemicellulases,
pectinases, polysaccharide lyases, carbohydrate esterases, lac-
cases, peroxidases, and lytic polysaccharide monooxygenases

(LPMOs) with synergistic activities. The principle of producing a
cocktail of enzymes as an auto-hydrolysis system has been applied
to tobacco, with the in planta production of effective enzymes in
the chloroplast that can be used for the generation of fer-
mentable sugars when applied to lignocellulosic biomass (Verma
et al.,, 2010). However, there are only a few reports on gene
stacking or expression of multiple enzymes aimed at in planta
hydrolysis. Agrivida employed the co-expression of an B-(1,4)
endoxylanase with either FAE or an f-(1,4) endoglucanase to
significantly improve hydrolysis (glucose and xylose; and glucose,
respectively) of transgenic maize plants compared to controls
(Zhang et al.,, 2011), although details about potential effects on
plant growth and biomass yield were not reported. An increase in
sugar release (31%) was also reported when a FAE was co-
expressed with a senescence-induced B-(1,4) endoxylanase in
Festuca arundinacea but this was accompanied by a 71%
decrease in biomass (Buanafina et al., 2015). Considerations
around the subcellular targeting of CWD enzymes and spatial and
temporal control of synthesis and/or activation, coupled with in
planta expression of multifunctional chimeric genes provide
possible routes to mitigate against plant growth issues associated
with in planta expression of CWD enzymes.

Non-hydrolytic disruption of lignocellulose (termed amorpho-
genesis) also provides a viable platform to potentially interfere with
cell wall polysaccharide networks and facilitate the accessibility of
cellulose to hydrolytic enzymes. Several non-hydrolytic proteins
such as swollenin, carbohydrate binding modules (CBM), loosenin
and expansins are thought to induce amorphogenesis through
swelling, breaking hydrogen bonding networks and/or pH-
dependent loosening of the cellulose microfibrils or between
cellulose and hemicelluloses without lysis of wall polymers (Arantes
and Saddler, 2010). Some of these proteins have already been
shown to act synergistically when supplemented with hydrolytic
enzyme cocktails and to significantly enhance the efficiency of
grass cell wall digestibility (Bunterngsook et al., 2014; Kim et al.,
2014; Liu et al., 2015). Despite the clear potential of amorpho-
genesis-related proteins for improving cellulose accessibility
through in planta expression, studies, to this end, are merely
confined to the expression of plant expansins. The altered
expression of endogenous plant expansins OsEXP4 and OsEXPA8
in transgenic rice was shown to cause pleiotropic changes in plant
growth and development (Choi et al,, 2003; Ma et al., 2013;
Wang et al., 2014) (Table 4). The authors rationalized this to be a
function of altered cell wall compositions, mechanical properties
and extensibility from the wall loosening action of expansins. There
have been no reports thus far concerning their effect on saccha-
rification and fermentation yields (Table 4).

Recently discovered LPMOs, now classified as auxiliary activity
(AA) enzymes in the CAZy database (Levasseur et al., 2013), have
emerged as key enzymes for the effective degradation of
lignocellulosic biomass and have made a significant contribution
to the improvement of commercial enzyme cocktails. The two
best-characterized families are AA9 (formerly GH61), mostly
fungal enzymes that cleave cellulose chains; and AA10 (formerly
CBM33), mostly bacterial enzymes acting on chitin or cellulose.
AA9 and AA10 LPMOs share similar 3D structural features and
are capable of cleaving polysaccharide chains in their crystalline
contexts using an oxidative mechanism that depends on the
presence of divalent metal ions and an electron donor (Horn
et al., 2012; Vaaje-Kolstad et al,, 2010). The new chain-ends
generated by LPMOs makes the substrates more susceptible to
the activity of glycosyl hydrolases, thus speeding up enzymatic

© 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd, 15, 1071-1092



conversion of biomass (Horn et al.,, 2012). Plant cell walls most
likely contain sufficient concentrations of electrons delivered by
lignin (Dimarogona et al., 2012; Westereng et al., 2015) and of
divalent metal ions (Krzestowska, 2011) to allow for effective
LPMOs activity. Thus, LPMOs could potentially broaden the range
of cell wall degrading enzymes for in planta expression to
facilitate the degradation of cell wall polysaccharides. The
identification of new LPMO families and their polysaccharide
substrates, which besides cellulose and chitin, now also includes
xyloglucan, glucomannan, xylan, MLG, and starch (Hemsworth
et al., 2015), widens the scope for the oxidative in planta
‘pretreatment’ of plant biomass by LPMOs.

Concluding remarks

The prospect of targeted genetic engineering approaches to
improve cell wall biorefining properties of grasses, without
significant growth penalties seems complex and challenging. It is
important that the research devoted to the biotechnological uses of
grasses becomes proportional to their vital significance for the
production of food, feed, and materials, as well as feedstock for
biorefining. With few exceptions, to date, most genetic engineer-
ing approaches to modify cell wall polysaccharides in grasses with
the aim of making its biomass more amenable to bioconversion
have been fairly crude. Irrespective of the strategy (A, B or C), the
development of refined mature genetic engineering approaches in
grasses requires (i) a better understanding of grass secondary cell
wall biosynthesis, including the roles of the individual cell wall-
associated enzymes and their substrate identities, and the fine
cross-links and structures of secondary cell wall components, and
(ii) improved control of the spatiotemporal expression of transge-
nes encoding enzymes with synergistic or complemental function-
alities. With this in mind, rational engineering of cell wall
polysaccharides can contribute to an economically sustainable,
grass-derived lignocellulose processing industry.

Acknowledgements

The authors would like to acknowledge funding for RB from the
Biotechnology and Biological Sciences Research Council (BBSRC)
in the form of an Integrated Biorefining Research and Technology
Club (IBTI) studentship (BB/K500926/1). This work was supported
by a Newton Fund RCUK-CONFAP Research Partnership (BB/
M029212/1) to MB and LG. JG and MB also acknowledge support
from a BBSRC Institute Strategic Programme Grant on Energy
Grasses & Biorefining (BBS/E/W/10963A01). The authors declare
no conflict of interest.

References

Abraham, A., Mathew, A.K., Sindhu, R., Pandey, A. and Binod, P. (2016)
Potential of rice straw for bio-refining: an overview. Bioresour. Technol. 215,
29-36.

Abramson, M., Shoseyov, O. and Shani, Z. (2010) Plant cell wall reconstruction
toward improved lignocellulosic production and processability. Plant Sci. 178,
61-72.

Achyuthan, K.E., Achyuthan, A.M., Adams, P.D., Dirk, S.M., Harper, J.C.,
Simmons, B.A. and Singh, A.K. (2010) Supramolecular self-assembled chaos:
polyphenolic lignin’s barrier to cost-effective lignocellulosic biofuels.
Molecules, 15, 8641-8688.

Agarwal, T., Grotewold, E., Doseff, A.l. and Gray, J. (2016) MYB31/MYB42
syntelogs exhibit divergent regulation of phenylpropanoid genes in maize,
sorghum and rice. Sci. Rep. 6, 28502.

Engineering grass cell wall polysaccharides 1087

Agbor, V.B., Cicek, N., Sparling, R., Berlin, A. and Levin, D.B. (2011) Biomass
pretreatment: fundamentals toward application. Biotechnol. Adv. 29, 675-
685.

Albersheim, P., Darvill, A., Roberts, K., Sederoff, R. and Staehelin, A. (2011) Plant
Cell Walls. New York, NY, USA: Garland Science, Taylor & Francis Group.

Alvira, P., Tomas-Pejo, E., Ballesteros, M. and Negro, M.J. (2010) Pretreatment
technologies for an efficient bioethanol production process based on
enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851-4861.

Ambavaram, M.M.R., Krishnan, A., Trijatmiko, K.R. and Pereira, A. (2011)
Coordinated activation of cellulose and repression of lignin biosynthesis
pathways in rice. Plant Physiol. 155, 916-931.

Anders, N., Wilkinson, M.D., Lovegrove, A., Freeman, J., Tryfona, T., Pellny,
T.K., Weimar, T. et al. (2012) Glycosyl transferases in family 61 mediate
arabinofuranosyl transfer onto xylan in grasses. Proc. Nat/ Acad. Sci. USA,
109, 989-993.

Anderson, W.F., Sarath, G., Edme, S., Casler, M.D., Mitchell, R.B., Tobias, C.M.,
Hale, A.L. et al. (2016) Dedicated herbaceous biomass feedstock genetics
and development. Bioenergy Res. 9, 399-411.

Arantes, V. and Saddler, J.N. (2010) Access to cellulose limits the efficiency of
enzymatic hydrolysis: the role of amorphogenesis. Biotechnol. Biofuels, 3, 4.

Balat, M. (2011) Production of bioethanol from lignocellulosic materials via the
biochemical pathway: a review. Energy Convers. Manag. 52, 858-875.

Banerjee, S. (2010) Commercializing lignocellulosic bioethanol: technology
bottlenecks and possible remedies. Biofuels Bioprod. Bioref. 4, 77-93.

Bartley, L.E., Peck, M.L., Kim, S.R., Ebert, B., Manisseri, C., Chiniquy, D.M.,
Sykes, R. et al. (2013) Overexpression of a BAHD acyltransferase, OsAt10,
alters rice cell wall hydroxycinnamic acid content and saccharification. Plant
Physiol. 161, 1615-1633.

Bhatia, R. and Bosch, M. (2014) Transcriptional regulators of Arabidopsis
secondary cell wall formation: tools to re-program and improve cell wall
traits. Front. Plant Sci. 5, 192.

Binod, P., Sindhu, R., Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S.,
Kurien, N. et al. (2010) Bioethanol production from rice straw: an overview.
Bioresour. Technol. 101, 4767-4774.

Bischoff, K.P., Gravois, K.A., Reagan, T.E., Hoy, J.W., Kimbeng, C.A., LaBorde,
C.M. and Hawkins, G.L. (2008) Registration of ‘L 79-1002" Sugarcane. J.
Plant Regist. 2, 211-217.

Biswas, G.C.G., Ransom, C. and Sticklen, M. (2006) Expression of biologically
active acidothermus cellulolyticus endoglucanase in transgenic maize plants.
Plant Sci. 171, 617-623.

Blimmel, M., Rao, S.S., Palaniswami, S., Shah, L. and Reddy, B.V.S. (2009)
Evaluation of sweet sorghum (Sorghum bicolor L. Moench) used for bio-
ethanol production in the context of optimizing whole plant utilization. Anim.
Nutr. Feed Technol. 9, 1-10.

Boerjan, W., Ralph, J. and Baucher, M. (2003) Lignin biosynthesis. Annu. Rev.
Plant Biol. 54, 519-546.

Bosch, M. and Hepler, P.K. (2005) Pectin methylesterases and pectin dynamics
in pollen tubes. Plant Cell, 17, 3219-3226.

Bosch, M., Mayer, C.D., Cookson, A. and Donnison, I.S. (2011) Identification of
genes involved in cell wall biogenesis in grasses by differential gene
expression profiling of elongating and non-elongating maize internodes. J.
Exp. Bot. 62, 3545-3561.

Broun, P. (2004) Transcription factors as tools for metabolic engineering in
plants. Curr. Opin. Plant Biol. 7, 202-209.

Brunecky, R., Selig, M.J., Vinzant, T.B., Himmel, M.E., Lee, D., Blaylock, M.J.
and Decker, S.R. (2011) In planta expression of A. cellulolyticus Cel5A
endocellulase reduces cell wall recalcitrance in tobacco and maize.
Biotechnol. Biofuels, 4, 1.

Brutnell, T.P., Bennetzen, J.L. and Vogel, J.P. (2015) Brachypodium distachyon
and Setaria viridis: model genetic systems for the grasses. Annu. Rev. Plant
Biol. 66, 465-485.

Buanafina, M.M. de O. (2009) Feruloylation in grasses: current and future
perspectives. Mol. Plant. 2, 861-872.

Buanafina, M.M. de O., Langdon, T., Hauck, B., Dalton, S.J. and Morris, P.
(2006) Manipulating the phenolic acid content and digestibility of Italian
ryegrass (Lolium multiflorum) by vacuolar-targeted expression of a fungal
ferulic acid esterase. Appl. Biochem. Biotechnol. 129-132, 416-426.

© 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd, 15, 1071-1092



1088 Rakesh Bhatia et al.

Buanafina, M.M. de O., Langdon, T., Hauck, B., Dalton, S. and Morris, P. (2008)
Expression of a fungal ferulic acid esterase increases cell wall digestibility of
tall fescue (Festuca arundinacea). Plant Biotechnol. J. 6, 264-280.

Buanafina, M.M. de O., Langdon, T., Hauck, B., Dalton, S., Timms-Taravella, E.
and Morris, P. (2010) Targeting expression of a fungal ferulic acid esterase to
the apoplast, endoplasmic reticulum or golgi can disrupt feruloylation of the
growing cell wall and increase the biodegradability of tall fescue (Festuca
arundinacea). Plant Biotechnol. J. 8, 316-331.

Buanafina, M.M. de O., Langdon, T., Dalton, S. and Morris, P. (2012) Expression
of a Trichoderma reesei B-1,4 endo-xylanase in tall fescue modifies cell wall
structure and digestibility and elicits pathogen defence responses. Planta,
236, 1757-1774.

Buanafina, M.M. de O., Dalton, S., Langdon, T., Timms-Taravella, E., Shearer,
E.A. and Morris, P. (2015) Functional co-expression of a fungal ferulic acid
esterase and a B-1,4 endoxylanase in Festuca arundinacea (tall fescue)
modifies post-harvest cell wall deconstruction. Planta, 242, 97-111.

Bunterngsook, B., Mhuantong, W., Champreda, V., Thamchaiphenet, A. and
Eurwilaichitr, L. (2014) Identification of novel bacterial expansins and their
synergistic actions on cellulose degradation. Bioresour. Technol. 159, 64-71.

Burr, S.J. and Fry, S.C. (2009) Feruloylated arabinoxylans are oxidatively cross-
linked by extracellular maize peroxidase but not by horseradish peroxidase.
Mol. Plant. 2, 833-892.

Burton, R.A. and Fincher, G.B. (2009) (1,3;1,4)-beta-D-glucans in cell walls of
the poaceae, lower plants, and fungi: a tale of two linkages. Mol. Plant. 2,
873-882.

Burton, R.A., Wilson, S.M., Hrmova, M., Harvey, A.J., Shirley, N.J., Medhurst,
A., Stone, B.A. et al. (2006) Cellulose synthase-like CsIF genes mediate the
synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science, 311, 1940-1942.

Burton, R.A., Collins, H.M., Kibble, N.A.J., Smith, J.A., Shirley, N.J., Jobling,
S.A., Henderson, M. et al. (2011) Over-expression of specific HVCslF cellulose
synthase-like genes in transgenic barley increases the levels of cell wall
(1,3;1,4)-B-d-glucans and alters their fine structure. Plant Biotechnol. J. 9,
117-135.

Byrt, C.S., Grof, C.P.L. and Furbank, R.T. (2011) C4 plants as biofuel feedstocks:
optimising biomass production and feedstock quality from a lignocellulosic
perspective. J. Integr. Plant Biol. 53, 120-135.

Carpita, N.C. (2012) Progress in the biological synthesis of the plant cell wall:
new ideas for improving biomass for bioenergy. Curr. Opin. Biotechnol. 23,
330-337.

Carpita, N.C. and McCann, M.C. (2008) Maize and sorghum: genetic resources
for bioenergy grasses. Trends Plant Sci. 13, 415-420.

Carpita, N.C. and McCann, M.C. (2010) The maize mixed-linkage (1/3), (1/4)-B-
D-glucan polysaccharide is synthesized at the Golgi membrane. Plant Physiol.
153, 1362-1371.

Carroll, A. and Somerville, C. (2009) Cellulosic biofuels. Annu. Rev. Plant Biol.
60, 165-182.

Cassan-Wang, H., Goué, N., Saidi, M.N., Legay, S., Sivadon, P., Goffner, D. and
Grima-Pettenati, J. (2013) Identification of novel transcription factors
regulating secondary cell wall formation in Arabidopsis. Front. Plant Sci. 4,
189.

Cesarino, 1., Simoes, M.S., dos Santos Brito, M., Fanelli, A., da Franca Silva, T.
and Romanel, E. (2016) Building the wall: recent advances in understanding
lignin metabolism in grasses. Acta Physiol. Plant. 38, 269.

Chai, M., Bellizzi, M., Wan, C., Cui, Z., Li, Y. and Wang, G.L. (2015) The NAC
transcription factor OsSWN1 regulates secondary cell wall development in
Oryza sativa. J. Plant Biol. 58, 44-51.

Chandel, A.K., Chandrasekhar, G., Silva, M.B. and da Silva, S.S. (2012) The
realm of cellulases in biorefinery development. Crit. Rev. Biotechnol. 32, 187—
202.

Chen, X., Shekiro, J., Franden, M.A., Wang, W., Zhang, M., Kuhn, E., Johnson,
D.K. etal (2012) The impacts of deacetylation prior to dilute acid
pretreatment on the bioethanol process. Biotechnol. Biofuels, 5, 8.

Chiniquy, D., Sharma, V., Schultink, A., Baidoo, E.E., Rautengarten, C., Cheng,
K., Carroll, A. et al. (2012) XAX1 from glycosyltransferase family 61 mediates
xylosyltransfer to rice xylan. Proc. Natl Acad. Sci. USA, 109, 17117-17122.

Chiniquy, D., Varanasi, P., Oh, T., Harholt, J., Katnelson, J., Singh, S., Auer, M.
et al. (2013) Three novel rice genes closely related to the Arabidopsis IRX9,

IRX9L, and IRX14 genes and their roles in xylan biosynthesis. Front. Plant Sci.
4, 83.

Choi, D., Lee, Y., Cho, H.T. and Kende, H. (2003) Regulation of expansin gene
expression affects growth and development in transgenic rice plants. Plant
Cell, 15, 1386-1398.

Chou, H.L., Dai, Z., Hsieh, C.W. and Ku, M.S. (2011) High level expression of
Acidothermus cellulolyticus B-1, 4-endoglucanase in transgenic rice enhances
the hydrolysis of its straw by cultured cow gastric fluid. Biotechnol. Biofuels,
4, 58.

Chum, H.L., Warner, E., Seabra, J.E.A. and Macedo, I.C. (2014) A comparison
of commercial ethanol production systems from Brazilian sugarcane and US
corn. Biofuels Bioprod. Bioref. 8, 205-223.

Clifton-Brown, J., Hastings, A., Mos, M., McCalmont, J.P., Ashman, C., Awty-
Carroll, D., Cerazy, J. et al. (2017) Progress in upscaling Miscanthus biomass
production for the European bio- economy with seed based hybrids. GCB
Bioenergy, 9, 6-17.

Cosgrove, D.J. (1997) Assembly and enlargement of the primary cell wall in
plants. Annu. Rev. Cell Dev. Biol. 13, 171-201.

da Costa, R.M.F., Pattathil, S., Avci, U., Lee, S.J., Hazen, S.P., Winters, A., Hahn,
M.G. et al. (2017) A cell wall reference profile for Miscanthus bioenergy
crops highlights compositional and structural variations associated with
development and organ origin. New Phytol. 213, 1710-1725.

De Oliveira, D.M., Finger-Teixeira, A., Rodrigues Mota, T., Salvador, V.H.,
Moreira-Vilar, F.C., Correa Molinari, H.B., Craig Mitchell, R.A. et al. (2015)
Ferulic acid: a key component in grass lignocellulose recalcitrance to
hydrolysis. Plant Biotechnol. J. 13, 1224-1232.

De Setta, N., Monteiro-Vitorello, C.B., Metcalfe, C.J., Cruz, G.M.Q., Del Bem,
L.E., Vicentini, R., Nogueira, F.T.S. et al. (2014) Building the sugarcane
genome for biotechnology and identifying evolutionary trends. BMC Genom.
15, 540.

De Souza, A.P., Leite, D.C.C., Pattathil, S., Hahn, M.G. and Buckeridge, M.S.
(2013) Composition and structure of sugarcane cell wall polysaccharides:
implications for second-generation bioethanol production. Bioenergy Res. 6,
564-579.

De Souza, A.P., Kamei, C.L.A., Torres, A.F., Pattathil, S., Hahn, M.G., Trindade,
L.M. and Buckeridge, M.S. (2015) How cell wall complexity influences
saccharification efficiency in Miscanthus sinensis. J. Exp. Bot. 66, 4351-4365.

DeMartini, J.D., Pattathil, S., Miller, J.S., Li, H., Hahn, M.G. and Wyman, C.E.
(2013) Investigating plant cell wall components that affect biomass
recalcitrance in poplar and switchgrass. Energy Environ. Sci. 6, 898-909.

Dimarogona, M., Topakas, E. and Christakopoulos, P. (2012) Cellulose
degradation by oxidative enzymes. Comput. Struct. Biotechnol. J. 2,
€201209015.

Doblin, M.S., Pettolino, F.A., Wilson, S.M., Campbell, R., Burton, R.A., Fincher,
G.B., Newbigin, E. et al. (2009) A Barley cellulose synthase-like CSLH gene
mediates (1,3; 1,4)-B-D-glucan synthesis in transgenic Arabidopsis. Proc. Nat/
Acad. Sci. USA, 106, 5996-6001.

Dong, S., Delucca, P., Geijskes, R.J., Ke, J., Mayo, K., Mai, P., Sainz, M. et al.
(2014) Advances in Agrobacterium-mediated sugarcane transformation and
stable transgene expression. Sugar Tech. 16, 366-371.

Du, H., Feng, B.R., Yang, S.S., Huang, Y.B. and Tang, Y.X. (2012) The R2R3-
MYB transcription factor gene family in maize. PLoS ONE, 7, e37463.

Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C. and Lepiniec, L.
(2010) MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573—
581.

Ebringerova, A. and Heinze, T. (2000) Xylan and xylan derivatives — biopolymers
with valuable properties, 1 — Naturally occurring xylans structures, isolation
procedures and properties. Macromol. Rapid Commun. 21, 542-556.

Ebringerova, A., Hromadkova, Z. and Heinze, T. (2005) Hemicellulose. Adv.
Polym. Sci. 186, 1-67.

Eudes, A., Liang, Y., Mitra, P. and Loqué, D. (2014) Lignin bioengineering. Curr.
Opin. Biotechnol. 26, 189-198.

Faik, A. (2010) Xylan biosynthesis: news from the grass. Plant Physiol. 153,
396-402.

Falter, C., Zwikowics, C., Eggert, D., Blimke, A., Naumann, M., Wolff, K.,
Ellinger, D. et al. (2015) Glucanocellulosic ethanol: the undiscovered biofuel
potential in energy crops and marine biomass. Sci. Rep. 5, 13722.

© 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd, 15, 1071-1092



FAOSTAT (2016) Food Agric. Organ. United Nations Stat. Div. Available at:
http:/faostat3.fao.org.

Feltus, F.A. and Vandenbrink, J.P. (2012) Bioenergy grass feedstock: current
options and prospects for trait improvement using emerging genetic,
genomic, and systems biology toolkits. Biotechnol. Biofuels, 5, 80.

Fornalé, S., Sonbol, F.M., Maes, T., Capellades, M., Puigdomenech, P., Rigau, J.
and Caparrés-Ruiz, D. (2006) Down-regulation of the maize and Arabidopsis
thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-
MYB transcription factors. Plant Mol. Biol. 62, 809-823.

Fornalé, S., Shi, X., Chai, C., Encina, A., Irar, S., Capellades, M., Fuguet, E. et al.
(2010) ZmMYB31 directly represses maize lignin genes and redirects the
phenylpropanoid metabolic flux. Plant J. 64, 633-644.

Fouad, W.M., Hao, W., Xiong, Y., Steeves, C., Sandhu, S.K. and Altpeter, F.
(2015) Generation of transgenic energy cane plants with integration of minimal
transgene expression cassette. Curr. Pharm. Biotechnol. 16, 407-413.

Frame, B., Main, M., Schick, R. and Wang, K. (2011) Genetic transformation
using maize immature zygotic embryos. Methods Mol. Biol. 710, 327-341.

Furtado, A., Lupoi, J.S., Hoang, N.V., Healey, A., Singh, S., Simmons, B.A. and
Henry, R.J. (2014) Modifying plants for biofuel and biomaterial production.
Plant Biotechnol. J. 12, 1246-1258.

Furukawa, K., Ichikawa, S., Nigorikawa, M., Sonoki, T. and Ito, Y. (2014)
Enhanced production of reducing sugars from transgenic rice expressing exo-
glucanase under the control of a senescence-inducible promoter. Transgenic
Res. 23, 531-537.

Galbe, M. and Zacchi, G. (2012) Pretreatment: the key to efficient utilization of
lignocellulosic materials. Biomass Bioenerg. 46, 70-78.

Grabber, J.H., Hatfield, R.D. and Ralph, J. (1998a) Diferulate cross-links impede
the enzymatic degradation of non-lignified maize walls. J. Sci. Food Agric. 77,
193-200.

Grabber, J.H., Ralph, J. and Hatfield, R.D. (1998b) Ferulate cross-links limit the
enzymatic degradation of synthetically lignified primary walls of maize. J.
Agric. Food Chem. 46, 2609-2614.

Gray, B.N., Bougri, O., Carlson, A.R., Meissner, J., Pan, S., Parker, M.H., Zhang,
D. et al. (2011) Global and grain-specific accumulation of glycoside hydrolase
family 10 xylanases in transgenic maize (Zea mays). Plant Biotechnol. J. 9,
1100-1108.

Grotewold, E. (2008) Transcription factors for predictive plant metabolic
engineering: are we there yet? Curr. Opin. Biotechnol. 19, 138-144.

Hall, M., Bansal, P., Lee, J.H., Realff, M.J. and Bommarius, A.S. (2010) Cellulose
crystallinity - A key predictor of the enzymatic hydrolysis rate. FEBS J. 277,
1571-1582.

Handakumbura, P.P. and Hazen, S.P. (2012) Transcriptional regulation of grass
secondary cell wall biosynthesis: playing catch-up with Arabidopsis thaliana.
Front. Plant Sci. 3, 74.

Harholt, J., Suttangkakul, A. and Scheller, H.V. (2010a) Biosynthesis of pectin.
Plant Physiol. 153, 384-395.

Harholt, J., Bach, I.C., Lind-Bouquin, S., Nunan, K.J., Madrid, S.M., Brinch-
Pedersen, H., Holm, P.B. et al. (2010b) Generation of transgenic wheat
(Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic
acid esterase in the endosperm. Plant Biotechnol. J. 8, 351-362.

Harris, D.M., Corbin, K., Wang, T., Gutierrez, R., Bertolo, A.L., Petti, C.,
Smilgies, D.M. et al. (2012) Cellulose microfibril crystallinity is reduced by
mutating C-terminal transmembrane region residues CESATA903V and
CESA3T942| of cellulose synthase. Proc. Natl Acad. Sci. USA, 109, 4098-
4103.

Harrison, M.D., Geijskes, J., Coleman, H.D., Shand, K., Kinkema, M., Palupe, A.,
Hassall, R. et al. (2011) Accumulation of recombinant cellobiohydrolase and
endoglucanase in the leaves of mature transgenic sugar cane. Plant
Biotechnol. J. 9, 884-896.

Harrison, M.D., Zhang, Z., Shand, K., Chong, B., Nichols, J., Oeller, P., O'Hara,
I.M. et al. (2014a) The combination of plant-expressed cellobiohydrolase and
low dosages of cellulases for the hydrolysis of sugar cane bagasse.
Biotechnol. Biofuels, 7, 131.

Harrison, M.D., Geijskes, R.J., Lloyd, R., Miles, S., Palupe, A., Sainz, M.B. and
Dale, J.L. (2014b) Recombinant cellulase accumulation in the leaves of
mature, vegetatively propagated transgenic sugarcane. Mol. Biotechnol. 56,
795-802.

Engineering grass cell wall polysaccharides 1089

Heaton, E., Voigt, T. and Long, S.P. (2004) A quantitative review comparing the
yields of two candidate C4 perennial biomass crops in relation to nitrogen,
temperature and water. Biomass Bioenerg. 27, 21-30.

Helle, S., Cameron, D., Lam, J., White, B. and Duff, S. (2003) Effect of inhibitory
compounds found in biomass hydrolysates on growth and xylose
fermentation by a genetically engineered strain of S. cerevisiae. Enzyme
Microb. Technol. 33, 786-792.

Hemsworth, G.R., Johnston, E.M., Davies, G.J. and Walton, P.H. (2015) Lytic
polysaccharide monooxygenases in biomass conversion. Trends Biotechnol.
33, 747-761.

Hirano, K., Aya, K., Morinaka, Y., Nagamatsu, S., Sato, Y., Antonio, B.A., Namiki,
N. et al. (2013) Survey of genes involved in rice secondary cell wall formation
through a co-expression network. Plant Cell Physiol. 54, 1803-1821.

Hood, E.E., Love, R., Lane, J., Bray, J., Clough, R., Pappu, K., Drees, C. et al.
(2007) Subcellular targeting is a key condition for high-level accumulation of
cellulase protein in transgenic maize seed. Plant Biotechnol. J. 5, 709-719.

Horn, S.J., Vaaje-Kolstad, G., Westereng, B. and Eijsink, V.G. (2012) Novel
enzymes for the degradation of cellulose. Biotechnol. Biofuels, 5, 45.

Huang, X. and Wei, Z. (2005) Successful Agrobacterium-mediated genetic
transformation of maize elite inbred lines. Plant Cell, Tissue Organ Cult. 83,
187-200.

Hussey, S.G., Mizrachi, E., Creux, N.M. and Myburg, A.A. (2013) Navigating the
transcriptional roadmap regulating plant secondary cell wall deposition.
Front. Plant Sci. 4, 325.

Hwang, O.J., Cho, M.A,, Han, Y.J., Kim, Y.M., Lim, S.H., Kim, D.S., Hwang, I.
et al. (2014) Agrobacterium-mediated genetic transformation of Miscanthus
sinensis. Plant Cell, Tissue Organ Cult. 117, 51-63.

liyama, K. and Lam, T.B.T. (2001) Structural characteristics of cell walls of forage
grasses — Their nutritional value for ruminant — A review. Asian-Australasian J.
Anim. Sci. 14, 869-879.

Ishida, Y., Hiei, Y. and Komari, T. (2007) Agrobacterium-mediated
transformation of maize. Nat. Protoc. 2, 1614-1621.

Ishii, T. (1997) Structure and functions of feruloylated polysaccharides. Plant Sci.
127, 111-127.

Jonsson, L.J., Alriksson, B. and Nilvebrant, N.O. (2013) Bioconversion of
lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels, 6, 16.

Jung, H.J.G., Ralph, J. and Hatfield, R.D. (1991) Degradability of phenolic acid-
hemicellulose esters: a model system. J. Sci. Food Agric. 56, 469-478.

Kiemle, S.N., Zhang, X., Esker, A.R., Toriz, G., Gatenholm, P. and Cosgrove, D.J.
(2014) Role of (1,3)(1,4)-B-glucan in cell walls: interaction with cellulose.
Biomacromol, 15, 1727-1736.

Kim, S. and Dale, B.E. (2004) Global potential bioethanol production from
wasted crops and crop residues. Biomass Bioenerg. 26, 361-375.

Kim, W.C., Ko, J.H., Kim, J.Y., Kim, J., Bae, H.J. and Han, K.H. (2013) MYB46
directly regulates the gene expression of secondary wall-associated cellulose
synthases in Arabidopsis. Plant J. 73, 26-36.

Kim, 1.J., Lee, H.J., Choi, I.G. and Kim, K.H. (2014) Synergistic proteins for the
enhanced enzymatic hydrolysis of cellulose by cellulase. Appl. Microbiol.
Biotechnol. 98, 8469-8480.

Kimura, T., Mizutani, T., Tanaka, T., Koyama, T., Sakka, K. and Ohmiya, K.
(2003) Molecular breeding of transgenic rice expressing a xylanase domain of
the xynA gene from Clostridium thermocellum. Appl. Microbiol. Biotechnol.
62, 374-379.

Kimura, T., Mizutani, T., Sun, J.L., Kawazu, T., Karita, S., Sakka, M., Kobayashi,
Y. et al. (2010) Stable production of thermotolerant xylanase B of Clostridium
stercorarium in transgenic tobacco and rice. Biosci. Biotechnol. Biochem. 74,
954-960.

Klein, T.M., Kornstein, L., Sanford, J.C. and Fromm, M.E. (1989) Genetic
transformation of maize cells by particle bombardment. Plant Physiol. 91,
440-444.

Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B.A. and Blanch,
H.W. (2012) The challenge of enzyme cost in the production of lignocellulosic
biofuels. Biotechnol. Bioeng. 109, 1083-1087.

Konishi, T., Aohara, T., Igasaki, T., Hayashi, N., Miyazaki, Y., Takahashi, A.,
Hirochika, H. et al. (2011) Down-regulation of UDP-arabinopyranose mutase
reduces the proportion of arabinofuranose present in rice cell walls.
Phytochemistry, 72, 1962-1968.

© 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd, 15, 1071-1092


http://faostat3.fao.org

1090 Rakesh Bhatia et al.

Krzestowska, M. (2011) The cell wall in plant cell response to trace metals:
polysaccharide remodeling and its role in defense strategy. Acta Physiol.
Plant. 33, 35-51.

Lairez, D., Cathala, B., Monties, B., Bedos-Belval, F., Duran, H. and Gorrichon, L.
(2005) Aggregation during coniferyl alcohol polymerization in pectin solution:
a biomimetic approach of the first steps of lignification. Biomacromol, 6,
763-774.

Lam, T.B.T., Kadoya, K. and liyama, K. (2001) Bonding of hydroxycinnamic acids
to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl
position of lignin, not the B-position, in grass cell walls. Phytochemistry, 57,
987-992.

Lam, T.B.T., liyama, K. and Stone, B.A. (2003) Hot alkali-labile linkages in the
walls of the forage grass Phalaris aquatica and Lolium perenne and their
relation to in vitro wall digestibility. Phytochemistry, 64, 603-607.

Latarullo, M.B.G., Tavares, E.Q.P., Maldonado, G.P., Leite, D.C.C. and
Buckeridge, M.S. (2016) Pectins, endopolygalacturonases, and bioenergy.
Front. Plant Sci. 7, 1401.

Lee, C., Teng, Q., Zhong, R., Yuan, Y. and Ye, Z.H. (2014) Functional roles of
rice glycosyltransferase family GT43 in xylan biosynthesis. Plant Signal. Behav.
9, €27809.

Leon, R.G., Gilbert, R.A. and Comstock, J.C. (2015) Energycane (Saccharum
spp. x Saccharum spontaneum L.) biomass production, reproduction, and
weed risk assessment scoring in the humid tropics and subtropics. Agron. J.
107, 323-329.

Levasseur, A., Drula, E., Lombard, V., Coutinho, P.M. and Henrissat, B. (2013)
Expansion of the enzymatic repertoire of the CAZy database to integrate
auxiliary redox enzymes. Biotechnol. Biofuels, 6, 41.

Li, J., Ye, X., An, B., Du, L. and Xu, H. (2012) Genetic transformation of wheat:
current status and future prospects. Plant Biotechnol. Rep. 6, 183-193.

Li, M., Pattathil, S., Hahn, M.G. and Hodge, D.B. (2014) Identification of
features associated with plant cell wall recalcitrance to pretreatment by
alkaline hydrogen peroxide in diverse bioenergy feedstocks using glycome
profiling. R. Soc. Chem. Adv. 4, 17282-17292.

Lionetti, V., Francocci, F., Ferrari, S., Volpi, C., Bellincampi, D., Galletti, R.,
D’Ovidio, R. et al. (2010) Engineering the cell wall by reducing de-methyl-
esterified homogalacturonan improves saccharification of plant tissues for
bioconversion. Proc. Natl Acad. Sci. USA, 107, 616-621.

Liu, G. and Godwin, I.D. (2012) Highly efficient sorghum transformation. Plant
Cell Rep. 31, 999-1007.

Liu, X., Ma, Y. and Zhang, M. (2015) Research advances in expansins and
expansion-like proteins involved in lignocellulose degradation. Biotechnol.
Lett. 37, 1541-1551.

Liu, B., Gomez, L.D., Hua, C., Sun, L., Ali, I, Huang, L., Yu, C. et al. (2016)
Linkage mapping of stem saccharification digestibility in rice. PLoS ONE, 11,
e0159117.

Lovegrove, A., Wilkinson, M.D., Freeman, J., Pellny, T.K., Tosi, P., Saulnier, L.,
Shewry, P.R. et al. (2013) RNA interference suppression of genes in glycosy!
transferase families 43 and 47 in wheat starchy endosperm causes large
decreases in arabinoxylan content. Plant Physiol. 163, 95-107.

Ma, Q.-H., Wang, C. and Zhu, H.-H. (2011) TaMYB4 cloned from wheat
regulates lignin biosynthesis through negatively controlling the transcripts of
both cinnamyl alcohol dehydrogenase and cin- namoyl-CoA reductase genes.
Biochimie, 93, 1179-1186.

Ma, N., Wang, Y., Qiu, S., Kang, Z., Che, S., Wang, G. and Huang, J. (2013)
Overexpression of OsEXPAS8, a root-specific gene, improves rice growth
and root system architecture by facilitating cell extension. PLoS ONE, 8,
e75997.

Marriott, P.E., Gémez, L.D. and McQueen-Mason, S.J. (2015) Unlocking the
potential of lignocellulosic biomass through plant science. New Phytol. 209,
1366-1381.

Martin, C., Luo, J., Lebouteiller, B., Mock, H.P., Matros, A., Peterek, S., Schijlen,
E.GW.M. et al. (2012) Combining genomics and metabolomics for the
discovery of regulatory genes and their use in metabolic engineering to
produce ‘Healthy Foods'. Acta Hort. 941, 73-84.

Mayavan, S., Subramanyam, K., Jaganath, B., Sathish, D., Manickavasagam, M.
and Ganapathi, A. (2015) Agrobacterium-mediated in planta genetic
transformation of sugarcane setts. Plant Cell Rep. 34, 1835-1848.

Mei, C., Park, S.H., Sabzikar, R., Qi, C., Ransom, C. and Sticklen, M. (2009)
Green tissue-specific production of a microbial endo-cellulase in maize (Zea
mays L.) endoplasmic-reticulum and mitochondria converts cellulose into
fermentable sugars. J. Chem. Technol. Biotechnol. 84, 689-695.

Meikle, P.J., Hoogenraad, N.J., Bonig, I., Clarke, A.E. and Stone, B.A. (1994) A
(1-3,1-4)-B-glucan-specific monoclonal antibody and its use in the
quantitation and immunocytochemical location of (1-3,1-4)-B-glucans. Plant
J. 5, 1-9.

Merrick, P. and Fei, S. (2015) Plant regeneration and genetic transformation in
switchgrass - A review. J. Integr. Agric. 14, 483-493.

Mitchell, R.A.C., Dupree, P. and Shewry, P.R. (2007) A novel bioinformatics
approach identifies candidate genes for the synthesis and feruloylation of
arabinoxylan. Plant Physiol. 144, 43-53.

Mohnen, D. (2008) Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11,
266-277.

Mottiar, Y., Vanholme, R., Boerjan, W., Ralph, J. and Mansfield, S.D. (2016)
Designer lignins: harnessing the plasticity of lignification. Curr. Opin.
Biotechnol. 37, 190-200.

Nguyen, V.H., Topno, S., Balingbing, C., Nguyen, V.C.N., Réder, M., Quilty, J.,
Jamieson, C. et al. (2016) Generating a positive energy balance from using
rice straw for anaerobic digestion. Energy Reports. 2, 117-122.

Nigorikawa, M., Watanabe, A., Furukawa, K., Sonoki, T. and Ito, Y. (2012)
Enhanced saccharification of rice straw by overexpression of rice exo-
glucanase. Rice, 5, 14.

Noda, S., Koshiba, T., Hattori, T., Yamaguchi, M., Suzuki, S. and Umezawa, T.
(2015) The expression of a rice secondary wall-specific cellulose synthase
gene, OsCesA7, is directly regulated by a rice transcription factor, OsMYB58/
63. Planta, 242, 589-600.

Nordberg, H., Cantor, M., Dusheyko, S., Hua, S., Poliakov, A., Shabalov, I.,
Smirnova, T. et al. (2014) The genome portal of the department of energy
joint genome institute: 2014 updates. Nucleic Acids Res. 42, 26-31.

Oanh, N.T., Bich, T.L., Tipayarom, D., Manadhar, B.R., Prapat, P., Simpson, C.D.
and Liu, L.J. (2011) Characterization of particulate matter emission from open
burning of rice straw. Atmos. Environ. 45, 493-502.

Olsen, A.N., Emnst, H.A., Leggio, L.L. and Skriver, K. (2005) NAC transcription
factors: structurally distinct, functionally diverse. Trends Plant Sci. 10, 79-87.

O'Neill, M.A. and York, W.S. (2003) The composition and structure of plant
primary cell walls. In The Plant Cell Wall (Rose, J.K.C., ed), pp. 1-54. Boca
Raton, FL: CRC Press.

Oraby, H., Venkatesh, B., Dale, B., Ahmad, R., Ransom, C., Oehmke, J. and
Sticklen, M. (2007) Enhanced conversion of plant biomass into glucose using
transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic
Res. 16, 739-749.

Park, S.H., Ransom, C., Mei, C., Sabzikar, R., Qi, C., Chundawat, S., Dale, B.
et al. (2011) The quest for alternatives to microbial cellulase mix production:
corn stover-produced heterologous multi-cellulases readily deconstruct
lignocellulosic  biomass into fermentable sugars. J. Chem. Technol.
Biotechnol. 86, 633-641.

Park, S.H., Ong, R.G. and Sticklen, M. (2016) Strategies for the production of
cell wall-deconstructing enzymes in lignocellulosic biomass and their
utilization for biofuel production. Plant Biotechnol. J. 14, 1329-1344.

Patel, M., Johnson, J.S., Brettell, R.I.S., Jacobsen, J. and Xue, G.P. (2000)
Transgenic barley expressing a fungal xylanase gene in the endosperm of the
developing grains. Mol. Breed. 6, 113-123.

Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J.,
Gundlach, H., Haberer, G. et al. (2009) The Sorghum bicolor genome and the
diversification of grasses. Nature, 457, 551-556.

Pauly, M. and Keegstra, K. (2010) Plant cell wall polymers as precursors for
biofuels. Curr. Opin. Plant Biol. 13, 304-311.

Pauly, M., Gille, S., Liu, L., Mansoori, N., de Souza, A., Schultink, A. and Xiong,
G. (2013) Hemicellulose biosynthesis. Planta, 238, 627-642.

Pawar, P.M., Derba-Maceluch, M., Chong, S.L., Gémez, L.D., Miedes, E.,
Banasiak, A., Ratke, C. et al. (2016) Expression of fungal acetyl xylan esterase
in Arabidopsis thaliana improves saccharification of stem lignocellulose. Plant
Biotechnol. J. 14, 387-397.

Pellny, T.K., Lovegrove, A., Freeman, J., Tosi, P., Love, C.G., Knox, J.P., Shewry,
P.R. etal (2012) Cell walls of developing wheat starchy endosperm:

© 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd, 15, 1071-1092



comparison of composition and RNA-seq transcriptome. Plant Physiol. 158,
612-627.

Pereira-Santana, A., Alcaraz, L.D., Castano, E., Sanchez-Calderon, L., Sanchez-
Teyer, F. and Rodriguez-Zapata, L. (2015) Comparative genomics of NAC
transcriptional factors in angiosperms: implications for the adaptation and
diversification of flowering plants. PLoS ONE, 10, e0141866.

Phitsuwan, P., Sakka, K. and Ratanakhanokchai, K. (2013) Improvement of
lignocellulosic biomass in planta: a review of feedstocks, biomass
recalcitrance, and strategic manipulation of ideal plants designed for
ethanol production and processability. Biomass Bioenerg. 58, 390-405.

Pogorelko, G., Lionetti, V., Fursova, O., Sundaram, R.M., Qi, M., Whitham, S.A.,
Bogdanove, A.J. et al. (2013) Arabidopsis and Brachypodium distachyon
transgenic plants expressing Aspergillus nidulans acetylesterases have
decreased degree of polysaccharide acetylation and increased resistance to
pathogens. Plant Physiol. 162, 9-23.

Poovaiah, C.R., Nageswara-Rao, M., Soneji, J.R., Baxter, H.L. and Stewart, C.N.
(2014) Altered lignin biosynthesis using biotechnology to improve
lignocellulosic biofuel feedstocks. Plant Biotechnol. J. 12, 1163-1173.

Poovaiah, C.R., Bewg, W.P., Lan, W., Ralph, J. and Coleman, H.D. (2016)
Sugarcane transgenics expressing MYB transcription factors show improved
glucose release. Biotechnol. Biofuels, 9, 143.

Que, Q., Elumalai, S., Li, X., Zhong, H., Nalapalli, S., Schweiner, M., Fei, X. et al.
(2014) Maize transformation technology development for commercial event
generation. Front. Plant Sci. 5, 379.

Raghuwanshi, A. and Birch, R.G. (2010) Genetic transformation of sweet
sorghum. Plant Cell Rep. 29, 997-1005.

Ralph, J., Bunzel, M., Marita, J.M., Hatfield, R.D., Lu, F., Kim, H., Schatz, P.F.
et al. (2004) Peroxidase-dependent cross-linking reactions of p-
hydroxycinnamates in plant cell walls. Phytochem. Rev. 3, 79-96.

Ramamoorthy, R. and Kumar, P.P. (2012) A simplified protocol for genetic
transformation of switchgrass (Panicum virgatum L.). Plant Cell Rep. 31,
1923-1931.

Ransom, C., Balan, V., Biswas, G., Dale, B., Crockett, E. and Sticklen, M. (2007)
Heterologous Acidothermus cellulolyticus 1,4-B-endoglucanase E1 produced
within the corn biomass converts corn stover into glucose. Appl. Biochem.
Biotechnol. 137, 207-219.

Reece-Hoyes, J.S. and Walhout, A.J. (2012) Gene-centered yeast one-hybrid
assays. Methods Mol. Biol. 812, 189-208.

Renewable Fuels Association (2017) Available at: http:/ethanolrfa.org/wp-
content/uploads/2017/02/Ethanol-Industry-Outlook-2017.pdf.

Rennie, E.A. and Scheller, H.V. (2014) Xylan biosynthesis. Curr. Opin.
Biotechnol. 26, 100-107.

Rubin, E.M. (2008) Genomics of cellulosic biofuels. Nature, 454, 841-845.
Sah, S.K., Kaur, A., Kaur, G. and Singh Cheema, G. (2014) Genetic
transformation of rice: problems, progress and prospects. Rice Res. 3, 132.
Sarkar, N., Ghosh, S.K., Bannerjee, S. and Aikat, K. (2012) Bioethanol

production from agricultural wastes: an overview. Renew. Energy, 37, 19-27.

Saulnier, L., Crépeau, M.J., Lahaye, M., Thibault, J.F., Garcia-Conesa, M.T.,
Kroon, P.A. and Williamson, G. (1999) Isolation and structural determination
of two 5,5'-diferuloyl oligosaccharides indicate that maize heteroxylans are
covalently cross-linked by oxidatively coupled ferulates. Carbohydr. Res. 320,
82-92.

Scheller, H.V. and Ulvskov, P. (2010) Hemicelluloses. Annu. Rev. Plant Biol. 61,
263-289.

Schultink, A., Naylor, D., Dama, M. and Pauly, M. (2015) The role of the plant-
specific ALTERED XYLOGLUCAN9 protein in Arabidopsis cell wall
polysaccharide O-acetylation. Plant Physiol. 167, 1271-1283.

Scully, E.D., Gries, T., Sarath, G., Palmer, N.A., Baird, L., Serapiglia, M.J., Dien,
B.S. etal. (2016) Overexpression of SbMyb60 impacts phenylpropanoid
biosynthesis and alters secondary cell wall composition in Sorghum bicolor.
Plant J. 85, 378-395.

Selig, M.J., Adney, W.S., Himmel, M.E. and Decker, S.R. (2009) The impact of
cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic
enzymes. Cellulose, 16, 711-722.

Shen, H., He, X., Poovaiah, C.R., Wuddineh, W.A., Ma, J., Mann, D.G.J., Wang,
H. et al. (2012a) Functional characterization of the switchgrass (Panicum
virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of
lignocellulosic feedstocks. New Phytol. 193, 121-136.

Engineering grass cell wall polysaccharides 1091

Shen, B., Sun, X., Zuo, X., Shilling, T., Apgar, J., Ross, M., Bougri, O. et al.
(2012b) Engineering a thermoregulated intein-modified xylanase into maize
for consolidated lignocellulosic biomass processing. Nat. Biotechnol. 30,
1131-1136.

Shen, H., Poovaiah, C.R., Ziebell, A., Tschaplinski, T.J., Pattathil, S., Gjersing, E.,
Engle, N.L. et al. (2013) Enhanced characteristics of genetically modified
switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnol.
Biofuels, 6, 71.

Sims, R.E.H., Mabee, W., Saddler, J.N. and Taylor, M. (2010) An overview of
second generation biofuel technologies. Bioresour. Technol. 101, 1570-
1580.

Slavov, G., Allison, G. and Bosch, M. (2013) Advances in the genetic dissection
of plant cell walls: tools and resources available in Miscanthus. Front. Plant
Sci. 4, 217.

Slavov, G.T., Nipper, R., Robson, P., Farrar, K., Allison, G.G., Bosch, M., Clifton-
Brown, J.C. et al. (2014) Genome-wide association studies and prediction of
17 traits related to phenology, biomass and cell wall composition in the
energy grass Miscanthus sinensis. New Phytol. 201, 1227-1239.

Smith-Moritz, A.M., Hao, Z., Ferndndez-Nino, S.G., Fangel, J.U.,
Verhertbruggen, Y., Holman, H.Y.N.,, Willats, W.G.T. etal (2015)
Structural characterization of a mixed-linkage glucan deficient mutant
reveals alteration in cellulose microfibril orientation in rice coleoptile
mesophyll cell walls. Front. Plant Sci. 6, 628.

Sonbol, F.M., Fornalé, S., Capellades, M., Encina, A., Tourino, S., Torres, J.L.,
Rovira, P. et al. (2009) The maize ZmMYB42 represses the phenylpropanoid
pathway and affects the cell wall structure, composition and degradability in
Arabidopsis thaliana. Plant Mol. Biol. 70, 283-296.

Song, X.Q., Liu, L.F., Jiang, Y.J., Zhang, B.C., Gao, Y.P., Liu, X.L., Lin, Q.S. et al.
(2013) Disruption of secondary wall cellulose biosynthesis alters cadmium
translocation and tolerance in rice plants. Mol. Plant. 6, 768-780.

Souza, G.M., Berges, H., Bocs, S., Casu, R., D'Hont, A., Ferreira, J.E., Henry, R.
et al. (2011) The sugarcane genome challenge: strategies for sequencing a
highly complex genome. Trop. Plant Biol. 4, 145-156.

Sparks, C.A., Doherty, A. and Jones, H.D. (2014) Genetic transformation of
wheat via Agrobacterium-mediated DNA delivery. Methods Mol. Biol. 1099,
235-250.

Sumiyoshi, M., Nakamura, A., Nakamura, H., Hakata, M., Ichikawa, H.,
Hirochika, H., Ishii, T. et al. (2013) Increase in cellulose accumulation and
improvement of saccharification by overexpression of arabinofuranosidase in
rice. PLoS ONE, 8, e78269.

Swaminathan, K., Alabady, M.S., Varala, K., De Paoli, E., Ho, I., Rokhsar, D.S.,
Arumuganathan, A.K. et al. (2010) Genomic and small RNA sequencing of
Miscanthus x giganteus shows the utility of sorghum as a reference genome
sequence for Andropogoneae grasses. Genome Biol. 11, R12.

Taketa, S., Yuo, T., Tonooka, T., Tsumuraya, Y., Inagaki, Y., Haruyama, N.,
Larroque, O. etal. (2012) Functional characterization of barley
betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-p-
D-glucan biosynthesis. J. Exp. Bot. 63, 381-392.

Tan, H.T., Shirley, N.J., Singh, R.R., Henderson, M., Dhugga, K.S., Mayo, G.M.,
Fincher, G.B. etal. (2015) Powerful regulatory systems and post-
transcriptional gene silencing resist increases in cellulose content in cell
walls of barley. BMC Plant Biol. 15, 62.

Tanaka, K., Murata, K., Yamazaki, M., Onosato, K., Miyao, A. and Hirochika, H.
(2003) Three distinct rice cellulose synthase catalytic subunit genes required
for cellulose synthesis in the secondary wall. Plant Physiol. 133, 73-83.

Taylor-Teeples, M., Lin, L., de Lucas, M., Turco, G., Toal, T.W., Gaudinier, A.,
Young, N.F. etal. (2015) An Arabidopsis gene regulatory network for
secondary cell wall synthesis. Nature, 517, 571-575.

Turner, S.R. and Somerville, C.R. (1997) Collapsed xylem phenotype of
Arabidopsis identifies mutants deficient in cellulose deposition in the
secondary cell wall. Plant Cell, 9, 689-701.

Vaaje-Kolstad, G., Westereng, B., Horn, S.J., Liu, Z., Zhai, H., Serlie, M. and
Eijsink, V.G.H. (2010) An oxidative enzyme boosting the enzymatic
conversion of recalcitrant polysaccharides. Science, 330, 219-222.

Valdivia, E.R., Herrera, M.T., Gianzo, C., Fidalgo, J., Revilla, G., Zarra, I. and
Sampedro, J. (2013) Regulation of secondary wall synthesis and cell death by
NAC transcription factors in the monocot Brachypodium distachyon. J. Exp.
Bot. 64, 1333-1343.

© 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd, 15, 1071-1092


http://ethanolrfa.org/wp-content/uploads/2017/02/Ethanol-Industry-Outlook-2017.pdf
http://ethanolrfa.org/wp-content/uploads/2017/02/Ethanol-Industry-Outlook-2017.pdf

1092 Rakesh Bhatia et al.

Van der Weijde, T., Alvim Kamei, C.L., Torres, A.F., Vermerris, W., Dolstra, O.,
Visser, R.G. and Trindade, L.M. (2013) The potential of C4 grasses for
cellulosic biofuel production. Front. Plant Sci. 4, 107.

Vega-Sanchez, M.E., Verhertbruggen, Y., Christensen, U., Chen, X., Sharma,
V., Varanasi, P., Jobling, S.A. et al. (2012) Loss of Cellulose synthase-like F6
function affects mixed-linkage glucan deposition, cell wall mechanical
properties, and defense responses in vegetative tissues of rice. Plant
Physiol. 159, 56-69.

Vega-Sanchez, M.E., Verhertbruggen, Y., Scheller, H.V. and Ronald, P.C. (2013)
Abundance of mixed linkage glucan in mature tissues and secondary cell
walls of grasses. Plant Signal. Behav. 8, e23143.

Vega-Sanchez, M.E., Loqué, D., Lao, J., Catena, M., Verhertbruggen, Y., Herter,
T., Yang, F. et al. (2015) Engineering temporal accumulation of a low
recalcitrance polysaccharide leads to increased C6 sugar content in plant cell
walls. Plant Biotechnol. J. 13, 903-914.

Verma, D., Kanagaraj, A., Jin, S., Singh, N.D., Kolattukudy, P.E. and Daniell, H.
(2010) Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass
and release fermentable sugars. Plant Biotechnol. J. 8, 332-350.

Vogel, J. (2008) Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 11,
301-307.

Wang, X., Yamada, T., Kong, F.J., Abe, Y., Hoshino, Y., Sato, H., Takamizo, T.
et al. (2011) Establishment of an efficient in vitro culture and particle
bombardment-mediated transformation systems in Miscanthus sinensis
Anderss., a potential bioenergy crop. GCB Bioenergy, 3, 322-332.

Wang, P., Fan, J. and Xie, Y. (2013) Synthesis and characterization of pectin-
dehydrogenation polymer complex by isotopic labeling method. Cellul.
Chem. Technol. 47, 401-408.

Wang, Y., Ma, N., Qiu, S., Zou, H., Zang, G., Kang, Z., Wang, G. et al. (2014)
Regulation of the a-expansin gene OsEXPAS expression affects root system
architecture in transgenic rice plants. Mol. Breed. 34, 47-57.

Wang, X., Tang, Q., Zhao, X., lia, C., Yang, X., He, G., Wu, A. et al. (2016)
Functional conservation and divergence of Miscanthus lutarioriparius GT43
gene family in xylan biosynthesis. BMC Plant Biol. 16, 102.

Weng, X., Huang, Y., Hou, C. and Jiang, D. (2013) Effects of an exogenous xylanase
gene expression on the growth of transgenic rice and the expression level of
endogenous xylanase inhibitor gene RIXI. J. Sci. Food Agric. 93, 173-179.

Westereng, B., Cannella, D., Wittrup Agger, J., Jargensen, H., Larsen Andersen,
M., Eijsink, V.G.H. and Felby, C. (2015) Enzymatic cellulose oxidation is linked
to lignin by long-range electron transfer. Sci. Rep. 5, 18561.

Willats, W.G.T., Mccartney, L., Mackie, W. and Knox, J.P. (2001) Pectin: cell
biology and prospects for functional analysis. Plant Mol. Biol. 47, 9-27.

Willis, J.D., Mazarei, M. and Stewart, C.N. (2016a) Transgenic plant-produced
hydrolytic enzymes and the potential of insect gut-derived hydrolases for
biofuels. Front. Plant Sci. 7, 675.

Willis, J.D., Smith, J.A., Mazarei, M., Zhang, J.Y., Turner, G.B., Decker, S.R.,
Sykes, R.W. et al. (2016b) Downregulation of a UDP-arabinomutase gene in
switchgrass (Panicum virgatum L.) results in increased cell wall lignin while
reducing arabinose-glycans. Front Plant Sci. 7, 1580.

Wau, H. and Altpeter, F. (2015) Sugarcane (Saccharum Spp. hybrids). Methods
Mol. Biol. 1224, 307-316.

Wuddineh, W.A., Mazarei, M., Turner, G.B., Sykes, R.W., Decker, S.R., Davis,
M.F. and Stewart, C.N. (2015) Identification and molecular characterization
of the switchgrass AP2/ERF transcription factor superfamily, and
overexpression of PvERFOOT for improvement of biomass characteristics for
biofuel. Front. Bioeng. Biotechnol. 3, 101.

Wuddineh, W.A., Mazarei, M., Zhang, J.Y., Turner, G.B., Sykes, R.W., Decker,
S.R., Davis, M.F. etal. (2016) lIdentification and overexpression of a
Knotted1-like transcription factor in switchgrass (Panicum virgatum L.) for
lignocellulosic feedstock improvement. Front Plant Sci. 7, 520.

Xi, Y., Ge, Y. and Wang, Z.Y. (2009) Genetic transformation of switchgrass.
Methods Mol. Biol. 581, 53-59.

Xu, X., Zhang, Y., Meng, Q., Meng, K., Zhang, W., Zhou, X., Luo, H. et al.
(2013) Overexpression of a fungal B-mannanase from Bispora sp. MEY-1 in
maize seeds and enzyme characterization. PLoS ONE, 8, e56146.

Xue, G.P., Patel, M., Johnson, J.S., Smyth, D.J. and Vickers, C.E. (2003)
Selectable marker-free transgenic barley producing a high level of
cellulase (1,4-beta-glucanase) in developing grains. Plant Cell Rep. 21,
1088-1094.

Yang, C., Li, D., Liu, X., Ji, C., Hao, L., Zhao, X., Li, X. et al. (2014) OsMYB103L,
an R2R3-MYB transcription factor, influences leaf rolling and mechanical
strength in rice (Oryza sativa L.). BMC Plant Biol. 14, 158.

Yang, W., Zhang, Y., Zhou, X., Zhang, W., Xu, X., Chen, R., Meng, Q. et al.
(2015) Production of a highly protease-resistant fungal a-galactosidase in
transgenic maize seeds for simplified feed processing. PLoS ONE, 10,
€0129294.

Yoshida, K., Sakamoto, S., Kawai, T., Kobayashi, Y., Sato, K., Ichinose, Y., Yaoi,
K. et al. (2013) Engineering the Oryza sativa cell wall with rice NAC
transcription factors regulating secondary wall formation. Front. Plant Sci. 4,
383.

Yuan, Y., Teng, Q., Zhong, R. and Ye, Z.H. (2016) Roles of Arabidopsis TBL34
and TBL35 in xylan acetylation and plant growth. Plant Sci. 243, 120-130.
Zhang, J.Z. (2003) Overexpression analysis of plant transcription factors. Curr.

Opin. Plant Biol. 6, 430-440.

Zhang, D., VanFossen, A.L., Pagano, R.M., Johnson, J.S., Parker, M.H., Pan, S.,
Gray, B.N. et al. (2011) Consolidated pretreatment and hydrolysis of plant
biomass expressing cell wall degrading enzymes. Bioenergy Res. 4, 276-286.

Zhang, Q., Zhang, W., Lin, C., Xu, X. and Shen, Z. (2012) Expression of an
Acidothermus cellulolyticus endoglucanase in transgenic rice seeds. Protein
Expr. Purif. 82, 279-283.

Zhang, Y., Xu, X., Zhou, X., Chen, R., Yang, P., Meng, Q., Meng, K. et al.
(2013) Overexpression of an acidic endo-p-1,3-1,4-glucanase in transgenic
maize seed for direct utilization in animal feed. PLoS ONE, 8, e81993.

Zhang, B., Zhao, T., Yu, W., Kuang, B., Yao, Y., Liu, T., Chen, X. et al. (2014)
Functional conservation of the glycosyltransferase gene GT47A in the
monocot rice. J. Plant. Res. 127, 423-432.

Zhang, J., Zhang, S., Li, H., Du, H., Huang, H., Li, Y., Hu, Y. et al. (2016)
Identification of transcription factors ZmMYB111 and ZmMYB148 involved in
phenylpropanoid metabolism. Front. Plant Sci. 7, 148.

Zhong, R., Lee, C. and Ye, Z.H. (2010) Global analysis of direct targets of
secondary wall NAC master switches in Arabidopsis. Mol Plant. 3, 1087—
1103.

Zhong, R., Lee, C., McCarthy, R.L., Reeves, C.K., Jones, E.G. and Ye, Z.H.
(2011) Transcriptional activation of secondary wall biosynthesis by rice and
maize NAC and MYB transcription factors. Plant Cell Physiol. 52, 1856—
1871.

Zhong, R., Yuan, Y., Spiekerman, J.J., Guley, J.T., Egbosiuba, J.C. and Ye, Z.H.
(2015) Functional characterization of NAC and MYB transcription factors
involved in regulation of biomass production in switchgrass (Panicum
virgatum). PLoS ONE, 10, e0134611.

Zhou, J., Lee, C., Zhong, R. and Ye, Z.H. (2009) MYB58 and MYB63 are
transcriptional activators of the lignin biosynthetic pathway during secondary
cell wall formation in Arabidopsis. Plant Cell, 21, 248-266.

Zhu, J.Y., Sun, Y. and Wang, Z.Y. (2012) Genome-wide identification of
transcription  factor-binding ~ sites  in  plants  using  chromatin
immunoprecipitation followed by microarray (ChIP-chip) or sequencing
(ChlP-seq). Methods Mol. Biol. 876, 173-188.

© 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd, 15, 1071-1092



