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Noether theorems and quantum anomalies

John Gough1, Tudor S. Ratiu2, Oleg G. Smolyanov3

August 9, 2016

Abstract

In this communication, we show that both infinite-dimensional versions of
Noether’s theorems, and the explanation of quantum anomalies can be obtained
using similar formulas for the derivatives of functions whose values are measures
([1]) or pseudomeasures ([2]). In particular, we improve some results in [2].

1 Introduction

A quantum anomaly is the violation of the symmetry with respect to a given trans-
formation during a quantization procedure. As such, a quantum anomaly occurs if
a quantization procedure of a classical system, invariant relative to a transformation,
yields a quantum system which is no longer invariant under this transformation. The
calculations that are used to explain this phenomenon parallel those appearing in the
proof of the infinite dimensional versions of Noether’s theorems (cf. [3]). Both these
calculations have two versions. In the first version, one uses integration with respect
to a Feynman pseudomeasure in the case of a quantum anomaly, and alternatively
integration with respect to a usual smooth σ-additive measure in the case of Noether’s
theorem. In the second version, both for quantum anomalies and Noether’s theorem,
one employs integration with respect to a Lebesgue pseudomeasure. It is worth noticing
that the difference between Noether ’s theorem and quantum anomalies is only that in
the calculations related to the Noether theorem, one integrates the Lagrangian of the
system (to get the action), whereas in the calculations related to quantum anomalies,
one integrates the complex exponent of the action or of a part of the action. Using
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these calculations, we analyze a famous contradiction between the points of view pre-
sented in the well-known monographs [4] and [5]. In particular, in [4, page 352], it is
claimed that the explanation of the origin of quantum anomalies given in [5] is not
correct. This criticism refers to the first, 2004 edition, of [5]. The second, 2013 edition
of [5], does not address this criticism, the authors maintain their original claims, and
they do not even quote [4]. Using a mathematically rigorous alternative approach, we
arrive to the conclusion presented in [5]. It is worth mentioning that our approach,
being infinitesimal (like in the Noether theorems), is conceptually much simpler than
the global (and non-rigorous) approach presented in [4] and [5]. We also mention that
in our approach to both the Noether theorem and to the quantum anomalies, we need
not assume that the considered transformations are elements of any group of symme-
tries of the system and hence Klein’s Erlangen Program has no direct relation to the
subject of the present communication (already in the classical book [6], the authors do
not mention any group structure on the set of transformations).

The paper is organized as follows. In section 2, we introduce some definitions
of derivatives of (pseudo)measure-valued functions; most of these are more or less
standard. In section 3, we present some calculations of derivatives of some functions
whose values are products of a measure or pseudomeasure on a locally convex space
(LCS) E, with a function depending on x ∈ E and on the values at x taken by
another function g, defined on E, and its derivative at x (the generalization to higher
derivatives is straightforward) and make some remarks about how these calculations can
be used in Noether-type theorems. In section 4, we get, as a corollary to calculations
of the preceding section, an explanation of the origin of quantum anomalies. Like
in our preceding paper [2], we consider here instead of integrals, some measures and
pseudomeasures, which simplifies the situation.

We discuss here only the algebraic structure of these problems and not formulate
precise analytical assumptions.

2 Derivatives of (pseudo-)measure valued functions

The following definitions are more or less standard. For any LCS E, let M(E) be
the vector space of all (signed) Borel σ-additive measures on E, equipped with the
weak topology defined by a vector space Cb(E) of some bounded functions in natural
duality with M(E). A function f : (a, b) → M(E) is said to be differentiable at

t ∈ (a, b) if the limit f ′(t) := lim∆t→0(∆t)
−1 (f(t+∆t)− f(t)), called the derivative

of f at t, exists and if the measure f ′(t) is absolutely continuous with respect to
f(t), denoted by f ′(t) ≪ f(t). In this case, the Radon-Nikodym density of f ′(t) with
respect to f(t) is called the logarithmic derivative of f at t and is denoted by βf(t);
thus, f ′(t) = βf(t)f(t).

Completely similar definitions can be also formulated for functions taking values
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in a space of distributions (pseudomeasures) that is defined as the space (D(E))′ of
all continuous linear functionals on a space D(E) of some real or complex valued
differentiable functions on E. We assume that (D(E))′ is equipped with a locally
convex topology; the space D(E) need not coincide with the usual Schwartz space of
test functions, even if E = Rn. If a function f : (a, b) → (D(E))′ is differentiable and
if there exists a function βf(t) on E, which is a multiplier in (D(E))′ and such that
f ′(t) = βf (t)f(t), then βf(t) is again called the logarithmic derivative of fν,k at t.

From now, E always denotes an LCS.

Definition 2.1. Let k be a vector field on E, i.e., k is a Borel map of E into itself,
ν ∈ M(E), ε > 0. Define Sk(t) := x− tk(x) for t ∈ (−ε, ε), x ∈ E, and fν,k : (−ε, ε) →
M(E) by fν,k(t) := (Sk(t))∗ν. The measure ν is called differentiable along the vector

field k if the function fν,k is differentiable at 0; then f ′

ν,k(0) is called the derivative

of ν along k and is denoted by ν ′k; in this case, the logarithmic derivative of fν,k at
t = 0 is called the logarithmic derivative of ν along k and is denoted by βνk (so βνk is
an almost everywhere defined function on E). If h ∈ E and kh(x) := h for all x ∈ E,
then the measure ν is said to be differentiable along (the vector) h if it is differentiable
along kh; in this case, the logarithmic derivative of ν along kh is called the logarithmic

derivative of ν along h and is denote by βν(h, ·), i.e., βν(h, x) := βνkh(x) a.e.

Definition 2.2. A vector subspace H ⊂ E is called a locally convex (in particular,
a Banach or Hilbert) subspace of E, if H is endowed with the structure of an LCS
(respectively, Banach, or Hilbert space), with respect to which the canonical embedding
H →֒ E is continuous.

If H is a locally convex subspace of E and ν ∈ M(E) is differentiable along each
h ∈ H , then it can be shown (cf. [2]) that both mappings H ∋ h 7→ ν ′h ∈ M(E) and
H ∋ h 7→ βν(h, ·) are linear. So ν is differentiable along each h ∈ H if and only if the
mapping ψν : H ∋ h 7→ νh ∈ M(E), where νh(A) := ν(A+h) for any Borel set A ⊂ E,
is Gâteau differentiable and for any h, k ∈ H , the measure (ψν)

′(k)(h) is absolutely
continuous with respect to νk. Then the mapping E ∋ x 7→ [H ∋ k 7→ βν(k, x)] ∈ H ′ is
called the logarithmic derivative of ν along H (if H is a Hilbert space, H ′ is identified
with H ; in this case, the mapping β

ν
: E → H , defied by (β

ν
(x), k) := βν(k, x), is

called the logarithmic gradient, but we will not use this terminology).
The notion of differentiability of a measure ν ∈ M(E) along a locally convex sub-

space H ⊂ E can be generalized in the following way. Let H be a LCS, which need
not be a subspace of E.

Definition 2.3. A map ψ : H → M(E) is called differentiable at h ∈ H , if it is Gâteau
differentiable at h and if, for any k ∈ H , the measure ψ′(h)k is absolutely continuous
with respect to ψ(h). The Radon-Nikodym derivative of ψ′(h)k with respect to ψ(h)
is called the logarithmic derivative of ψ at h along k and is denoted by βνψ(h)k. The
linear mapping k 7→ βνψ(h)k of H into a space of functions on E is called the logarithmic

derivative of ψ at h ∈ H .
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Remark 2.1. IfH is a locally convex subspace of E, ν has a logarithmic derivative along
H , and k is a vector field in E, such that k(E) ⊂ H , then the function x 7→ βν(k(x), x)
is, in general, not well defined, because for h ∈ H the function βν(h, ·) on E is defined
only ν-almost everywhere, the domain being dependent on h. A possible definition of
βν(k(·), ·) is given in [3], correcting an older definition of the same function presented
in [1]. We recall the formula

(2.1) βνk (x) = βν(k(x), x) + tr k′(x)

from [1], which will be used below. ♦

3 Noether type theorems

For any locally convex space G and any locally convex subspace H ⊂ E, let CH(E,G)
be the space of all mappings of E into G that are infinitely differentiable along H (for
the definition, see [2]).

Let G,Z be LCS, H a Hilbert subspace of E, and ν ∈ M(E). For any g ∈
CH(E,G), let µ(g, ν) be the measure on E defined by µ(g, ν) := L(·, g(·), g′(·))ν, where
L ∈ CH (E ×G× L (H,G),C) and H := H ×G× L (H,G) (L can be considered as
a generalization of a Lagrange function).

Let F : Z × E × G × L (H,G) → E × G be an infinitely differentiable mapping
satisfying F (0, x, r, α) = (x, r) for any α ∈ L (H,G). One can think that F defines
a family of transformations of E × G depending on a parameter z ∈ Z and also on
elements of L (H,G) that are, in applications, the values of the derivative of a mapping
from E to G.

Define the associated mapping FZ on Z with values in the space of mappings from
E ×G× L (E,G) to E ×G by FZ(z)(x1, x2, α) := F (z, x1, x2, α) ∈ E ×G.

For a mapping g ∈ CH(E,G) and ν ∈ M(E), the mapping FZ defines the measure-
valued function Fg,ν : Z → M(E) in two steps. First, a G-valued function gZ is defined
by its graph {FZ(z)(x, g(x), g

′(x)) | x ∈ E} ⊂ E × G, assuming that this set is the
graph of a function. The function gZ can also be defined by

gZ(xz) := FZ,2(z)
(
g
(
(FZ,1(z))

−1 (xz)
))
,

where, in natural notations, FZ,1(z)(x) := prE FZ(x, g(x), g
′(x)) and FZ,2(z)(x) :=

prG FZ(x, g(x), g
′(x)). Second, we define a measure νZ := (FZ.1(z))∗ ν; then we de-

fine Fg,ν(z) by Fg,ν(z) := L (·, gZ(·), g
′

Z(·)) νZ (so, g0 = g, ν0 = ν, and Fg,ν(0) =
L (·, g(·), g′(·)) ν).

For x ∈ E, ∆ ∈ Z, let

h1,∆(x) := ((FZ,1)
′(0)∆) (x, g(x), g′(x)),

h2,∆(x) := ((FZ,2)
′(0)∆) (x, g(x), g′(x)),
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h3,∆(x) := h′2,∆(x).

Theorem 3.1. The logarithmic derivative βFg,ν
of Fg,ν at 0 along ∆ ∈ Z is given by

(
βFg,ν

(0)∆
)
(x) = L′

1(x, g(x), g
′(x))h1,∆(x) + L′

2(x, g(x), g
′(x))h2,∆(x)

+ L′

3(x, g(x), g
′(x))h′2,∆(x) + L (x, g(x), g′(x)) trh3,∆(x)

+ L (x, g(x), g′(x)) βν (h2,∆(x), x) .

The theorem follows from the Leibniz rule for differentiation of the product of a
function and a measure, the chain rule, and formula (2.1).

Remark 3.1. The completely similar calculation can be applied when ν is not a measure,
but a pseudomeasure; hence an analog of Theorem 3.1 is also available for pseudomea-
sures. ♦

Remark 3.2. If ν is a translation invariant measure (in this case the dimension of E
has to be finite) or pseudomeasure, then βν(h2,∆(x), x) = 0 for any x ∈ E. ♦

Theorem 3.2. (“Noether Theorem”) if F ′

Z(0) = 0, then for any ∆ ∈ Z, we have

L′

1(x, g(x), g
′(x))h1,∆(x) + L′

2(x, g(x), g
′(x))h2,∆(x) + L′

3(x, g(x), g
′(x))h′2,∆(x)

+ L trh3,∆(x) + Lβν (h2,∆(x), x) = 0.

This follows from Theorem 3.1, noting that F ′

Z(0) = 0 implies
(
βFg,ν

(0)∆
)
(x) = 0 for

all x ∈ E.

Remark 3.3. Theorem 3.2 contains the first (direct) assertions of both theorems usually
called the First and Second Noether Theorems. We quote them below from the English
translation in the excellent historical book [7] and keep Noether’s original notations.
Noether considers functions u1(x), . . . , uµ(x) for x ∈ Rn. Then she uses an invertible
transformation of x ∈ Rn, calls the resulting variable y ∈ Rn, and the transformed
functions v1(y), . . . , vµ(y). She says that the transformations are part of a group, but
she never uses the group structure. Then she says that “an integral I is an invariant
of the group if it satisfies the relation

∫
· · ·

∫
f

(
x, u,

∂u

∂x
,
∂2u

∂x
, . . .

)
dx =

∫
· · ·

∫
f

(
y, v,

∂v

∂y
,
∂2v

∂y
, . . .

)
dx

integrated over an arbitrary real domain in x, and over the corresponding domain in
y.” The First Noether Theorem: “If the integral I is invariant under a [group] Gρ

1,
then there are ρ linearly independent combinations among the Lagrangian expressions
which become divergences—and conversely, that implies the invariance of I under a
[group] Gρ. The theorem remains valid in the limiting case of an infinite number of

1i.e., a family of invertible transformations depending on ρ parameters, not necessarily a group
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parameters.” The Second Noether Theorem: “If the integral I is invariant under a
[group] G∞ρ depending on arbitrary functions and their derivatives up to order σ, then
there are ρ identities among the Lagrangian expressions and their derivatives up to
order σ. Here as well the converse is valid.” ♦

Remark 3.4. The assumption above about arbitrariness of the domain of integration
means that actually one needs to study the integrands (but not the integrals), which
are products of a function and of a measure. ♦

Remark 3.5. In Theorems 3.1 and 3.2, one considers the product of a function and of
a measure. Instead, one could substitute the measure ν by a product of a generalized
density of ν and of the (translation invariant) Lebesgue pseudomeasure. By definition,
the generalized density has the same logarithmic derivative and hence, as far as the
formal calculations are concerned, nothing changes in carrying out this more general
case. On the other hand, the integral with respect to the Lebesgue pseudomeasure of
the generalized density is defined as a limit of some finite-dimensional integrals and it
is necessary to ensure that the Leibniz rule holds; but this follows from the fact that
the Leibniz rule is valid for products of functions with the measure ν, because the
finite-dimensional integrals in both cases are the same. ♦

4 Quantum anomalies

The calculations of the preceding section, where we integrated over infinite dimensional
spaces, are well adapted to problems of quantum anomalies, where one needs to inte-
grate over an infinite dimensional space of functions, the integrand being the complex
exponential of the action times either the Lebesgue pseudomeasure or the Feynman
pseudomeasure and a function depending on initial data. If the derivative of the action
with respect to a parameter, on which the transformations of the domain of the action
depend, is equal to zero, then we can apply Theorem 3.2.

Let E be the phase space of a classical Hamiltonian system, E := Q × P , Q and
P finite dimensional vector spaces, h : E → R the Hamiltonian function, and ĥ the
pseudodifferential operator on L2(Q) whose Weyl symbol is h. Let C([0, t], E ) be the
space of some functions defined on [0, t] taking values in E ; the elements of C([0, t], E )
are pairs (ξQ, ξP ), where ξQ : [0, t] → Q, ξP : [0, t] → P . Let f ∈ L2(Q) be the initial

data for the Cauchy problem for the Schrödinger equation iψ′(t) = ĥψ(t) for a function
ψ : R → L2(Q). Then the solution of the Cauchy problem for this equation is given
by the Feynman path integral with respect to the Lebesgue pseudomeasure ν, namely,

ψ(t)(q) =

∫

C([0,t],E )

ei
∫ t

0
h(ξQ(τ)+q,ξP (τ))dτe−i

∫ t

0〈ξ̇Q(τ), ξP (τ)〉dτf (ξQ(t) + q) ν (dξQ dξP ) ,

where 〈·, ·〉 : Q × P → R denotes the duality pairing. We do not discuss here the
definition of this integral (cf. [8], where such an integral is not explicitly defined).

6



Instead of the integral with respect to the pseudomeasure ν, one can consider the
product of the function

(ξQ, ξP ) 7−→ e−i
∫ t

0〈ξ̇Q(τ), ξP (τ)〉dτ

with ν, which coincides with the Feynman pseudomeasure on the space C([0, t], E ). To
apply the technique of the preceding section, we now make the identifications

• E is the space C([0, t], E ),

• G is the space C of complex numbers,

• µ(g, ν) is the pseudomeasure which is the product of the function

(ξQ, ξP ) 7−→ ei
∫ t

0
h(ξQ(τ)+q,ξP (τ))dτe−i

∫ t

0〈ξ̇Q(τ), ξP (τ)〉dτf (ξQ(t) + q)

with the Lebesgue pseudomeasure ν,

• FZ , a formally much simpler map Φ from an auxiliary space Z into the transfor-
mations of C([0, t], E ).

Then we have the following consequence of Theorem 3.2.

Corollary 4.1. If the action and initial data are invariant with respect to transfor-

mations of Φ(Z) ⊂ C([0, t], E ), then the logarithmic derivative of the pseudomeasure-

valued function on Z, which is the sum of the logarithmic derivatives of (4) and the

Lebesgue pseudomeasure, is equal to the logarithmic derivative of the Lebesgue pseu-

domeasure and hence need not vanish. This non-vanishing derivative is just the quan-

tum anomaly (cf. [2]).

Acknowledgment: O.G.S. thanks the School of Mathematics of the Shanghai Jiao Tong
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when this paper was written.
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