
Aberystwyth University

On certain properties of Cuntz-Krieger-type algebras
Burgstaller, Bernhard; Evans, D. Gwion

Published in:
Annals of Functional Analysis

DOI:
10.1215/20088752-2017-0004

Publication date:
2017

Citation for published version (APA):
Burgstaller, B., & Evans, D. G. (2017). On certain properties of Cuntz-Krieger-type algebras. Annals of
Functional Analysis, 8(3), 386-397. https://doi.org/10.1215/20088752-2017-0004

Document License
CC BY-NC

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 30. Aug. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326672599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1215/20088752-2017-0004
https://pure.aber.ac.uk/portal/en/persons/gwion-evans(deb6226e-36b1-461f-be04-689dbe3c9cce).html
https://pure.aber.ac.uk/portal/en/publications/on-certain-properties-of-cuntzkriegertype-algebras(a470be75-546d-46a2-96c8-a75b9b557b5a).html
https://doi.org/10.1215/20088752-2017-0004


ON CERTAIN PROPERTIES OF CUNTZ–KRIEGER TYPE
ALGEBRAS

BERNHARD BURGSTALLER1∗ and D. GWION EVANS2

Abstract. The note presents a further study of the class of Cuntz–Krieger
type algebras. A necessary and sufficient condition is identified that ensures
that the algebra is purely infinite, the ideal structure is studied, and nuclearity
is proved by presenting the algebra as a crossed product of an AF-algebra by
an abelian group. The results are applied to examples of Cuntz–Krieger type
algebras, such as higher rank semigraph C∗-algebras and higher rank Exel-Laca
algebras.

1. Introduction

During the last two decades, Cuntz and Cuntz–Krieger algebras, in the form
of graph algebras, have been studied intensively. Recent samples include [10, 9].

Based on the work of Cuntz and Krieger in [8], in [2] the first named author
considered a class of so-called Cuntz–Krieger type algebras relying on a flexible
generators and relations approach. This class, which is recalled in Section 2,
includes (aperiodic) Cuntz–Krieger algebras [8], higher rank Exel–Laca algebras
[3], (aperiodic) higher rank graph C∗-algebras [11, 12], (aperiodic) ultragraph
algebras [17] and (cancelling) higher rank semigraph C∗-algebras [5].

The aim of this note is to analyse these algebras further. Pure infiniteness was
introduced by J. Cuntz in [6] as a fundamental property of his Cuntz algebras.
In Section 3 we show that a Cuntz–Krieger type algebra is purely infinite if and
only if the projections of its core are infinite, see Theorem 3.2. Applications to
higher rank semigraph C∗-algebras and higher rank Exel–Laca algebras, stated in
Corollaries 3.3 and 3.4, respectively, give quite tractable conditions for checking
when those algebras are purely infinite.

In Section 4 we study the ideal structure of Cuntz–Krieger type algebras. The
ideal structure for Cuntz–Krieger algebras was firstly studied by J. Cuntz in [7].
There is an injection of certain ideals of the core to the ideals of the Cuntz–Krieger
type algebra, see Theorem 4.6. If these certain ideals are all cancelling (Definitions
4.8 and 4.11) then this injection is even a lattice isomorphism, see Theorem 4.9,
Corollary 4.10, Theorem 4.12 and Corollary 4.13. We give reformulations of such
an isomorphism especially for higher rank semigraph algebras in Corollaries 4.14
and 4.15.
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2 B. BURGSTALLER and D. G. EVANS

In Section 5 we present the stabilised Cuntz–Krieger type algebras as crossed
products of AF-algebras by abelian groups, see Theorem 5.1. This uses Takai’s
duality and gauge actions. Hence Cuntz–Krieger type algebras are nuclear.

2. Cuntz–Krieger type algebras

We briefly recall the basic definitions and facts of the class of Cuntz–Krieger
type algebras introduced in [2] and slightly extended in [4].

Assume that we are given an alphabet A, the free nonunital ∗-algebra F
generated by A, a two-sided self-adjoint ideal I of F, and a closed subgroup
H of TA (T denotes the circle). We are interested in the quotient ∗-algebra
F/I and its universal C∗-algebra C∗(F/I). Denote the set of words of F/I by
W = {a1 . . . an ∈ F/I| ai ∈ A ∪ A∗}. (We will always write x rather than x + I
in the quotient F/I for elements x ∈ F if there is no danger of confusion.) An
element x of a ∗-algebra is called a partial isometry if xx∗x = x, and a projection
if x2 = x∗ = x.

We are going to introduce the following properties (A), (B) and (C’) for the
system (A,F, I, H).

(A) There exists a gauge action t : H −→ Aut(F/I) determined by tλ(a) = λaa
for all a ∈ A and λ = (λb)b∈A ∈ H.

Denote by (Ĥ,+, 0) the character group of (H, ·, 1); note that we write the

group operation of Ĥ additively. The gauge action t induces a so-called balance
function bal : W\{0} −→ Ĥ from the nonzero words of F/I to the character

group Ĥ determined by bal(a)((λb)b∈A) = λa ∈ T, bal(xy) = bal(x) + bal(y) and
bal(x∗) = −bal(x), where a ∈ A, (λb)b∈A ∈ H ⊆ TA and x, y ∈ W (see [2, Lemma
3.1]).

Define A to be the linear span in F/I of all words x ∈ W\{0} satisfying
bal(x) = 0. Actually, A is a ∗-algebra. Words x with balance bal(x) = 0 are

called zero-balanced. Write Wn for the set of words with balance n ∈ Ĥ. Since
every element of F/I is expressable as a linear combination of words, we may
write F/I =

∑
n∈Ĥ lin(Wn). Note, however, that this sum might not be a direct

sum.

(B) A is locally matricial, that is, for all x1, . . . , xn ∈ A there exists a finite
dimensional C∗-subalgebra A of A such that x1, . . . , xn ∈ A.

(C’) For every nonzero-balanced word x ∈ W\W0 and every nonzero projection
e ∈ A there exists a nonzero projection p ≤ e in A such that pxp = 0.

Definition 2.1. A system (A,F, I, H) is called a Cuntz–Krieger type system, or
F/I is called a Cuntz–Krieger type ∗-algebra, if (A), (B) and (C’) are satisfied
and there exists a C∗-representation π : F/I −→ A which is injective on A.

Throughout assume that (A,F, I, H) is a Cuntz–Krieger type system if nothing
else is said. There exists a universal enveloping C∗-algebra C∗(F/I) for F/I, and
clearly the universal representation ζ : F/I −→ C∗(F/I) is injective on A. The
enveloping C∗-algebra C∗(F/I) is called the Cuntz–Krieger type algebra associ-
ated to (A,F, I, H). A ∗-homomorphism F/I → A into a C∗-algebra A is called a
C∗-representation of F/I, and A-faithful if it is faithful on A. We remark that for
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a system (A, H,F, H) satisfying (A), (B) and (C’), an A-faithful representation
of F/I into a C∗-algebra exists automatically if the word set W consists of partial
isometries, see [4, Theorem 3.1].

We have the following Cuntz–Krieger uniqueness theorem.

Theorem 2.2. If π : F/I −→ A is an A-faithful representation into a C∗-algebra
A with dense image in A then A is canonically isomorphic to C∗(F/I) via π(x) 7→
ζ(x), so π is essentially the universal map ζ (see [2, Theorem 3.3] and Theorem
2.1 and Corollary 1 of Section 3 of [4]).

The next lemma states that we usually may assume without loss of generality
that ζ is injective. We then usually avoid notating ζ and regard F/I as a subset
of C∗(F/I).

Lemma 2.3. We may assume without loss of generality that the universal repre-
sentation ζ : F/I −→ C∗(F/I) is injective by dividing out the kernel of ζ. The new
quotient F/I is a Cuntz–Krieger ∗-algebra again (A,F and H remain unchanged).
A remains unchanged under this modification.

In a previous preprint of this note we proved the last lemma and the next
lemma. However, we have reproved and published them already now in [4, Propo-
sitions 2 and 4]. The setting in [4] generalises the setting of this note by allowing

the image of the balance function, here the commutative group Ĥ, to be a non-
commutative group. Say that a ∗-algebra X satisfies the C∗-property if for every
x ∈ X, xx∗ = 0 implies x = 0.

Lemma 2.4. ζ is injective if and only if F/I satisfies the C∗-property. The kernel
of ζ is the ideal generated by {x ∈ F/I|xx∗ = 0}.

Lemma 2.5. There exists a conditional expectation F : C∗(F/I) −→ C∗(A) ⊆
C∗(F/I) determined by F (ζ(w)) = 1{bal(w)=0}ζ(w) for words w ∈ W (see [4,
Proposition 2]).

3. Pure Infiniteness

In this section we analyse the pure infiniteness of a Cuntz–Krieger type algebra
C∗(F/I). We say that a C∗-algebra A is purely infinite if every nonzero hereditary
sub-C∗-algebra of A contains an infinite projection. (This condition is for instance
stated in [15, Proposition 4.1.1.(v)] and is also used in [14].)

Recall that a projection p in a C∗-algebra A is called infinite if it is the source
projection s∗s of a partial isometry s in A with range projection ss∗ being smaller
than p. Recall the following simple lemma.

Lemma 3.1. If a projection is infinite then any other projection which is bigger
in Murray–von Neumann order is also infinite.

Theorem 3.2. A Cuntz–Krieger type algebra C∗(F/I) is purely infinite if and
only if every nonzero projection of A is infinite in C∗(F/I).

Proof. We assume that ζ is injective (Lemma 2.3). Define A = C∗(F/I). Assume
that A is purely infinite. Then for any nonzero projection e ∈ A the hereditary
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C∗-algebra eAe contains some infinite projection p. Since p ≤ e, e is infinite in
A by Lemma 3.1.

To prove the other direction, assume that every nonzero projection in A is
infinite in A. It is proved in Lemma 1 of [4] that there exists a larger Cuntz–
Krieger type system S = (A × P ,G, J, H × {1}) than (A,F, I, H) such that
G/J ∼= F/I⊗ F′/I′, where F′/I′ is a commutative unital locally matricial algebra,
and the system S satisfies property (C) of [2]. This property is a sharpening of
(C’) and states that for every nonzero-balanced word x ∈ W\W0 and all nonzero
projections e, e1, e2 ∈ A there exist nonzero projections p ≤ e, p1 ≤ e1, p2 ≤ e2 in
A such that pxp = 0 and p1xp2 = 0. If we can show that C∗(G/J) ∼= C∗(F/I)⊗
C∗(F′/I′) is purely infinite, then it is not difficult to check that C∗(F/I) is also
purely infinite. (The following fact holds in general: If A⊗D is purely infinite for
two C∗-algebras A and D where D is unital and commutative, then A is purely
infinite.)

That is why we may assume without loss of generality in what follows that the
system (A,F, I, H) satisfies property (C) of [2]. To show that A = C∗(F/I) is
purely infinite, we imitate the proof of [14, Proposition 5.11]. Let h be a nonzero
positive element of A. We have to show that hAh contains an infinite projection.
Let ε > 0, and choose y ≥ 0 in F/I such that ∥y − h2∥ ≤ ε.

By [2, Lemma 2.6] (applied to π = ζ) we are provided with a faithful expec-
tation F : A → C∗(A) such that for every representation y =

∑
γ∈Ĥ yγ (where

yγ ∈ lin(Wγ)) there exists a projection Q ∈ A satisfying QyQ = Qy1Q ∈ A and
∥Fy∥ = ∥QyQ∥.

We may assume without loss of generality that ∥Fh2∥ = 1. We have

∥Fy∥ ≥ ∥Fh2∥ − ε = 1− ε.

Let QyQ ∈ M for some finite dimensional C∗-algebra M ⊆ A. We choose a
system of generating matrix units for M such that the positive element QyQ has
diagonal form in M = Mk1 ⊕ . . . ⊕ Mkd . By projecting on the largest diagonal
entry, we can choose a positive operator R1 ∈ M such that P = R1QyQR1 is a
projection and ∥R1∥ ≤ (1−ε)−1/2. By hypothesis P ∈ A is an infinite projection.

It follows that ∥R1Qh2QR1 − P∥ ≤ ∥R2
1∥∥Q∥2∥y − h2∥ ≤ ε/(1 − ε). By

functional calculus one obtains R2 ∈ A+, so that R2R1Qh2QR1R2 is a projection
and

∥R2R1Qh2QR1R2 − P∥ ≤ 2ε/(1− ε).

For small ε one can then find an element R3 in A such that

R3R2R1Qh2QR1R2R
∗
3 = P.

Let R = R3R2R1Q, so that Rh2R∗ = P . Consequently, Rh is a partial isometry,
whose initial projection hR∗Rh is a projection in hAh and whose final projection
is P . Moreover, if V is a partial isometry in A such that V ∗V = P and V V ∗ < P ,
then (hR∗)V (Rh) is a partial isometry in hAh with initial projection hR∗Rh and
final projection strictly less than hR∗Rh. �

We shall now apply the last theorem to cancelling higher rank semigraph alge-
bras [5], which are special Cuntz–Krieger type ∗-algebras.
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Corollary 3.3. A cancelling semigraph C∗-algebra C∗(F/I) (see [5, Definitions
5.1 and 7.2]) is purely infinite if and only if every standard projection (see [5,
Definition 5.14]) is infinite in C∗(F/I).

Proof. Cancelling semigraph algebras are algebras of amenable Cuntz–Krieger
systems [4] (this follows from the discussion in [5, Section 7]), which again are

Cuntz–Krieger type ∗-algebras (since the image of the balance map, Ĥ, is an
abelian group). So we can apply Theorem 3.2. We just need to recall that by [5,
Corollary 6.4] every nonzero projection in A is larger or equal than a standard
projection in Murray–von Neumann order, and so is infinite by Lemma 3.1 if
every standard projection is infinite. �

The next corollary concerns higher rank Exel–Laca algebras [3], which are
special Cuntz–Krieger type algebras.

Corollary 3.4. Let C∗(F/I) be a higher rank Exel–Laca algebra [3]. Then C∗(F/I)
is purely infinite if and only if every nonzero projection of the form Pa1 . . . Pan

(ai ∈ A, Pa = aa∗) is infinite in C∗(F/I).

Proof. By [3, Corollary 4.14] and [3, Lemma 4.5] every projection p ∈ A allows
the following estimate in Murray–von Neumann order:

p % xx∗ % x∗x = Qa1 . . . Qan ≥ Pb1 . . . Pbn ̸= 0

for some word x in the letters of the alphabet A, and some letters ai, bi ∈ A.
Hence, the claim follows from Lemma 3.1 and Theorem 3.2. �

4. Ideal structure

In this section we investigate the ideal structure of a Cuntz–Krieger type alge-
bra C∗(F/I). We assume that ζ is injective (Lemma 2.3).

Write Σ for the set of two-sided self-adjoint ideals in F/I. Denote by I the
set of closed two-sided ideals in C∗(F/I). Suppose that B is a ∗-subalgebra of A.
Write ΣB for the set of self-adjoint two-sided ideals in B. Define

ΣB = { J ∩ B ∈ ΣB | J ∈ Σ }.
For a subset X of F/I, define Σ(X) ∈ Σ to be the two-sided self-adjoint ideal
in F/I generated by X, and I(X) ∈ I the closed two-sided ideal in C∗(F/I)
generated by X. Denote by qX : F/I −→ (F/I)/Σ(X) the quotient map.

Lemma 4.1. For all J ∈ Σ one has J ∩ B = (Σ(J ∩ B)) ∩ B.

Proof. J ∩ B ⊆ J ∩ B ∩ B ⊆ (Σ(J ∩ B)) ∩ B ⊆ Σ(J) ∩ B = J ∩ B. �
Lemma 4.2. We have ΣB = { J ∩ B ∈ ΣB | J ∈ Σ, J = Σ(J ∩ B) }.

Proof. Given J ∈ Σ, consider I = Σ(J ∩B). By Lemma 4.2 we have I = Σ(I ∩B)
and J ∩ B = I ∩ B, which proves the claim. �
Lemma 4.3. We have ΣB = { I ∈ ΣB | Σ(I) ∩ B = I }.

Proof. Given I ∈ ΣB, we have I = J ∩ B for some ideal J ∈ Σ. By Lemma 4.1
we obtain Σ(I) ∩ B = I. The reverse implication is obvious. �
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Lemma 4.4. We have

ΣA = { I ∈ ΣA | ∀x, y ∈ W : bal(x) + bal(y) = 0 =⇒ xIy ⊆ I }. (4.1)

Hence ΣA is closed under the lattice operation I + J .

Proof. Write J for the righthanded set of (4.1). Consider I ∈ ΣA and write it as
I = J ∩ A for some J ∈ Σ. If i ∈ I and x, y ∈ W with bal(x) + bal(y) = 0 then
xiy ∈ A ∩ J . This shows that ΣA ⊆ J .

To prove J ⊆ ΣA, consider I ∈ J . Since I ⊆ A, I ⊆ Σ(I) ∩ A. For the
reverse inclusion consider z ∈ Σ(I) ∩ A. We may write z =

∑
αkxkikyk for some

scalars αk ∈ C, some ik ∈ I, and some (possibly empty) words xk, yk ∈ W . We
have F (z) = z for the conditional expectation F of Lemma 2.5 as z ∈ A. Hence
z =

∑
βkxkikyk for some scalars βk ∈ C such that βk = 0 if bal(xk)+bal(yk) ̸= 0.

This shows that z ∈ I as I ∈ J . We have proved that I = Σ(I) ∩ A, which is in
ΣA. �

In the next lemma we state a result of Bratteli [1], now for not necessarily
separable AF-algebras. We skip the proof which just consists of a slight adaption
of Bratteli’s proof.

Lemma 4.5. Let A be a locally matricial algebra and A its C∗-algebraic norm
closure. There is a bijection γ between the family of self-adjoint two-sided ideals
in A and the family of closed two-sided ideals in A through γ(I) = I and γ−1(I) =
I ∩ A.

Theorem 4.6. Every ∗-subalgebra B of A induces an injective map ΦB : ΣB −→ I
given by ΦB(I) = I(I) for I ∈ ΣB. The inverse map is determined by Φ−1

B (D) =
D ∩ B for D ∈ I. For all I, J ∈ ΣB we have

ΦB(I + J) = ΦB(I) + ΦB(J) if I + J ∈ ΣB,

ΦB(I ∩ J) = ΦB(I) ∩ ΦB(J) if ΦB(I) ∩ ΦB(J) ∈ ΦB(ΣB).

Proof. Step 1. At first we are going to check injectivity of ΦA. Let I ∈ ΣA, and
put D = I(I). Then I ⊆ D ∩ A (norm-closures in C∗(F/I)). To prove the reverse

inclusion D ∩ A ⊆ I, suppose that x ∈ D ∩ A. Let ε > 0. Since D = Σ(I), there
is some y ∈ Σ(I) such that ∥x− y∥ ≤ ε. Let F be the conditional expectation of
Lemma 2.5. Since Fx = x, we have

∥x− Fy∥ = ∥Fx− Fy∥ ≤ ∥x− y∥ ≤ ε.

Choose for y a representation y =
∑

αiaixibi for some scalars αi ∈ C, some
(possibly empty) words ai, bi ∈ W , and some elements xi ∈ J . Since bal(xi) = 0,
either F (aixibi) = aixibi or F (aixibi) = 0. Hence Fy =

∑
βiaixibi ∈ A for some

scalars βi ∈ C, and consequently Fy ∈ Σ(I) ∩ A = I by Lemma 4.3. Since ε > 0
was arbitrary, x ∈ I.

We have proved that I = D ∩ A, and so I = D ∩ A by Lemma 4.5. Hence
Φ−1

A ΦA(I) = I if we set Φ−1
A (D) = D ∩ A. Hence ΦA is injective.

Step 2. In this step we will show that ΦB injective. Define µ : ΣB → ΣA by
µ(I) = Σ(I)∩A. The map µ is injective as µ−1(J) = J ∩B is an inverse for µ by
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Lemma 4.3. The identity

ΦA(µ(I)) = ΦA(Σ(I) ∩ A) = Σ(Σ(I) ∩ A) = Σ(I) = ΦB(I)

shows that ΦB = ΦAµ, and so ΦB is injective by the proved injectivity of ΦA. To
prove the formula for Φ−1

B we note that

Φ−1
B (D) = µ−1Φ−1

A (D) = (D ∩ A) ∩ B = D ∩ B.
Step 3. To prove the lattice rules for ΦB we consider I1, I2 ∈ ΣB and set

D1 = ΦB(I1), D2 = ΦB(I2). If D1 ∩D2 ∈ ΦB(ΣB) then

Φ−1
B (D1 ∩D2) = Φ−1

B (D1) ∩ Φ−1
B (D2) = I1 ∩ I2,

which shows D1 ∩D2 = ΦB(I1 ∩ I2). If I1 + I2 ∈ ΣB then

ΦB(I1 + I2) = Σ(I1 + I2) = Σ(D1 +D2) = D1 +D2.

�
We need a lemma which is often used in the theory of Cuntz–Krieger type

algebras.

Lemma 4.7. Let J be a subset of A. Then the gauge actions exist on (F/I)/Σ(J),
so (A) is satisfied for the same H. One has bal(qJ(x)) = bal(x) for all words
x ∈ W with qJ(x) ̸= 0. If π is a representation of F/I, X a linear subspace of
A and J := ker(π|X) then the representation π̃ induced by π by dividing out J is
injective on qJ(X) (π = π̃qJ).

Proof. It is well known that A is the fixed point algebra of the gauge action t.
Hence, tλ(j) = j for j ∈ J and λ ∈ H since J ⊆ A = lin(W0). Since an x ∈ Σ(J)
allows a representation x =

∑
i αiaijibi for scalars αi ∈ C, (possibly empty) words

ai, bi ∈ W , and elements ji ∈ J , this shows that tλ(Σ(J)) ⊆ Σ(J) (λ ∈ H). Hence
the gauge actions exist on (F/I)/Σ(J). For the last claim, if π̃(qJ(x)) = 0 for
x ∈ X, then π(x) = 0, then x ∈ ker(π|X), then x ∈ J , then qJ(x) = 0, showing
that π̃ is injective on qJ(X). �
Definition 4.8. An ideal I ∈ ΣA is called cancelling if F/I divided by I satisfies
property (C’).

The proof of the next theorem will reveal that I is cancelling if and only if F/I
divided by I is a Cuntz–Krieger type ∗-algebra. Write ΩA ⊆ ΣA for the family of
all cancelling ideals.

Theorem 4.9. We have ΦA(ΩA) = {D ∈ I | D ∩ A ∈ ΩA }.

Proof. Define J = {D ∈ I | D ∩ A ∈ ΩA }. To prove ΦA(ΩA) ⊆ J , consider an
element I ∈ ΩA, and note that Φ−1

A (ΦA(I)) = I = ΦA(I) ∩ A ∈ ΩA by Theorem
4.6. Hence ΦA(I) ∈ J .

To prove J ⊆ ΦA(ΩA) consider an element D ∈ J . Define J = Σ(D ∩ A).
Write π : F/I −→ C∗(F/I)/D for the canonical quotient map. Write C∗(J) for
the norm closure of J in C∗(F/I). As J is a two-sided self-adjoint ideal in F/I
by definition, C∗(J) is a two-sided closed ideal in the norm closure C∗(F/I) of
F/I. Since C∗(J) ⊆ D, π induces a homomorphism π̃ : (F/I)/J −→ C∗(F/I)/D.
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There is also a canonical homomorphism σ : (F/I)/J −→ C∗(F/I)/C∗(J). Hence,
by introducing a further quotient map λ, we obtain a commutative diagram

(F/I)/J π̃ //

σ ''PP
PPP

PPP
PPP

P
C∗(F/I)/D

C∗(F/I)/C∗(J)

λ

OO

Since D ∩ A = ker(π|A), by Lemma 4.7 the algebra (F/I)/J is invariant under
the gauge actions and π̃ is injective on qJ(A), which is the new core “A” for
the algebra (F/I)/J since bal(qJ(x)) = bal(x). So (F/I)/J is an algebra which
satisfies (A) and (B), and there exists an A-faithful C∗-representation π̃. Since
J is generated by the cancelling ideal D ∩ A ∈ ΩA, by Definition 4.8 (F/I)/J
satisfies also (C’) and so is a Cuntz–Krieger ∗-algebra.

Hence, by Theorem 2.2 the images of π̃ and σ are canonically isomorphic, and so
λ is proved to be an isomorphism. By the definition of λ this implies C∗(J) = D.
Since D ∈ J , D ∩ A ∈ ΩA, and so D = C∗(J) = ΦA(D ∩ A) ∈ ΦA(ΩA) as we
wanted to show. �
Corollary 4.10. If all ideals in ΣA are cancelling then ΦA is a lattice isomor-
phism.

Proof. Since all ideals in ΣA are cancelling, ΩA = ΣA. By Theorem 4.9, ΦA is
surjective. By Theorem 4.6 and Lemma 4.4, ΦA is an injective lattice homomor-
phism. �

We aim to generalise the last theorem by allowing A to be a smaller algebra
B. The sense of the next definition will become clear in Corollary 4.13 or in the
proof of Corollary 4.14.

Definition 4.11. An ideal I ∈ ΣB is called B-cancelling if X := (F/I)/Σ(I) satis-
fies property (C’), and every arbitrarily given C∗-representation of X is injective
on qI(A) if and only if it is injective on qI(B).

Note that cancelling is the same as A-cancelling. Write ΩB ⊆ ΣB for the family
of B-cancelling ideals. The next theorem and corollary generalise the last ones.

Theorem 4.12. We have ΦB(ΩB) = {D ∈ I | D ∩ B ∈ ΩB }.

Proof. This is proved exactly like Theorem 4.9. One just replaces A by B and ΩA
by ΩB everywhere. �
Corollary 4.13. If all ideals in ΣB are B-cancelling then ΦB is a bijection.

Proof. Since all ideals in ΣB are B-cancelling, ΩB = ΣB. By Theorem 4.12 ΦB is
surjective and by Theorem 4.6 ΦB is injective. �

We shall now apply the last corollary to cancelling higher rank semigraph
algebras [5].

Corollary 4.14. Let F/I be a cancelling semigraph algebra (see [5, Definitions
5.1 and 7.2]), and B the ∗-subalgebra of A generated by the standard projections
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(see [5, Definition 5.14]). Then every quotient of F/I by an ideal in ΣB is a
semigraph algebra by [5, Lemma 8.1]. Now if every such quotient is cancelling (as
a semigraph algebra), then ΦB is a bijection.

Proof. A C∗-representation of a cancelling semigraph algebra is injective on A if
and only it is injective on B by [5, Corollary 6.4]. If I is an ideal in ΣB, then
the image of qI is a semigraph algebra by [5, Lemma 8.1]. The set of standard
projections (see [5, Definition 5.14]) in the semigraph algebra qI(F/I) are the
image of the standard projections in F/I; so qI(B) is the ∗-algebra generated by
the standard projections in qI(F/I). Note also that qI(A) is the core, or the “A”,
of qI(F/I). Hence by [5, Corollary 6.4], a C∗-representation of qI(F/I) is injective
on qI(A) if and only if it is injective on qI(B). So if we assume that qI(F/I) is
cancelling (as a semigraph algebra), then it is a Cuntz–Krieger type ∗-algebra,
and so satisfies (C’), and by Definition 4.11 I is B-cancelling.

So if we assume that qI(F/I) is cancelling for every I ∈ ΣB, then ΣB conists of
B-cancelling ideals only, and so ΣB = ΩB. The claim follows thus by Corollary
4.13. �
Corollary 4.15. If every quotient of a cancelling semigraph algebra F/I by an
ideal in ΣA is cancelling (as a semigraph algebra), then ΦA is a lattice isomor-
phism.

Proof. One repeats the last three sentences of the proof of Corollary 4.14 and
replaces B by A everwhere. �

5. Crossed Product Representation and Nuclearity

By using the Cuntz–Krieger uniqueness theorem, Theorem 2.2, we can extend
each gauge action tλ ∈ Aut(F/I) to a gauge actions θλ ∈ Aut(C∗(F/I)) (λ ∈ H).
We may thus apply Takai’s duality theorem [16] and obtain the following result.

Theorem 5.1. By Takai’s duality theorem we have

C∗(F/I)⊗K(L2(H)) ∼= C∗(F/I)oθ H oθ̂ Ĥ.

Moreover, C∗(F/I)oθH is the norm closure of a locally matricial algebra. Hence
C∗(F/I) is nuclear.

Proof. The nuclearity is concluded from the observation that C∗(F/I) is then
evidently the corner of a crossed product of a (possibly non-separable) AF-algebra
by an abelian group.

We assume that ζ is injective (Lemma 2.3). Step 1. In the first step we follow
the idea in [13, Lemma 3.1]. We denote the crossed product C∗(F/I)oθ H by A.
Let M(A) be the multiplier algebra of A. Let (Uλ)λ∈H ⊆ M(A) be the unitaries
inducing the actions (θλ)λ∈H . Let

χ(F ) :=

∫
H

F (λ)Uλdλ ∀F ∈ Ĥ,

where we integrate in M(A), and where dλ denotes the normalized Haar measure
on H. It is easy to see that (χ(F ))F∈Ĥ forms a family of mutually orthogonal
projections in M(A).
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Recall that bal(a)λa = λaa = θλ(a) for a ∈ A and λ ∈ H, and we write the

group operation of Ĥ additively. Notice that

χ(F )a = aχ(F + bal(a)) ∀a ∈ A∀F ∈ Ĥ. (5.1)

Notice that aχ(F ) ∈ A for all a ∈ A and F ∈ Ĥ. By an application of the

Stone-Weierstrass theorem the linear span of Ĥ is dense in L1(H). Hence A is
the norm closure of

B := lin{χ(F )x | x ∈ W, F ∈ Ĥ }.
Step 2. It remains to show that B is locally matricial. Consider a finite subset

Γ = {χ(F1)x1, χ(F2)x2, . . . , χ(Fn)xn}

for some fixed nonzero x1, . . . , xn ∈ W and F1, . . . , Fn ∈ Ĥ. By enlarging Γ, if
necessary, we can assume that Γ is self-adjoint (possible by identity (5.1)).

Let ω be the set of nonzero words in the alphabet Γ. By identity (5.1) each
y ∈ ω has a representation

y = χ(Fj1)xj1χ(Fj2)xj2 . . . χ(Fjm)xjm = χ(Fj1)xj1xj2 . . . xjm

for some 1 ≤ j1, . . . , jm ≤ n. Since y ̸= 0, we necessarily have

Fjk+1
= Fjk + bal(xjk) ∀k = 1, . . . ,m− 1.

Let

K = {xj1xj2 . . . xjm ∈ F/I |m ≥ 1, 1 ≤ j1, . . . , jm+1 ≤ n,

Fjk+1
= Fjk + bal(xjk) ∀k = 1, . . . ,m }.

Notice that
ω ⊆ Γ ∪ {χ(F1), . . . , χ(Fn)}KΓ

(products in A). Thus, if we can show that K lies in some finite dimensional
space Mn then lin(ω) = Alg∗(Γ) is a subspace of the finite dimensional space

lin(Γ ∪ {χ(F1), . . . , χ(Fn)}MnΓ),

and we are done.
We shall construct Mn by induction. Let γ ⊆ {1, . . . , n} and

Lγ := {xj1xj2 . . . xjm ∈ K | {Fj1 , Fj2 , . . . , Fjm+1} ⊆ {Fi | i ∈ γ } }.
If |γ| = 1 then all xjk of xj1xj2 . . . xjm ∈ Lγ are zero-balanced. Let M1 ⊆ A

be a finite dimensional ∗-algebra containing {xi ∈ A | 1 ≤ i ≤ n, bal(xi) = 0 }.
Then it is clear that Lγ ⊆ M1.

By induction hypothesis on N = 1, . . . , n − 1 we assume that there exists a
finite dimensional vector space MN , such that Lγ ⊆ MN for all γ ⊆ {1, . . . , n}
with |γ| = N .

Let δ ⊆ {1, . . . , n} with |δ| = N + 1. Let x = xj1xj2 . . . xjm ∈ Lδ. Let

{ 1 ≤ i ≤ m+ 1 | Fji = Fj1 } =: {1 = i1 ≤ . . . ≤ iM ≤ m+ 1}.
For k = 1, . . . ,M − 1 let

yk =

ik+1−1∏
t=ik

xjt .
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Since yk is a partial word of the word x = xj1xj2 . . . xjm which lives in K, we get

bal(yk) =

ik+1−1∑
t=ik

bal(xjt) =

ik+1−1∑
t=ik

Fjt+1 − Fjt = Fjik+1
− Fjik

= Fj1 − Fj1 = 0.

Hence yk is zero-balanced and lives in A. We have

x = y1y2 . . . yM−1xjiM
xjiM+1

. . . xjm .

Notice that for all k = 1, . . . ,M , both the ‘middle term’ of yk, i.e.

xjik+1
xjik+2

. . . xjik+1−2
,

and the ‘end term’ of x, i.e. xjiM+1
. . . xjm , lie in Lδ\{j1} ⊆ MN (the inclusion is

by induction hypothesis). Thus y1, . . . , yM−1 lie in the finite dimensional vector
space

Y =
( n∑

s=1

Cxs +
n∑

s,t=1

Cxsxt +
n∑

s,t=1

xsMNxt

)
∩ A.

Hence Z = Alg∗(Y ) is a finite dimensional vector space since Y ⊆ A. Thus
y1 . . . yM−1 ∈ Z, and x lies in the finite dimensional vector space

MN+1 = Z +
n∑

s=1

Zxs +
n∑

s=1

ZxsMN .

Notice that the choice of MN+1 is independent of δ and x ∈ Lδ. This completes
the induction. If N +1 = n then the proof is complete since then K = L{1,...,n} ⊆
Mn. �
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