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Abstract 

Delayed harvest can improve the quality of miscanthus biomass for combustion and enhance the 

long-term sustainability of the crop, despite accompanying yield losses. The aim of this study is 

to identify the optimal harvesting time, which can deliver improved biomass quality for 

combustion of novel miscanthus genotypes at various sites across Europe, without high yield 

losses and without compromising their environmental performance. The relevant field trials were 

established as part of the European project OPTIMISC with 15 genotypes at six sites across 

Europe. For this study, the five highest yielding genotypes from each germplasm group and three 

sites with contrasting climatic conditions (Stuttgart/Germany, Adana/Turkey and 

Moscow/Russia) were selected for assessment. The biomass samples were collected between 

August and March (depending on site) and subjected to mineral and ash content analysis. At 

Stuttgart, the delay in harvesting time led to a significant variation in combustion quality 

characteristics, such as N content (0.64-0.21%), ash content (5.15-2.60%) and ash sintering index 

(1.30-0.20). At Adana, the delay in harvesting time decreased the N content from 0.62 to 0.23%, 

ash content from 10.63 to 3.84% and sintering index from 0.54 to 0.07. At Moscow, the impact 

of delay in harvesting was not significant, except for N, Mg and ash sintering index. Overall, a 

delay in harvesting time improved the combustion quality characteristics of each genotype, but at 

the expense of yield. Yield losses of up to 49% in Stuttgart and Adana and 21% for Moscow 

were recorded, with variations between genotypes and sites. The harvesting time also affected 

nutrient offtake, which in turn influences the long-term environmental performance of the crop. 

The highest N, P and K offtakes were recorded at Stuttgart for each harvesting time except for 

final harvest (March), where Moscow had the highest N offtake. This study describes the three 

criteria (biomass quality, yield losses, nutrient offtake) for determining the ideal harvesting time, 

which gives the best compromise between dry matter yields and biomass quality characteristics 

without negatively affecting the environmental performance of the crop.  

 

Keywords: Miscanthus, Harvesting time, Genotype, Combustion quality, Yield loss, Nutrient 

offtake   
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1. Introduction 

The challenges of climate change and global warming, linked with the ongoing depletion of 

fossil fuels, have led researchers and policy makers to search for ways of replacing conventional 

fuels with renewable and sustainable low-emission fuels. A wide range of biomass resources, 

such as agricultural and forestry residues, herbaceous dedicated energy crops, woody biomass 

and other biodegradable wastes, can be exploited for this purpose (Zabed et al. 2016). The use of 

lignocellulosic biomass, especially dedicated non-food crops such as miscanthus, switchgrass 

and reed canary grass, offers an opportunity to deliver high biomass yields under low-input 

conditions, potentially also from less suitable agricultural land.  

Miscanthus is a very resource-efficient C4 perennial energy grass (Clifton-Brown et al. 2015), 

which has the potential to grow under marginal conditions (Mi et al. 2014). In Europe, it is the 

leading perennial energy grass and its biomass is mainly used for combustion to produce heat 

and electricity. Biomass-based combustion is the preferred utilization option, because it is 

simple, well known and state-of-the-art technologies are already in place, from small- to large-

scale applications (Obernberger and Thek 2008). By 2020, it is expected that biomass-based 

energy production will reach 139.5 Mtoe, of which 110.4 Mtoe will be produced in the form of 

heat and electricity (SWD 2014). Combustion offers an opportunity to exploit a wide range of 

biomass resources for this purpose (Arvelakis and Koukios 2013). However, for an efficient 

combustion process, biomass quality of specific characteristics is required. The major challenge 

for the combustion of miscanthus biomass is the low ash melting temperature, which not only 

reduces the conversion efficiency but also leads to other technical problems such as damage to 

boiler surfaces (Aho and Silvennoinen 2004). In addition, it increases the overall operational 

costs. Therefore, it is important to optimize the constituents of miscanthus biomass for an 

effective combustion process. For example, high potassium (K), chloride (Cl) and ash contents 

cause corrosion and fouling (Baxter et al. 2012, Baxter et al. 2014, Iqbal and Lewandowski 

2016), and a high moisture content has a direct influence on the heating value (Meehan et al. 

2014). For this reason, these biomass constituents need to be kept as low as possible to counter 

mechanical and technical limitations.  

There are several possibilities for enhancing miscanthus biomass quality for combustion. These 

include technical improvements (Blomberg 2012), adoption of efficient conversion processes 

(Wang et al. 2012) and optimization of biomass quality during its production (Iqbal and 

Lewandowski 2014). At field level, biomass quality can be improved by adjusting the harvesting 

time, which can be an efficient and cost-effective measure. Any change in harvest date has a 

significant influence on both miscanthus biomass composition and yield. However, the response 

to delayed harvesting varies from genotype to genotype due to differences in phenology (time of 

flowering and senescence) and morphology (stem thickness, leaf-to-stem ratio). The 

phenological differences directly influence the nutrient translocation process (Purdy et al. 2015) 

and the morphological differences affect the leaching of minerals through rainfall (Jørgensen 

1997). An optimal harvest date can improve combustion quality by allowing enough time for the 

translocation of nutrients back to rhizomes and the leaching of minerals and ash (Iqbal and 

Lewandowski 2014). A quality improvement with delayed harvest has been described for the 

commercially-grown standard clone, Miscanthus x giganteus. However, there is a trade-off 

between quality improvement and yield, because yield losses of up to 35% can occur between 

peak yield and a delayed harvest in early spring (Lewandowski and Heinz 2003). Despite 

influencing the biomass quality and yield, harvesting time also affects the environmental 
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performance of crop. For example, earlier harvest leads to high nutrient offtake (Smith and Slater 

2011) which subsequently increases the fertilizer input. Many studies have been carried out to 

evaluate the impact of delaying the harvest time on biomass quality for combustion (Bilandzija et 

al. 2016, Kludze et al. 2013, Hayes 2013). However, the mechanisms behind the biomass quality 

improvement through delayed harvest and the trade-off between quality and yield for different 

genotypes has not yet been fully described. Therefore, the aim of this study is to identify the 

optimal harvesting time, which can deliver improved biomass quality of novel miscanthus 

genotypes at various sites across Europe, without high yield losses and compromising their 

environmental performance. 

For this purpose, three of the six field-trial sites were selected from the European project 

‘OPTIMISC’: Adana (Turkey), Stuttgart (Germany) and Moscow (Russia). From the 15 

miscanthus genotypes trialled in this project, three of the highest-yielding were chosen from the 

germplasm ‘groups’ OPM-3 (M. sacchariflorus), OPM-6 (M. sacchariflorus × M. sinensis 

hybrid), OPM-14 (M. sinensis) to be compared with the ‘standard genotypes’ M. x giganteus 

(OPM-9) and M. sinensis Goliath (OPM-11). The genotypes were harvested at various dates 

between late summer and early spring. For each harvest date, the quality parameters relevant for 

combustion (mineral, ash, moisture) were analysed and the biomass yield assessed. 

 

2. Materials and methods 

2.1. Field trial description 

The field trials were established in 2012 as a part of the EU-funded project OPTIMISC (FP7 No. 

289159) with 15 miscanthus genotypes at six sites across Europe. Each genotype was established 

in a randomized block design with three replications. A full description of the field trials can be 

found in (Lewandowski et al. 2016). From these trials, three sites (Stuttgart, Adana and Moscow) 

were selected with the aim of covering a wide range of climatic diversity. From each site, the 

five most promising genotypes (in terms of dry matter yield) were selected and at least one 

genotype was also chosen from each species group in order to cover genetic diversity. The 

genotypes selected are presented in Table 1. This study was based on the data from the third 

growth year. 

Table 1 about here 

 

2.2. Site conditions and management practices  

The soil texture at Adana and Moscow is silty clay loam to sandy clay loam and at Stuttgart clay 

loam. Table 2 shows soil bulk density, stone fraction, and nutrient status (mineral nitrogen 

(Nmin), phosphorus (P), potassium (K), magnesium (Mg)) at different soil depths for each site. 

 

Table 2 about here 

Meteorological data (monthly rainfall and minimum air temperature from September to March) 

are shown in Figure 1. 
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Figure 1 about here 

Regarding management practices, all the selected sites received the same amount of nutrient 

application with 60 kg N ha
-1

, 100 kg P ha
-1

 and 140 kg K ha
-1

. Adana also received sufficient 

irrigation each year to ensure growth was not inhibited of around 200mm y
-1

. 

2.3. Sample collection  

The work was begun in August 2014 with sequential harvests of aboveground biomass, which 

we called ‘quality cuts’, starting from August through to January or March, depending on the 

site. Quality cuts were performed to collect biomass specifically for quality analyses avoiding 

any damage to the middle 4 m
2
 of each plot, which were used for yield estimations at final 

harvest. In Stuttgart, quality cuts were performed in August, September, October, November, 

January and March. In Adana, they were performed in August, September, October, November 

and January. In Moscow, they were performed in August, September and March because heavy 

frost killed the aboveground biomass just before the September sampling date and no further 

quality cuts could be performed until the final harvest in March. Data on morphological 

characteristics such as leaf-to-stem ratio and stem thickness were collected. The data on leaf-to-

stem ratio was collected for every harvesting time, whereas stem thickness was measured only at 

Stuttgart during final harvest. The same harvesting procedure was adopted at each site. Eight 

stems were collected randomly from the second-outer row of each plot using manual cutters and 

leaving stubble of about 5 cm at each harvest date. To ensure the collection was random, a 

marked pole was used. The quality cut samples were chopped and dried to constant weight (at 

60 °C for at least 48 hours) in a cabinet dryer at each site. The dried biomass samples from 

Adana and Moscow were shipped to Stuttgart for analysis. 

2.4. Chemical analysis 

The milling of all samples was performed in Stuttgart using a SM 200 (Retsch, Haan) cutting 

mill equipped with a 1-mm sieve and analysed in the laboratory for nitrogen (N), phosphorus (P), 

potassium (K), sodium (Na), silicon (Si), calcium (Ca), magnesium (Mg) and ash content. N 

analysis was carried out by using Vario Macro cube, Elementaranalysensysteme (GmbH, Hanau, 

Germany) by following the Dumus principle (Naumann and Bassler (1976/2012) VDLUFA 

Methods Book III). The extracts were prepared and P, K, Na, Ca, Si, and Mg contents were 

measured by using ICP-OES (Vista Pro, Varian Inc., Palo Alto, California, US). For 

determination of ash content, samples were kept in Muffle furnace at 550 °C for 4 hours 

(Naumann and Bassler (1976/2012) VDLUFA Methods Book III). The laboratory methods 

adopted for mineral analysis and ash are described in detail by Iqbal and Lewandowski (2014) 

and Iqbal and Lewandowski (2016).  

The ash-sintering index was developed by correlating biomass composition with ash melting 

behaviour during combustion, based on previous knowledge (Iqbal and Lewandowski 2016). 

This index helps to estimate ash melting behaviour during the combustion process. An ash-

sintering index value (Na + K / Ca + Si) between 0 and 0.20 predicts no to slight sintering risk, 

between 0.20 and 0.40 slight to strong sintering risk and values above 0.40 strong sintering risk 

to complete ash melting, depending on biomass composition. 

2.5. Statistical analysis 
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The laboratory analysis data were used to quantify the impact of genotype, harvesting time, site 

effect and the interaction between genotype and harvesting time on combustion-relevant quality 

parameters. Statistical analysis was performed in SAS version 9.4 (SAS Institute Inc., Cary, 

North Carolina) using the Proc mixed model with genotype, harvesting time and site effect as 

fixed and the interaction between genotype and harvesting time as random effects All variables 

were tested at a P -value of 0.05. The notation of the model is: 

yijkl =  + i + ßj + γjl + (ß)ij + (γ) il + eijkl    (1) 

where yijkl represents the quality parameter for k-th replicate of genotype i; at site j and harvesting 

time l,   is the general mean of the model; i is the effect of genotype i; ßj is the effect of site j; 

γjl is the effect of harvesting time for site j for harvesting time j; (ß)ij is the interaction between 

genotype i and site j; (γ) il  is the interaction between genotype i and harvesting time l, eijkl is the 

error value for corresponding observation. 

3. Results 

3.1. Biomass composition analysis relevant for combustion quality 

3.1.1. N, P, K content in the harvested biomass  

The statistical analysis evaluated the impacts of harvesting time (HT), site, genotype (GN) and 

genotype × harvesting time interaction on biomass composition. The statistical model showed 

that the impacts of harvesting time, site and genotype were significant for all biomass quality 

parameters. The interaction between harvesting time and genotype was also significant for all 

quality parameters but the interaction between genotype and site was not significant (Table 3). 

Table 3 about here 

Overall, with the delay in harvesting time from August to January or March depending on site, 

the biomass quality characteristics improved significantly as N, P & K declined with delay.   

For low NOx emissions during the combustion process, it is important to keep the N content in 

feedstock as low as possible. The N content of all genotypes was significantly higher at Moscow 

than at the other sites. The response to a delayed harvest also differed depending on site. For 

example, N content at Stuttgart decreased from 0.64% to 0.21% of DM with delay in harvesting 

time, which was more rapid than at the other sites. This decrease was significant with the delay 

until January, but no significant decrease was recorded from January to March. Overall, N, P and 

K contents decreased significantly with delay in harvesting time at all sites except Moscow, 

where a significant decrease was only recorded for N. At final harvest, mean K content of all 

genotypes was lowest at Moscow (0.11 mg/g DM), followed by Adana (1.95 mg/g DM) and 

Stuttgart (3.38 mg/g DM). For N, the highest mean content at final harvest (0.61% DM) was 

recorded for Moscow, followed by Adana (0.28% DM) and Stuttgart (0.22% DM). The highest P 

content of all genotypes and sites was found in OPM-14 at Stuttgart in October (1.78 mg/g DM) 

(Figure 2).  

Figure 2 about here 

 

3.1.2. Ash content and ash-forming elements (Ca, Mg, Si) 
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The ash content was highest at Adana, varying from 10.63% for OPM-11 in September to 3.84% 

for OPM-9 in January. The impact of harvesting time on ash and ash-forming elements (Ca, Mg, 

Si) was only significant at Stuttgart and Adana. As the major ash-forming element, the Si content 

followed the same trend as for ash with the delay in harvesting time at each site. No significant 

difference in ash and Si content between genotypes was recorded at Stuttgart and Moscow, 

whereas at Adana the variation was significant. At Adana, ash, Si, Ca and Mg contents were 

lowest for OPM-9 in comparison to the other genotypes. At Stuttgart, the lowest ash content was 

recorded in OPM-3 and OPM-6 (Figure 3). 

Figure 3 about here 

 

3.2. Optimization of harvesting time 

The ideal harvesting time for combustion depends on the quality of harvested biomass, yield 

losses and nutrient offtake. The biomass quality for combustion was evaluated through the 

development of an ash sintering index based on biomass composition. 

3.2.1. Ash-sintering index  

Despite high ash content at Adana, the value of the ash-sintering index was below 0.20 at final 

harvest for all genotypes. This indicates that there will be little to no sintering during combustion 

when biomass is harvested in January at this site. In some cases, delayed harvest did not have a 

significant effect on ash sintering. For example, at Adana, no significant improvement in the ash-

sintering index was recorded for OPM-11 and OPM-14 with the delay in harvesting time. At 

Stuttgart, for the January and March harvesting times, the value of the ash-sintering index was 

below 0.40 for all genotypes (except OPM-11 in January, where ash sintering index = 0.42) 

(Figure 4). 

 

Figure 4 about here 

 

3.2.2. Yield losses  

The yield loss from peak yield was considered one of the criteria for identifying the ideal 

harvesting time at each site. The peak yield (t/ha) month was taken as the baseline value for the 

calculation of percentage yield loss with the delay in harvesting time. For Stuttgart and Moscow, 

September harvest delivered the mean peak yield of all genotypes whereas for Adana, August 

was considered as peak yield month. At Stuttgart, the yield losses were below 40% when 

harvesting was delayed from September to January (Figure 5), whereas at Adana they reached 

49% from peak yield (August) to final harvest in January. For Moscow, the yield loss from the 

peak-yield month (September) to final harvest (March) was 21%. As there were no yield data 

between September and March, Moscow is not presented in (Figure 5). 

 

Figure 5 about here 
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3.2.3. Nutrient offtake (N, P, K) 

Another important factor for the identification of optimal harvesting time is nutrient offtake, 

because it directly influences the long-term environmental performance of the crop. High 

nutrient offtake at a specific harvesting time not only effects biomass quality but also leads to 

high fertilizer inputs. After the peak-yield month, nutrient offtake significantly decreased at each 

site with the delay in harvesting time. The highest N, P and K offtakes were recorded at Stuttgart 

for each harvesting time, except for the final harvest (March) where Moscow had the highest N 

offtake (Table 4). In Stuttgart and Moscow, the highest N (Stuttgart= 101.2 kg/ha: Moscow= 

72.9 kg/ha) and P offtakes (Stuttgart= 21.3 kg/ha: Moscow= 6.7 kg/ha) were recorded in 

September, whereas in Adana the highest offtakes were in August (N= 83.9 kg/ha: P= 15 kg/ha) 

(Table 4). The highest K offtake was recorded in August in Stuttgart (168.3 kg/ha) and Adana 

(131.4 kg/ha), but in September in Moscow (36.3 kg/ha) (Table 4). The high N, P and K offtakes 

at Stuttgart can be explained by the high initial nutrient loading at this site. 

Discussion 

This study assessed the variation in biomass quality characteristics between genotypes, mainly 

due to morphological and phenological differences such as stem diameter and time of flowering 

and senescence. For the morphological differences, stem thickness and leaf-to-stem ratio play a 

key role in determining biomass quality for combustion at a specific harvesting time. The 

genotypes assessed can be listed in the following order of stem thickness OPM-3 > OPM-9 > 

OPM-11 > OPM-14 > OPM-6. The thick-stemmed genotypes (M. sacchariflorus and M. x 

giganteus) showed a low leaf proportion (Figure 6).  

 

Figure 6 about here 

 

The leaves have high mineral and ash contents, therefore a low leaf proportion is favourable for 

combustion (Baxter et al. 2014). The low leaf proportion of M. x giganteus may explain why this 

genotype had the lowest ash content at final harvest in Adana and Moscow. At Stuttgart, it was 

only slightly higher than the genotype with the lowest ash content. Stem diameter is an important 

morphological characteristic because it directly influences the rate of leaching. Other studies 

have found that thin-stemmed genotypes (M. sinensis) show more efficient leaching of minerals 

than thick-stemmed genotypes (M. x giganteus) (Jørgensen 1997, Iqbal and Lewandowski 2014). 

In our study, the thin-stemmed OPM-6 showed a rapid improvement in sintering index with 

delayed harvesting. It is assumed that it is the leaching of K which leads to this improved 

sintering index, because the same trend was found for K as for the sintering index with delay in 

harvesting time. From the literature, it is also evident that the rate of fouling and sintering during 

combustion is determined by the K content (Blomberg 2007). In plants, K is present as a soluble 

ion (Jørgensen 1997). Therefore the K content of biomass is largely influenced by stem thickness 

and rate of leaching. (Kludze et al. 2013) recorded up to 31% reduction in K content of 

miscanthus through translocation and efficient leaching with winter precipitation with delayed 

harvest. Based on our own results, we conclude that genotypes with low leaf share and thin stems 

would be most suitable for combustion purposes. However, for the genotypes tested here, low 
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leaf share seems to be accompanied by thick stems. For example, M. x giganteus had low leaf to 

stem ratio but also develop thick stems. Therefore, future breeding program should focus on 

developing combustion specific genotypes with thin stems and low leaf share.  

The variation in leaf-to-stem ratio between genotypes at the three sites shows that, in addition to 

genotypic variation, there is also a site affect. This site effect can be explained through 

differences in rainfall, because the timing and amount of rainfall affects the leaching rate of 

minerals (Iqbal and Lewandowski 2014). For example, Adana had highest rainfall from October 

to January, which are the months most relevant for leaching because the biomass is senescent 

during this period. This led to a rapid improvement in sintering index before final harvest. The 

significantly highest ash content of all genotypes at Adana compared to the other sites is another 

indication of the site effect. This can be explained by differences in soil type. The soluble silica 

(Si) content varies with soil type. For example, clay soils have high soluble Si content, which 

subsequently leads to high uptake of Si (Bakker and Elbersen, 2005). The high soluble Si content 

in soil at Adana may have caused the comparatively high ash content of the harvested biomass. 

Phenology is another important factor that explains the genotypic variation between sites. In this 

study, the M. sinensis types flowered earliest, followed by the hybrids and then M. x giganteus. 

Genotypes with early flowering and senescence, such as M. sinensis, delivered higher biomass 

qualities than genotypes with late flowering and senescence, such as M. x giganteus, because the 

time of flowering directly influences the nutrient relocation process. Early flowering genotypes 

initiate the relocation of nutrients earlier and complete it before winter frost kills the stems 

(Jensen et al. 2016). The time of flowering and senescence for these genotypes is described by 

Nunn et al. 2017.  

In the results section, three criteria (biomass quality, yield losses, nutrient offtake) were 

described for determining ideal harvesting time, which gives the best compromise between dry 

matter yields and biomass quality characteristics without negatively affecting the environmental 

performance of the crop. However, no hard criteria in terms of biomass quality, yield losses or 

nutrient offtake can be set for the identification of the ideal harvesting time, because threshold 

values have not yet been fully defined for miscanthus. From a biomass quality perspective, the N 

content of most of the genotypes at final harvest at Stuttgart and Adana falls within the defined 

threshold limits of the European pellet norms (ENplus A1). Therefore, N content could be used 

as one biomass quality parameter for identifying the ideal harvesting time. Delayed harvesting 

can lead to biomass yield losses and also reduce net energy yield ha-1. Early harvesting 

(November) of miscanthus biomass will lead to a higher net energy yield (GJ/ha) for combustion 

than delayed harvesting, as reported by Kiesel et al. (2017). However, it not only influences the 

thermal conversion of biomass but also compromises the nutrient balance of the crop by 

increasing nutrient offtake. In this study, nutrient offtake (N, P, K) was reduced by up to 70% at 

Stuttgart through delay in harvesting from August to March. In addition, it is practically not 

possible to fully close the nutrient cycle in the combustion chain, as can be done in the biogas 

chain through the recycling of biogas digestates as fertilizer. During combustion, N is lost and 

currently ash is not allowed as fertilizer as it is classified as waste. Results of this study indicate 

that delayed harvesting is accompanied by lower nutrient offtakes. In terms of nutrient use 

efficiency, it is preferable to harvest the biomass as late as possible.  

Based on the results of this study, January harvesting can be recommended at Stuttgart for all 

genotypes, because there was no significant improvement in quality characteristics, especially N 
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and K content, from January to March. However, a delay in harvest from January to March led to 

additional yield losses of about 12% and the nutrient offtake in January was already reduced by 

up to 46% compared to August. For some genotypes, such as OPM-3, OPM-9 and OPM-14, 

even a harvest in November is thinkable, since the N content and sintering index was low at this 

harvest dates and further improvements by delaying harvest might not be justified by the 

additional yield losses. However, earlier harvest will lead to higher moisture content (Kiesel et 

al. 2017) and requires adapted harvest procedure (e.g. windrowing and wilting on field). Biomass 

with high moisture content poses some additional challenges, such as increased logistics costs 

and a high risk of spoilage and self-heating during storage. In addition, in case of early harvest, 

nutrient offtake was also high which compromised the environmental performance of crop. For 

Adana, January (which was final harvest) can also be recommended for all genotypes, because 

the biomass quality not only met the threshold values for N content set by European pellet norms 

(ENplus A1), but also the sintering index was below 0.2. At this harvesting time, the N offtake 

was reduced by 67% compared to early harvest (August), but yield losses were comparatively 

high (49%). The results for Adana show that genotypes other than those investigated here would 

probably be more suitable for biomass production for combustion. Genotypes better adapted to 

drought conditions could make better use of the biomass production potential.  

In Moscow, where no harvesting was possible between September and March due to heavy 

snowfall, the absence of significant compositional changes through leaf fall or relocation of 

nutrients can be explained by the short vegetative period. The harsh frost and the mean 

temperature well below zero (-12 °C) for most of this period (September to March) led to no 

further crop development and compositional changes. Purdy et al. (2015) found that long periods 

with temperatures below zero kill the aboveground stems and negatively affect remobilization of 

nutrients back to rhizomes. Therefore, there was no significant biomass quality improvement 

through a delay in harvesting time. However, delaying the harvest until March improved the 

environmental performance of the crop by reducing N offtake up to 42% (compared to 

September) with yield losses of only 21%. This indicates that March could be more appropriate 

than an early harvest, but still the N content is very high compared to the other sites. From the 

results of this study, we conclude that genotypes which are adapted to short vegetation period 

and are early senescing need to be developed for sites like Moscow. This would allow the crop to 

complete the growth cycle more and actively relocate nutrients before first harsh frosts occur. 

This would help to improve the biomass quality for combustion. 

At each location, the yield loss through delayed harvest is mainly due to leaf fall, stem breakage, 

and inefficient harvesting and collection especially caused by broken stems lying on the ground. 

However, no specific data on leaf fall and stem breakage were collected from early to late 

harvest.  

From the above discussion, it can be concluded that harvesting time should be decided on and 

adjusted according to the prevailing weather conditions and thus may vary from one region to 

another. For example, in many miscanthus-growing regions in the northern hemisphere, frequent 

rainfall in March, in combination with the thawing effect, may cause soil softening and make the 

use of harvesting machinery difficult. Under such conditions, minor improvements in 

combustion quality at the expense of surface damage and soil compaction will not be 

worthwhile. Therefore, in such a scenario, an early harvest can be performed before the start of 

the wet season to avoid any soil damage.  
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Tables 

 

Table 1: Description of miscanthus genotypes used in this study (Lewandowski et al. 2016) 

Genotype name  Abbreviation Provider 

Miscanthus sacchariflorus OPM-3 IBERS 

Miscanthus sinensis ×Miscanthus sacchariflorus hybrid OPM-6 IBERS 

Miscanthus x giganteus OPM-9 IBERS 

Miscanthus sinensis ‘Goliath’ OPM-11 IBERS 

Miscanthus sinensis OPM-14 WUR 

 

Table 2: Bulk density, stone fraction and nutrient status for different soil depths for each site 

Site   Depth 
Bulk 

density 

Stone 

fraction 
K2O P2O5 Mg Nmin 

 
cm gm/cm3 % mg/100g mg/100g mg/100g mg/kg soil 

Stuttgart 

 

0-30 1.31 6.7% 23.5 26.3 26.7 18.0 

30-60 1.66 9.9% 8.4 3.6 23.5 3.2 

60-90 1.40 9.9% 5.0 3.0 21.7 1.9 

Adana 0-30 1.51 10.4% 17.7 3.2 15.5 16.6 

30-60 1.64 9.7% 12.8 2.0 17.7 14.1 

60-90 1.40 9.7% 14.4 3.2 17.7 13.4 

Moscow 0-30 1.57 1.8% 2.5 11.1 10.8 26.2 

30-60 1.70 3.6% 3.6 2.0 16.4 27.0 

60-90 1.40 3.6% 3.5 2.3 14.0 na 

 

Table 3: P- values for various quality parameters  

Effect N P K Ca Mg Si Ash 
Sintering 

index 
 

HT <0.001 <0.001 <0.001 0.0569 0.0003 <0.001 <0.001 <0.001 

Site <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

GN 0.006 0.001 0.0006 <0.001 <0.001 <0.001 <.0001 <.0001 

HT×GN <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Site×GN ns ns ns ns ns ns ns ns 

*HT = harvesting time; GN = genotype, ns = not significant 

Table 4: Mean nutrient offtake (N, P, K) at each site and harvesting month for all five genotypes 

Harvesting N (kg/ha) P (kg/ha) K (kg/ha) 
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month Stuttgart Adana Moscow Stuttgart Adana Moscow Stuttgart Adana Moscow 

Aug 91.4 83.9 39.0 18.3 15.0 3.2 168.3 131.4 15.6 

Sep 101.2 71.9 72.9 21.3 13.0 6.7 162.0 107.3 36.3 

Oct 77.2 45.1 na 20.3 9.3 na 124.8 54.0 na 

Jan 49.0 27.8 na 12.3 5.2 na 74.8 19.1 na 

Mar 27.9 na 42.5 5.2 na 4.9 43.9 na 25.7 

 

Figure captions 

Figure 1: Monthly rainfall (mm) and minimum air temperature (°C) for each site from September (2014) to 

March (2015), including irrigation in Adana. 

Figure 2: Nitrogen, phosphorus and potassium content of biomass from early to late harvest at Stuttgart, 

Adana and Moscow for selected genotypes. Single asterisks (*) indicate a significant impact (P=0.05) of 

interaction between harvesting time, genotype and site. Double asterisks (**) refer to a highly significant 

impact and ‘ns’ indicates that the effect was not significant. 

Figure 3: Ash content and major ash-forming elements for each harvesting time, genotype and site. Single 

asterisks (*) indicate a significant impact (P=0.05) of interaction between harvesting time, genotype and site. 

Double asterisks (**) refer to a highly significant impact and ‘ns’ indicates that the effect was not significant. 

Figure 4: Values of ash sintering index (Na + K / Ca + Si) for each genotype and harvesting time at Stuttgart, 

Adana and Moscow. Single asterisks (*) indicate a significant impact (P=0.05) of interaction between 

harvesting time, genotype and site. Double asterisks (**) refer to a highly significant impact and ‘ns’ indicates 

that effect of harvesting time on genotype was not significant. 

Figure 5: Yield losses (%) with delay in harvesting time from peak yield for Stuttgart, Adana and Moscow. 

The mean peak yield of all genotypes at each site is also shown. 

Figure 6: Leaf-to-stem ratio (shown as lines) for selected miscanthus genotypes at three sites (mean of all 

harvest dates) and stem diameter (shown as bars) for Stuttgart only (final harvest) 
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