

Aberystwyth University

Reefcrete Dennis, Harry; Evans, Alison; Banner, Alexander; Moore, Philippa

Published in: **Ecological Engineering**

DOI: 10.1016/j.ecoleng.2017.05.031

Publication date: 2018

Citation for published version (APA): Dennis, H., Evans, A., Banner, A., & Moore, P. (2018). Reefcrete: Reducing the environmental footprint of concrete for eco-engineering marine structures. Ecological Engineering, 120, 668-678. https://doi.org/10.1016/j.ecoleng.2017.05.031

General rights

Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

tel: +44 1970 62 2400 email: is@aber.ac.uk

Reefcrete: reducing the environmental footprint of concretes for eco-engineering marine structures

H.D. Dennis⁺, <u>A.J. Evans</u>⁺, A.J. Banner and P.J. Moore

Supplementary Online Material

Component	kg CO₂/ t	GGBS Control		Low Shell		Medium Shell		High Shell		Low Hemp		Medium Hemp		High Hemp		. /
		Ratio	kg CO ₂ / t concrete	Ratio	kg CO ₂ / t concrete	Ratio	kg CO ₂ / t concrete	Ratio	kg CO ₂ / t concrete	Ratio	kg CO ₂ / t concrete	Ratio	kg CO ₂ / t concrete	Ratio	kg CO ₂ / t concrete	Relevences
CEMI	930.0	0.06	55.80	0.06	55.80	0.06	55.80	0.06	55.80	0.06	55.80	0.06	55.80	0.06	55.80	(Hammond and Jones, 2008)
GGBS	42.0	0.14	5.88	0.14	5.88	0.14	5.88	0.14	5.88	0.14	5.88	0.14	5.88	0.14	5.88	(Ecocem, 2016)
Fine aggregate Coarse aggregate	4.8	0.3	1.44	0.3	1.44	0.3	1.44	0.3	1.44	0.3	1.44	0.3	1.44	0.3	1.44	(Hammond and Jones, 2008)
	4.8	0.5	2.40	0.375	1.80	0.25	1.20	0	0	0.475	2.28	0.45	2.16	0.375	1.80	(Hammond and Jones, 2008)
Hemp	-1599.5	0	0	0	0	0	0	0	0	0.025	-39.99	0.05	-79.98	0.125	-199.94	See SOM Table 2
Shell	-91.9	0	0	0.125	-11.48	0.25	-22.97	0.5	-45.94	0	0	0	0	0	0	See SOM Table 3
Total			65.52		53.44		41.35		17.18		25.41		-14.70		-135.02	

Table 1 Carbon footprints (kg CO₂/tonne) associated with the production of each component used in the concrete blends trialed (based on published values). Negative values indicate potential net carbon storage. For hemp and shell calculations see SOM Tables 2 and 3.

Table 2 Composition of hemp fibres (proportions of cellulose, hemicellulose and lignin components, assuming values from Mwaikambo and Ansell, 2002), the relative carbon content of these components (Couhert et al., 2009) and calculated carbon content and equivalent CO_2 storage per tonne of hemp fibre (based on the ratio of molecular masses CO_2 : C of 44g : 12g).

Component	Percentage composition in hemp fibre (%)	Carbon content (%)	kg carbon / tonne hemp fibre	kg CO ₂ storage / tonne hemp fibre
Cellulose	74.0	44.4	328.6	1204.7
Hemicellulose	18.0	45.0	81.0	297.0
Lignin	4.0	66.7	26.7	97.8
Totals			436.2	1599.5

Table 3 Carbon content, equivalent CO_2 (based on the ratio of molecular masses CO_2 : C of 44g : 12g) and potential CO_2 storage of waste whelk shells. Waste shells from the UK seafood processing industry are typically disposed of by landfill (78%) and incineration (22%) routes (Fry, 2012). Shell material sent to landfill would naturally persist for an extended period before decomposition and release of CO_2 , therefore only the 22% proportion that would otherwise be incinerated (i.e. with immediate CO_2 release), was used to calculate its potential carbon storage.

Component	Percentage composition in shell	Carbon content (%)	kg carbon / tonne shell	kg CO ₂ / tonne shell	Percentage diverted from incineration (%)	Total kg CO ₂ storage / tonne shell	
CaCO ₃	95.0 ¹	12.0	113.9	417.6	22.0	91.9	

¹White et al. 2007

Table 4 Kruskal Wallis tests of significant differences in mean initial algal concentrations (total algae, green algae, blue-green algae and diatoms), mean live cover and mean taxon richness (full community, sessile community and mobile community) between hemp and shell concrete blends with "Low", "Medium" and "High" percentage aggregate replacements (n = 3, n = 2 for Medium Shell). Non-parametric tests were carried out on untransformed data because of heterogeneity of variances between groups.

Groups	Response variable	Chi-Square	d.f.	Р
Low Hemp Medium Hemp High Hemp	Total algae Green algae Blue-green algae Diatoms Live cover Taxon richness (full community) Taxon richness (sessile community) Taxon richness (mobile community)	3.467 4.582 1.867 2.489 1.067 1.185 0.318 5.153	2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 0.177\\ 0.101\\ 0.393\\ 0.288\\ 0.587\\ 0.553\\ 0.853\\ 0.076\end{array}$
Low Shell Medium Shell High Shell	Total algae Green algae Blue-green algae Diatoms Live cover Taxon richness (full community) Taxon richness (sessile community) Taxon richness (mobile community)	2.489 1.156 1.156 2.756 1.770 2.157 0.725 2.520	2 2 2 2 2 2 2 2 2 2 2 2	0.288 0.561 0.252 0.413 0.340 0.696 0.284

Table 5 PERMANOVA tests of significant differences in full community, sessile community and mobile community compositions between hemp and shell concrete blends with "Low", "Medium" and "High" percentage aggregate replacements (n = 3, n = 2 for Medium Shell). Tests were carried out on fourth root transformed data to account for scale differences in abundance measures.

Groups	Response variable	d.f.	Pseudo-F	P(mc)
Low Hemp	Full community	2,8	1.680	0.133
Medium Hemp	Sessile community	2,8	1.411	0.245
High Hemp	Mobile community	2,8	2.092	0.095
Low Shell	Full community	2,7	0.798	0.611
Medium Shell	Sessile community	2,7	0.858	0.552
High Shell	Mobile community	2,7	0.690	0.671

References

Couhert, C., Commandre, J.-M., Salvador, S., 2009. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel 88, 408-417.

Ecocem, 2016. Footprint calculator [WWW Document]. URL http://www.ecocem.ie/calculator/ (accessed 11.20.16).

Fry, J.M., 2012. Carbon footprint of Scottish suspended mussels and intertidal carbon footprint of Scottish suspended mussels and intertidal oysters, SARF078. Pitlochry, UK.

Hammond, G.P., Jones, C.I., 2008. Embodied energy and carbon in construction materials. Proceedings of the Institution of Civil Engineers – Energy 161, 87-98.

Mwaikambo, L.Y., Ansell, M.P., 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. App. Pol. Sci. 8, 2222-2234.

White, M.M., Chejlava, M., Fried, B., Sherma, J., 2007. The concentration of calcium carbonate in shells of freshwater snails. Am. Malacol. Bull. 22, 139–142. doi:10.4003/0740-2783-22.1.139