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 18 
ABSTRACT 19 

 20 
The commercially important chokka squid Loligo reynaudii occurring in South African 21 

waters is currently managed on a single-unit stock hypothesis. We tested this assumption 22 
through a spatial comparison of the morphology throughout the distributional range of the 23 

species. Forty three morphometric characters were measured from 1079 chokka collected off 24 

the south coast of South Africa, the west coast of South Africa, and southern Angola. While 25 

no significant differences were found in the hard body parts, results from classification 26 
analysis showed that though all four types of morphometric attributes (soft body parts, beaks, 27 

statoliths, sucker rings) resulted in some separation, the most consistent separation of 28 
samples from the three regions was based on soft body part morphometric characters. On 29 
average, though dependant on the model, the overall correct classification rate ranged from 30 

0.68 – 0.99 for males and 0.7 – 0.99 for females in all three regions. Previous DNA analysis 31 

had revealed some genetic differences between west coast and south coast samples, 32 

suggesting the confluence of the cold Benguela and warm Agulhas current may act as the 33 
approximate point of a phenotypic and possible genetic breakpoint. Finer scale genetic 34 
analysis of samples collected across the Benguela-Agulhas confluence reported no significant 35 

genetic structuring in this area suggesting environmental heterogeneity and not restriction of 36 
genetic flow/isolation as the primary driver of the observed phenotypic divergence. 37 

 38 

INTRODUCTION 39 
 40 
The marine environment off the coast of southern Africa is one of the most diverse, complex 41 
and highly variable in the world (Lutjeharms et al., 2001). The distribution of the cape hope 42 

squid Loligo reynaudii (locally known as chokka) along this coastline is largely influenced by 43 
the warm Angola current and the cold Benguela current upwelling system along the West 44 

African coast and the warm Agulhas current system along the south east coast (Figure 1). L. 45 
reynaudii inhabits these three different environments (south coast of South Africa, west coast 46 
of South Africa, and southern Angola) with an apparent break in its distribution off the coast 47 

of Namibia (Shaw et al. 2010). In South Africa, two-thirds of the adult biomass is 48 
concentrated on the eastern Agulhas Bank shelf where it has become an important fishery 49 

resource, targeted by a major commercial hand-line jig fishery (6000–13,000t caught 50 
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annually) since the mid-1980’s (Augustyn 1989, 1991; Augustyn et al., 1993, Arkhipkin et 51 
al. 2015). In addition, 200–500t is caught annually as a by-catch in the demersal trawl 52 
fisheries (Augustyn & Roel, 1998; Arkhipkin et al. 2015). In southern Angola artisanal 53 
fishers catch L. reynaudii close to shore from rafts, using homemade jigs and hand-lines 54 
(Sauer et al. 2013). 55 

 56 
Although a number of studies into the stock structure of L. reynaudii have been attempted in 57 
the last decade (using various biological and genetic techniques, e.g. Olyott, 2002; Olyott et 58 
al., 2006, 2007; Shaw et al., 2010; Stonier, 2012), its demography still remains unclear. Due 59 
to lengthy planktonic paralarval stages (40-day passive period) with the potential for high 60 

dispersal rates (Roberts & Mullon, 2010), highly migratory adult stages (Sauer, 1995; Sauer 61 
et al., 2000) and a lack of obvious physical geographic barriers to movement along the 62 

coastline, genetic homogeneity of the South African stock was previously assumed. This 63 
assumption was questioned by Olyott et al. (2007), who suggested that juveniles growing 64 
under different environmental conditions on the western Agulhas Bank could result in 65 
discrete subpopulations with different biological characteristics such as slower growth rates 66 
and larger size at maturity. The influence of water temperature on the growth of other 67 

cephalopod species is well known (Forsythe et al., 1994; Carvalho & Nigmatullin, 1998; 68 
Forsythe, 2004).   69 

 70 
A subsequent molecular study by Shaw et al. (2010) indicated small but statistically 71 

significant genetic differences among some L. reynaudii samples, suggesting a more 72 
complicated stock structure. Although no significant differences were found between genetic 73 
samples of different spawning aggregations across the main spawning range on the eastern 74 

Agulhas Bank, subtle differences were found in geographically more distant samples from 75 

the western Agulhas Bank (Shaw et al., 2010). Such differences may necessitate a rethink of 76 
the current management strategy. A finer scale study of this region was therefore suggested to 77 
further investigate the possibility of geographically fragmented stocks and stock boundaries. 78 

 79 
Although studies of geographic variation has been an accepted method in fish stock 80 

discrimination for over a century (Ihssen et al., 1981), and has been extended to cephalopods 81 
such as octopods (Voight 2002; Lefkaditou & Bekas, 2004) and sepiids (Guerra et al., 2001; 82 
Kassahn et al., 2003; Neige, 2006), the use of morphometric data has not yet been attempted 83 

for L. reynaudii. Morphometric studies has been widely used to distinguish between species 84 
of squid (Haefner, 1964; Lipinski, 1981; Augustyn & Grant, 1988; Pierce et al., 1994b; 85 

Sanchez et al., 1996; Bonnaud et al., 1998; Pineda et al., 2002) and to study the geographic 86 

variation of population units and fishery stocks within species of squid (Kashiwada & 87 

Recksiek, 1978; Kristensen, 1982; Brunetti & Ivanovic, 1991; Boyle & Ngoile, 1993; Pierce 88 
et al., 1994a; Borges, 1995; Zecchini et al., 1996; Carvalho & Nigmatullin, 1998; Hernandez-89 
Garcia & Castro, 1998; Vega et al., 2002; Liao et al., 2010). It is important to note, however, 90 
that unlike molecular markers, phenotypic variation in body parts is markedly influenced by 91 
environmental factors (Carvalho & Nigmatullin, 1998) and does not always result from 92 

genetic divergence (Cadrin, 2000). Therefore, phenotypic variation may only provide indirect 93 
indication of stock structure (Begg et al., 1999). Although they do not provide direct 94 
evidence of genetic isolation between stocks, they can indicate separation of post-larval 95 
stocks living in different environmental regimes (Begg et al., 1999). Phenotypic markers may 96 
therefore be more useful for studying short-term, environmentally-induced variation, as 97 

opposed to long-term genetic variation. 98 

 99 
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In an attempt to better understand the stock structure of L. reynaudii in South African waters 100 
this study undertook morphometric analysis across the distributional range of the species, and 101 
a more geographically concentrated genetic study of samples from across the Agulhas Bank 102 
region. 103 
 104 

MATERIALS AND METHODS 105 
 106 
Collection of samples 107 
 108 
L. reynaudii samples from South Africa were collected utilising various commercial jig 109 

vessels and a demersal trawl research vessel (Figure 1). The south coast demersal research 110 
survey (08/04/2011 – 13/05/2011) covered the shelf between 20°E (Cape Agulhas) and 27°E 111 

(Port Alfred) and the west coast survey (09/01/2012 – 13/02/2012) between 20°E (Cape 112 
Agulhas) and 29°S (Orange River). These demersal surveys provided for the collection of 113 
random samples over a range of shallow and deep areas on the south and west coast of South 114 
Africa. Between June and November 2011 additional samples were collected on board 115 
various commercial jig vessels fishing in the main inshore spawning areas which were not 116 

covered during the south coast demersal trawl survey. Samples caught by the artisanal jig 117 
fishery in southern Angola (in the coastal waters between 15° and 17°S) were collected from 118 

a single hawker at a fish market in Namibe, the species’ northern-most known geographical 119 
limit (Roberts et al., 2012). Only adult squid were sampled, ranging in length from 180 – 420 120 

mm dorsal mantle length (DML) for males and 150 – 260 mm DML for females. 121 
 122 
All squid were frozen and transported to Rhodes University, South Africa, where they were 123 

kept at -20°C until analysis. Genetic material in the form of tentacle clippings were collected 124 

from subsamples of squid caught in the Agulhas Bank and West Coast regions. The clippings 125 
were taken immediately after capture and stored in 70% ethanol until processed.  126 

 127 
Selection of individuals 128 

 129 
A total of 544 male and 535 female individuals from the three regions were used in the 130 
classification analyses. The average DML length of males (279.3 mm Angola, 299.8 mm 131 
south coast, 250.6 mm west coast) and females (185.8 mm Angola, 207.4 mm south coast, 132 

190.8 mm west coast) from each region differed only slightly (see Appendix A for the 133 
descriptive statistics of all character measurements taken). For both males and females the 134 

south coast subsample size was by far the largest. 135 

 136 
All samples used in the classification analysis were classified as adults with maturity stages 137 
of 3 (preparatory), 4 (maturing) and 5 (mature), according to Lipinski’s universal maturity 138 
scale for commercially-important squid (Lipinski, 1979; Lipinski & Underhill 1995). No 139 
samples were classified as belonging to stages 1 (juvenile) and 2 (immature). 140 

 141 
Morphometric measurements 142 
 143 
Forty three morphometric characters (Table 1) of the soft body parts (body, head, arms, 144 
tentacles) and hard structures (gladius, sucker rings, lower beak, statolith) were measured 145 
from each sample. Beak morphometric characteristics were modified from Clarke (1986), 146 

statolith morphometric characters from Clarke & Maddock (1988) and, gladius, sucker rings 147 

and soft parts were selected and modified from Lipinski (1981). Detailed specifics on the 148 
measurements taken for each soft part and hard structure can be seen in Table 1 and Figure 2 149 



4 
 

- 4. In order to prevent any warping of morphological characteristics, which can happen with 150 
repeated freezing and thawing (Lipinski, 1981), each specimen was defrosted only once at 151 
room temperature before morphometric measurements were taken. No measurements were 152 
made on soft parts or hard structures which appeared to be damaged or to have suffered 153 
previous damage (e.g. missing arm and tentacle tips; re-grown arms and tentacles; damaged 154 

gladius, lower beaks, sucker rings and statoliths). All morphometric measurements were 155 
made by the senior author and under standardised conditions to avoid unnecessary variation 156 
in measurements. 157 
 158 
All soft part morphometric data were measured to the nearest millimetre according to 159 

recommendations by Roper & Voss (1983), using a single set of vernier callipers. 160 
Measurements on the gladius and sucker rings were made after removing the structures from 161 

the squid. Gladius measurements were made to the nearest mm using vernier callipers and 162 
sucker ring diameter was measured using a low-powered microscope with an eyepiece 163 
micrometer. Beaks were carefully extracted from the buccal mass following the method 164 
described by Clarke (1986) and immediately frozen until further analysis. After defrosting at 165 
room temperature at a later stage, lower beaks were measured in profile to the nearest 0.01 166 

mm using a single set of digital callipers. Statoliths were removed from the head with a small 167 
pair of tweezers and stored in empty vials until further analysis of only one statolith per pair 168 

(either left or right) under a low-powered microscope with an eyepiece micrometer.  169 
 170 

Analysis of morphological data 171 
 172 
Prior to analysis, morphometric data were screened for errors using bivariate plots and 173 

regression analyses to identify outliers. Unfortunately soft part measurements could not be 174 

retaken as specimens were discarded after measurements. Errors in soft part data were 175 
therefore corrected by reference to the original data sheets, alternatively data from those 176 
samples were deleted. Some hard structures such as beaks and statoliths were re-measured 177 

where necessary.  178 
 179 

Morphometric studies, whereby multivariate measurements of different body parts are used to 180 
characterize the average shape of the sampled population, need to take into account/adjust the 181 
effect of body size as most of the variations are the result of changes in body size (Lleonart 182 

et. al. 2000). There are slightly different ways of removing the effect of body size. In this 183 
study, each morphometric character was log-transformed and standardized using the 184 

following allometric formula (Liao et al., 2010): 185 

 186 

𝑀𝑠𝑡𝑑 = 𝑙𝑜𝑔(𝑀) − 𝛽 (𝑙𝑜𝑔(𝑀𝑙) − 𝑙𝑜𝑔(𝑀𝑙¯ )) 

 187 
Where 𝑀std is the standardized morphometric measurement, 𝑙𝑜𝑔(𝑀) is the log of the 188 
morphometric measurement, β is the slope of regression of the morphometric measurement to 189 

the dorsal mantle length, Ml, 𝑙𝑜𝑔(𝑀𝑙) is the log of the dorsal mantle length, and 𝑙𝑜𝑔(𝑀𝑙¯ ) is 190 

the mean of the log of the dorsal mantle length. Although this is the commonly used approach 191 

to remove the effect of size we have also considered another method that uses a size variable 192 
of each morphometric group, such as c for beaks and TSL for statoliths. The classification 193 
models were then applied to data of both approaches to remove the effect of size. Results of 194 
the classification, using the three models, were comparable (Appendix B).  195 

 196 

Sexual dimorphism 197 
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To test for sexual dimorphism Multivariate Analysis of Variance (MANOVA) was applied on 198 
the standardized measurements of soft body parts, beaks, statoliths and sucker rings. The 199 
assumption of normality and homogeneity of variance were checked visually using qqplot 200 
and plot of residuals vs. fitted values respectively. In addition, we have also compared the 201 
slopes of the regression of different morphometric measurements vs. dorsal mantle length for 202 

males and females in all three regions. 203 
 204 

Classification of samples 205 
Prior to assessing the distinction between samples collected from the three different regions 206 
an exploratory analysis was conducted. This included a graphical summary of the 207 

morphometrics by sex and region, and a principal component analysis of the morphometrics. 208 
A number of statistical techniques are commonly used in the classification of samples. Based 209 

on sets of variables/attributes, these include:  Discriminant Function Analysis (e.g. linear and 210 
quadratic), Classification Tree Analysis (CTA), Artificial Neural Network (ANN), Random 211 
Forest (RF), Support Vector Machine (SVM),...etc. In this study we have used Linear 212 
Discriminant Function Analysis (LDA), CTA, and RF. Classification studies on patagonian 213 
squid Doryteuthis gahi samples from different regions has shown samples to be less distinct 214 

when combining soft parts and hard structures (Vega et al., 2002). Thus all three statistical 215 
techniques were applied to the combination of all soft parts, and then to each of the different 216 

hard structures (lower beak, gladius, sucker rings, and statolith) separately. In addition, data 217 
for males and females were analysed separately due to the apparent sexual dimorphism. 218 

 219 

Linear Discriminant Analysis  (LDA) 220 
In principle, Discriminant Analysis is similar to Principal Component Analysis (PCA) in that 221 

they both aim to find the optimal rotation when projecting observations. The main difference 222 

is in the way they extract major axis of variation. In PCA the objective is to extract a series of 223 
orthogonal axes that cumulatively extract most of the variation in the data, whereas in LDA 224 
we are interested in extracting sets of axes (usually two) that maximize the separation of 225 

apriori known groups (Zuur et al., 2007). Unlike PCA there are a number of assumptions to 226 
be met for the results of LDA to be valid. These include variables to be on a continuous scale 227 

(categorical variable to be avoided as much as possible); the number of observations per 228 
group to be at least 2 but preferably 4 to 5 times the number of variables; the variables 229 
considered in the analysis to be linearly related but not with sets of variables with correlation 230 

coefficient of 1/-1; homogeneity of variance across groups (variance/variability of each of the 231 
variables considered to be roughly comparable across groups); as the method is based on the 232 

calculation of a covariance matrix that is pooled across groups, relationship among variables 233 

considered should be the same across groups; assumes independency of observations and 234 

multivariate normality (hence variables in each group are expected to be normally 235 
distributed). The most important assumptions are homogeneity of variance (required for the 236 
validity of the method itself due to the use of pooled covariance) and the normality of 237 
variables (required for hypothesis testing) (Zuur et al., 2007).   238 
 239 

Classification Tree Analysis (CTA) 240 
CTA is a non-parametric technique using recursive partitioning algorithm. The technique is 241 
widely used in fields ranging from social to medical sciences and has only relatively recently 242 
been recognized as a powerful method in ecology (De’ath & Fabricus, 2000), mainly because 243 
it naturally deals with non-linearity and higher-order interactions among predictors, which is 244 

the characteristics of most ecological data. The technique is also invariant to monotonic 245 

transformation of predictors, able to handle missing values in both response and predictor 246 
variable(s), making it is easy for interpretation (James et al., 2014). CTA explains the 247 
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variation in the response variable by repeatedly partitioning the data into more homogenous 248 
groups using a combination of predictor variables. The algorithms repeatedly split data into a 249 
nested series of groups that are as homogenous as possible with respect to the response 250 
variable considered. In the context of classification problems (in this case classification of 251 
samples from three regions) the model starts with the whole data set, the root node, and  252 

formulates splitting rule for each value of the predictor variables to create candidate splits. 253 
The algorithm then selects the candidate splits that results in the smallest misclassification 254 
error rate using it to split data into two sub-groups. The algorithm then continues to 255 
recursively split the sub-groups until no split leads to substantial reduction in 256 
misclassification error rate or the number of observations in the sub-groups are too small for 257 

further splitting. When the algorithm cannot split a node further then it has reached the 258 
terminal/leaf node. CTA tends to over-fit which can usually be avoided by running tree-based 259 

sets of criteria in this using cross validate error rate on the training data. Determination of the 260 
optimal size of tree was done via cross validation. The optimal size of the tree was selected 261 
based on the complexity parameter cp, and the complexity parameter  that gave the lowest 262 
cross-validation error (and hence size of the tree) was selected. By applying the one standard 263 
deviation rule the value of the cp (optimal tree size) was selected. Details of the method, 264 

implementation of the algorithm and examples are given in Horton & Kleinman, 2010, James 265 
et al., 2014 and Zuur et al., 2007. 266 

 267 

Random Forest (RF) 268 
Random forest is one of the developments in the area of predictive statistics together with 269 
bagging and boosting meant to improve classical tree models. Bagging (bootstrap 270 
aggregation) involves the construction of multiple trees based on the training set and finally 271 

aggregating the results to produce the final outcome. Although dissimilar, boosting involves 272 

creating many trees, not as an independent one but by repeatedly growing/updating the 273 
existing tree, and finally predicting the outcome. Random forest on the other hand improves 274 
both classical trees and bagging more so on classical trees. Similar to bagging, random forest 275 

creates multiple trees from the training data but does so by building the trees based on a 276 
random subset of the predictors that de-correlates the multiple tree created. This tends to 277 

make the trees less variable and more reliable (Hastie et al., 2009; James et al., 2014). 278 
Random forest is important in classification problems when there are large numbers of 279 
correlated predictors. Results from random forest is equivalent to that from bagging when the 280 

size of the number of variables selected for splitting equals the total numbers of predictors.  281 
 282 

Model selection and performance 283 
Mode selection was achieved using the step-wise selection approach. We specifically applied 284 

selection in both-direction for all three model types. A combination of variables that lead to 285 
an increase in the overall classification rate with a cut-off threshold of 1% was selected to 286 
make the variable sets in the final model. The relative importance of predictors were assessed 287 
by the improvement in the overall classification rate achieved as a result of the addition of 288 
predictors. 289 

 290 
Model predictive performance was assessed using re-sampling. There are different re-291 
sampling techniques, specifically we have used the 'Leave Group out Cross Validation' 292 
LGOCV (also known as Monte Carlo cross validation) whereby each model is repeatedly 293 
trained on a subset of data to evaluate the remaining subset (Kuhn & Johnson, 2013). 294 

Predictive performance was then summarized as the mean +/- 1 standard deviation of the 295 

predictive accuracy from the LGOCV. 296 
 297 
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Genetic analysis 298 
 299 
Genomic DNA was extracted from tentacle tips using a CTAB- chloroform/IAA method 300 
(Winnepenninckx et al., 1993). Individuals were then genotyped at four microsatellite loci 301 
(Lfor1, Lfor 3, Lrey44 and Lrey 48,) following Shaw et al., (2010). 302 

 303 
Genetic variability was assessed using numbers of alleles (NA), observed heterozygosity (HO), 304 
and expected heterozygosity (HE) (Nei 1978), all calculated using FSTAT 2.9.3.2 (Goudet, 305 
1995). Genotype frequency conformance to Hardy-Weinberg equilibrium (HWE) 306 
expectations and genotypic linkage equilibrium between pairs of loci were tested using exact 307 

tests incorporating a Markov chain method (Guo & Thompson, 1992) with default parameters 308 
in GENEPOP 3.3 (Raymond & Rousset, 1995). Locus-by-sample combinations were tested 309 

for the presence of null alleles using MICROCHECKER (van Oosterhout et al., 2004) with 310 
significant effects adjusted for using the van Oosterhout algorithm. Tests of genetic 311 
differentiation were then performed with and without null allele correction (NAC). Using 312 
FSTAT, genetic differentiation was quantified using the unbiased FST estimator, θ (Weir & 313 
Cockerham, 1984), calculated globally (over all samples) and between pairs of samples, with 314 

significance of estimates inferred following 10 000 permutations (Goudet et al., 1996) of 315 
genotypes among samples. Global and pairwise exact tests of allele frequency homogeneity 316 

were performed for each locus in GENEPOP with default Markov chain parameters. 317 
Multilocus values of significance were obtained by Fischer’s method.  318 

 319 
An important consideration when sampling highly mobile adults is the possible effect of 320 
sampling migrants on estimates of population structure derived from comparisons between 321 

admixed samples. To address this potential issue population structure was also investigated 322 

using the Bayesian clustering analysis implemented in the program STRUCTURE (Pritchard 323 
et al., 2000) which permits estimations of the most probable number of populations 324 
represented by the data without a priori sample definition. Both the ‘no admixture model’ (as 325 

recommended for low FST; Pritchard et al., 2000) and ‘admixture model with correlated allele 326 
frequencies’ were used independently to identify the number of clusters, K (from a range of 327 

1-5), with the highest posterior probability. Each MCMC run consisted of a burn in of 10
6
 328 

steps followed by 5 X 10
6
 steps. 3 replicates were conducted for each K to assess consistency. 329 

The K value best fitting the data set was estimated by the log probability of data [Pr(X/K)]. 330 

 331 

RESULTS  332 
 333 

Morphology 334 

 335 
Removal of the effect of size 336 
Figure 5 shows the slope of the regression of soft body part variables vs. DML that was used 337 
to remove the effect of size on the different morphometric measurements. The figure mainly 338 
highlights the difference between males and females suggesting sexual dimorphism. Similar 339 

patterns were observed for beaks, statoliths, and sucker ring variables (not shown here due to 340 
space limitation but given in Appendix C). Table 2 shows the results of the MANOVA 341 
applied to all morphometric measurements. It shows that in all cases the shape, as 342 
characterized jointly by all variables, of the soft body parts, beaks, statoliths, and sucker rings 343 
differed among the three regions between sexes. In addition, for both soft body parts and 344 

beaks there was interaction between the region and sex suggesting the presence of not only 345 

sexual dimorphism but also variance among the three different regions. 346 
 347 
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Classification of samples 348 
Result of the exploratory analysis applied to the morphometric measurements are shown in 349 
Figures 6a, 6b, 7, 8, and 9. The figures show distinct differences between males and females 350 
and to some extent among the three regions, more so in the soft body part measurements. For 351 
the sake of comparison we presented Figure 10. This figure shows the results of the PCA and 352 

LDA applied to the same morphometric data for the soft body part measurements. The LDA 353 
plots suggest distinction in the body shape of individuals sampled from the three regions. In 354 
contrast, the PCA ordination of the same data did not show such distinction among 355 
individuals collected from the different regions. This is largely a reflection of the way PCA 356 
extracts different PC axes: orthogonal axes that maximize the variance whereas LDA extracts 357 

axes that maximizes the separation among groups that are apriori defined (in this case the 358 
regions where individual squids were sampled). Similar exploratory comparative multivariate 359 

analysis of beak, statolith, and sucker ring data are shown in Appendix D (not shown here 360 
due to space limitation).  361 
 362 

Model selection and performance 363 
The best model was selected based on the step-wise approach. As shown in Table 3, for each 364 

of the four type of morphometric measurements (soft body parts, statoliths, beaks, and sucker 365 
rings) the three models appear to mostly select fewer numbers of variables given the sets of 366 

variables available (more so for the soft body parts). In addition, the type and number of 367 
variables selected by the different models appear to differ. For the soft body parts the FL was 368 

the most commonly selected variable by the three variables and for both sexes. The number 369 
and types of variables selected for the beak measurements differed among models. The same 370 
was observed for sucker ring measurements. For statolith  measurements the type of variables 371 

selected differed among models but CTA and RF appear to select at least the same types of 372 

variables. 373 
 374 
Figures 11 – 14 show comparative performance of the three models for males and females 375 

separately and when combined. With the exception of the soft body part measurements 376 
(Figure 11), where the three models performed relatively well, both the overall accuracy of 377 

the models and their relative performance was different (Figures 12 – 14). The most accurate 378 
and higher classification of samples from the three regions were achieved using soft body 379 
parts (Figure 11). For males and females, and for both sexes combined, LDA and CTA  380 

performed very well followed by RF. The comparative performance of the three models 381 
based on variables from the beaks shown in Figure 12 highlights the low classification 382 

accuracy of the models and indicate lower predictive power of beak variables in the 383 

classification of samples from the three regions. A similar pattern was observed in the 384 

classification of samples based on statolith and sucker ring variables (Figures 13 and 14 385 
respectively). Figure 15 shows how the soft body part phenotypic differences were more 386 
accentuated between samples from the Angola-Benguela Frontal zone (southern Angola) and 387 
the southern Benguela Current system (West Coast and Western Agulhas Bank), than 388 
between samples from the latter and the Agulhas Current system (central and eastern Agulhas 389 

Bank). 390 

 391 
Genetics 392 
 393 
The total number of alleles per locus ranged from 18 to 28 (mean 23.5, SD 4.1) and levels of 394 

genetic variability were similar across samples (Table 4). All tests of linkage disequilibrium 395 

were non-significant indicating that the microsatellite loci are unlinked and thus provide 396 
independent estimates of population diversity. Lrey44 and Lrey48 exhibited significant 397 
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deviations from HWE due to heterozygote deficits in all samples. A significant heterozygote 398 
deficit was also reported at locus Lfor1 in the Cape St. Francis (inshore) sample. All 399 
remaining locus/sample tests conformed to HWE expectations.   400 

 401 
Global differentiation was significant when tested by exact test without NAC (P = 0.0027) 402 

but the corresponding test was not significant when performed with NAC (P = 0.1099). 403 
Global differentiation as measured by θST was not significant for both null allele corrected 404 
(θST = -0.004; P = 0.9990) and uncorrected data (θST = 0; P = 0.9110).  Estimates of θST 405 
between pairs of samples were also low with no comparison significant when tested by 406 
permutation for either uncorrected or with NAC data (Table 5). Pairwise exact tests yielded a 407 

number of significant outcomes, with five out six significant results (for uncorrected data) 408 
involving the Plettenberg Bay (offshore) sample (Table 6). With NAC, only 2 pairwise 409 

comparisons were significant, both involving the Plettenberg Bay (offshore) sample. The 410 
Bayesian clustering method did not detect any significant population structure with 411 
unanimous support for models of K = 1 in all runs.   412 

 413 
DISCUSSION  414 

 415 
A number of methodological concerns encountered in the course of the study should be 416 

considered. For comparative morphometric studies, Pierce et al. (1994 a, b) recommended 417 
simultaneous sampling to minimize mixed-stock samples. In this case, samples for all three 418 

regions should ideally have been collected at least in the same season. However, due to the 419 
cost of sampling and large sampling area covered, it was not possible to collect all samples in 420 
the entire geographic range simultaneously or even during the same season. As squid are 421 

believed to be highly mobile (Boyle, 1990), this may have had a temporal effect on the results 422 

of the morphometric analyses and should be kept in mind when interpreting results. 423 
 424 
A difference in morphological characteristics between L. reynaudii sampled in South Africa 425 

and Angola is perhaps not surprising, with the exception of soft body part phenotypic 426 
differences being more accentuated between samples from the Angola-Benguela Frontal zone 427 

and the southern Benguela Current system, than between samples from the latter and the 428 
Agulhas Current system. Given the break in distribution of L. reynaudii in Namibian waters, 429 
a much higher degree of mixing between individuals from the Agulhas Current and the 430 

southern Benguela Current than between the latter and southern Angola would be assumed. 431 
However, given the highly mobile nature of both larvae and adults, one would intuitively 432 

expect a single stock along the South African coast. Populations occurring on the West Coast 433 

and western Agulhas Bank vs. those occurring on the central and eastern Agulhas Bank 434 

however may also be phenotypically distinct from each other due to the different 435 
environmental conditions found on either side of Cape Agulhas. The corresponding genetic 436 
data support high gene flow throughout this region and suggest that the subtle differentiation 437 
reported by Shaw et al. (2010) does not reflect temporally stable population sub-structuring 438 
but rather temporary random variation within a single population. This implicates 439 

environmental heterogeneity and not population isolation as a driver of the phenotypic 440 
divergence.  441 
 442 
Temperature regimes can have a significant influence on the growth and development of 443 
cuttlefish and squid, and growth at different temperatures can result in squid of markedly 444 

different size and growth-related parameters (Forsythe et al., 1994; Carvalho & Nigmatullin, 445 

1998; Forsythe et al., 2001). According to Portner & Zielinski (1998), oxygen availability 446 
can also limit performance levels in squid. Some squid may be able to operate at their 447 
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functional and environmental limits, revealing a trade-off between oxygen availability, 448 
temperature, performance level, growth, and possibly body size (Portner & Zielinski, 1998). 449 
Conditions on the west coast (southern Namibia, west coast of South Africa and the western 450 
Agulhas Bank, 29° - 35°S) are influenced by the cold equatorward flowing Benguela current 451 
and associated with much colder bottom water temperatures fluctuating between 5° and 11°C 452 

with an average of 10°C, and low bottom dissolved oxygen (BDO) of 1.5 – 4.5 ml/1 453 
(Augustyn, 1991; Roberts, 2005). It is likely that the Lüderitz upwelling cell off the coast of 454 
southern Namibia acts as a partial environmental barrier to movement of squid. On the south 455 
coast (central and eastern Agulhas Bank, 20° - 26°E) of South Africa, conditions are 456 
influenced by the warm south-westward flowing Agulhas current and associated with 457 

moderate water temperatures fluctuating between 9° and 24°C, and well oxygenated bottom 458 
waters (Augustyn et al., 1994). Therefore, given that water temperature and bottom dissolved 459 

oxygen considerably differ in each region, they may act as the main drivers of phenotypic 460 
variation found in chokka L. reynaudii from the different regions. However, better defined 461 
and substantiated relations need to be further researched.  462 
 463 
In contrast to the findings of Borges (1995), Vega et al. (2002), and Martinez et al. (2002), 464 

soft parts in this study proved to be more effective than hard structures (gladius, lower beaks, 465 
sucker rings, statoliths) in discriminating between squid populations from different 466 

geographical regions. This is surprising as soft body parts are generally accepted as being less 467 
reliable than hard structures due to their plasticity and warping response to freezing and 468 

thawing (Carvalho & Nigmatullin, 1998). Nevertheless, as pointed out earlier, the geographic 469 
variation found in L. reynaudii soft body parts may be related to phenotypic responses 470 
derived from region-bound environmental conditions (Shea & Vecchione, 2002). This is an 471 

evolutionary phenomenon that has been identified in other species of squid occurring in 472 

different habitats across large geographical areas (Carvalho & Pitcher, 1989; Hernandez-473 
Garcia & Castro, 1998; Vega et al., 2002).  474 
 475 

In conclusion the study demonstrated some phenotypic population sub-structuring of Loligo 476 
reynaudii. LDA demonstrated that morphologically there is some evidence that squid from 477 

the south coast (central and eastern Agulhas Bank), west coast (west coast and western 478 
Agulhas Bank), and southern Angola are different. The diverse marine environment was 479 
postulated to be one reason for this variation. Molecular analysis did not support the 480 

existence of a genetic breakpoint allowing a geographical reference point for separating 481 
stocks. While the potential disconnect between genetic and demographic connectivity (i.e. 482 

low migration rates may be sufficient to homogenise genetic variation but be insufficient to 483 

prevent independent reaction of populations/stocks) is an important consideration for 484 

management, data indicate that the regional patterns of morphological divergence are 485 
occurring against a background of high gene flow. This pattern confirms the influence of 486 
environmental heterogeneity and not restriction of genetic flow/isolation as the primary 487 
driver of the phenotypic divergence. The observed phenotypic heterogeneity probably reflects 488 
the interplay between genetic adaptation and short term plasticity, which may vary through 489 

the studied range. Although cephalopods are renowned for their phenotypic plasticity, the 490 
phenotypic divergence may reflect adaptive differences which may be important for future 491 
sustainability and management of this resource. Further targeted experimental investigations 492 
will be needed to determine the exact underlying drivers of the phenotypic divergence. 493 
Furthermore, recent advances in molecular techniques may also help to link phenotypic and 494 

genomic variation and improve understanding of the roles of adaptation and plasticity 495 

(Allendorf et al., 2010). Discovered phenotypic differences may signal the beginning of the 496 
evolutionary divergence between various geographic groupings (eventually resulting in 497 
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differences between hard parts, and genetic splits), but they are insufficient at this stage to 498 
revise the current management strategy of the chokka squid resource.  499 
 500 
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FIGURE LEGENDS 747 
 748 
Figure 1. The current known distribution of Loligo reynaudii, with major oceanographic 749 
features of the different regions indicated (modified from Henriques et al., 2012). 750 
Morphological and genetic sampling locations of Loligo reynaudii on the south and west 751 

coast of Southern Africa are shown. PN) Port Nolloth; YZ) Yzerfontein; CT) Cape Town; 752 
CA) Cape Agulhas; MB) Mossel Bay; PB) Plettenbergbay; SF) Cape St. Francis; PE) Port 753 
Elizabeth; PA) Port Alfred. 754 

 755 

 756 
 757 
 758 
Figure 2. Soft part morphometric measurements recorded for Loligo reynaudii in this study, 759 
based on the work by Lipinski (1981). A) soft part dimensions (taken from Pierce et al., 760 
1994a), B) fin angle dimension (taken from Pierce et al., 1994a). 761 

 762 

 763 
 764 

 765 
 766 
 767 

 768 
 769 
 770 
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Figure 3. Hard structure morphometric measurements recorded for Loligo reynaudii in this 771 
study, based mainly on the work by Clarke (1986). A) lower beak dimensions (taken from 772 
Ogden et al., 1998), B) Gladius dimensions (taken from Baron & Re, 2002) 773 

 774 

 775 
 776 
Figure 4. Diagram of a Loligo reynaudii statolith. A) basic terms of a L. reynaudii statolith 777 
(after Jereb & Roper 2010), B) L. reynaudii statolith dimensions measured in this study 778 
(modified from the work by Clarke & Maddock 1988; Lipinski et al. 1993). 779 

 780 

 781 
 782 



18 
 

Figure 5. Plot of the slopes and the 95% confidence interval of the regression of Loligo 783 
reynaudii soft part measurements vs. DML. 784 
 785 

 786 
 787 
Figure 6a. Box-Whisker plots of standardized values of attributes for the soft body parts of 788 

Loligo reynaudii males and females from the three regions. 789 
 790 

 791 
 792 

  793 
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Figure 6b. Box-Whisker plots of standardized values of attributes for the soft body parts of 794 
Loligo reynaudii males and females from the three regions cont. 795 
 796 

 797 
 798 

Figure 7. Box-Whisker plots of standardized values of attributes for the beaks of Loligo 799 

reynaudii males and females from the three regions. 800 
 801 

 802 
 803 

  804 
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Figure 8. Box-Whisker plots of standardized values of attributes for the statoliths of Loligo 805 
reynaudii males and females from the three regions. 806 
 807 

 808 
 809 
Figure 9. Box-Whisker plots of standardized values of attributes for the sucker rings of 810 

Loligo reynaudii males and females from the three regions. 811 
 812 

 813 
 814 
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Figure 10. Top: PCA  ordination of Loligo reynaudii male (left) and female (right) 815 
individuals based on soft body part attributes. Bottom: LDA ordination of the same data for 816 
males (left) and females (right). 817 
 818 

 819 

Figure 11. Comparison of the predictive performance of the three models for Loligo 820 
reynaudii males, females, and combined individuals from the three region based on attributes 821 
of soft body parts. The performance of the models on both the training and validation sets are 822 

shown. 823 
 824 

 825 
 826 

Figure 12. Comparison of the predictive performance of the three models for Loligo 827 

reynaudii males, females, and combined individuals from the three region based on attributes 828 

of beaks. The performance of the models on both the training and validation sets are shown. 829 

 830 

 831 
 832 

  833 
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Figure 13. Comparison of the predictive performance of the three models for Loligo 834 
reynaudii males, females, and combined individuals from the three region based on attributes 835 
of statolith. The performance of the models on both the training and validation sets are 836 
shown. 837 
 838 

 839 
 840 
Figure 14. Comparison of the predictive performance of the three models for Loligo 841 
reynaudii males, females, and combined individuals from the three region based on attributes 842 

of sucker ring. The performance of the models on both the training and validation sets are 843 

shown. 844 
 845 

 846 
 847 

  848 
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Figure 15. The multivariate distance among samples of all Loligo reynaudii variables 849 
between each of the three regions. 850 
 851 

 852 
 853 

 854 
Table 1. Loligo reynaudii  soft part and hard structure morphometric characters measured in 855 
this study. 856 

 857 

Abbreviation Character Description 

Soft parts 
  Body 
  AN Fin angle  Angle of fin to body on ventral side 

DML Dorsal mantle length 
Anterior to most posterior point of mantle, along midline (dorsal 
side) 

VML Ventral mantle length 
Anterior to most posterior point of mantle, along midline (ventral 
side) 

FL Fin length Total length of a fin including the anterior fin lobe 

FWL Fin width length Between widest points of fin lobes 

MW1 Mantle width 1 
Width of mantle at the anterior end of mantle (mantle opening 
width) 

MW2 Mantle width 2 Width of mantle at the base of fin lobes 

MW3 Mantle width 3  Width of mantle at the widest points between fin lobes 

AF Funnel cartilage length Along central line of funnel to opening of funnel tube (ventral side) 

GRNI Nidamental gland length Nidamental gland length along central line of gland 

Head 
  HL Head length Anterior neck groove (dorsal side) to V-junction between 1st arm pair 

HW Head width Taken between eyes 

Arms 
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A1 First arm length 1st arm of 1st pair (1st sucker at the base of arm to tip of arm) 

A2 Second arm length 1st arm of 2nd pair (1st sucker at the base of arm to tip of arm) 

A3 Third arm length 1st arm of 3rd pair (1st sucker at the base of arm to tip of arm) 

A4 Fourth arm length 1st arm of 4th pair (1st sucker at the base of arm to tip of arm) 

Tentacles 
  TL Left tentacle lenght Base of the tentacle to the tip of club 

TR Right tentacle length Base of the tentacle to the tip of club 

HEC Hectocotylus arm length 3rd arm (left side), 1st sucker (nearest to tip of arm) to arm tip 

CL Club length 1st carpal sucker to club tip 

Hard structures 
  Gladius 
  GLA Gladius length Taken from anterior to posterior tip 

GW1 Gladius width 1 Free rachis width 

GW2 Gladius width 2 Rachis width at origin of gladuis wings 

GW3 Gladius width 3 Width taken at widest point of gladius 

GRL Free gladius length Taken from anterior tip of gladius to rachis 

Sucker rings 
  S1 Sucker diameter 1 Diameter of largest sucker on first arm (inside sucker measurement) 

S2 Sucker diameter 2 Diameter of largest sucker on 2nd arm (inside sucker measurement) 

S3 Sucker diameter 3 Diameter of largest sucker on 3rd arm (inside sucker measurement) 

S4 Sucker diameter 4 Diameter of largest sucker on 4th arm (inside sucker measurement) 

T Tentacle sucker diameter Diameter of largest left tentacle sucker (inside sucker measurement) 

Lower beak 
  g Hood length Measured along midline of the beak, in profile 

f Crest length Measured along midline of the beak, in profile 

a Rostral length Distance between rostral tip and front edge of wing 

b Wing length Taken from front edge of wing to base of wing 

d Baseline length Taken from base of wing to base of crest, in profile 

c Rostral height to base Taken from rostral tip to base of beak platform, in profile 

Statolith 
  TSL Total statolith length Taken from apex of dorsal dome to tip of rostrum 

LDL 
Lateral + dorsal dome 
length Taken from rostral angle to apex of dorsal dome 

DLL Dorso-lateral length Taken from apex of dorsal dome to lateral tip of lateral dome 

RSL Rostral length Taken from angle to tip of rostrum 

RBLD RB to LT of lateral dome Taken from the base of rostrum to lateral tip of lateral dome 

LDW Lateral dome width Taken from lateral tip of lateral dome to medial fissure 

VLL Ventro-lateral length Taken from tip of rostrum to lateral tip of lateral dome 

    858 

 859 

  860 
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Table 2. Results of the MANOVA applied to all morphometric measurements taken for 861 
Loligo reynaudii in this study. 862 
 863 

 
Df Pillai approx F num Df den Df Pr(>F) 

 
Soft body parts 

    (Intercept) 1 0.999993 6709289 18 882 0 

Region 2 0.960129 45.29375 36 1766 
2.40E-

221 

factor(Sex) 1 0.992621 6591.065 18 882 0 

Region:factor(Sex) 2 0.381343 11.55711 36 1766 1.91E-58 

Residuals 899 NA NA NA NA NA 

 
Beaks 

     (Intercept) 1 0.999445 315821.9 6 1052 0 

Region 2 0.231147 22.93373 12 2106 1.60E-48 

factor(Sex) 1 0.674416 363.1854 6 1052 
2.91E-

252 

Region:factor(Sex) 2 0.022919 2.034454 12 2106 0.018334 

Residuals 1057 NA NA NA NA NA 

 
Statolith 

     (Intercept) 1 0.999962 3429103 8 1056 0 

Region 2 0.252959 19.13077 16 2114 1.37E-51 

factor(Sex) 1 0.340773 68.23443 8 1056 2.80E-90 

Region:factor(Sex) 2 0.009544 0.633514 16 2114 0.858923 

Residuals 1063 NA NA NA NA NA 

 
Sucker rings 

    (Intercept) 1 0.994619 37965.93 5 1027 0 

Region 2 0.162106 18.13437 10 2056 3.88E-32 

factor(Sex) 1 0.603219 312.2665 5 1027 
2.96E-

203 

Region:factor(Sex) 2 0.009738 1.005982 10 2056 0.435699 

Residuals 1031 NA NA NA NA NA 

 864 

 865 
Table 3. Selection of Loligo reynaudii soft and hard part variables based on the stepwise-866 

selection procedure.  867 

 868 

 
Model OvAccrV OvAccrT Sex ModelName 

1 Region ~ FL 0.972736 0.974872 Male LDA 
2 Region ~ FL+HEC 0.983421 0.983385 Male LDA 
3 Region ~ FL 0.978422 0.98224 Male CTA 
4 Region ~ FL 0.956731 0.960835 Male RF 
5 Region ~ FL+HW 0.982582 0.978945 Male RF 
6 Region ~ FL 0.929807 0.937562 Female LDA 
7 Region ~ FL+GRNi 0.958632 0.961109 Female LDA 
8 Region ~ FL+GRNi+HW 0.977486 0.974765 Female LDA 
9 Region ~ FL 0.922649 0.943812 Female CTA 

10 Region ~ FL+GRNi 0.963789 0.96585 Female CTA 
11 Region ~ FL 0.915103 0.899236 Female RF 
12 Region ~ FL+GRNi 0.959006 0.959307 Female RF 
13 Region ~ FL+GRNi+MW2 0.970582 0.952156 Female RF 
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14 Region ~ TL 0.875358 0.868852 Both LDA 
15 Region ~ FL 0.950635 0.962828 Both CTA 
16 Region ~ FL+CL 0.961895 0.965939 Both CTA 
17 Region ~ FL 0.927671 0.932133 Both RF 
18 Region ~ FL+HW 0.961052 0.952769 Both RF 
1 Region ~ a 0.826653 0.817667 Male LDA 
2 Region ~ d 0.821953 0.819211 Male CTA 
3 Region ~ f 0.726924 0.746993 Male RF 
4 Region ~ f+g 0.791064 0.785388 Male RF 
5 Region ~ f+g+a 0.834482 0.813699 Male RF 
6 Region ~ g 0.900177 0.882498 Female LDA 
7 Region ~ a 0.897086 0.899083 Female CTA 
8 Region ~ d 0.840307 0.812855 Female RF 
9 Region ~ d+b 0.884472 0.873216 Female RF 

10 Region ~ b 0.85368 0.8545 Both LDA 
11 Region ~ d 0.85906 0.85239 Both CTA 
12 Region ~ d 0.76721 0.769905 Both RF 
13 Region ~ d+g 0.846436 0.828848 Both RF 
1 Region ~ LDL 0.829299 0.809633 Male LDA 
2 Region ~ RBLD 0.827076 0.867412 Male CTA 
3 Region ~ RBLD 0.826484 0.815737 Male RF 
4 Region ~ RBLD 0.893317 0.886019 Female LDA 
5 Region ~ DLL 0.903557 0.906456 Female CTA 
6 Region ~ O 0.886845 0.875116 Female RF 
7 Region ~ O+LDL 0.910871 0.897092 Female RF 
8 Region ~ LDL 0.854268 0.850043 Both LDA 
9 Region ~ O 0.852171 0.857034 Both CTA 

10 Region ~ O 0.793629 0.795937 Both RF 
11 Region ~ O+LDL 0.847152 0.849723 Both RF 
12 Region ~ O+LDL+DLL 0.85993 0.863688 Both RF 

13 
Region ~ 
O+LDL+DLL+RBLD 0.874048 0.866686 Both RF 

1 Region ~ S2 0.835826 0.822593 Male LDA 
2 Region ~ T 0.836729 0.825475 Male CTA 
3 Region ~ S3 0.754735 0.74514 Male RF 
4 Region ~ S3+S2 0.837839 0.825333 Male RF 
5 Region ~ S3 0.902349 0.885816 Female LDA 
6 Region ~ S2 0.912471 0.893976 Female CTA 
7 Region ~ S2 0.861399 0.83951 Female RF 
8 Region ~ S2+S4 0.898989 0.892141 Female RF 
9 Region ~ S2+S4+S1 0.908573 0.886782 Female RF 

10 Region ~ S1 0.872031 0.860549 Both LDA 
11 Region ~ S3 0.867532 0.863662 Both CTA 
12 Region ~ S2 0.804356 0.795946 Both RF 
13 Region ~ S2+S3 0.867833 0.858623 Both RF 
14 Region ~ S2+S3+S4 0.8767 0.863881 Both RF 

 869 

 870 

  871 
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Table 4. Indices of genetic variation within Loligo reynaudii samples genotyped at four 872 
microsatellite loci. 873 
 874 

Sample site Sampling method N HE HO NA 

West Coast Trawl 48 0.9138 0.6714 16.25 

Western Agulhas Bank Trawl 43 0.9057 0.7362 16.25 

Mossel Bay (offshore) Trawl 32 0.9227 0.7962 16.75 

Mossel Bay (inshore) Trawl 48 0.9155 0.7533 17.5 

Plettenberbay (offshore) Trawl 41 0.9161 0.6619 17.5 

St. Francis (inshore) Trawl 49 0.9245 0.6921 18.25 

Port Elizabeth (offshore) Jig 48 0.9153 0.7061 15.25 

N, sample size; HE, multilocus expected heterozygosities; HO, multilocus 

observed heterozygosities; NA, mean number of alleles per locus. 

 875 
Table 5. Pairwise estimates of genetic differentiation (ΘST) between Loligo reynaudii 876 

samples,  without (above diagonal) and with (below diagonal) null allele correction. No ΘST 877 

was significant when tested by permutation. 878 
 879 

Sampling site WC WAB MB (offshore) MB (inshore) PB SF PE 

WC 

 

0.007 -0.004 -0.004 0.004 -0.003 0.007 

WAB 0.003 

 

0.001 0.001 0.007 0 0.001 

MB (offshore) 0.005 0.003 

 

-0.001 0.003 -0.004 0.004 

MB (inshore) 0.005 0.002 -0.002 

 

-0.001 -0.001 0.004 

PB 0.003 0.002 -0.001 -0.003 

 

0.001 0.002 

SF 0.006 0.004 -0.004 -0.002 -0.003 

 

0.005 

PE 0.004 0.005 -0.005 -0.003 -0.002 -0.007   

WC, West Coast; WAB, Western Agulhas Bank; MB, Mossel Bay; PB, Plettenberg Bay; SF, St. 

Francis; PE, Port Elizabeth. 

 880 
 881 

  882 
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Table 6. P values from exact tests of genetic differentiation between Loligo reynaudii 883 
samples, without (above diagonal) and with (below diagonal) null allele correction. 884 
Significant values in bold, and values that remain significant after Bonferroni correction 885 
(underlined). 886 
 887 

Sampling site WC WAB MB (offshore) MB (inshore) PB SF PE 

WC - 0.006 0.236 0.453 0.003 0.429 0.199 

WAB 0.22 - 0.258 0.056 0.001 0.22 0.165 

MB (offshore) 0.446 0.402 - 0.355 0.021 0.626 0.716 

MB (inshore) 0.769 0.125 0.376 - 0.259 0.195 0.069 

PB 0.033 0.003 0.056 0.396 - 0.049 0.082 

SF 0.78 0.364 0.684 0.304 0.122 - 0.6 

PE 0.54 0.436 0.792 0.093 0.176 0.732 - 

WC, West Coast; WAB, Western Agulhas Bank; MB, Mossel Bay; PB, Plettenberg Bay; SF, St. Francis; 

PE, Port Elizabeth. 

 888 

 889 
APPENDICES 890 

 891 
Appendix A 892 
 893 

Table A1. Descriptive statistics of male Loligo reynaudii character measurements from each 894 
of the three regions (Angola, south coast and west coast).  895 

 896 
Table A2. Descriptive statistics of female Loligo reynaudii character measurements from 897 
each of the three regions (Angola, south coast and west coast). 898 
 899 

Appendix B 900 
 901 

Figure B1. Comparison of the removal of the effect of size using Loligo reynaudii DML or C 902 
for the beak measurement. 903 

 904 
Figure B2. Comparison of the removal of the effect of size using Loligo reynaudii DML or 905 
TSL for the statolith measurement. 906 

 907 
Figure B3. Comparing the performance of the three models after removing the effects of size 908 

using Loligo reynaudii DML or C for the beak measurement. 909 
 910 
Figure B4. Comparing the performance of the three models after removing the effects of size 911 

using Loligo reynaudii DML or TSL for the statolith measurement. 912 
 913 
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Appendix C 914 
 915 
Figure C1. Plot of the slopes and the 95% confidence interval of the regression of Loligo 916 
reynaudii beak attributes vs. DML. 917 
 918 

Figure C2. Plot of the slopes and the 95% confidence interval of the regression of Loligo 919 
reynaudii statolith attributes vs. DML. 920 
 921 
Figure C3. Plot of the slopes and the 95% confidence interval of the regression of Loligo 922 
reynaudii sucker ring attributes vs. DML. 923 

 924 
Appendix D 925 
 926 
Figure D1. Top: PCA  ordination of Loligo reynaudii male (left) and female (right) 927 
individuals based on beak attributes. Bottom: LDA ordination of the same data for males 928 
(left) and females (right).  929 
 930 

Figure D2. Top: PCA  ordination of Loligo reynaudii male (left) and female (right) 931 
individuals based on statolith attributes. Bottom: LDA ordination of the same data for males 932 

(left) and females (right). 933 
 934 

Figure D3. Top: PCA  ordination of Loligo reynaudii male (left) and female (right) 935 
individuals based sucker ring attributes. Bottom: LDA ordination of the same data for males 936 
(left) and females (right). 937 

 938 
 939 


