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Abstract. For finite-dimensional quantum systems, such as qubits, a well established strat-
egy to protect such systems from decoherence is dynamical decoupling. However many
promising quantum devices, such as oscillators, are infinite dimensional, for which the ques-
tion if dynamical decoupling could be applied remained open. Here we first show that not
every infinite-dimensional system can be protected from decoherence through dynamical
decoupling. Then we develop dynamical decoupling for continuous variable systems which
are described by quadratic Hamiltonians. We identify a condition and a set of operations
that allow us to map a set of interacting harmonic oscillators onto a set of non-interacting
oscillators rotating with an averaged frequency, a procedure we call homogenization. Fur-
thermore we show that every quadratic system-environment interaction can be suppressed
with two simple operations acting only on the system. Using a random dynamical decou-
pling or homogenization scheme, we develop bounds that characterize how fast we have to
work in order to achieve the desired uncoupled dynamics. This allows us to identify how well
homogenization can be achieved and decoherence can be suppressed in continuous variable
systems.

1. Introduction

Dynamical decoupling is a highly successful strategy to protect quantum systems from
decoherence [1]. Its particular strength is that it is applicable even if the details of the
system-environment coupling are unknown. Historically dynamical decoupling dates back to
pioneering work in nuclear magnetic resonance (NMR) by U. Haeberlen and J. S. Waugh
[2]. In order to increase the resolution in NMR spectroscopy, pulse sequences were developed
that coherently average out unwanted interactions [3]. Prominent examples are spin-echo
techniques, such as the famous Hahn echo [4], allowing us to measure relaxation times through
applying a sequence of rotations on a spin and detecting the echo signal. In the context of
suppressing decoherence and quantum information theory, the theoretical framework was
developed by L. Viola and S. Lloyd [5, 6] in the late 90’s. Over the years the efficiency of
various decoupling schemes was studied and improved for several environmental models in
[7, 8, 9, 10, 11, 12]. Many experiments, such as [13, 14, 15], demonstrate the applicability
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2 DYNAMICAL DECOUPLING AND HOMOGENIZATION OF CONTINUOUS VARIABLE SYSTEMS

of dynamical decoupling in an impressive way by prolonging coherence times a few orders of
magnitude. Additionally dynamical decoupling can be combined with the implementation of
quantum gates, which makes it a viable option to error correction [16, 17]. However, when
it comes to infinite-dimensional quantum systems, such as quantum harmonic oscillators, a
general framework for dynamical decoupling is missing in the literature. A first step towards
this direction was done in [18] by investigating a specific system-environment model and
identifying an operation that allows to suppress decoherence.

In this article we consider a broader class of continuous variable systems by investigating
dynamical decoupling for systems that are described by Hamiltonians quadratic in the op-
erators x̂ and p̂ [19]. These Hamiltonians are of particular importance since they describe
a wide range of continuous variable systems and their main sources of decoherence. For
instance, quadratic Hamiltonians describe linear quantum optical systems [20] with applica-
tions in optical quantum computing [21] and quantum metrology [22], the vibrational modes
of an ion chain with nearest-neighbour interactions [23] and in general harmonic crystals [24].
Moreover, many continuous variable systems can be described by quadratic Hamiltonians
in a certain approximate regime, for example opto-mechanical systems and nano-mechanical
oscillators by linearizing interactions [25].

Our article is organized as follows. We start with the question of the existence of decoupling
in finite and infinite dimensions. We then introduce dynamical decoupling for quadratic
Hamiltonians and arrive at procedures we call homogenization and decoherence suppression
for environment-coupling. The desired dynamics is achieved by rapidly swapping coordinates
or rapidly rotating the system, respectively, see the blue arrows in Figure 1. Again we discuss
their existence for given quantum systems. Finally we introduce a randomized scheme for
these procedures and derive explicit analytic approximations and bounds for the gate error,
i.e., the discrepancy from the idealized time-evolution of infinitely fast operations. The
proofs are very technical and therefore deferred to the appendix. We illustrate and confirm
the usefulness of these formulae with typical numerical examples.

(a) Coupled oscillators (b) Homogenization (c) Homogenized system

(d) Ocillator in a bath (e) Decoupling (f) Decoupled system

Figure 1. Illustration of the homogenization procedure of a system of coupled
oscillators (a → c, see Theorem 3) and suppression of decoherence of a single
oscillator in a heat bath (d → f, see Theorem 4).
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2. Dynamical decoupling for finite and for infinite-dimensional systems

Before we develop dynamical decoupling for quadratic Hamiltonians in infinite-dimensional
quantum systems, we first review the concept of dynamical decoupling for finite-dimensional
quantum systems, focussing on the group-based approach [1, 26]. Consider a finite-dimensional
quantum system, say of dimension n ∈ N, with Hilbert space Cn and Hamiltonian H. The
idea of dynamical decoupling is to rapidly rotate the quantum system by means of classical
fields in order to average the system-environment coupling in H to zero. This can be achieved
by modifying the dynamics applying unitary decoupling operations v instantaneously in time
steps τ , which are taken from a decoupling set. Such a decoupling set V is a finite group of
unitary n× n matrices such that, for every x ∈ Mn(C),

Π0(x) :=
1

|V |
∑
v∈V

v†xv = λ1n,(1)

with some λ ∈ C depending on x. It can easily be seen that λ = 1
ntr{x}. In particular, for

traceless x we have Π0(x) = 0. These decoupling operations can be applied according to a
fixed deterministic scheme or randomly from the set V . Let us look for simplicity at the fixed
scheme. We then get the modified dynamics of time-evolution up to time t = |V |τ :∏

v∈V
v†e− i τHv = 1n − i τ

∑
v∈V

v†Hv +O((τ‖H‖∞)2),

where ‖ · ‖∞ denotes the standard operator norm on Mn(C). Condition (1) guarantees that
Π0(H) = 1

ntr{H}1n and ensures the cancellation of the modified unitary time-evolution
operator in first order in τ‖H‖∞, while higher orders can be neglected under this assump-
tion. Therefore, for τ‖H‖∞ � 1, the modified time evolution becomes up to a global phase
effectively the identity. We refer to [1, 26] for a detailed definition of dynamical decoupling.

The first question here is when a decoupling set can actually be found.

Theorem 1. For every quantum system of finite dimension n, there exists a decoupling set,
for example

V = U(n, {0, 1,−1,+ i,− i}),
the group of n× n unitary matrices with entries in {0, 1,−1,+ i,− i}.

Notice that a decoupling set for a given quantum system is not unique, in general.

Proof. We first notice from (1) that, for every x ∈ Mn(C), Π0(x) lies in the commutant of V ,
which follows from the group property and finiteness of V . Thus if V ⊂ U(n) acts irreducibly
on Cn then this commutant consists of C1n alone. We therefore have to construct V that
acts irreducibly. We claim that V = U(n, {0, 1,−1,+ i,− i}) does this. The elements in V
are those unitary matrices which have exactly one non-zero entry per row and per column,
and this entry is either +1,−1,+ i or − i. It is easily seen that V forms a finite group.
Given an arbitrary ξ ∈ Cn, with i-th component ξi non-zero, we can take v the diagonal
matrix with +1 on all diagonal entries except for −1 at the i-th position. Then 1n, v ∈ V
and 1nξ − vξ = 2ξiei, where ei ∈ Cn is the i-th canonical basis vector. All permutation
matrices of Cn (matrices that permute coordinate entries w.r.t. the canonical basis of Cn)
are contained in V , and so applying a suitable permutation matrix w ∈ V to 2ξiei, we can
get a multiple of an arbitrary basis vector ej , j = 1, . . . , n, hence every vector in Cn through
linear combination. This shows that V acts irreducibly and transitively on Cn, and thus
proves our claim. �

Let us look at some simple examples. For a single qubit such a decoupling set may be
chosen more explicitly as the Pauli group {α1, ασx, ασy, ασz : α = ±1,± i}, whereas for a
q-qubit system, it may be chosen as 4q+1 combinations of the Pauli spin operators on the
tensor factors. The size of the decoupling set scales exponentially with the number of qubits
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of the considered system. This makes deterministic decoupling schemes inefficient for large
quantum systems, since the modified dynamics is obtained through taking the decoupling
operations one after the other deterministically from V .

Clearly, in order to suppress decoherence that is induced by a generic system-environment
Hamiltonian

(2) H = HS +HE +
∑
α

Sα ⊗ Eα,

with Sα and Eα being hermitian system and environmental operators respectively, it is enough
to act with v on the system alone. For traceless system operators, in the limit of infinitely fast
decoupling we obtained a dynamics that is decoupled from the environment, i.e. Π0(H) =
1 ⊗HE . This makes it possible to fully suppress decoherence, independently of the specific
form of the system-environment interaction that is present. As long as the system is finite-
dimensional, we note that this is even true in the case of infinite-dimensional environments
described by some unbounded operators and H as in (2), if we make certain plausible domain
assumptions [27].

The question arises if, similarly to the finite-dimensional case, in an arbitrary infinite-
dimensional setting decoherence can always be suppressed through dynamical decoupling.
Before we address this question, we begin with an example [18], which is, to the best of
our knowledge, the only study in the literature where dynamical decoupling is investigated
for a specific infinite-dimensional system. The model that was considered in [18] consists
of a single harmonic oscillator that interacts with an environment of harmonic oscillators.

The system-environment interaction is given by HS,E =
∑

k gk(ab
†
k + a†bk) where a, a† and

bk, b
†
k are bosonic creation and annihilation operators of the system and the environmental

oscillators respectively and gk are real coupling constants determining the strength of the
interaction with each environmental oscillator. We note that HS,E can be brought into the
form (2) by expressing the annihilation and creation operators through x̂ and p̂. It was
pointed out in [18] that through a decoupling operation v = exp(−iπa†a), which corresponds
to a phase space rotation of the system oscillator around π, the sign in front of HS,E can
be reversed. This makes it possible to suppress such a system-environment interaction if we
apply the decoupling operation reasonably fast. The efficiency of this procedure was studied
in detail in [18] in terms of spectral properties of the environment. For our purposes what is
important is the observation that such an interaction can always be suppressed with a single
operation.

We then may ask if we can identify a decoupling set that allows us to suppress decoherence
for arbitrary infinite-dimensional systems. The most natural infinite-dimensional meaning of
decoupling would be the following: for an infinite-dimensional quantum system with Hilbert
space H and bounded operators B(H), a decoupling set is a finite subgroup V ⊂ U(H) such
that

(3) Π0(x) =
1

|V |
∑
v∈V

v†xv = λ1H,

with some λ ∈ C depending on x, is satisfied for all x ∈ B(H).

Theorem 2. An infinite-dimensional quantum system has no decoupling set.

Proof. Consider an infinite-dimensional system with Hilbert space H and suppose there is a
decoupling set V . Then considering a rank-one projection x ∈ B(H), we see that v†xv has
rank 1 again, and hence that the left-hand side of (3) has rank at least 1 (because sum of
positive elements) and at most |V | <∞ (because each of the summands has rank 1). On the
other hand, the right-hand side has either rank 0 (if λ = 0) or ∞. This is a contradiction, so
no such V exists. �

Let us make a few remarks:
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(i) Without contradicting Theorem 2, it could still be possible to achieve Π0(H) = λ1H
for specific Hamiltonians H rather than all x ∈ B(H).

(ii) It can be shown [28] that interactions containing system operators with an unbounded
positive spectrum can never be suppressed through applying unitary decoupling op-
erations infinitely fast.

(iii) It seems worth studying an infinite compact version of decoupling sets, which is work
in progress.

As dynamical decoupling does not work for generic infinite-dimensional quantum systems,
we decided to investigate in more detail the specific class of quadratic Hamiltonians and
to adjust the decoupling condition to suit that setting in a meaningful way. This allows
us to represent the dynamics by a symplectic transformation on a finite-dimensional space.
Additionally this has the advantage that we can avoid the mathematical subtleties arising in
infinite-dimensional spaces and the related problems in the characterization of the relevant
time-scales.

3. Dynamical decoupling for quadratic Hamiltonians

We consider an n-mode bosonic system described by n pairs of quadrature operators x̂j
and p̂j acting on an infinite-dimensional Hilbert space H and satisfying the canonical commu-
tation relation [x̂i, p̂j ] = iδi,j1H. We always write L(H) for the linear (possibly unbounded)
operators on H, B(H) for the algebra of bounded operators on H, U(H) ⊂ B(H) for the
group of unitary operators on H.

By introducing the diagonal matrix R = diag(x̂1, ..., x̂n, p̂1, ..., p̂n) ∈ M2(R) ⊗ Mn(R) ⊗
L(H), the commutation relation can be written as [Rii,Rjj ] = iJi,j1H where

J =

(
0 1n
−1n 0

)
,(4)

is the symplectic form. We note that a suitable basis change leads to

R = diag(x̂1, p̂1, ..., x̂n, p̂n), J =
n⊕
j=1

(
0 1
−1 0

)
,(5)

but we will use the former choice of basis except otherwise mentioned.
We are interested in quantum systems that are described by a quadratic Hamiltonian of

the form

H =
1

2

∑
i,j

Ai,jRiiRjj ∈ L(H),(6)

with A being a real and symmetric 2n×2n matrix. The corresponding unitary time-evolution
operations U(t) = e−iHt are the so-called Gaussian operations since they preserve the Gauss-
ian character of quantum states. If we consider the Heisenberg evolution of the quadrature
operator we obtain

(12n ⊗ U(t)†)R(12n ⊗ U(t)) = (S(t)⊗ 1H)R,

where

S(t) := e−tAJ , t ∈ R+,(7)

belongs to the symplectic group Sp(2n,R). Restricting to quadratic Hamiltonians, we see
that there is a one-to-one correspondence between the time evolution operators (U(t))t∈R+

acting on an infinite-dimensional Hilbert space and the finite-dimensional matrices (S(t))t∈R+ ,
which allows us to reduce to a finite-dimensional setup. For further details regarding quadratic
Hamiltonians and symplectic transformations we refer to [19].
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Now we want to introduce dynamical decoupling within the framework of symplectic trans-
formations. While usually dynamical decoupling is introduced within quantum control the-
ory using averaged Hamiltonians [1] we consider here a decoupling sequence that captures
the main aspects of dynamical decoupling. We remark that a formulation within averaged
Hamiltonian theory in terms of symplectic transformation is straightforward [28]. Here we
instantaneously apply symplectic decoupling operations from a finite group G ⊂ Sp(2n,R),
in time steps t

|G| , with |G| being the number of elements in G. If this is done deterministically

in a fixed periodic cycle running through all of G, call it g1, . . . g|G| with g1 = g|G|+1 = 1, then

the correction operation applied instantaneously at time kt/|G| is g−1
k+1gk, and the modified

dynamics at t becomes

S(1)(t) =

|G|∏
k=1

gke
− t
|G|AJg−1

k =

|G|∏
k=1

e
− t
|G|gkAJg

−1
k .(8)

If we repeat this cycle N times and shrink the time steps by a factor 1/N , we obtain

S(N)(t) =
( |G|∏
k=1

e
− t
|G|N gkAJg

−1
k

)N
.

Using a generalized Trotter formula [32], we get

lim
N→∞

S(N)(t) = exp

−t |G|∑
k=1

gkAJg
−1
k

 = exp

−t∑
g∈G

gAJg−1

 .

Analogously to the unitary case we can define a tentative symplectic decoupling condition
for G:

1

|G|
∑
g∈G

gAJg−1 = λ12n, A ∈ M2n(R),(9)

with some λ ∈ R depending on A. However, using the relation J = gTJg, valid for every
g ∈ Sp(2n,R), we can rewrite (9) as

1

|G|
∑
g∈G

gAgT = λJ, A ∈ M2n(R).

Considering e.g. a positive (hence nonzero) A ∈ M2n(R) in this equation, we see that the
left-hand side being a sum of positive operators must be positive again, whereas the right-
hand side is antisymmetric, which is impossible. Thus the tentative decoupling condition
(9) cannot be realized. It reflects for exmaple the fact that a system of non-interacting
harmonic oscillators cannot be stopped rotating. As already pointed out in the previous
section, dynamical decoupling in the usual sense cannot work for every infinite-dimensional
system, and apparently also for quadratic Hamiltonians this is not possible in this strict sense.
However, maybe we are demanding too much.

Homogenization. Since we cannot decouple harmonic oscillators, a natural relaxation of
condition (9) may be written as follows:

A finite subgroup G ⊂ Sp(2n,R) is called a homogenization set if, for every symmetric
A ∈ M2n(R), we have

1

|G|
∑
g∈G

gAJg−1 = λJ,

or equivalently

Π(A) :=
1

|G|
∑
g∈G

gAgT = λ12n,(10)
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with some λ ∈ R depending on A.
In words: instead of requiring that the system does not evolve anymore, we now require

that a set of harmonic oscillators do not interact with each other but rotate all with the
same frequency λ after we have applied symplectic operations infinitely fast. We call this
process homogenization. We note here that the homogenization procedure is similar to sym-
metrization of quantum states developed in [29]. It remains to identify a set G of symplectic
operations that satisfies the homogenization condition (10).

Theorem 3. For every n ∈ N, a homogenization set for M2n(R) exists, for example

G = 〈12 ⊗O(n,Z), J〉 .(11)

Proof. First of all, it is clear that 12 ⊗ O(n,Z) and J commute, so gJgT = J , for every
g ∈ 12 ⊗ O(n,Z), and JJJT = J . Thus G ⊂ Sp(2n,R). We decompose A according to the

product M2(R)⊗Mn(R) into four n×n blocks A(i,j), i, j = 1, 2, where (A(1,2))T = A(2,1) and

(A(i,i))T = A(i,i). We can then write (10) as

Π(A) =
1

|G|
∑

g∈O(n,Z)

[(
gA(1,1)gT gA(1,2)gT

gA(1,2)gT gA(2,2)gT

)

+ J

(
gA(1,1)gT gA(1,2)gT

gA(2,1)gT gA(2,2)gT

)
JT
]
.(12)

Now we recall from the proof of Theorem 1 that the group O(n,Z) = U(n, {0,+1,−1}) acts
irreducibly on Rn, so it forms a decoupling set for Mn(R) in the sense of (1). Applying (1)
to each block, we find

Π(A) =
1

2

(
tr{A(1,1)}

n 1n
tr{A(1,2)}

n 1n
tr{A(2,1)}

n 1n
tr{A(2,2)}

n 1n

)

+
1

2
J

(
tr{A(1,1)}

n 1n
tr{A(1,2)}

n 1n
tr{A(2,1)}

n 1n
tr{A(2,2)}

n 1n

)
JT ,

=
tr{A(1,1)}+ tr{A(2,2)}

2n
12n

=
tr{A}

2n
12n,

which completes the proof and we identify λ = tr{A}
2n as an averaged frequency. �

The elements in 12⊗O(n,Z) are “signed permutation matrices”. In words: through rapidly
swapping the coordinates of the oscillators, we can map a set of n interacting harmonic

oscillators onto non-interacting oscillators rotating with an averaged frequency λ = tr{A}
2n .

Remark on finite-energy correction operations. So far, the correction operations are
assumed to be applied in the form of infinitely strong instantaneous pulses. This is certainly
idealised and not very physical, yet generally taken for granted when discussing the theory
of dynamical decoupling as it is a reasonable approximation facilitating most computations.
If we explicitly want to work with finite-energy operations, a typical alternative would be
so-called Eulerian dynamical decoupling [30]. In that case, the decoupling operations are
implemented by a continuous path in the automorphism group of the system rather than a
discontinuous path which jumps between the elements G. Let us describe the idea briefly,
following [30] but adapted to the context of homogenization. We refer to future work for
details of the construction, proofs, and further consequences.

Let G be a homogenization set, i.e., a finite subgroup of Sp(2n,R) as above, and Γ a
minimal generating set for G. Consider the Cayley graph C(G,Γ), which has G as vertices
and {(g, γg) : g ∈ G, γ ∈ Γ} as directed edges. This means that every vertex has |Γ| incoming
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and |Γ| outgoing edges. An Eulerian cycle is a cycle through this graph which travels precisely
once through each edge according to its orientation, and hence |Γ| times through each vertex,
and with total length |G| · |Γ|. One can prove that such a cycle exists. Let us fix a total
time t and write τ := t

N |G|·|Γ| for the time difference between consecutive operations, i.e.,

between consecutive vertices. Let now K be such an Eulerian cycle, which we write as an
ordered tuple K = (g1, g2, . . . , g|G|·|Γ|) ∈ G|G|·|Γ| and we extend this periodically to GN, so

g|G|·|Γ|+1 = g1. Then at time kτ , the operation γk := g−1
k+1gk ∈ Γ is applied instantaneously,

so that the total time evolution in (8) becomes

S(N)(t) =

N |G|·|Γ|∏
k=1

gke
−τAJg−1

k = g1

(N |G|·|Γ|∏
k=1

γke
−τAJ

)
g−1

1 .(13)

So far, we have just modified the order of the correction operations, not their energy. Now
instead suppose that the operation γk is not applied instantaneously at time kτ but rather
obtained as a continuous curve from 1 to γk. Such a map is constructed as follows: let us
recall, e.g. from [31], that every element γ ∈ Sp(2n,R) can be decomposed as

γ = e
τ
2
Xe

τ
2
Y ,

with certain X,Y ∈ sp(2n,R). Then we can define

γ̃ : s ∈ [0, τ ]→ Sp(2n,R), γ̃(s) =

{
esY : s ∈ [0, τ/2]

e(s− τ
2

)Xe
τ
2
Y : s ∈ (τ/2, τ ].

and we have γ̃(0) = 1 and γ̃(τ) = γ. Then (13) changes to a time-ordered product, and in
first order expansion this becomes

S(N)(t) ≈12n +

N |G|·|Γ|∑
k=1

gk

(∫ τ

0
γ̃k(s)

−1AJγ̃k(s) d s
)
g−1
k

=12n +
t

τ |G| · |Γ|
∑
g∈G

g
(∑
γ∈Γ

∫ τ

0
γ̃(s)−1AJγ̃(s) d s

)
g−1

=12n + λJ,

with some λ ∈ R possibly depending on everything in the second line, as follows from the
homogenization condition (10) for G.

To summarize: if G is a homogenization set generated by a minimal set Γ then the modified
procedure using a continuous implementation of Eulerian cycles of length |G| · |Γ| yields
homogenization again but with finite-energy correction operations.

Decoherence suppression for system-environment interactions. Now we want to
come back to our initial motivation, the suppression of decoherence induced by generic qua-
dratic system-environment interactions. The previous homogenization condition (10) de-
scribes a mapping of interacting harmonic oscillators onto non-interacting oscillators that
rotate with an averaged frequency. Hence in that condition the suppression of the interac-
tions between the oscillators is included and it can be achieved by applying the operations
(11) infinitely fast to the whole system. In general we have no access to the environment
and therefore we now want to formulate a condition that allows us to suppress the system-
environment interactions if we act on the system alone. We first partition the total system
into the system of interest (S) with nS oscillators and the environment (E) with nE oscilla-
tors, so n = nS + nE , noticing that for symplectic dynamics we have a direct sum structure
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of the underlying space. Switching to the basis in (5), we thus write

A =


AS I

AEIT

 ,(14)

where AS ∈ M2ns(R), AE ∈ M2nE (R) are symmetric matrices describing the uncoupled
dynamics of S and E, and I ∈ M2nS ,2nE (R) describes the interactions between system and
environment. Now, if we apply the decoupling operations only to the system, namely of the
form g̃ = g ⊕ 12nE , we obtain in the limit of infinitely fast decoupling a dynamics governed
by

Π̃(A) =
1

|G̃|

∑
g̃∈G̃

g̃Ag̃T =


1
|G|
∑

g∈G gASg
T 1

|G|
∑

g∈G gI

AE1
|G|

(∑
g∈G gI

)T
 ,(15)

Obviously, in order to suppress the interaction with the environment, we need a group G
satisfying ∑

g∈G
g = 0.(16)

The simplest such group we can imagine is given by G = {12nS , −12nS}, and we notice that
it leaves the system dynamics invariant. Thus,

G̃ = {12nS ⊕ 12nE , −12nS ⊕ 12nE},

i.e., Π̃(A) = AS ⊕AE .
The two operations in G correspond to “no-rotation” and a global π-rotation of the system

oscillators. It shows that the operation from [18], introduced in the beginning, allows us to
decouple arbitrary quadratic system-environment interactions too. This is not really surpris-
ing, since in the unitary picture we can always reverse the sign in front of interaction parts
of the form x̂ ⊗ x̂ and p̂ ⊗ p̂ by applying exp(iπa†a). Here however we want to emphasize
two things. First of all, in contrast to finite-dimensional systems, the system can always be
decoupled from the environment using two operations, independent of how big the system or
the environment is. Second, for finite-dimensional systems, on the one hand the irreducible
action of the decoupling set suppresses all interactions with the environment, while on the
other it modifies the system dynamics in such a way that it is (up to a global phase) given by
the identity. For continuous variable systems described by quadratic Hamiltonians instead
we can always suppress the interaction with the environment without disturbing the system
dynamics at the same time. Let us summarize this as follows:

Theorem 4. Suppose a system of nS oscillators couples to an environment of nE oscillators
and is such that the total time-evolution is described by a quadratic Hamiltonian. Then the
interaction can be decoupled completely without influencing the system’s internal dynamics,
by choosing the decoupling set

G̃ = {12nS ⊕ 12nE , −12nS ⊕ 12nE}.

Remark: since the homogenization set (11) satisfies Eq. (16) we can combine both proce-
dures. The system can be homogenized while suppressing the interaction with the environ-
ment. Moreover, this can be adjusted again to Eulerian cycles and finite-strength correction
operations.
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4. Random dynamical decoupling and bounds

Probabilistic setup and derivation of bounds. Up to now we have discussed how we
can achieve homogenization and the suppression of decoherence for quadratic Hamiltonians in
the limit of infinitely fast operations. Clearly, in practice this limit is not attainable meaning
that non-zero orders in τ‖A‖∞ enter the dynamics. Throughout this article ‖ · ‖∞ denotes
the standard operator norm on M2n(R) (or some other operator algebra depending on the
context). In the following we provide bounds, characterizing how well dynamical decoupling
works for continuous variable systems if the decoupling operations are applied reasonably
though not infinitely fast.

We discuss here the case of homogenization, while decoherence suppression can be treated
analogously. Typically error estimates for dynamical decoupling are obtained by estimating
the higher orders of the Magnus expansion, the Dyson series or the Trotter formula [1]. Here
we consider a random dynamical decoupling scheme [6, 26] and use a central limit theorem

developed in [26] in order to obtain the description of the modified time evolution t 7→ S(1)(t)
as a stochastic process in Sp(2n,R). The idealized – though impossible – time evolution
would result from τ = 0; it would be given by the (non-random) function

S0(t) = e−tΠ(A)J , t ∈ R+,(17)

while Π(A) has to be replaced by Π̃(A) in (15) if we want to study decoherence suppression
instead.

We would then like to find an upper bound for the expectation value of the gate error.
More precisely, we consider the case in which symplectic decoupling operations gj at time jτ ,
with j ∈ N, are taken independently and uniformly random from G as in (11) such that the
dynamics is modified according to

S(1)(`τ) =
∏̀
j=1

gje
−τAJg−1

j ,(18)

at time t = `τ . Again, gj and G would have to be replaced by g̃j and G̃ if we want to study
decoherence suppression rather than homogenization. The dynamics is now described by a
random walk ` ∈ N 7→ S(1)(`τ) ∈ Sp(2n,R) on the symplectic group. In order to apply
analytical tools, we would like to approximate this by a continuous-time stochastic process.
This idea has been realized in [26] for the case of dynamical decoupling. A similar treatment
for homogenization or decoherence suppression, as shown in Appendix A, leads to a limit
stochastic process

t ∈ R+ 7→ S(∞)(t).

If τ‖A‖∞ � 1 then this is a very good approximation of the actual time evolution S(1)(t).
The quantity we would like to investigate then is the expectation of the gate error :

ε(t) = ‖S0(t)− S(∞)(t)‖22, t ∈ R+,(19)

where ‖ · ‖2 denotes the Hilbert Schmidt norm and S0(t) the idealized time evolution given
by (17). We find:

Theorem 5. For τ‖A‖∞ � 1, i.e., if homogenization or decoupling operations are applied
sufficiently fast, the expected gate error for homogenization behaves as

E[ε(t)] ≈ 2τt‖A−Π(A)‖22 ≤ 16τtn‖A‖2∞.(20)

In the case of decoherence suppression we get

E[ε(t)] ≈ 2τt‖A− Π̃(A)‖22 ≤ 16τtnSnBk
2,(21)

with k being the greatest absolute value of system-environment coupling entries in the matrix
I in (14).
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For a proof and more general treatment of bounds we refer to Appendix A. Moreover, it
would be interesting to study an adaption of the random procedure to Eulerian cycles as
introduced in the context of homogenization, and to obtain explicit error bounds. Although
we expect this to be feasible and meaningful, it goes far beyond the scope of the present
article and provides interesting future work.

Simulations. In order to illustrate and confirm the meaningfulness of our results, especially
of Theorem 4, let us now look at simulations for some standard models.

In Figure 2 we studied the validity of our analytic approximation in Theorem 4 by numer-
ically evaluating the gate error (19) for homogenization (a) and for decoherence suppression
of the system-environment interactions (b). In both plots we evaluated the gate error by
taking the average over 20 trajectories that were obtained according to (18) for a total time
t = 1. For (a) the decoupling operations were taken independently and uniformly random
from G given by (11) and the expectation of the gate error was studied as a function of τ .
We investigated homogenization for n = 4 interacting harmonic oscillators described by a
randomly chosen matrix A with entries between 0 and 0.1 (blue squares) and 0 and 1 (black
triangles). In Figure 2 b) we studied the suppression of the system-environment interaction
for a system of nS = 2 interacting harmonic oscillators as a function of the number nE of
environmental oscillators for fixed τ = 10−3 and taking the decoupling operations uniformly
random from G = {12nS , −12nS}. The matrix A describing the total system was chosen
randomly with entries between 0 and 0.1. In both figures the solid lines represent the corre-
sponding analytic expressions (20) and (21). Remarkably, even for τ‖A‖ ≈ 1 they describe
very well the efficiency of the random decoupling scheme in terms of the temporal separation
of the decoupling operations, the total evolution time and the entries of A.

Exemplarily, a rough estimate can be given for optomechanical microresonators [33]. Here
the frequency of the mechanical oscillator and the cavity mode are in the Mhz regime and
couplings of the order of kHz can be achieved between the mechanical oscillator and the
cavity mode. The bound (20) suggests that for such systems τ � 1µs is required for ho-
mogenization of the motion of the mechanical oscillator and the cavity mode for a total time
t = 1µs. A time-scale analysis for decoherence suppression, for instance for a mechanical
oscillator interacting with a bath of phonons, requires a microscopic model of the underlying
decoherence mechanism. Particularly the order of the interaction between the mechanical
oscillator and its environment or the spectral density of the environment need to be known.

5. Conclusions

We have studied dynamical decoupling for continuous variable systems that are described
by quadratic Hamiltonians. We first proved that dynamical decoupling cannot work for ev-
ery infinite-dimensional system. Thus, in contrast to finite-dimensional systems, not every
infinite-dimensional system can be protected from decoherence using dynamical decoupling.
Using the framework of symplectic transformations we afterwards investigated in more detail
dynamical decoupling for quadratic Hamiltonians. We identified a condition and a set of op-
erations that allows us to map a set of interacting harmonic oscillators onto non-interacting
oscillators rotating with an averaged frequency. We called this process homogenization. More-
over we showed that every quadratic system environment-interaction can be suppressed with
two simple operations without modifying the system dynamics at the same time. Using a
random dynamical decoupling scheme we developed bounds characterizing how efficient both
schemes are. We found that the efficiency depends on the temporal spacing of the decoupling
operations, the total evolution time and the energy constants characterizing the considered
system. Numerical simulations confirm the meaningfulness of the developed bounds.

Our results pave the way for protecting an infinite-dimensional quantum system from
decoherence which is induced by quadratic interactions. The reduction of noise in such
systems is likely to find several applications. For instance, dynamical decoupling has the
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(a)

(b)

Figure 2. Numerical simulation of the averaged gate error for random
dynamical decoupling. For homogenization (a) as function of the temporal
spacing τ (on an inverse double logarithmic scale) between the decoupling
operations and for the suppression of the system-environment interaction (b)
as a function of the number of environmental oscillators nE for fixed τ =
10−3. The average was taken over 20 trajectories for a total time t = 1. (a):
for a system of 4 interacting harmonic oscillators described by a randomly
chosen matrix A with entries bounded from above by k = 1 (black triangles)
and by k = 0.1 (blue squares). The solid lines represents the corresponding
analytic approximation depending on A given by (20). (b): for a system of
two interacting harmonic oscillators coupled to an environment consisting of
nE = 1, . . . , 80 oscillators (black triangles). The matrix A describing the total
system was chosen randomly with entries between 0 and 0.1. The solid lines
show the more precise approximation depending on A (black line) and the
more general upper bound (grey line) in (21), with k = 0.1.
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potential to decrease the environmentally induced errors in optical quantum computing [21]
and quantum metrology [22]. Moreover, dynamical decoupling for continuous variables might
assist in verifying collapse models [35] in the macroscopic superposition regime [36, 37, 38, 39].
In particular, the reduction of noise caused by the interaction with the environment through
dynamical decoupling might make the small derivations from the usual Schrödinger dynamics
more visible [27].

Appendix A. Construction of diffusion limit process and gate error bounds

The proof of Theorem 4 is similar in spirit to the diffusion limit theorem in [26], and we refer
to that article for notation, motivation and procedure, in order to keep the present exposition
succinct. We focus on the homogenization, and comment on decoherence suppression, which
is treated analogously, towards the end.

To start with, we have to define the distribution of the increments in our random walk. A
suitable choice is

µN :=
1

|G|
∑
g∈G

δ
exp
(

τ√
N
g(A−Π(A))Jg−1+ τ

N
Π(A)J

), N ∈ N,

This constitutes a family of measures on the Lie group Sp(2n,R) with standard Borel σ-
algebra, such that

µ1 =
1

|G|
∑
g∈G

δexp(τgAJg−1)

is the increment distribution of the actual time evolution operator S(1)(t) to S(1)(t + τ),
resulting from the instantaneous random homogenization operations as in (18).

We then consider the measures (µN )∗N : an application of [26, Th.3], cf. also [34], shows

that they converge to a normal distribution ν1 on Sp(2n,R) as N → ∞, and (S(N)(t))t∈R+

converges to a Gaussian process (S(∞)(t))t∈R+ on Sp(2n,R), with distribution (νt)t∈R+ such
that ν0 = δ12n . The corresponding (dual) contraction semigroup has infinitesimal generator

L = DΠ(A)J +
τ

|G|
∑
g∈G

(Dg(A−Π(A))Jg−1)2.

The process (S(∞)(t))t∈R+ cannot be expressed explicitly, but the expectation values of its
matrix elements and higher moments can, thanks to the expression for L: we can apply it to
the functions

fkl(g) := 〈ek, g(el)〉, g ∈ G,
and

fij,kl(g) := 〈ei ⊗ ej , g(ek)⊗ g(el)〉, g ∈ G,
where (ek)k=1,...,2n forms an orthonormal basis of R2n.

More precisely, we get

E[ε(t)] =E[‖S0(t)− S(∞)(t)‖22]

=

2n∑
k,l=1

E
[
|〈ek, S(∞)(t)(el)〉|2 + |〈ek, S0(t)(el)〉|2

− 〈ek, S(∞)(t)(el)〉〈ek, S0(t)(el)〉 − 〈ek, S(∞)(t)(el)〉〈ek, S0(t)(el)〉
]

=

2n∑
k,l=1

〈(ek ⊗ el), etL̂
(2)

(el ⊗ ek)〉+ 2n(22)

− 〈ek, etL̂(el)〉〈el, S0(−t)(ek)〉 − 〈el, etL̂
†
(ek)〉〈ek, S0(t)(el)〉,
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where
L̂ = −Π(A)J +

τ

|G|
∑
g∈G

(
g(A−Π(A))Jg−1

)2
and

L̂(2) =−Π(A)J ⊗ 12n − 12n ⊗Π(A)J†

+
τ

|G|
∑
g∈G

((
g(A−Π(A))Jg−1

)2 ⊗ 12n + 12n ⊗
(
(g(A−Π(A))Jg−1)†

)2
+ 2g(A−Π(A))Jg−1 ⊗ (g(A−Π(A))Jg−1)†

)
.

Equation (22) is the precise expression for E[ε(t)], which may actually be used for computer
programs if A is explicitly known and the dimension n is reasonably small. In most other
circumstances it makes sense to simplify (22) under the physically realistic assumption that
τ‖A‖∞ � 1. A first order expansion of all the exponentials in (22) and the fact that J−1 = J†

and g−1 = g†, for all g ∈ G, lead to

E[ε(t)] =
2τt

|G|

2n∑
k,l=1

∑
g∈G
〈ek, g(A−Π(A))Jg−1el〉〈el, (g(A−Π(A))Jg−1)†ek〉+O(τ2t2‖A‖4∞)

≈2τt

|G|
∑
g∈G
‖g(A−Π(A))Jg−1‖22(23)

=2τt‖A−Π(A)‖22.
We notice that ‖Π(A)‖∞ ≤ ‖A‖∞, so

‖A−Π(A)‖22 = tr{(A−Π(A))†(A−Π(A))} ≤ tr{(2‖A‖∞)212n} = 8n‖A‖2∞,
which completes the proof of (20) for homogenization.

In the case of decoherence suppression instead, (23) becomes

E[ε(t)] ≈ 2τt‖A− Π̃(A)‖22.
Now we note that

(A− Π̃(A))†(A− Π̃(A)) =

(
IIT 0

0 IT I

)
.

The maximum entry of IIT is bounded above by 2nEk
2, the maximum entry of IT I instead

by 2nSk
2, with k being the greatest absolute value of system-environment coupling entries

in the matrix I. Thus

‖A− Π̃(A)‖22 = tr{
(
IIT 0

0 IT I

)
} ≤ 2nS · 2nEk2 + 2nE · 2nSk2 = 8nSnEk

2,

which proves the last part of Theorem 4.
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