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Abstract

We present a numerical study of quasiperiodic foams, in which the bubbdéegener-
ated as duals of quasiperiodic Frank-Kasper phases. These foamsestigated as potential
candidates to the celebrated Kelvin problem for the partition of three-dimedspace with
equal volume bubbles and minimal surface area. Interestingly, one obtheuted structures
falls close (but still slightly above) the best known Weaire-Phelan pericaticlidate.In ad-
dition we find a correlation between the normalized bubble surface arethandot mean
squared deviation of the number of faces, giving an additional clue terstahding the main
geometrical ingredients driving the Kelvin problem

1 Introduction

Aqueous foams are space-filling packings of bubbles, widpgdm surfaces and configurations
governed by the celebrated Plateau’s laws. The physicsaofisacovers a large variety of systems
and associated properties [1]. In parallel, foams prover@sting in solving and/or illustrating
well-posed geometrical questions related to minimal seda A paradigmatic example is the
Kelvin problem [2, 3]: What is the least surface area of equal-volume objects whaatition
space? What is the global energy minimum of a foam in which tibblbs all have exactly the
same volume?These two formulations, one in mathematics and one in physie equivalent
because the energy of a foam is proportional to the surfaeairits soap films. The problem is
difficult because there are many candidates and they all¢@mwparable surface areas.

Kelvin himself conjectured a periodic candidate, wherendatentical) bubble has the shape of
a truncated octahedron with slightly curved surfaces [2A3)etter periodic candidate was found
a century later by Weaire and Phelan [4], who studied a perendangement of two topologically-
distinct types of bubbles with respectively 12 and 14 facBse bubble centroids are located at
the vertices of the well known A15 Frank-Kasper (F-K) phese [F-K phases are polytetrahedral
periodic packings, which can be easily dualized, leadirgaasible skeletons for foam structures.
As a consequence, many other F-K phases have been (unduttgesssted with respect to the
Kelvin problem (e.g. [6]), leaving the Weaire-Phelan caatk still unbeaten.
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F-K phases play an important role in a rather different afematerial science, that of qua-
sicrystalline materials. Indeed, they often appear nearlpphase diagrams, and display quite
similar local atomic order (especially with icosahedrattg@ans). It is possible to generalize the
concept of a F-K phase to non-periodic structures, and &taice to define a quasicrystalline F-K
phase by atomic decoration on top of a quasiperiodic tilifjg The aim of the present paper is to
analyze the related quasiperiodic foams with respect t&Kéhan problem.

Section 2 gives an introduction to foams, Plateau’s lawd, the Kelvin and Weaire-Phelan
candidates. Section 3 describes the quasicrystalline truitsres and their dual bubble skeletons.
Section 4 presents our numerical results on quasiperiodim$, compared to previously obtained
results for periodic foams. Section 5 summarises our appradiscusses the results and opens
perspectives.

2 From Kevin to Weaire-Phelan

2.1 Foams

Kelvin’s initial motivation [2, 3] was to look for a possibiructure for the aether that permeated
space. He required a structure through which light coulgpagate like sound does in an elastic
solid medium. The puzzle was that light admits only two txemse polarizations, while sound
also admits a third, longitudinal one. Kelvin looked for swtdensity material, with a high ratio of
its bulk to shear elastic moduli, and an elegant structwsecto perfection. Thus he looked for a
foam.

Nowadays, the interest in the aether has faded, but nottieest in foams, which have numer-
ous industrial properties in addition to being aesthetataseful for scientists [1]. In addition, this
unsolved problem specifically attracts mathematiciangiuydicists to work together, because the
simplicity of the question contrasts with the difficulty addressing it [8], and even draws the at-
tention of architects seeking efficient partitions of spaee optimal use of material. Of course we
do not expect a foam to spontaneously find the global minimtisudace area among the many,
many local minima. But the parallels between aqueous foamddeast-area partitions of space
provide a rich source of cross-fertilisation [9].

An equilibrium dry aqueous foam is a collection of bubblest tht together without gaps or
overlap. The shape of each interface between two bubbéesgeach soap film, is governed by
surface tension, which acts to reduce the surface area bffdacto a minimum. The volume of
gas in each bubble can be kept fixed (at least over short tonethate time-scales of seconds to
minutes) and, under controlled conditions (see e.g. [168ms with bubbles of equal volume can
be produced. Hence such a foam is an area-minimizing spéog-$tructure, and each realisation
can be thought of as a candidate structure that meets th&ioosdf the Kelvin problem.

From foams comes the solid background to build upon, callagt&u’s laws [1, 9, 11]. In any
least-area partition the interfaces must meet three-floldgaedges (at equal angles 16f0°), and
the edges along which the interfaces meet themselves madbid at vertices with the tetrahedral
angle,f;, = arccos(—1/3) ~ 109.5° ~ 1.91 rad. That these laws are a consequence of surface
area minimization was proven by Taylor [12], building on Wwdny Almgren [13, 14]. A purely
topological consequence of the fact that edges are thideafa vertices are four-fold which in
this case arises from Plateau’s laws, but which can also sereéd in systems which do not obey
them) is that, on each individual bubble, the number of facesd the average number of edges
per face(er) are linked through [1]6 — (ep))F = 12.

Further, the Young-Laplace law relates the bubble pressior¢he (mean) curvature of each
interface. If two bubbles share a face, this face has a catnstaan curvature, while separately its



radii of curvature can vary, and its Gaussian curvature lfda.o bubbles which share a face have
the same pressure, this face has uniformly zero mean cueyatod hence at each point its radii of
curvature are opposed, although both can be non-zero kk&#ussian curvature.

2.2 Periodic structures

The Kelvin problem has a simpler counterpart in 2D: what érttinimal perimeter of equal-area
objects which tile the plane? The solution, a tiling of reguiexagons, was known to the Romans
from their observation of beehives, but its rigorous, cotapaided proof is recent [15]. Regular
hexagons have the same shape, the same pressure, flatseeB|aieau’s laws, and tile the plane.
Their perimeter is only a few percent above that of the cinefeich is the exact theoretical lower
bound for any single object in general, but which does netkie plane.

Back in 3D, there exists a simpler variant of the Kelvin proflevhat is the minimum sur-
face area of a bubble which tiles space by periodically repgdtself? There is no shape which
transposes to 3D all the properties of 2D regular hexagohs.nfain property one is tempted to
generalize is that 2D regular hexagons have identical tasfaCan one conceive a 3D bubble with
exactly identical flat faces? If one blindly applies Plate#aws, one finds that such a bubble would
necessarily haver = 27 /(m — 0;) ~ 5.104 edges per face anfd ~13.39 faces[16, 17, 18]. Note
that these considerations, derived here for bubbles obesjateau’s laws, correspond to one of
the two ideal solutions for three-dimensional packingse-ttlygonometric solution rather than the
algebraic one — discussed by Coxeter [19, 20], both of whictalled “statistical honeycombs”.

Such ideal bubble packing is of course impossible to realipgactice. Still, we can calculate
analytically the surface area of a regular bubble obeyiagel’s laws with any number of faces
[21],

S = Feja cot (m/er) Q)

whereqa is found from the volume:
Fepa®  cot?(r/er)

24 \/4sin2 (r/ep) — 1

V= (2)

A simple interpolation with the above given values indisatieat this hypothetical, so-called
“ideal” bubble, would have a surface areaxh.254 (hereafter, surface areas are given with respect
to bubbles of unit volume). Itis reasonable to conjectuat tio actual bubble could beat this value,
and hereafter we use it as a reference for comparison witbusacandidates. Note that this lower
bound for bubbles obeying Plateau’s laws and tiling the sgonly a few percent above the exact
theoretical lower bound for any single object in generalichlis that of the spherex4.836).

For actually realisable bubbles, one looks for a unit cellchiperiodically repeats itself, as in
a monatomic crystaivith faces which have everywhere two opposed radii of cuneatand obeys
Plateau’s laws. The candidate proposed by Kelvin [2] is kmas the Kelvin structure, the trun-
cated octahedron or the tetrakaidecahedwdrich is repeated periodically with a bcc symmetry
It has eight hexagonal faces and six square faces, hencedsldad an average of 5.14 edges per
face, close to that of the hypothetical ideal bubble. It rexgu“delicate” [2] curvature of its faces
to satisfy the conditions of space-filling and minimal sudarea (fig. 1(a)). Since all the bubbles
have exactly the same shape, they have the same pressurersadjeently every face has zero
mean curvature. The surface area of Kelvin's truncatecheckaon is~5.306.

Coming back to the full Kelvin problem, there is no requiretidat all bubbles should have
the same shape. Bubbles with different shapes, but obeyetgd®i's laws, have very similar
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Figure 1: Periodic structures. (a) Eight repeated bublpten the Kelvin structure. (b) The eight-
bubble unit cell of the Weaire-Phelan structure.

surface areas [21], and that makes the Kelvin problem diffideormally, it remains unsolved:
there is no proof that a particular structure is the least&avay to partition space into equal-
volume bubbles. In general, there is no analytic methodtimeate a structure’s surface area. One
usually needs to determine theoretically the positionsiteEsthen find their Voronoi structure,
and simulate with a high precision the relaxation of its @ceftowards a local minimum, usually
using the Surface Evolver [22]. What we now know for sure, & Helvin’s truncated octahedron
is not the global minimum.

In fact, it has been beaten, and a better candidate was foumchdred years after Kelvin.
The guiding idea was that the hypothetical “ideal” flat-fddmibble was probably the ultimate
limit towards which we should tend; any deviationegf from 5.1 edges per face (or, equivalently,
of F' from 13.39 faces per bubble) would imply the existence ofature, and thus probably a
cost in terms of surface area. In 1994, Weaire and Phelaretbfik bubbles such thatachface
should have close to 5.1 edges (that is, not jusawerage like the truncated octahedron, which
has no pentagonal faces). As a consequence, the stratagyherflower the surface area was to
introduce as many five-sided faces as possible, while nohgddo many four- or six-sided faces
(and neither three nor seven-sided ones). As bubbles withp@mtagonal faces are dodecahedra
and are unable to tessellate space on their own, it is negessanix bubbles of at least two
different shapes (but, for this problem, with the same vauntSeveral candidates, inspired by
known polyatomic crystalline structures, were numencalmulated using the Surface Evolver
software. The best candidate, thereafter known as the @/@dielan (W-P) structure [4] (fig. 1(b)),
is a relaxed form of the dual to the F-K A15 (Grtungsten) structure, consisting of two types of
bubbles with 12 faces (pentagonal dodecahedra) and 14 (@oédberg barrels). It has a surface
area 0of~5.288. Many further periodic tetrahedrally close-packed streeetuvere investigated
by Weaire and Phelan and others, some of which also show a kwkace area than the Kelvin
foam (see for instance [6], but never with a lower surface #ran W-P. Similarly, Gabbrielli [23]
described an a very different method of generating caneléd@t the Kelvin problem, using ideas
about pattern formation; he was also able to beat Kelvin butvi.

2.3 Quasiperiodic structures

We have tried to extend the Weaire-Phelan approach by kgepaidea of havingqual vol-

umebubbles with different shapes and topologies, but relaktiegconstraint of having a periodic
structure, which is not a prerequisite in the Kelvin problef natural way to do that is to in-
vestigate quasiperiodic bubble arrangements, and moo#ispély Frank-Kasper quasicrystalline



structures.

The experimental discovery of icosahedral quasicrysgdifepresents a major breakthrough
for materials science, opening up a wider range of stablmiatetructures in the solid state, be-
tween periodic crystals and disordered systems. Quatads\adlow for interesting long and short-
range orientational order, especially five-fold symmetfrbidden to real crystals; starting from
tetrahedrally-close-packed quasicrystals, their duakcsires (which will form the bubble skele-
ton) will have a high density of pentagons.

Compared to periodic structures, quasicrystals have anrtamodrawback: to relax their
Voronoi structure and determine their surface area it ghbel necessary to simulate an infinite
number of sites. We thus ask the following questions :

- Can we theoretically select quasicrystals in which theithstion of edge numbers is peaked
around 5.1 and, if possible, the distribution of the numbi¢aces is peaked around 13.397?

- Can we turn these theoretical structures into finite-sigeukitions of foams, with sufficient
precision to discriminate between the surface area valiudifferent structures, and with a method
to validate this precision?

- Does a structure’s surface area correlate with the diffszdoetween its average number of
edges per face and the value 5.1? And/or with the differert@den the average number of faces
per bubble and the value 13.39?

3 Construction of quasiperiodic foams

3.1 Frank-Kasper phases

The stable quasicrystalline metallic alloys occupy a namrange in their respective phase dia-
grams, stimulating an analysis of their structure and thenrmagredients responsible for their
stability, together with that of the neighbouring crystadl phases, generically large unit cell crys-
tals among which can be found the Frank-Kasper-like phdgedt[is standard in the latter case
to analyze the structure in terms of local atomic environisigthe canonica, coordination cells
(see fig. 2), withp the coordination number, the case- 12 corresponding to a local icosahedral
environment.

Many F-K structures can be generated with an atomic decoratiocedure applied to a plane
tiling made of triangles and/or squares, building simptevat layers. These rules are not limited to
the periodic case; as an example, quasicrystalline F-Kgzheen be generated from a dodecagonal
guasiperiodic tiling [7]. (t should be stressed that these atomic decorations leadittiiges that
are quasiperiodic within the layers, but repeat perioticlery four layers in the third direction
Related structures have been invoked to model dodecagoasilcgystals found in metallic alloys
[25, 26] and, more recently, in dendrimeric supramoleciitarid crystals [27, 28]. The latter
discoveries are particularly interesting because theywshat metallic bonding is not a prerequisite
for stable quasiperiodic order. Further, F-K phases wese @bserved in micellar structures [29],
in which amphiphilic molecules form micelles in water oran inverse form, separating drops of
water with films that are minimal surfaces.

As noted above, the conjectured best W-P candidate is dtia th15 F-K structure, while the
original Kelvin candidate is dual to the BCC packing. Franksper structures are tetrahedrally-
close-packed (TCP) structures: the atomic positions deoseihree-dimensional Euclidean space
into tetrahedral unit cells which are not far from being degult is well known that regular tetra-
hedra cannot fill space perfectly, leading to geometriaadtfation [30, 31]. The tetrahedron’s
dihedral angle is not an integer submultiple2af although it is close t87 /5 ~ 1.885 and hence
m — 0, is close to2r /5. One therefore expects to find a large proportion of edgesnghéve
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Figure 2: Frank-Kasper structures. The four main Frankpiéasoordination polyhedra (top row)
Zh9, Zh4, 215 and Zyg, represented also by their Voronoi domains (lower row)nksidasper lines
(or disclination lines), shown as black lines, start from ¢lentre of the coordination polyhedra and
run through the black sites, or dually from the Voronoi damezentres, and go through hexagonal
faces, defining a “major skeleton” in the structure.

tetrahedra; whenever all edges through a site are of thes thye local order is icosahedral, and
the site corresponds to a F-K canoni¢aj one (fig. 2). Other coordination polyhedig, mostly
with p = 14,15 or 16, are found in real TCP structures, with an average, structapendent,
coordination number around= 13.4.

Beside theZ, distribution, another important parameter concerns tierfajor skeleton [5],
later identified as a disclination network [32, 33, 34, 36fnfied by edges sharing six tetrahedra,
with two types of sites: (i) edge sites, made &f;, polyhedra, threaded by the edge through
opposite points with hexagonal symmetry and (ii) vertegssitvhere disclinated edges meet in
threes at an angle @fr/3 on 7,5 sites, or by four at an anglg on Z4 sites. These disclination
lines cannot be interrupted in the structure: they run tghawt the volume, and can connect to
other lines.

Among the large set of F-K structures, A15 is a particulairezral, case: it contains onl;,
andZ,, sites, with a rather high average coordination number13.5, and a disclination network
formed by periodic disconnected straight lines runninghia three perpendicular directions. To
check the importance of these peculiarities, it was theeefempting to compute the associated
value of surface area for more generic F-K phases; this was dloeady for several such structures
[6, 36], always showing larger values than for W-P.

Our aim here is to widen the analysis of TCP duals by considéwn families of quasiperiodic
F-K foams, allowing us to compare the obtained surface angdsthose of formerly studied
periodic F-K structures, and order these new ones accotditige relative occurrence of 15-fold
and 16-fold coordinated vertices.
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Figure 3: Layered Frank-Kasper phases and triangle-sdiliaigs. (a) Some well-known F-K
phases, and their underlying tilings by squares and/onglés; atomic positions at height =
1/4 or 3/4 are shown in black, those at height= 1/2 in blue, and those & = 0 as open
circles. (b) A piece of an (undecorated) dodecagonal geasigic tiling, which underlies the F-K
guasicrystalline phases discussed in the text.

3.2 Quasiperiodic Frank-Kasper phases

We now briefly present two families of recently-derived gpasodic structures with dodecagonal
symmetry, described with more details in ref. [7] (see aé&f0[B87]). They belong to the large set
of “layered” F-K structures, in which atomic positions candmthered into simple planes defined
relative to an underlying tiling template made of square@rtriangles, see for instance [38, 39].
Once the tiling is given, four atomic layers are generatay a$ vertical coordinates 1/4,1/2 and
3/4. Two parallel copies of the tiling itself lie at heightg4 and3/4, with atomic positions at the
vertices. Some well-known F-K phases are presented in figwisa their associated underlying
tiling. Also shown, in fig. 3b, is a piece of a dodecagonal quexsodic tiling which will serve as

a template in the quasicrystalline case.

From the dodecagonal square-triangle tiling, we genehagetdifferent structures, belonging
to two familiesA andB, which we denote by DQ for “dodecagonal quasicrystal”:

(i) Family A, with only 75, Z1, and Zy; sites, which are such that the disclination network
is formed by planar networks (along the layers), or perpaidr to the layers (see fig 4a). Once
the triangle-square tiling is given, the decoration is ueigand easy to construct automatically;
we denote it DQA. The average coordination number for this quasicrystalds 13.464 and we
can extract an (unnormalized) composition, in terms of t@dination numbersz;, 73, Z1. with
r=3++3,5s=2+3V/3andt = 2.

(i) Family B, containing variable numbers dfy4 sites, as well as new; sites, both con-
tributing to connect the disclination network between tifferent layers. These connections ap-
pear transversally to a subset of the underlying tiling sgdgebject to certain constraints, depicted
by “double edges”. Given the underlying tiling, there is eganumber of possible double edge
decorations. For the present study, we have constructedualo structures: D@, correspond-
ing to the example shown in fig 4b, with a dense array of comimedduble edge circuits and, g
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Figure 4. Quasicrystalline dodecagonal Frank-Kaspergsaga) Family A, denoted D@, a
structure with onlyZ,,, 7,4, and Z;5 sites. The disclination network is represented inside two
layers, respectively in red and blue (colour on-line). Bhare also disclinations (not drawn here)
orthogonal to the layers, connecting grey sites locatedeavertices of the triangle-square tiling.
(b) Family B, includingZ;s sites. The decoration requires drawing annular stripsmiteld by
double edges, where the disclination network connectsréifit layers. We show here an example,
denoted DQB,, with a dense array of concentric strips. For clarity thenaing does not display the
Z1, Sites belonging to layers at heighéind1/2, and instead focuses on the disclination networks
with 7,4 and 75 sites. Grey sites (located at heightsl and3/4) are eitherZ,, sites on double
edges oz, sites on simple edges. Disclination networks are drawndr(mespectively in blue),
colour on-line, for the layer at height(respectivelyl /2). Disclination segments crossing double
edges (and connecting two different layers) appear in pyqalour on-line).

sites; and DB, with a less dense array of double edge circuits, fgwsites, and mainly new
connectingZ,5 sites. Since we used a manual procedure to generate thestisas, for which
the required generation time increases significantly viathriumber of bubbles, and since these
structures appeared to have a higher surface area, we hiawailhetructures with more than 1500
bubbles. Note that in addition to the disclination netwaskimecting the different layers, there are
still linear disclinations perpendicular to the layerst With a lower density compared to DQ-

3.3 Simulation methods

We take the quasicrystalline F-K sites described aboveeasdtd points for a Voronoi partition to
generate foam structures which are quasicrystalline indinections. The structures are periodic
in only one direction (perpendicular, by definition, to the plane) and must be truncated in the
z-y plane in some way to enable a finite-size simulation of a nensgic structure. We choose to
truncate each unconverged structure to lie within a ciralic of radiusr (fig. 5), and to generate
structures for increasing values Bf in the expectation that their surface areas will conveige,
each type of quasicrystal, to a well-defined limit.

Sullivan’s VCS software [40] is used to generate the Voromtlsdrom the seeds. The output
from VCS is imported into Brakke’s Surface Evolver, which igd$o determine the surface area
of each of our candidate structures (fig. 5Jhe cluster of bubbles has a free boundary condition



radially, but is constrained perpendicular to this with aigic boundary conditionIn Surface
Evolver the foam is made monodisperse (equal volume) byngettach bubble’s target volume
to be the average of the volumes given by the Voronoi pantjtio allow for curved facesach
face of each cell of the Voronoi partition is triangulateddahen each of these triangles further
refined into four smaller triangles to improve the accurafcthe calculation (so a five-sided face
is discretized with 20 triangles), and any triangles witbaasmaller than x 10~* are removed.
The total surface area of the foam is minimized, using bagldignt descent and second derivative
Hessian information, until it is accurate to four significdigures. The result of the truncation
process is often a structure with a non-uniform outer edgegample one Voronoi point might
fall just inside the disc leading to a slightly protuberanbble): we therefore do not include any
bubbles on the periphery of the structure when calculatiegstirface area of the foam.

To allow comparison of finite, quasicrystalline, strucgwath the fully periodic Kelvin and W-
P structures, we also truncate the Kelvin and W-P foams inth@lane. We therefore determine
the minimum surface area of finite circular monodispersastehs of these well-known foams,
necessarily higher than the surface area of the correspgpeiriodic structures.

4 Results

Our results are shown in fig. 6(a). Finite clusters congystihKelvin and W-P bubbles do tend
towards the well-established limiting values of surfagsaagiven above, although the approach is
slow — we would require thousands more bubbles to reachyigrizkthe available computational
time — and the fluctuations give an idea of the effect of oucuwar boundary condition. The
quasicrystalline structures show even greater fluctugtibot still distinct behaviour. Thus the
error does not necessarily vanish as the cluster size seseas is evident from the WP and
Kelvin clusters, but the surface areas of each type of quasodic structure do tend to well-
defined limits. The DQA structure has by far the lowest surface area of the thred,betdw
Kelvin and only slightly greater than W-P. DB is broadly similar to finite Kelvin clusters in
terms of surface area, although the structures are vesréift, and DQ3; is higher.

Fig. 6(b) summarizes the average surface area of eachwsuntcomparison with the fully-
periodic Kelvin and W-P structures. The difference in scefarea between the finite circular
clusters and the extended periodic tiling is as small as @at%elvin, and less thaf.05% for W-

P. This suggests that our finite simulations accuratelyuraghe limiting values for all structures.

We seek a topological parameter that succinctly describesdata. Each structure has an
average number of faces per bubblé) and average number of edges per fage); the two are
closely related{F') = 12/(6 — (er)) and neither is well correlated with surface area. Instead, w
determine the root mean square deviation of each strustdigtance from the hypothetical “ideal”
flat-faced bubble:F,,. = ((F — 13.39)%) ande,,,. = ((er — 5.10)?). For the F-K phases, the
values ofe,.,,,; are all similar, and do not distinguish the structures. Coselg, ..., is remarkably
well correlated with the surface area for these struct@eshown in fig. 7. The Kelvin structure
is likely to be very different to the structures derived fréaKK phases; its value df,.,,,, is low but
its value ofe,,,, is very high, and the straight line of fig. 7 could be geneealimto a fit to two
variables(e,..s, Frms). In figure 7 we also show data for other F-K layered{€znd C15) and not
layered (Bergman and SMee ref [31] structures generated by A. Kraynik[@ergman and SM
are closely related large unit-cell FK periodic structymegh 162 sites per unit cell) which cannot
be generated by the standard layered decoration procedhich ied to the present DQ structures

Bubbles organized following the F-K scheme, including WiRldo the A15 F-K phase, seem
to provide interesting candidates to the Kelvin problemFig. 8 (loosely inspired by Fig. 5 of
[36]), we display some classical TCP F-K phases, with barymetoordinates relative to the main



Figure 5: Examples of quasicrystalline foams. In each daseiew is in the direction of period-
icity, perpendicular to the-y plane, sliced ab = % Bubbles that are not on the periphery of the
cluster, and hence contribute to the surface area calonlatie coloured by their number of faces
(colour on-line): F=12 - greenF'=14 - red,F'=15 - cyan,F'=16 - magenta. (a) DQx, small size.
(b) A larger patch of DQA, with about 2000 bubbles. (c) DB:. (d) DQ-B-.
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Figure 6: Comparison of areas. (a) Surface area, normaligduibble volume, of all finite cir-
cular clusters considered, based on both periodic andpprasdic tilings. (b) The limiting value,
measured as the average surface atiesid, plotted as bars) fav > 700, for the quasicrystal

structures compared with the infinite Kelvin and Weaireihstructures.
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Figure 7: Areavs. topology. The normalized surface area of each simulatedtsire is shown
against the root mean square deviation of its numienf faces from that of the hypothetical
ideal bubble/~13.39. The data from structures based on the F-K phasesdingl W-P, fall on a
straight line §.274 + 0.02F,,,;). Note also how close the known values for the infinite pedod
foams, shown as larger points, are to the data for the finitellair clusters. For comparison, other
structures discussed in the text are plotted with black s}sland the origin of the ordinate axis
is the surface area of the hypothetical ideal bubBlerg (for Bergman) and SM are large unit-cell
FK phases referred to in the text, and C15 is the standard talvies phase structure with only
712 andZ4 sites

four Frank-Kasper canonical polyhedtd{, 714, Z15 and Z;5). The A15 phase has straight non-
intersecting disclination lines in three directions (s¢hwanly Z;, and 7, sites). The Z phase has
a family of straight disclination lines in one directiontwogonal to planes containing disclination
lines connected three by three (so with, 71, andZ;5). The Laves phases have disclination lines
connected four by four, like a diamond network, represehté by C15 (with onlyZ;, and 74
sites). Also shown on the figure are the quasiperiodic TCRires whose dual foams have been
numerically studied in this paper. It is striking that alististructures fall very close to a particular
(grey) plane in the drawing, which is the locus of structuraging a mean coordination number
equal to that of a Coxeter statistical honeycomb [19, 20].

5 Conclusion

This paper introduces numerically-derived quasiperiddams. We have been able to simulate
finite structures, large enough to resemble their infinieothktical counterpart, and found them
stable. By simulating periodic structures, which surfagaas known, we find as expected that
simulations of finite clusters slightly overestimate soef@areas. Relative errors are small enough
that we can confidently classify the structures on the sdatbeir simulated surface areas. We
argue thatV = 1500 to 2000 bubbles is enough to obtain results barely sensiiwalculation
details such as the position of the boundaries, and to thatiar of V.

While we failed to find a quasicrystalline foam with a lowerfage area than W-P, the present
study nonetheless contributes to the Kelvin problem. Bmarthe search for candidates from
crystalline F-K phases to different quasicrystalline odkesifies the role of a foam’s main topo-
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Figure 8: Comparison of topologies. Tetrahedrally-cloaeked Frank-Kasper phases are plotted
using barycentric coordinates according to their ratiofoof possible Frank-Kasper canonical
polyhedra: 7,5, Z4, Z15, andZ,5. The grey plane is the locus of structures having a mean coor-
dination number equal to that of a Coxeter statistical hooeyx[19]. A15 (dual to the Weaire-
Phelan foam), C15, Z and are standard F-K structures [5]. Bergman (named Berg in thesfigu
and SM are closely-related but more complex TCP phases wilsit€s per unit cell and entan-
gled disclination networks (SM is a one step decoration efAl5 phase). DQY, DQ-B; and
DQ-B; are the new quasiperiodic phases whose dual foams areloEsbere.
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logical feature: the distribution of the number of fadéper bubble and, more specifically, the rms
deviationF,,,, of F' from 13.39.

Our results are compatible with the conjecture thgf, is a determinant of the surface area.
Furthermore, we observe that,,, increases with the complexity of the disclination network.
From this point of view, the W-P candidate is extremal amdmgRrank-Kasper duals, with only
Z15 and Zy4 sites. As shown numerically here, the foams correspondirggrtictures containing
Z16 Sites have larger surface areas than those havingAgly addition toZ;, and 7, sites.

Other parameters could play a role too. For instance, thsityauf the sites for bubble centres
should probably be as homogeneous as possible. It is a pyagehe 2D quasicrystalline phase
that it minimizes these density fluctuations. The Kelvimsture, which is not a F-K phase, also
minimizes density fluctuations, but with a more complex litstion network and a high coordi-
nation numberp = 14.

The structures analyzed here are not fully quasiperiodimgostill, by construction, periodic
along one direction. A natural extension would be to studyralusters constructed as a dual to
an icosahedral quasicrystal, quasiperiodic in all threeations.

Conversely, it is possible (see the appendix of [7]) to buitdctures which are quasiperiodic
in only one direction, with and withouf;4 sites, and periodic along the other two. In the represen-
tation of fig. 8, these structures would fall very close to A& point, and can be seen as an A15
crystal interrupted by planar defects. They should theeef@ve very close surface area values,
presumably lower than those discussed in the present gapeuld be interesting to compare the
two cases, with and withouf;4 sites, and check whether the latter always increases tifecsur
area of the corresponding foam.

Finally, dynamical considerations may prove interestifghen a foam is sheared beyond a
certain deformation, called the “yield strain”, it undeegdocal topological transformations, re-
specting Plateau’s laws, called “T1s” [1]. In a crystalliimam, the yield strain is well defined,
in the sense that several T1s occur simultaneously, andgstespic, with a preferential yield-
ing along crystalline directions. On the other hand, in aroigous foam, the yield strain is
isotropic, and less precisely defined, since precursomatistd T1s occur below the actual yield
strain. Quasiperiodic structures should belong to a nesscl@hey are anisotropic, so their yield
strain is probably anisotropic too. But most importantlyasjperiodic structures undergo peculiar
types of local rearrangement, called localized “phaso#s].[ These phasons are more complex,
i.e. less localized, in the present dodecagonal quasatsytan for icosahedral ones. It would be
interesting to check whether these features could indeethderved in quasiperiodic foams.
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