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Abstract The k nearest-neighbour (kNN) algorithm has
enjoyed much attention since its inception as an intuitive
and effective classification method. Many further develop-
ments of kNN have been reported such as those integrated
with fuzzy sets, rough sets, and evolutionary computation.
In particular, the fuzzy and rough modifications of kNN
have shown significant enhancement in performance. This
paper presents another significant improvement, leading
to a multi-functional nearest-neighbour (MFNN) approach
which is conceptually simple to understand. It employs an
aggregation of fuzzy similarity relations and class mem-
berships in playing the critical role of decision qualifier to
perform the task of classification. The new method offers
important adaptivity in dealing with different classifica-
tion problems by nearest-neighbour classifiers, due to the
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large and variable choice of available aggregation methods
and similarity metrics. This flexibility allows the proposed
approach to be implemented in a variety of forms. Both
theoretical analysis and empirical evaluation demonstrate
that conventional kNN and fuzzy nearest neighbour, as well
as two recently developed fuzzy-rough nearest-neighbour
algorithms can be considered as special cases of MFNN.
Experimental results also confirm that the proposed approach
works effectively and generally outperforms many state-of-
the-art techniques.

Keywords Aggregation · Classification · Nearest-
neighbour · Similarity relation

1 Introduction

Classification systems have played an important role inmany
application problems, including design, analysis, diagnosis
and tutoring (Duda et al. 2001). The goal of developing such
a system is to find a model that minimises classification error
on data that have not been used during the learning pro-
cess. Generally, a classification problem can be solved from
a variety of perspectives, such as probability theory (Kol-
mogorov 1950) [e.g. Bayesian networks (John and Langley
1995)], decision tree learning (Breiman et al. 1984) [e.g.
C4.5 (Quinlan 1993)] and instance-based learning [e.g. k
nearest neighbours or kNN (Cover and Hart 1967)]. In par-
ticular, variations of kNNhave been successfully applied to a
wide range of real-world problems. It is generally recognised
that such an instance-based learning is both practically more
effective and intuitivelymore realistic thanmany other learn-
ing classifier schemes (Daelemans and den Bosch 2005).
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Central to the kNN approach and its variations is a non-
linear classification technique for categorising objects based
on the k closest training objects of a given feature space
(Cover and Hart 1967). As a type of instance-based learning,
it works by assigning a test object to the decision class that
is most common amongst its k nearest neighbours, i.e. the
k training objects that are closest to the test object. A fuzzy
extension of kNN is proposed in Keller et al. (1985), known
as fuzzy nearest neighbours (FNN), which exploits the vary-
ing membership degrees of classes embedded in the training
data objects, in order to improve classification performance.
Also, an ownership function (Sarkar 2007) has been inte-
grated with the FNN algorithm, producing class confidence
values that do not necessarily sum up to one. This method
uses fuzzy-rough sets (Dubois and Prade 1992; Yao 1998)
(and is abbreviated to FRNN-O hereafter), but it does not
utilise the central concepts of lower and upper approxima-
tions in rough set theory (Pawlak 1991).

Fuzzy-rough nearest neighbour (FRNN) (Jensen and Cor-
nelis 2011) further extends the kNN and FNN algorithms,
by using a single test object’s nearest neighbours to con-
struct the fuzzy upper and lower approximations for each
decision class. The approach offers many different ways in
which to construct the fuzzyupper and lower approximations.
These include the traditional implicator or T -norm-based
models (Radzikowska and Kerre 2002), as well as more
advanced methods that utilise vaguely quantified rough sets
(VQRS) (Cornelis et al. 2007). Experimental results show
that a nearest-neighbour classifier based on VQRS, termed
VQNN, performs robustly in presence of noisy data. How-
ever, the mathematical sophistication required to understand
the concepts underlying this and related techniques often hin-
ders their applications.

This paper presents a multi-functional nearest-neighbour
(MFNN) classification approach, in order to strengthen the
efficacy of the existing advanced nearest-neighbour tech-
niques. An aggregation mechanism for both fuzzy similarity
and class membership measured over selected nearest neigh-
bours is employed to act as the decision qualifier. Many
similarity metrics [e.g. fuzzy tolerance relations (Das et al.
1998), fuzzy T -equivalence relations (Baets and Mesiar
1998, 2002), Euclidean distance, etc] and aggregation oper-
ators [e.g. S-norms, cardinality measure, Addition operator
and OWA (Yager 1988), etc] may be adopted for such
application. Furthermore, this paper provides a theoretical
analysis, showing that with specific implementation of: the
aggregator, the similarity relation and the class membership
function, FRNN, VQNN, kNN and FNN all become particu-
lar instances of theMFNN.This observation indicates that the
MFNN algorithm grants a flexible framework to the existing
nearest-neighbour classification methods. That is, this work
helps to ensure that the resulting MFNN is of good adap-
tivity in dealing with different classification problems given

such a wide range of potential choices. The performance of
the proposed novel approach is evaluated through a series
of systematic experimental investigations. In comparison
with alternative nearest-neighbour methods, including kNN,
FNN, FRNN-O, and other state-of-the-art classifiers such
as: PART (Witten and Frank 1998, 2000), and J48 (Quinlan
1993), versions of MFNN that are implemented with com-
monly adopted similarity metrics and aggregation operators
generally offer improved classification performance.

The remainder of this paper is organised as follows.
The theoretical foundation for the multi-functional nearest-
neighbour approach is introduced in Sect. 2, including their
properties of MFNN and a worked example. The relation-
ship between MFNN and the FRNN and VQNN algorithms
is analysed in Sect. 3, supported with theoretical proofs, and
that betweenMFNNand the kNNand FNN algorithms is dis-
cussed in Sect. 4. The proposed approach is systematically
compared with the existing work through experimental eval-
uations in Sect. 5. Finally, the paper is concluded in Sect. 6,
together with a discussion of potential further research.

2 Multi-functional nearest-neighbour classifier

For completeness, the kNN (Cover and Hart 1967) and fuzzy
nearest-neighbour (FNN) (Keller et al. 1985) techniques are
briefly recalled first. The multi-functional nearest-neighbour
classification is then presented, including its properties and
a worked example.

Notationally, in the following, U denotes a given training
dataset that involves a set of features P; y denotes the object
to be classified; and a(x) denotes the value of an attribute
a, a ∈ P , for an instance x ∈ U.

2.1 K nearest neighbour

The k nearest-neighbour (kNN) classifier (Cover and Hart
1967) works by assigning a test object to the decision class
that is most common amongst its k nearest neighbours. Usu-
ally, the following Euclidean distance is used to measure the
closeness of two data instances:

d(x, y) =
√∑

a∈P

(a(x) − a(y))2. (1)

kNN is a simple classification approach without any pre-
sumptions on the data. Due to its local nature it has low bias.
More specifically, if k = 1, the error rate of kNN asymptoti-
cally never exceeds twice the optimal Bayes error rate (Duda
et al. 2001).
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2.2 Fuzzy nearest neighbour

With kNN, each of the selected neighbours is assumed to
be equally important, when assigning a class to the target
instance. Clearly, this assumption does not hold for many
problems. To address this defect, in Keller et al. (1985), a
fuzzy extension of kNN is proposed, known as fuzzy near-
est neighbours (FNN). It considers fuzzy memberships of
classes, allowing more flexibility in determining the class
assignments through exploiting the fuzziness embedded in
the training data. In FNN, after choosing the k nearest neigh-
bours of the unclassified object y, the classification result is
decided by the maximal decision qualifier:

∑
x∈N

(
d(x, y)−

2
m−1

)
μX (x)

∑
x∈N

(
d(x, y)−

2
m−1

) , (2)

where N represents the set of k nearest neighbours, d(x, y)

is the Euclidean distance as of (1), μX (x) denotes the mem-
bership function of class X , and the parameter m determines
how heavily the distance measure is weighted in comput-
ing the contribution of each neighbour to the corresponding
membership value. As with typical applications of FNN, in
this work m = 2 unless otherwise stated.

2.3 Multi-functional nearest-neighbour algorithm

The multi-functional nearest neighbour (MFNN) method is
herein proposed in order to further develop the existing
nearest-neighbour classification algorithms. At the highest
level, as with the original kNN, this approach is conceptu-
ally rather simple. It involves a process of three key steps:

1. The fuzzy similarity between the test object and any
existing (training) data is calculated, and the k nearest
neighbours are selected according to the k greatest result-
ing similarities. This step is popularly applied for most
nearest-neighbour-based methods.

2. The aggregation of fuzzy similarities and the class mem-
bership degrees obtained from the k nearest neighbours
is computed using the decision qualifier, subject to the
choice of a certain aggregation operator. The resulting
aggregation generalises the indicator in making decision
by a certain nearest-neighbour-based method, such as
kNN or FNN, etc. This may help to increase the qual-
ity of the classification results (see later).

3. Based on the drive to achieve the maximum correctness
in decision-making, the final classification decision is
drawn on the basis of the aggregation as the one that
returns the highest value for the decision qualifier.

The pseudocode for MFNN is presented in Algorithm 1.
In this pseudocode, the symbol A stands for the aggregation
method applied to similarity measures; μRP (x, y) is a simi-
larity relation induced by the subset of features P; μX (y) is
the membership function of class X , which may be fuzzy or
crisp (i.e., μX (y) is 1 if the class of y is X and 0 otherwise)
in general. Indeed, for most classification problems, what is
interested is to determinewhich class a given object definitely
belongs to and hence the crisp-valued class membership is
frequently used.

ALGORITHM 1: Multi-functional nearest-neighbour
algorithm

Input: ;
U, the training set;
C, the set of decision classes;
y, the object to be classified.
Output: Class, the classification result for y.
N ← get nearest neighbours (y, k);
τ ← 0, Class ← ∅;
for ∀X ∈ C do

if A
x∈N

(μRP (x, y)μX (x)) ≥ τ then

Class ← X ;
τ ← A

x∈N
(μRP (x, y)μX (x)).

end
end

2.4 Properties of MFNN

There are potentially a good number of choices for mea-
suring similarity, such as fuzzy tolerance relations (Das
et al. 1998), fuzzy T -equivalence relations (Baets andMesiar
1998, 2002), Euclidean distance, cosine function. Also, there
exist various means to perform aggregation of the similar-
ities, such as S-norms, cardinality measure, and weighted
summation, including Addition operator and OWA (Yager
1988). In particular, the following lists those commonly used
S-norms:

– Łukasiewicz S-norm: S(x, y) = min(x + y, 1);
– Gödel S-norm: S(x, y) = max(x, y);
– Algebraic S-norm: S(x, y) = (x + y) − (x ∗ y);
– Einstein S-norm: S(x, y) = (x + y)/(1 + x ∗ y).

Thus, theMFNNalgorithmcanbeof highflexibility in imple-
mentation.

As stated earlier, the combination or aggregation of the
measured similarities between objects and class member-
ships plays the role of decision qualifier inMFNN. However,
employing different aggregators may have different impacts
upon the ability of suppressing noisy data. For instance,
empirically (see later), using the Addition operator, MFNN
can achieve more robust performance in the presence of
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noise, than those implementations which utilise S-norms.
This may be due to the fact that the Addition operator deals
with information embedded in the data in an accumulative
manner. However, the combination of similarities via S-
norms is constrained to the interval [0, 1]. Thus, the weight
of the contribution of the noise-free data has less overall
influence upon the classification outcome. This observation
indicates that the framework of MFNN allows adaptation
to suit different classification problems given such a wide
choice of the aggregators and similarity metrics.

Note that for the MFNN algorithm with crisp class mem-
bership, of all the typical S-norms, the Gödel S-norm is the
most notable in terms of its behaviour. This is because of the
means by which the k nearest neighbours are generated. That
is, the maximum similarity between the test object and the
existing data in the universe is also the maximum amongst
the k nearest neighbours. Therefore, with the Gödel S-norm,
MFNN always classifies a test object into the class where
a sample (i.e., the class membership degree is one) has the
highest similarity to the test object regardless of the number
of nearest neighbours. In other words, when using the Gödel
S-norm and crisp class membership, the classification accu-
racy of MFNN is not affected by the choice of the value for
k.

Computationally, there are two loops in the MFNN algo-
rithm: one to iterate through the classes and another to iterate
through the neighbours. Thus, in the worst case (where the
nearest neighbourhood covers the entire universe of dis-
course U), the complexity of MFNN is O(|C| · |U|).

2.5 Worked example

A simple worked example is presented here in order to illus-
trate the MFNN algorithm. As summarised in Table 1, it
employs a datasetwith 3 real-valued conditional attributes (a,
b and c) and a single discrete-valued crisp decision attribute
(q), as the training data. The two objects contained within
Table 2 are employed as the test data for classification, which
have the same numbers of conditional and decision attributes.

Following the procedure of the MFNN algorithm, the first
step is to calculate the similarities for all decision classes
(∀x ∈ Dq where Dq stands for the domain of the decision

Table 1 Training data for the example

Object a b c q

1 −0.4 0.2 −0.5 Yes

2 −0.4 0.1 −0.1 No

3 0.2 −0.3 0 No

4 0.2 0 0 Yes

Table 2 Test data for the example

Object a b c q

t1 0.3 −0.3 0 No

t2 −0.3 0.3 −0.3 Yes

attribute, i.e., {yes, no}). For simplicity, the class member-
ship is herein set to be crisp-valued. There are four objects
that each belong to one of the two classes. Using the Ein-
stein S-norm, Łukasiewicz T -norm (max(x + y − 1, 0))
(Borkowski 1970) and the following similarity metric [as
defined in Radzikowska and Kerre (2002)]:

μRP (x, y) = Ta∈P {μRa (x, y)}, (3)

the similarity of each test object can then be compared to all
of the data objects in the training set. In (3), μRa (x, y) is the
degree to which objects x and y are similar with regard to
feature a and may be defined as (Jensen and Shen 2009):

μRa (x, y) = 1 − |a(x) − a(y)|
|amax − amin| . (4)

Note that for this simple example all neighbours are taken
into consideration, i.e., k = |U|.

For instance, consider the testing object t1:

μR{P}(1, t1) = T (μR{a}(1, t1), μR{b}(1, t1), μR{c}(1, t1))

= 0

μR{P}(2, t1) = T (μR{a}(2, t1), μR{b}(2, t1), μR{c}(2, t1))

= 0

μR{P}(3, t1) = T (μR{a}(3, t1), μR{b}(3, t1), μR{c}(3, t1))

= 0.86

μR{P}(4, t1) = T (μR{a}(4, t1), μR{b}(4, t1), μR{c}(4, t1))

= 0.26

Then, for each class:

μR{P}(yes, t1) = μR{P}(1, t1) + μR{P}(4, t1)

1 + μR{P}(1, t1) ∗ μR{P}(4, t1)

= (0 + 0.26)/(1 + 0 ∗ 0.26) = 0.26 (5)

μR{P}(no, t1) = μR{P}(2, t1) + μR{P}(3, t1)

1 + μR{P}(2, t1) ∗ μR{P}(3, t1)

= (0 + 0.86)/(1 + 0 ∗ 0.86) = 0.86 (6)

Thus, the combination of similarities for the test object t1
with respect to the class label no is higher than that to the
class yes. The algorithm will therefore classify t1 as belong-
ing to the class no. This procedure can then be repeated for
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test object t2 in exactly the same way, resulting in t2 being
classified as belonging to the class yes.

3 Relationship between MFNN and FRNN/VQNN

The flexible framework of the multi-functional nearest-
neighbour algorithm allows it to cover many nearest-
neighbour approaches as its special cases. This is demon-
strated through the analysis of its relations with the state-
of-the-art fuzzy-rough nearest-neighbour classification algo-
rithms below.

3.1 Fuzzy-rough nearest-neighbour classification

The original fuzzy-rough nearest-neighbour (FRNN) algo-
rithmwas proposed in Jensen andCornelis (2011). In contrast
to approaches such as fuzzy-rough ownership nearest neigh-
bour (FRNN-O) (Sarkar 2007), FRNN employs the central
rough set concepts in their fuzzified forms: fuzzy upper and
lower approximations. These important concepts are used to
determine the assignment of class membership to a given test
object.

A fuzzy-rough set (Dubois and Prade 1992; Yao 1998) is
defined by two fuzzy sets, obtained by extending the con-
cepts of the upper and lower approximations in crisp rough
sets (Pawlak 1991). In particular, the fuzzy upper and lower
approximations of a certain object y concerning a fuzzy con-
cept X are defined as follows:

μRP X (y) = inf
x∈U I (μRP (x, y), μX (x)) (7)

μRP X (y) = sup
x∈U

T (μRP (x, y), μX (x)) (8)

where I is a fuzzy implicator, T is a T -norm, μRP (x, y)

is the fuzzy similarity defined in (3) and μX (x) is the
class membership function. More sophisticated mathemati-
cal treatment of these can be found in Jensen and Shen (2009)
and Radzikowska and Kerre (2002).

The FRNN algorithm is outlined in Algorithm 2. As a
extension of this method, vaguely quantified nearest neigh-
bour (VQNN) has also been developed, as reported in
Cornelis et al. (2007). This is achieved with the introduction
of the lower and upper approximations of vaguely quantified
rough sets (VQRS):

μ
Qu
RP X (y) = Qu

( |RP (x, y) ∩ X |
|RP (x, y)|

)

= Qu

⎛
⎜⎝

∑
x∈U

T (μRP (x, y), μX (x))∑
x∈U

μRP (x, y)

⎞
⎟⎠ , (9)

μ
Ql

RP X
(y) = Ql

( |RP (x, y) ∩ X |
|RP (x, y)|

)

= Ql

⎛
⎜⎝

∑
x∈U

T (μRP (x, y), μX (x))∑
x∈U

μRP (x, y)

⎞
⎟⎠ . (10)

The pair (Qu, Ql) are fuzzy quantifiers (Cornelis et al. 2007),
with each element being an increasing [0, 1] → [0, 1] map-
ping.

ALGORITHM 2: Fuzzy-rough nearest-neighbour
algorithm

Input: ;
U, the training set;
C, the set of decision classes;
y, the object to be classified.
Output: Class, the classification result for y.
N ← get nearest neighbour(y, k);
τ ← 0, Class ← ∅;
for ∀X ∈ C do

if (μRP X (y) + μRP X (y))/2 ≥ τ then
Class ← X ;
τ ← (μRP X (y) + μRP X (y))/2.

end
end

3.2 FRNN and VQNN as special instances of MFNN

Conceptually, MFNN is much simpler without the need of
directly involving complicatedmathematical definitions such
as the above. However, its generality covers both FRNN
and VQNN as its specific cases. Of the many methods for
aggregating similarities, Gödel (Maximum) S-norm and the
Addition operator are arguably amongst those which are
most commonly used. By using these two aggregators, two
particular implementations of MFNN can be devised, denot-
ing them as MFNN_G (MFNN with Gödel S-norm) and
MFNN_A (MFNNwith Addition operator). If the fuzzy sim-
ilarity defined in (3) and the crisp class membership function
are employed to implement MFNN_G and MFNN_A, then,
these twomethods are, respectively, equivalent to FRNN and
VQNN, in terms of classification outcomes. The proofs are
given as follows.

Theorem 1 With the use of an identical fuzzy similarity met-
ric, MFNN_G achieves the same classification accuracy as
FRNN.

Proof Given a setU and a test object y, consider using FRNN
for classificationfirst.Within the selected nearest neighbours,
let M be the class that ∃x∗ ∈ M , such that μRP (x∗, y) =
maxx∈U{μRP (x, y)}.For any a ∈ R, I (a, 1) = 1 and
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T (a, 0) = 0. Thus, due to the crispmembership function, for
the decision concept X = M , the lower and upper approxi-
mations are reduced to:

μRP M (y) = inf

(
inf

x∈M
I (μRP (x, y), μM (x)),

inf
x∈U−M

I (μRP (x, y), μM (x))

)
= inf

x∈U−M
I (μRP (x, y), 0), (11)

μRP M (y) = sup

(
sup
x∈M

T (μRP (x, y), μM (x)),

sup
x∈U−M

T (μRP (x, y), μM (x))

)

= sup
x∈M

T (μRP (x, y), 1). (12)

According to the properties of implicators and T -norms, for
any given y, I (x, y) is monotonically decreasing for x , and
T (x, y) is monotonically increasing for x . In this case, (11)
and (12) can be further simplified to:

μRP M (y) = I

(
max

x∈U−M
{μRP (x, y)}, 0

)
, (13)

μRP M (y) = T

(
max
x∈M

{μRP (x, y)}, 1
)

= T (μRP (x∗, y), 1). (14)

Similarly, for the decision concept X = L , where L is an
arbitrary class different from M , the following hold:

μRP L(y) = inf
x∈U−L

I (μRP (x, y), 0), (15)

μRP L(y) = sup
x∈L

T (μRP (x, y), 1). (16)

In the same way as (11) and (12), (15) and (16) are further
reduced to:

μRP L(y) = I

(
max

x∈U−L
{μRP (x, y)}, 0

)
= I (μRP (x∗, y), 0), (17)

μRP L(y) = T

(
max
x∈L

{μRP (x, y)}, 1
)

. (18)

Since

μRP (x∗, y) ≥ max
x∈U−M

{μRP (x, y)} (19)

μRP (x∗, y) ≥ max
x∈L

{μRP (x, y)} (20)

according to the monotonic properties of implicators and T -
norms, it can be derived that

μRP M (y) ≥ μRP L(y), (21)

μRP M (y) ≥ μRP L(y). (22)

Therefore,

μRP M (y) + μRP M (y)

2
≥ μRP L(y) + μRP L(y)

2
. (23)

Because of the arbitrariness of class L , following the method
of FRNN, y will be classified into class M .

Now, consider the use of MFNN_G. Given the same
assumptions and parameters as assumed above, because
MFNN_G is implemented by the same fuzzy similarity met-
ric as FRNN, these two methods will share the identical
nearest neighbours aswell. And for x∗ ∈ M , it can be derived
that

A
x∈M

μRP (x, y)μM (x) = A
x∈M

μRP (x, y) · 1
= max

x∈M
{μRP (x, y)}

= μRP (x∗, y)

= max
x∈U {μRP (x, y)}

≥ max
x∈L

{μRP (x, y)}
= A

x∈L
μRP (x, y)μL(x) (24)

Because of the arbitrariness of class L , following the method
of MFNN, y will be classified into class M . Therefore, the
classification outcome of MFNN_G is identical to that of
FRNN. ��
Theorem 2 With the use of an identical fuzzy similarity met-
ric, MFNN_A achieves the same classification accuracy as
VQNN.

Proof Given a set U and a test object y, Within the selected
nearest neighbours, let M be the class that

∑
x∈M μRP (x, y)

= max
X∈C

{∑x∈X μRP (x, y)}, where C denotes the set of deci-

sion classes.
According to the definition of VQNN, for the decision

concept X = M , the lower and upper approximations are

μ
Qu
RP M (y) = Qu

⎛
⎜⎝

∑
x∈U

T (μRP (x, y), μM (x))∑
x∈U

μRP (x, y)

⎞
⎟⎠

= Qu

⎛
⎜⎝

∑
x∈M

T (μRP (x, y), μM (x))∑
x∈U

μRP (x, y)

+
∑

x /∈M
T (μRP (x, y), μM (x))∑

x∈U
μRP (x, y)

⎞
⎟⎠ (25)
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μ
Ql

RP M
(y) = Ql

⎛
⎜⎝

∑
x∈U

T (μRP (x, y), μM (x))∑
x∈U

μRP (x, y)

⎞
⎟⎠

= Ql

⎛
⎜⎝

∑
x∈M

T (μRP (x, y), μM (x))∑
x∈U

μRP (x, y)

+
∑

x /∈M
T (μRP (x, y), μM (x))∑

x∈U
μRP (x, y)

⎞
⎟⎠ (26)

Because T (a, 0) = 0, T (a, 1) = a and the classmembership
is crisp-valued, (25) and (26) can be simplified as

μ
Qu
RP M (y) = Qu

⎛
⎜⎝

∑
x∈M

μRP (x, y)∑
x∈U

μRP (x, y)

⎞
⎟⎠ (27)

μ
Ql

RP M
(y) = Ql

⎛
⎜⎝

∑
x∈M

μRP (x, y)∑
x∈U

μRP (x, y)

⎞
⎟⎠ . (28)

Similarly, for a distinct decision X = L , the lower and upper
approximation can be, respectively, denoted by

μ
Qu
RP L(y) = Qu

⎛
⎜⎝

∑
x∈L

μRP (x, y)∑
x∈U

μRP (x, y)

⎞
⎟⎠ (29)

μ
Ql

RP L
(y) = Ql

⎛
⎜⎝

∑
x∈L

μRP (x, y)∑
x∈U

μRP (x, y)

⎞
⎟⎠ . (30)

Following the definition of VQNN, the fuzzy qualifier in
VQNN is an increasing [0, 1] → [0, 1] relation. In this case,
because

∑
x∈M

μRP (x, y) ≥
∑
x∈L

μRP (x, y), (31)

it can be established that

μ
Qu
RP M (y) ≥μ

Qu
RP L(y) (32)

μ
Ql

RP M
(y) ≥μ

Ql

RP L
(y), (33)

Then, obviously,

μ
Qu
RP M (y) + μ

Ql

RP M
(y)

2
≥

μ
Qu
RP L(y) + μ

Ql

RP L
(y)

2
(34)

This concludes that y will always be classified into Class M .

ForMFNN_A, from the same assumptions andparameters
which are used above, due to the identical nearest neighbours
to those of VQNN, it can be derived that

A
x∈M

μRP (x, y)μM (x) = A
x∈M

μRP (x, y) × 1

=
∑
x∈M

μRP (x, y)

= max
X∈C

{∑
x∈X

μRP (x, y)

}

≥
∑
x∈L

μRP (x, y)

= A
x∈L

μRP (x, y)μL(x) (35)

Because of the arbitrariness of class L , according to the defi-
nition ofMFNN, y will be classified into class M . Therefore,
the classification outcome of MFNN_A is the same as that
of VQNN. ��

It is noteworthy that, implemented by above configu-
ration, MFNN_G and MFNN_A, are equivalent to FRNN
and VQNN, respectively, only in the sense that they can
achieve the same classification outcome and hence the same
classification accuracy. However, the actual underlying pre-
dicted probabilities and models of MFNN_G/MFNN_A and
FRNN/VQNN are different. Therefore, for other classifica-
tion performance indicators, such as root-mean-squared error
(RMSE), which are determined by the numerical predicted
probabilities, the equivalent relationships betweenMFNN_G
/MFNN_A and FRNN/VQNN may not hold.

4 Popular nearest-neighbour methods as special
cases of MFNN

To further demonstrate the generality of MFNN, this sec-
tion discusses the relationship between MFNN and k nearest
neighbour and that betweenMFNN and fuzzy nearest neigh-
bour.

4.1 K nearest neighbour and MFNN

As introduced previously, the k nearest-neighbour (kNN)
classifier (Cover and Hart 1967) assigns a test object to the
class that is best represented amongst its k nearest neigh-
bours.

In implementingMFNN, in addition to the use of the crisp
class membership, the cardinality measure can be employed
to perform the aggregation. More specifically, the aggrega-
tion of the similarities with respect to each class X for the
given set N of k nearest neighbours can be defined as:
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A
x∈N

μRP (x, y)μX (x) = A
x∈N∩X

μRP (x, y)

=
∑

x∈N∩X

f (μRP (x, y)), (36)

where the function f (·) ≡ 1. In so doing, the aggregation
of the similarities and the class membership for each class
within the k nearest neighbours is the number of such ele-
ments that are nearest to the test object. Therefore, the test
object will be classified into the class which is the most com-
mon amongst its k nearest neighbours by MFNN. As such,
MFNN becomes kNN if (the opposite of) the Euclidean dis-
tance in (1) is used to measure the similarity as it is used to
measure the closeness in kNN.

4.2 Fuzzy nearest neighbour and MFNN

In fuzzy nearest neighbour (FNN) (Keller et al. 1985), the k
nearest neighbours of the test instance are determined first.
Then, the test instance is assigned to the class for which the
decision qualifier (2) is maximal.

Note that the similarity relation in MFNN can be config-
ured such that

μRP (x, y) = d(x, y)−
2

m−1 , (37)

which is indeed a valid similarity metric. Note also that by
setting the aggregator as the weighted summation, with the
weights uniformly set to 1∑

x∈N μRP (x,y)
, the decision indica-

tor of MFNN becomes:

A
x∈N

μRP (x, y)μX (x)

=
⎛
⎜⎝ 1∑

x∈N
μRP (x, y)

⎞
⎟⎠ ∑

x∈N

μRP (x, y)μX (x), (38)

where μX (x) is the same class membership used in FNN as
well. In so doing, FNN and MFNN will have the identical
classification results. For FRNN-O (Sarkar 2007), similar
conclusions also hold. The analyses regarding both cases are
parallel to the above and therefore, omitted here.

5 Experimental evaluation

This section presents a systematic evaluation of MFNN
experimentally. The results and discussions are divided into
four different parts, after an introduction to the experimen-
tal set-up. The first part investigates the influence of the
number of nearest neighbours on the MFNN algorithm and
how this may affect classification performance. The second

compares MFNN with five other nearest-neighbour meth-
ods in term of classification accuracy. It also demonstrates
empirically how MFNN may be equivalent to the fuzzy-
rough set-based FRNN and VQNN approaches, supporting
the earlier formal proofs. The third and fourth parts provide a
comparative investigation of the performance of several ver-
sions of the MFNN algorithm against four state-of-the-art
classifier learners. Once again, these comparisons are made
with regard to the classification accuracy.

5.1 Experimental set-up

Sixteen benchmark datasets obtained from Armanino et al.
(1989) and Blake and Merz (1998) are used for the experi-
mental evaluation. These datasets contain between 120 and
6435 objects with numbers of features ranging from 6 to 649,
as summarised in Table 3.

For the present study,MFNNemploys the popular relation
of (4) and the Kleene-Dienes T -norm (Dienes 1949; Kleene
1952) tomeasure the fuzzy similarity as per (3) in the follow-
ing experiments.Whilst this does not allow the opportunity to
fine-tune individual MFNNmethods, it ensures that methods
are compared on equal footing. For simplicity, in the follow-
ing experiments, the class membership functions utilised in
MFNN are consistently set to be crisp-valued.

Stratified 10 × 10-fold cross-validation (10-FCV) is
employed throughout the experimentation. In 10-FCV, an
original dataset is partitioned into 10 subsets of data objects.
Of these 10 subsets, a single subset is retained as the test-
ing data for the classifier, and the remaining 9 subsets are
used for training. The cross-validation process is repeated

Table 3 Datasets used for evaluation

Dataset Objects Attributes

Cleveland 297 13

Ecoli 336 7

Glass 214 9

Handwritten 1593 256

Heart 270 13

Liver 345 6

Multifeat 2000 649

Olitos 120 25

Page-block 5473 10

Satellite 6435 36

Sonar 208 60

Water 2 390 38

Water 3 390 38

Waveform 5000 40

Wine 178 14

Wisconsin 683 9
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for 10 times. The 10 sets of results are then averaged to pro-
duce a single classifier estimation. The advantage of 10-FCV
over random subsampling is that all objects are used for both
training and testing, and each object is used for testing only
once per fold. The stratification of the data prior to its division
into folds ensures that each class label (as far as possible) has
equal representation in all folds, thereby helping to alleviate
bias/variance problems (Bengio and Grandvalet 2005).

A paired t-test with a significance level of 0.05 is
employed to provide statistical analysis of the resulting clas-
sification accuracy. This is done in order to ensure that results
are not discovered by chance. The baseline references for the
tests are the classification accuracy obtained by MFNN. The
results on statistical significance are summarised in the final
line of each table, showing a count of the number of statis-
tically better (v), equivalent ( ) or worse (*) cases for each
method in comparison to MFNN. For example, in Table 4,
(2/8/6) in the FNN column indicates thatMFNN_G performs
better than this method on 6 datasets, equivalently to it on 8
datasets, and worse than it in just 2 datasets.

5.2 Influence of number of neighbours

Asmentioned previously, when using theGödel operator and
crisp classmembership, the classification accuracy ofMFNN
is not affected by the selection of the value of k. This is not
generally the case when other operators are employed. In
order to demonstrate this empirically, the impact of differ-
ent values of k is investigated for MFNN on two datasets,
heart and olitos. The Einstein and Addition operators as well
as the Gödel S-norm are used to implement MFNN, with
the resulting classifiers denoted as MFNN_E, MFNN_A and
MFNN_G, respectively. For the investigation described here,
k is initially set to |U| (the total number of the objects in the
dataset) and then decremented by 1/30 of |U| each time, with
an extra round for the case when k = 1. This results in 31
runs for each of the two datasets. For each value of k, 10×10-
fold cross-validation is performed. The results for these two
datasets are shown in Figs. 1 and 2.

It can be seen that MFNN_G is unaffected by the choice
of k. However, MFNN_E and MFNN_A initially exhibit
improvement in classification performance, followed by a
degradation for both datasets as the value of k decreases.
Therefore, the choice of value for k is an important considera-
tion when using an aggregator other than the Gödel operator.
Careful off-line selection of an appropriate k is necessary
before MFNN is applied (unless MFNN_G is to be used).
This conforms to the general findings in the kNN literature.

5.3 Comparison with other nearest neighbour methods

This section presents a comparison of MFNNwith other five
nearest-neighbour classification methods: k nearest neigh-

Fig. 1 Classification accuracy of threeMFNNs (Gödel,Einstein,Addi-
tion) with respect to different k values for the heart dataset

Fig. 2 Classification accuracy of threeMFNNs (Gödel,Einstein,Addi-
tion) with respect to different k values for the olitos dataset

bour (kNN) (Cover and Hart 1967), fuzzy nearest neighbour
(FNN) (Keller et al. 1985), fuzzy-rough ownership nearest
neighbour (FRNN-O) (Sarkar 2007), fuzzy-rough nearest
neighbour (FRNN) (Jensen and Cornelis 2011) and vaguely
quantified nearest neighbour (VQNN) (Cornelis et al. 2007).
In order to provide a fair comparison, all of the results are
generated with the value of k set to 10 when implementing
MFNN_A, VQNN, FNN, FRNN-O and kNN.

Tables 4 and 5 show that as expected, for all datasets,
MFNN_G and MFNN_A offer identical classification accu-
racies to those of FRNN and VQNN, respectively. When
compared to FNN, FRNN-O and kNN, different implemen-
tations of MFNN generally return statistically better or equal
results, especially for the cleveland, heart, olitos,water2, and
water3 datasets. This is shown in these two tables and also
in Table 6 (for MFNN_E). There are very occasional cases
where MFNN methods perform less well. In particular, for
thewaveform dataset, theMFNNclassifiers fail to perform so
well as FNN, but these few results do not reflect the general
trend in which MFNN methods outperform the rest.

Comparing the three MFNN classifiers themselves,
MFNN_A statistically achieves the best performance, with
an exception for the sonar dataset. MFNN_E also performs
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Table 4 Classification
accuracy: MFNN_G versus
others

Dataset MFNN_G FRNN VQNN FNN FRNN-O kNN

Cleveland 53.44 53.44 58.46 49.75 46.85* 55.73

Ecoli 80.57 80.57 86.85v 86.55v 77.95 86.20v

Glass 73.54 73.54 68.95 68.57 71.70 63.23*

Handwritten 91.13 91.13 91.37 91.40 89.94* 90.18

Heart 76.63 76.63 82.19v 66.11* 66.00* 81.30

Liver 62.81 62.81 66.26 69.52 62.37 61.25

Multifeat 97.57 97.57 97.95 94.34* 96.96 97.88

Olitos 78.67 78.67 80.75 63.25* 67.58* 81.50

Page-block 96.04 96.04 95.99 95.94 96.53 95.19*

Satellite 90.92 90.92 90.99 90.73 90.89 90.30

Sonar 85.25 85.25 79.38* 73.21* 85.06 75.25

Water2 84.38 84.38 85.15 77.97* 79.79* 84.26

Water3 79.82 79.82 81.28 74.64* 73.21* 80.90

Waveform 73.77 73.77 81.55v 83.19v 79.71v 80.46v

Wine 97.47 97.47 97.14 96.40 95.62 96.07

Wisconsin 96.38 96.38 96.69 97.20 96.00 96.92

Summary (v//*) (0/16/0) (3/12/1) (2/8/6) (1/9/6) (2/11/3)

Table 5 Classification
accuracy: MFNN_A versus
others

Dataset MFNN_A FRNN VQNN FNN FRNN-O kNN

Cleveland 58.46 53.44 58.46 49.75* 46.85* 55.73

Ecoli 86.85 80.57* 86.85 86.55 77.95 86.20

Glass 68.95 73.54 68.95 68.57 71.70 62.23*

Handwritten 91.37 91.13 91.37 91.40 89.94* 90.18*

Heart 82.19 76.63* 82.19 66.11* 66.00* 81.30

Liver 66.26 62.81 66.26 69.52 62.37 61.25*

Multifeat 97.95 97.57 97.95 94.34* 96.96* 97.88

Olitos 80.75 78.67 80.75 63.25* 67.58* 81.50

Page-block 95.99 96.04 95.99 95.94 96.53 95.19*

Satellite 90.99 90.92 90.99 90.73 90.89 90.30*

Sonar 79.38 85.25v 79.38 73.21* 85.06v 75.25

Water2 85.15 84.38 85.15 77.97* 79.79* 84.26

Water3 81.28 79.82 81.28 74.64* 73.21* 80.90

Waveform 81.55 73.77* 81.55 83.19v 79.71* 80.46

Wine 97.14 97.47 97.14 96.40 95.62 96.07

Wisconsin 96.69 96.38 96.69 97.20 96.00 96.92

Summary (v//*) (1/12/3) (0/16/0) (1/8/7) (1/7/8) (0/11/5)

slightly better than MFNN_G. This is due to the fact that
the classification results gained by MFNN_G only rely on
one sample. In this case, MFNN_G is sensitive to noisy data,
whilst MFNN_A is significantly more robust in the presence
of noisy data.

Overall, considering all the experimental results, this
method outperforms all of the existing methods. This makes
MFNN_A a potentially good candidate for many classifica-
tion tasks.

5.4 Comparison with the state of the art: use of different
aggregators

This section experimentally compares MFNN with several
leading classifier learners that represent a cross section of the
most popular approaches. For completeness, a brief summary
of these methods is provided below.

– PART (Witten and Frank 1998, 2000) generates rules
by means of repeatedly creating partial decision trees
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Table 6 Classification
accuracy: MFNN_E versus
others

Dataset MFNN_E FRNN VQNN FNN FRNN-O kNN

Cleveland 53.64 53.44 58.46 49.75 46.85* 55.73

Ecoli 81.93 80.57* 86.85v 86.55v 77.95 86.20v

Glass 74.29 73.54 68.95 68.57 71.70 63.23*

Handwritten 91.20 91.13 91.37 91.40 89.94* 90.18

Heart 76.70 76.63 82.19v 66.11* 66.00* 81.30

Liver 63.07 62.81 66.26 69.52 62.37 61.25

Multifeat 97.59 97.57 97.95 94.34* 96.96 97.88

Olitos 78.83 78.67 80.75 63.25* 67.58* 81.50

Page-block 96.18 96.04 95.99 95.94 96.53 95.19*

Satellite 91.52 90.92* 90.99 90.73* 90.89* 90.30*

Sonar 85.35 85.25 79.38* 73.21* 85.06 75.25*

Water2 85.21 84.38 85.15 77.97* 79.79* 84.26

Water3 80.77 79.82 81.28 74.64* 73.21* 80.90

Waveform 74.97 73.77* 81.55v 83.19v 79.71v 80.46v

Wine 97.47 97.47 97.14 96.40 95.62 96.07

Wisconsin 96.38 96.38 96.69 97.20 96.00 96.92

Summary (v//*) (0/13/3) (3/12/1) (2/7/7) (1/8/7) (2/10/4)

from the data. The algorithmadopts a divide-and-conquer
strategy such that it removes instances already covered by
the current ruleset during the learning processing. Essen-
tially, a rule is created by building a pruned tree for the
current set of instances; the branch leading to a leaf with
the highest coverage is promoted to a classification rule.
In this paper, this method is empirically learned with a
confident factor of 0.25.

– J48 is based on ID3 (Quinlan 1993) and creates deci-
sion trees by choosing the most informative features and
recursively partitioning a training data table into subta-
bles based on the values of such features. Each node in
the tree represents a feature, with the subsequent nodes
branching from the possible values of this node accord-
ing to the current subtable. Partitioning stops when all
data items in the subtable have the same classification.
A leaf node is then created to represent this classifica-
tion. In this paper, J48 is set with the pruning confidence
threshold C = 0.25.

– SMO (Smola and Schölkopf 1998) is an algorithm for
efficiently solving optimisation problems which arise
during the training of a support vector machine (Cortes
and Vapnik 1995). It breaks optimisation problems into a
series of smallest possible subproblems, which are then
resolved analytically. In this paper, SMO is set with
C = 1, tolerance L = 0.001, round-off error=10−12,
data running on normalised and polynomial kernel.

– NB (Naive Bayes) (John and Langley 1995) is a simple
probabilistic classifier, directly applying Bayes’ theo-
rem (Papoulis 1984) with strong (naive) independence
assumptions. Depending on the precise nature of the

Table 7 Classification accuracy of MFNN_G

Dataset MFNN_G PART J48 SMO NB

Cleveland 53.44 52.44 53.39 58.31 56.06

Ecoli 80.57 81.79 82.83 83.48 85.50v

Glass 73.54 69.12 68.08 57.77* 47.70*

Handwritten 91.13 79.34* 76.13* 93.58v 86.19*

Heart 76.63 77.33 78.15 83.89v 83.59v

Liver 62.81 65.25 65.84 57.98 54.89

Multifeat 97.57 94.68* 94.62* 98.39v 95.27*

Olitos 78.67 67.00* 65.75* 87.92v 78.50

Page-block 96.04 96.93v 96.99v 92.84* 90.01*

Satellite 90.92 86.63* 86.41* 86.78* 79.59*

Sonar 85.25 77.40* 73.61* 76.60* 67.71*

Water2 84.38 83.85 83.18 83.64 69.72*

Water3 79.82 82.72 81.59 87.21v 85.49v

Waveform 73.77 77.62v 75.25 86.48v 80.01v

Wine 97.47 92.24* 93.37 98.70 97.46

Wisconsin 96.38 95.68 95.44 97.01 96.34

Summary (v//*) (2/8/6) (1/10/5) (6/6/4) (4/5/7)

probability model used, naive Bayesian classifiers can be
trained very efficiently in a supervised learning setting.
The learning only requires a small amount of training
data to estimate the parameters (means and variances of
the variables) necessary for classification.

The results are listed in Tables 7, 8 and 9, together with a
statistical comparison between each method and MFNN_G,
MFNN_E and MFNN_A, respectively.
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Table 8 Classification accuracy of MFNN_E

Dataset MFNN_E PART J48 SMO NB

Cleveland 53.64 52.44 53.39 58.31 56.06

Ecoli 81.93 81.79 82.83 83.48 85.50

Glass 74.29 69.12 68.08 57.77* 47.70*

Handwritten 91.20 79.34* 76.13* 93.58v 86.19*

Heart 76.70 77.33 78.15 83.89v 83.59v

Liver 63.07 65.25 65.84 57.98 54.89

Multifeat 97.59 94.68* 94.62* 98.39v 95.27*

Olitos 78.83 67.00* 65.75* 87.92v 78.50

Page-block 96.18 96.93v 96.99v 92.84* 90.01*

Satellite 91.52 86.63* 86.41* 86.78* 79.59*

Sonar 85.35 77.40* 73.61* 76.60* 67.71*

Water2 85.21 83.85 83.18 83.64 69.72*

Water3 80.77 82.72 81.59 87.21v 85.49v

Waveform 74.97 77.62v 75.25 86.48v 80.01v

Wine 97.47 92.24* 93.37 98.70 97.46

Wisconsin 96.38 95.68 95.44 97.01 96.34

Summary (v//*) (2/8/6) (1/10/5) (6/6/4) (3/6/7)

Table 9 Classification accuracy of MFNN_A

Dataset MFNN_A PART J48 SMO NB

Cleveland 58.46 52.44* 53.39 58.31 56.06

Ecoli 86.85 81.79* 82.83* 83.48 85.50

Glass 68.95 69.12 68.08 57.77* 47.70*

Handwritten 91.37 79.34* 76.13* 93.58v 86.19*

Heart 82.19 77.33 78.15 83.89 83.59

Liver 66.26 65.25 65.84 57.98* 54.89*

Multifeat 97.95 94.68* 94.62* 98.39 95.27*

Olitos 80.75 67.00* 65.75* 87.92v 78.50

Page-block 95.99 96.93v 96.99v 92.84* 90.01*

Satellite 90.99 86.63* 86.41* 86.78* 79.59*

Sonar 79.38 77.40 73.61 76.60 67.71*

Water2 85.15 83.85 83.18 83.64 69.72*

Water3 81.28 82.72 81.59 87.21v 85.49v

Waveform 81.55 77.62* 75.25* 86.48v 80.01

Wine 97.14 92.24* 93.37 98.70 97.46

Wisconsin 96.69 95.68 95.44 97.01 96.34

Summary (v//*) (1/7/8) (1/9/6) (4/8/4) (1/7/8)

It can be seen from these results that in general, all
three implemented MFNN methods perform well. In par-
ticular, even considering MFNN_G, the least performer
amongst the three, for the glass, satellite, sonar, and water 2
datasets, it achieves statistically better classification perfor-
mance against all the other types of classifier. Only for the
ecoli and waveform datasets, MFNN_G does not perform so
well as it does on the other datasets.

Amongst the three MFNN implementations, MFNN_A is
again the best performer. It is able to generally improve the
classification accuracies achievable by both MFNN_G and
MFNN_E, for the cleveland, ecoli, heart, liver, waveform
datasets. However, from a statistical perspective, its perfor-
mance is similar to the other two overall. Nevertheless, in
terms of accuracy,MFNN_A is statistically better thanPART,
J48 andNB, respectively, for 8, 6 and 8datasets,with an equal
statistical performance to that of SMO.

5.5 Comparison with the state of the art: use of different
similarity metrics

It was mentioned previously that the MFNN approach offers
significant flexibility as it allows the use of different simi-
larity metrics and aggregation operators. To provide a more
comprehensive view of the performance of MFNN, this sec-
tion investigates the effect of employing different similarity
metrics. In particular, kernel-based fuzzy similarity met-
rics are employed in this section (Qu et al. 2015). Such
similarity metrics are induced by the stationary kernel func-
tions and robustness in statistics. Specifically, as the overall
best, MFNN_A is modified to use either the wave kernel
function or the rational quadratic kernel function. The resul-
tant classifiers are denoted by MFNN_AW and MFNN_AR,
respectively.

As demonstrated in Tables 10 and 11, the classification
accuracies achieved by MFNN_AW and MFNN_AR further
improve over those achieved by MFNN_A for a number of
datasets. Statistically, it is shown that MFNN_AW generally

Table 10 Classification accuracy of MFNN_AW

Dataset MFNN_AW PART J48 SMO NB

Cleveland 58.46 52.44* 53.39 58.31 56.06

Ecoli 87.12 81.79* 82.83* 83.48 85.50

Glass 66.76 69.12 68.08 57.77* 47.70*

Handwritten 91.32 79.34* 76.13* 93.58v 86.19*

Heart 82.78 77.33 78.15 83.89 83.59

Liver 64.65 65.25 65.84 57.98* 54.89*

Multifeat 98.05 94.68* 94.62* 98.39 95.27*

Olitos 82.42 67.00* 65.75* 87.92 78.50

Page-block 96.40 96.93v 96.99v 92.84* 90.01*

Satellite 90.76 86.63* 86.41* 86.78* 79.59*

Sonar 81.31 77.40 73.61* 76.60 67.71*

Water2 85.90 83.85 83.18 83.64 69.72*

Water3 81.15 82.72 81.59 87.21v 85.49v

Waveform 81.09 77.62* 75.25* 86.48v 80.01

Wine 96.53 92.24 93.37 98.70 97.46

Wisconsin 96.66 95.68 95.44 97.01 96.34

Summary (v//*) (1/8/7) (1/8/7) (3/9/4) (1/7/8)
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Table 11 Classification accuracy of MFNN_AR

Dataset MFNN_AR PART J48 SMO NB

Cleveland 57.21 52.44 53.39 58.31 56.06

Ecoli 87.68 81.79* 82.83* 83.48* 85.50

Glass 74.98 69.12 68.08 57.77* 47.70*

Handwritten 91.29 79.34* 76.13* 93.58v 86.19*

Heart 81.93 77.33 78.15 83.89 83.59

Liver 64.88 65.25 65.84 57.98* 54.89*

Multifeat 97.75 94.68* 94.62* 98.39v 95.27*

Olitos 80.67 67.00* 65.75* 87.92v 78.50

Page-block 96.09 96.93v 96.99v 92.84* 90.01*

Satellite 90.01 86.63* 86.41* 86.78* 79.59*

Sonar 77.02 77.40 73.61 76.60 67.71*

Water2 85.03 83.85 83.18 83.64 69.72*

Water3 80.82 82.72 81.59 87.21v 85.49v

Waveform 80.14 77.62* 75.25* 86.48v 80.01

Wine 95.97 92.24 93.37 98.70 97.46

Wisconsin 96.35 95.68 95.44 97.01 96.34

Summary (v//*) (1/9/6) (1/9/6) (5/6/5) (1/7/8)

outperforms the other approaches (particularly for the olitos
dataset).MFNN_ARalso outperforms all the other classifiers
with the exception of SMO (to which MFNN_AR obtains a
comparable and statistically equal performance). Note that
for the glass dataset, MFNN_AR achieves a very significant
improvement in accuracy.

In summary, examining all of the results obtained, it has
been experimentally shown that when a kernel-based fuzzy
similarity metric is employed, MFNN offers a better and
more robust performance than the other classifiers.

6 Conclusion

This paper has presented a multi-functional nearest-
neighbour approach (MFNN). In this work, the combina-
tion of fuzzy similarities and class memberships may be
performed using different aggregators. Such an aggregated
similarity measure is then employed as the decision qualifier
for the process of decision-making in classification.

The wide and variable choice of the aggregators and fuzzy
similarity metrics ensures that the proposed approach has a
high flexibility and is of significant generality. For exam-
ple, using appropriate similarity relations, aggregators and
class membership functions, MFNN can perform the tasks of
classical kNN and FNN. Such construction helps to ensure
that the resulting MFNN is adaptive in dealing with differ-
ent classification problems given a wide range of choices.
Furthermore, using the Gödel S-norm and Addition opera-
tor, the resulting specificMFNN implementations (with crisp

membership) have the ability to achieve the same classifi-
cation accuracy as two advanced fuzzy-rough set methods:
fuzzy-rough nearest neighbour (FRNN) and vaguely quan-
tified nearest neighbours (VQNN). That is, both traditional
nearest-neighbourmethods and advanced fuzzy-rough-based
classifiers can be seen as special cases ofMFNN. This obser-
vation indicates that the MFNN algorithm grants a flexible
framework to the existing nearest-neighbour classification
methods. These results are proven by theoretical analysis,
supported with empirical results.

To demonstrate the efficacy of the MFNN approach,
systematic experiments have been carried out from the
perspective of classification accuracy. The results of the
experimental evaluation have been very promising. They
demonstrate that implementedwith specific aggregators, par-
ticularly whilst employing the Addition operator, MFNN can
generally outperforma range of state-of-the-art learning clas-
sifiers in terms of these performance indicators.

Topics for further research include a more comprehen-
sive study of how the proposed approach would perform in
regression or other prediction tasks, where the decision vari-
ables are not crisp. Also, recently, a proposal has been made
to develop techniques for efficient information aggregation
and unsupervised feature selection, which exploits the con-
cept of nearest-neighbour-based data reliability (Boongoen
and Shen 2010; Boongoen et al. 2011). An investigation into
how the present work could be used to perform such tasks
or perhaps (semi-)supervised feature selection (Jensen and
Shen 2008) remains active research.
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